TWI624088B - Method and system for providing magnetic tunneling junction elements having an easy cone anisotropy - Google Patents
Method and system for providing magnetic tunneling junction elements having an easy cone anisotropy Download PDFInfo
- Publication number
- TWI624088B TWI624088B TW103100976A TW103100976A TWI624088B TW I624088 B TWI624088 B TW I624088B TW 103100976 A TW103100976 A TW 103100976A TW 103100976 A TW103100976 A TW 103100976A TW I624088 B TWI624088 B TW I624088B
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetic
- layer
- anisotropy
- energy
- free layer
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 307
- 238000000034 method Methods 0.000 title abstract description 33
- 230000005641 tunneling Effects 0.000 title description 10
- 125000006850 spacer group Chemical group 0.000 claims abstract description 69
- 230000005415 magnetization Effects 0.000 claims description 78
- 230000005347 demagnetization Effects 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- 239000000395 magnesium oxide Substances 0.000 claims description 8
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 7
- 210000000352 storage cell Anatomy 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 440
- 230000005294 ferromagnetic effect Effects 0.000 description 20
- 238000012546 transfer Methods 0.000 description 15
- 230000008901 benefit Effects 0.000 description 13
- 230000005290 antiferromagnetic effect Effects 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 230000002411 adverse Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000005293 ferrimagnetic effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000408659 Darpa Species 0.000 description 1
- 229910002546 FeCo Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910018279 LaSrMnO Inorganic materials 0.000 description 1
- 229910016583 MnAl Inorganic materials 0.000 description 1
- -1 MnAs Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Materials of the active region
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
Abstract
描述可用於一磁性裝置內提供一磁性接面之方法及系統。該磁性接面包括一被釘扎層、一非磁性間隔層、及一自由層。該非磁性間隔層係在該被釘扎層與該自由層間。該自由層具有磁性各向異性,其中至少一部分係為雙軸各向異性。該磁性接面係經組配以當一寫入電流係通過該磁性接面時,使得該自由層係在多個穩定磁性狀態間為可切換。 A method and system for providing a magnetic junction in a magnetic device is described. The magnetic junction includes a pinned layer, a non-magnetic spacer layer, and a free layer. The non-magnetic spacer layer is between the pinned layer and the free layer. The free layer has magnetic anisotropy, at least a portion of which is biaxial anisotropy. The magnetic junctions are configured such that when a write current is passed through the magnetic junction, the free layer is switchable between a plurality of stable magnetic states.
Description
本案為美國專利申請案第12/854,628號的部分連續案,名稱為用於提供具有易錐面各向異性的磁性穿隧接面元件之方法及系統,該案讓與本案之受讓人及援引於此並融入本說明書之揭示。 This is a continuation of the U.S. Patent Application Serial No. 12/854,628, the disclosure of which is incorporated herein by reference in its entirety in its entirety in the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all This is incorporated herein by reference.
本發明係遵照DARPA獎勵的撥款/合約第HR0011-09-C-0023號取得美國政府援助。美國政府保有本發明的某些權利。 The present invention is assisted by the U.S. government in accordance with the DARPA award grant/contract HR0011-09-C-0023. The U.S. Government retains certain rights in the invention.
示範的實施例係有關於可用在磁性裝置諸如磁性記憶體的磁性接面,及使用此等磁性接面的該等裝置。 Exemplary embodiments relate to magnetic junctions that can be used in magnetic devices such as magnetic memory, and such devices that use such magnetic junctions.
磁性記憶體,特別是磁性隨機存取記憶體(MRAM)由於其高讀取/寫入速度潛力、優異的耐用性、非 依電性及於操作期間的低功耗,已經逐漸吸引眾人目光注意。MRAM可利用磁性材料作為資訊記錄媒體而儲存資訊。一種類型之MRAM為自旋轉移矩隨機存取記憶體(STT-RAM)。STT-RAM利用磁性接面,至少部分係藉驅動通過該磁性接面的電流寫入。驅動通過該磁性接面的自旋偏振電流在該磁性接面中的磁矩上施加一自旋矩。結果,具有應答於自旋矩的磁矩之層可被切換至期望狀態。 Magnetic memory, especially magnetic random access memory (MRAM) due to its high read/write speed potential, excellent durability, non- Depending on the power and low power consumption during operation, it has gradually attracted people's attention. MRAM can store information using magnetic materials as information recording media. One type of MRAM is a spin transfer torque random access memory (STT-RAM). The STT-RAM utilizes a magnetic junction, at least in part by driving current writing through the magnetic junction. Driving a spin-polarized current through the magnetic junction exerts a spin moment on the magnetic moment in the magnetic junction. As a result, a layer having a magnetic moment responsive to the spin moment can be switched to a desired state.
舉例言之,圖1描繪當用在習知STT-RAM的習知磁性穿隧接面(MTJ)10。習知MTJ 10典型地位在一底接點11上,使用習知晶種層12,及包括一習知反鐵磁(AFM)層14、一習知被釘扎層16、一習知穿隧位障層18、一習知自由層20、及一習知覆蓋層22。也顯示頂接點24。 For example, Figure 1 depicts a conventional magnetic tunnel junction (MTJ) 10 when used in conventional STT-RAM. The conventional MTJ 10 is typically placed on a bottom contact 11, using a conventional seed layer 12, and includes a conventional antiferromagnetic (AFM) layer 14, a conventional pinned layer 16, a conventional tunneling barrier. Layer 18, a conventional free layer 20, and a conventional cover layer 22. The jacking point 24 is also shown.
如圖1顯示,習知接點11及24係用以於一電流垂直平面(CPP)方向或沿z軸驅動電流。習知晶種層12典型地用以協助隨後各層的長出,諸如AFM層14,具有期望的晶體結構。習知穿隧位障層18為非磁性例如為薄絕緣體,諸如MgO。 As shown in Figure 1, conventional contacts 11 and 24 are used to drive current in a current vertical plane (CPP) direction or along the z-axis. The conventional seed layer 12 is typically used to assist in the growth of subsequent layers, such as the AFM layer 14, having the desired crystal structure. Conventional tunneling barrier layer 18 is non-magnetic such as a thin insulator such as MgO.
習知被釘扎層16及習知自由層20為磁性。習知被釘扎層16的磁化17為固定或被釘扎於一特定方向,典型地係藉與AFM層14的交換-偏移互動。雖然描繪為簡單(單)層,但習知被釘扎層16可包括多層。例如,習知被釘扎層16可為包括經由薄傳導層諸如釕而反鐵磁地或鐵磁地耦合的磁性層的一合成反鐵磁(SAF)層。於此種SAF中,可使用與釕薄層交插的多層磁性層。又,習知MTJ 10的其它版本 可包括藉額外非磁性位障或傳導層(圖中未顯示)而與自由層20分開的一額外被釘扎層(圖中未顯示)。 The pinned layer 16 and the conventional free layer 20 are magnetic. It is conventional that the magnetization 17 of the pinned layer 16 is fixed or pinned in a particular direction, typically by an exchange-offset interaction with the AFM layer 14. Although depicted as a simple (single) layer, the conventional pinned layer 16 can include multiple layers. For example, conventional pinned layer 16 can be a synthetic antiferromagnetic (SAF) layer comprising a magnetic layer that is antiferromagnetically or ferromagnetically coupled via a thin conductive layer such as germanium. In such a SAF, a multilayer magnetic layer interposed with a thin layer of tantalum can be used. Also, other versions of the conventional MTJ 10 An additional pinned layer (not shown) separated from the free layer 20 by an additional non-magnetic barrier or conductive layer (not shown) may be included.
習知自由層20具有可改變磁化21。雖然描繪為單層,但習知自由層20也可包括多層。例如,習知自由層20可為包括經由薄傳導層諸如釕而以反鐵磁或鐵磁方式耦合的磁性層的一合成層。雖然顯示為同平面,但習知自由層20的磁化21可具有垂直各向異性。 The conventional free layer 20 has a changeable magnetization 21. Although depicted as a single layer, the conventional free layer 20 can also include multiple layers. For example, the conventional free layer 20 can be a composite layer that includes a magnetic layer that is antiferromagnetically or ferromagnetically coupled via a thin conductive layer such as germanium. Although shown as being coplanar, the magnetization 21 of the conventional free layer 20 can have perpendicular anisotropy.
為了切換習知自由層20的磁化21,垂直平面(於z方向)驅動一電流。當從頂接點24至底接點11驅動足量電流時,習知自由層20的磁化21可切換成平行習知被釘扎層16的磁化17。當從底接點11至頂接點24驅動足量電流時,該自由層的磁化21可切換成平行習知被釘扎層16的磁化。磁性組態的差異係相對應於不同的磁阻,因而相對應於習知MTJ 10的不同邏輯狀態(例如邏輯「0」及邏輯「1」)。 In order to switch the magnetization 21 of the conventional free layer 20, a vertical plane (in the z direction) drives a current. When a sufficient amount of current is driven from the top contact 24 to the bottom contact 11, the magnetization 21 of the conventional free layer 20 can be switched to parallel the magnetization 17 of the pinned layer 16. When a sufficient amount of current is driven from the bottom contact 11 to the top contact 24, the magnetization 21 of the free layer can be switched to parallel the magnetization of the pinned layer 16. The difference in magnetic configuration corresponds to different reluctances and thus corresponds to the different logic states of the conventional MTJ 10 (eg, logic "0" and logic "1").
當用在STT-RAM應用時,習知MTJ 10的自由層磁化21期望以相對低電流切換。臨界切換電流(Jc0)係為環繞原先方向變不穩定的自由層磁化21之極微小進動的最低電流。用於室溫量測,此電流值係接近短脈衝(1-20奈秒)的切換電流。舉例言之,Jc0可能期望約為數毫安培或以下。此外,也期望快速切換時間。舉例言之,可能期望自由層20在少於20奈秒以內切換。此外,快速的切換時間也被期望。於某些情況下,期望少於10奈秒的切換時間。如此,資料期望以較高速度且使用充分低臨界電流儲存於習知MTJ 10。 When used in STT-RAM applications, the free layer magnetization 21 of the conventional MTJ 10 is expected to switch at a relatively low current. The critical switching current (J c0 ) is the lowest current of the very small precession of the free layer magnetization 21 that is unstable around the original direction. For room temperature measurement, this current value is close to the short pulse (1-20 nanoseconds) switching current. For example, J c0 may be expected to be on the order of a few milliamperes or less. In addition, it is also desirable to switch time quickly. For example, it may be desirable for the free layer 20 to switch within less than 20 nanoseconds. In addition, fast switching times are also expected. In some cases, a switching time of less than 10 nanoseconds is desired. As such, the data is expected to be stored at conventional MTJ 10 at a higher speed and with a sufficiently low critical current.
雖然習知MTJ 10可使用自旋轉移被寫入及被用在STT-RAM,但仍有缺點。舉例言之,軟錯誤率可能高於具有可接受的Jc0及切換時間的記憶體之所期望者。軟錯誤率為當一胞元接受至少等於典型切換電流的一電流時不被切換的機率(亦即,習知磁性接面的自由層20之磁化21)。該軟錯誤率係期望為10-9或10-9以下。然而,習知自由層20典型地具有大為超過此值的軟錯誤率。舉例言之,軟錯誤率可為大於10-9的數個次冪幅值。結果,可能無法達成足夠低的Jc及足夠快的切換時間與可接受的軟錯誤率的組合。 Although the conventional MTJ 10 can be written using spin transfer and used in STT-RAM, there are still disadvantages. For example, the soft error rate may be higher than expected for a memory with acceptable J c0 and switching time. The soft error rate is the probability that a cell is not switched when it receives a current at least equal to the typical switching current (i.e., the magnetization 21 of the free layer 20 of the conventional magnetic junction). The soft error rate expectations for the Department of 10-9 or 10-9 or less. However, the conventional free layer 20 typically has a soft error rate that greatly exceeds this value. For example, the soft error rate can be a few power magnitudes greater than 10 -9 . As a result, it may not be possible to achieve a sufficiently low Jc and a combination of a fast enough switching time and an acceptable soft error rate.
為了要改良包括軟錯誤率等特性之多種習知機制已被提出。舉例言之,可使用複雜結構及/或外部磁場協助。然而,此等習知方案減低軟錯誤率同時保有其它特性的能力係有限的。例如,擴充性、能量消耗、及/或熱安定性可能受此等習知方法之不良影響。因此,使用習知MTJ的記憶體之效能仍然期望被改良。 A variety of conventional mechanisms for improving characteristics including soft error rates have been proposed. For example, complex structures and/or external magnetic fields can be used to assist. However, these conventional solutions have a limited ability to reduce the soft error rate while retaining other characteristics. For example, scalability, energy consumption, and/or thermal stability may be adversely affected by such conventional methods. Therefore, the performance of using the memory of the conventional MTJ is still expected to be improved.
據此,可改良以自旋轉移矩為基礎的記憶體之效能的方法及系統係被需要的。此處描述的方法及系統可滿足此一需要。 Accordingly, methods and systems for improving the performance of memory based on spin transfer torque are needed. The methods and systems described herein address this need.
示範的實施例提出可用於一磁性裝置內提供一磁性接面之方法及系統。該磁性接面包括一被釘扎層、一非磁性間隔層、及一自由層。該非磁性間隔層係在該被釘扎層與該自由層間。該自由層具有一磁性各向異性,其中 至少一部分係為一雙軸各向異性。該磁性接面係經組配使得當一寫入電流被通過該磁性接面時,該自由層在多個穩定磁性狀態間為可切換。 The exemplary embodiment proposes a method and system that can be used to provide a magnetic junction within a magnetic device. The magnetic junction includes a pinned layer, a non-magnetic spacer layer, and a free layer. The non-magnetic spacer layer is between the pinned layer and the free layer. The free layer has a magnetic anisotropy, wherein At least a portion is a biaxial anisotropy. The magnetic junctions are configured such that when a write current is passed through the magnetic junction, the free layer is switchable between a plurality of stable magnetic states.
10‧‧‧磁性穿隧接面(MTJ) 10‧‧‧Magnetic tunneling junction (MTJ)
11‧‧‧習知底接點 11‧‧‧ Knowing the bottom contact
12‧‧‧習知晶種層 12‧‧‧Learly seed layer
14‧‧‧習知反鐵磁(AFM)層 14‧‧‧General antiferromagnetic (AFM) layer
16‧‧‧習知被釘扎層 16‧‧‧Study pinned layer
17‧‧‧習知被釘扎層之磁化 17‧‧‧Knowledge of the magnetization of the pinned layer
18‧‧‧習知穿隧位障層 18‧‧‧Custom tunneling barrier
20‧‧‧習知自由層 20‧‧‧Learn free layer
21‧‧‧習知自由層之磁化 21‧‧‧The magnetization of the conventional free layer
22‧‧‧習知覆蓋層 22‧‧‧Study cover
24‧‧‧習知頂接點 24‧‧‧Knowledge top point
100、200、200’、200”、200'''、 200''''、300、412‧‧‧磁性接面 100, 200, 200', 200", 200''', 200''', 300, 412‧‧ ‧ magnetic junction
102、202、202’、202”、202'''、202''''、302‧‧‧選擇性晶種層 102, 202, 202', 202", 202''', 202'''', 302‧‧‧ selective seed layer
104、204、204’、204”、204’”、204''''、304、360‧‧‧選擇性 釘扎層 104, 204, 204', 204", 204'", 204'''', 304, 360‧‧‧Selectivity Pinning layer
110、210、210’、210”、210'''、210''''、310、350‧‧‧被釘扎層 110, 210, 210', 210", 210''', 210'''', 310, 350‧‧‧ pinned layers
120、120’、220、220’、220”、220’”、220''''、320、330‧‧‧非磁性間隔層 120, 120', 220, 220', 220", 220'", 220'''', 320, 330‧‧‧ non-magnetic spacer
130、130’、130”、230、230’、 230”、230’”、230''''、330‧‧‧自由層 130, 130', 130", 230, 230', 230", 230'", 230''', 330‧‧‧ free layers
132、134、136、138‧‧‧層 132, 134, 136, 138‧ ‧ layers
140、240、240’、240”、240'''、240''''、370‧‧‧選擇性覆蓋層 140, 240, 240', 240", 240''', 240'''', 370‧‧ ‧ selective overlay
150、150’‧‧‧線圖 150, 150’‧‧‧ Line Chart
160、170、180、180’‧‧‧能曲線 160, 170, 180, 180' ‧ ‧ energy curve
162、172、182‧‧‧最小值 162, 172, 182‧‧ minimum
164、174、186‧‧‧點 164, 174, 186‧‧ points
184‧‧‧局部最大值 184‧‧‧ local maximum
212、212’、216、216’‧‧‧磁化、鐵磁層 212, 212', 216, 216'‧‧‧ Magnetization, ferromagnetic layer
214、214’‧‧‧非磁化間隔體 214, 214'‧‧‧ Non-magnetized spacers
232、232’、236、236’‧‧‧易磁化 軸、鐵磁層 232, 232', 236, 236' ‧ ‧ easy magnetization Shaft, ferromagnetic layer
234、234’‧‧‧自由層磁化、非磁性間隔體 234, 234'‧‧‧ free layer magnetization, non-magnetic spacers
400‧‧‧磁性記憶體 400‧‧‧ Magnetic memory
402、406‧‧‧讀取/寫入行選擇驅動器 402, 406‧‧‧Read/Write Row Selection Driver
403‧‧‧行 403‧‧‧
404‧‧‧字線選擇驅動器 404‧‧‧Word line selection driver
405‧‧‧列 405‧‧‧
410‧‧‧磁性儲存胞元 410‧‧‧Magnetic storage cells
414‧‧‧選擇裝置 414‧‧‧Selection device
500‧‧‧方法 500‧‧‧ method
502-508‧‧‧步驟 502-508‧‧‧Steps
圖1描繪一習知磁性接面。 Figure 1 depicts a conventional magnetic junction.
圖2描繪包含具有雙軸各向異性的一自由層的一磁性接面之一示範實施例。 2 depicts an exemplary embodiment of a magnetic junction including a free layer having biaxial anisotropy.
圖3描繪用於各種磁性接面的各向異性能的示範實施例。 Figure 3 depicts an exemplary embodiment of anisotropic energy for various magnetic junctions.
圖4描繪用於一磁性接面的各向異性能的一示範實施例。 Figure 4 depicts an exemplary embodiment of anisotropic energy for a magnetic junction.
圖5描繪具有雙軸各向異性的一自由層的一示範實施例。 Figure 5 depicts an exemplary embodiment of a free layer having biaxial anisotropy.
圖6描繪具有雙軸各向異性的一自由層的一示範實施例。 Figure 6 depicts an exemplary embodiment of a free layer having biaxial anisotropy.
圖7描繪包含具有雙軸各向異性的一自由層的一磁性接面之一示範實施例。 Figure 7 depicts an exemplary embodiment of a magnetic junction comprising a free layer having biaxial anisotropy.
圖8描繪包含具有雙軸各向異性的一自由層的一磁性接面之另一示範實施例。 Figure 8 depicts another exemplary embodiment of a magnetic junction comprising a free layer having biaxial anisotropy.
圖9描繪包含具有雙軸各向異性的一自由層的一磁性接面之另一示範實施例。 Figure 9 depicts another exemplary embodiment of a magnetic junction comprising a free layer having biaxial anisotropy.
圖10描繪包含具有雙軸各向異性的一自由層的一磁性接面之另一示範實施例。 Figure 10 depicts another exemplary embodiment of a magnetic junction comprising a free layer having biaxial anisotropy.
圖11描繪包含具有雙軸各向異性的一自由層的 一磁性接面之另一示範實施例。 Figure 11 depicts a free layer comprising biaxial anisotropy Another exemplary embodiment of a magnetic junction.
圖12描繪包含具有雙軸各向異性的一自由層的一磁性接面之另一示範實施例。 Figure 12 depicts another exemplary embodiment of a magnetic junction comprising a free layer having biaxial anisotropy.
圖13描繪於(多個)儲存胞元的(多個)記憶元件中利用一磁性次結構的一記憶體之一示範實施例。 Figure 13 depicts an exemplary embodiment of a memory utilizing a magnetic substructure in the memory element(s) of the storage cell(s).
圖14描繪用於製造磁性次結構的一方法之一示範實施例。 Figure 14 depicts an exemplary embodiment of a method for fabricating a magnetic secondary structure.
該等示範實施例係有關於可用在磁性裝置中諸如磁性記憶體的磁性接面,及使用此等磁性接面的該等裝置。後文詳細說明部分被呈現以使熟諳技藝人士能夠製作與使用本發明,且係以專利申請案的脈絡及其要求所提出。針對此處描述的示範實施例及其大致原理及特徵的各種修正將係顯然易明的。該等示範實施例主要係按照於特定具現中提出的特定方法及系統描述。然而,該等方法及系統將於其它具現中有效地操作。諸如「示範實施例」、「一個實施例」及「另一個實施例」等片語可意指相同的或不同的實施例以及多個實施例。該等實施例將就具有某些組件的系統及/或裝置方面描述。然而,該等系統及/或裝置可包括比所顯示者更多或更少的組件,且在不背離本發明之範圍下可做出組件的配置及類型上的變化。該等示範實施例也將就具有某些步驟的特定方法之脈絡被描述。然而,該方法及系統用於與該等示範實施例為不一致的具有不同 及/或額外步驟及不同順序的步驟之其它方法可有效地操作。如此,本發明係不意圖被限制於所顯示的實施例,但卻與此處描述的原理及特徵一致之最廣義範疇符合。 The exemplary embodiments relate to magnetic junctions that can be used in magnetic devices, such as magnetic memory, and such devices that use such magnetic junctions. The detailed description is presented to enable those skilled in the art to make and use the invention, which is claimed in the context of the patent application. Various modifications to the exemplary embodiments described herein and their general principles and features are apparent. The exemplary embodiments are primarily described in terms of specific methods and systems presented in the particular embodiments. However, such methods and systems will operate effectively in other applications. Words such as "exemplary embodiment", "an embodiment" and "another embodiment" may mean the same or different embodiments and various embodiments. The embodiments are described in terms of systems and/or devices having certain components. However, the systems and/or devices may include more or less components than those shown, and variations in the configuration and type of components may be made without departing from the scope of the invention. The exemplary embodiments will also be described in terms of a particular method with certain steps. However, the method and system are used to be inconsistent with the exemplary embodiments. And/or additional steps and other methods of steps in a different order can operate effectively. Thus, the present invention is not intended to be limited to the embodiments shown, but the
用於提供磁性接面的方法及系統以及利用該磁性接面的一磁性記憶體被描述。該等示範實施例提出用於在磁性裝置內提供磁性接面之方法及系統。該磁性接面包括一被釘扎層、一非磁性間隔層、及一自由層。該非磁性間隔層係介於該被釘扎層與該自由層之間。該自由層具有磁性各向異性,其中至少一部分係為雙軸各向異性。該磁性接面係經組配使得當一寫入電流被通過該磁性接面時,該自由層在多個穩定磁性狀態間為可切換。 A method and system for providing a magnetic junction and a magnetic memory using the magnetic junction are described. The exemplary embodiments provide methods and systems for providing magnetic junctions in a magnetic device. The magnetic junction includes a pinned layer, a non-magnetic spacer layer, and a free layer. The non-magnetic spacer layer is interposed between the pinned layer and the free layer. The free layer has magnetic anisotropy, at least a portion of which is biaxial anisotropy. The magnetic junctions are configured such that when a write current is passed through the magnetic junction, the free layer is switchable between a plurality of stable magnetic states.
該等示範實施例係就特定磁性接面及具有某些組件的磁性記憶體之脈絡被描述。熟諳技藝人士將容易認知到本發明係與具有與本發明並非不一致的其它及/或額外組件及/或其它特性之磁性接面及磁性記憶體的使用相符合。該方法及系統也係就目前對自旋轉移現象、磁性各向異性、及其它物理現象的理解脈絡描述。結果,熟諳技藝人士將容易認知到該方法及系統的作用之理論上的解釋係根據目前對自旋轉移現象、磁性各向異性、及其它物理現象的理解所做出。然而,此處描述的方法及系統並非取決於特定的物理解釋。熟諳技藝人士亦將容易認知到該方法及系統係就與基體有特定關係的結構脈絡被描述。然而,熟諳技藝人士將容易認知到該方法及系統係與其它結構相符合。此外,該方法及系統係以某些層為合成的及/或 單一體的脈絡所描述。然而,熟諳技藝人士將容易認知到該等層可具有其它的結構。此外,該方法及系統係以具有特定層的磁性接面及/或次結構的脈絡所描述。然而,熟諳技藝人士將容易認知到也可使用具有與該方法及系統並非不一致的額外及/或不同層的磁性接面及/或次結構。再者,某些組件被描述為係磁性、鐵磁性、及亞鐵磁性。如此處所使用,磁性一詞可包括鐵磁性、亞鐵磁性等類似結構。因此,如此處所使用,「磁性」或「鐵磁性」等詞包括但不被限制於鐵磁體及亞鐵磁體。該方法及系統也係就單一磁性接面及次結構的脈絡所描述。然而,熟諳技藝人士將容易認知到該方法及系統係與具有多個磁性接面且使用多個次結構的磁性記憶體之使用相符合。再者,如此處所使用,「同平面」係實質上在一磁性接面的多層中之一或多者的平面內或平行於一磁性接面的多層中之一或多者的平面。相反地,「垂直」則相對應於實質上垂直於該磁性接面的多層中之一或多者的一方向。 The exemplary embodiments are described in terms of specific magnetic junctions and the magnetic memory of certain components. Those skilled in the art will readily recognize that the present invention is compatible with the use of magnetic junctions and magnetic memory having other and/or additional components and/or other features not inconsistent with the present invention. The method and system are also described in terms of current understanding of spin transfer phenomena, magnetic anisotropy, and other physical phenomena. As a result, skilled artisans will readily recognize that the theoretical interpretation of the method and system is based on current understanding of spin transfer phenomena, magnetic anisotropy, and other physical phenomena. However, the methods and systems described herein are not dependent on a particular physical interpretation. Skilled artisans will also readily recognize that the method and system are described in terms of a structural structure that has a particular relationship to the substrate. However, those skilled in the art will readily recognize that the method and system are compatible with other structures. Moreover, the method and system are synthesized with certain layers and/or Described as a single integrated vein. However, those skilled in the art will readily recognize that such layers may have other configurations. Moreover, the method and system are described in terms of a magnetic junction and/or a secondary structure having a particular layer. However, those skilled in the art will readily recognize that magnetic junctions and/or secondary structures having additional and/or different layers that are not inconsistent with the method and system can be used. Furthermore, certain components are described as being magnetic, ferromagnetic, and ferrimagnetic. As used herein, the term magnetic may include ferromagnetic, ferrimagnetic, and the like. Thus, as used herein, the terms "magnetic" or "ferromagnetic" include, but are not limited to, ferromagnetic and ferrimagnetic. The method and system are also described in terms of a single magnetic junction and a secondary structure. However, those skilled in the art will readily recognize that the method and system are compatible with the use of magnetic memory having multiple magnetic junctions and using multiple secondary structures. Moreover, as used herein, "coplanar" is a plane that is substantially in the plane of one or more of a plurality of layers of magnetic junctions or parallel to one or more of a plurality of layers of a magnetic junction. Conversely, "vertical" corresponds to a direction that is substantially perpendicular to one or more of the plurality of layers of the magnetic junction.
圖2描繪用在例如一諸如STT-RAM的磁性記憶體之一磁性裝置中的一磁性接面100之一示範實施例。為求清晰,圖2並非照比例繪製。該磁性接面100包括一被釘扎層110、一非磁性間隔層120、及一自由層130。釘扎層104亦被顯示,該釘扎層104可被用以固定該被釘扎層110的磁化(圖中未顯示)。於一些實施例中,該釘扎層104可為藉交換-偏移互動而固定該被釘扎層110的磁化(圖中未顯示)的一AFM層或多層。然而,於其它實施例中,釘扎層104可被 省略或可使用其它結構。再者,該磁性接面100可包括其它層及/或額外層,諸如選擇性晶種層102及/或選擇性覆蓋層140。該磁性接面100也係經組配以當一寫入電流被通過該磁性接面130時,允許該自由層130要在穩定磁性狀態間被切換。如此,該自由層130係利用自旋轉移矩為可切換。 2 depicts an exemplary embodiment of a magnetic junction 100 for use in a magnetic device such as a magnetic memory such as an STT-RAM. For clarity, Figure 2 is not drawn to scale. The magnetic junction 100 includes a pinned layer 110, a non-magnetic spacer layer 120, and a free layer 130. The pinning layer 104 is also shown, and the pinning layer 104 can be used to fix the magnetization of the pinned layer 110 (not shown). In some embodiments, the pinning layer 104 can be an AFM layer or layers that fix the magnetization (not shown) of the pinned layer 110 by swap-offset interaction. However, in other embodiments, the pinning layer 104 can be Other structures may be omitted or may be used. Moreover, the magnetic junction 100 can include other layers and/or additional layers, such as the selective seed layer 102 and/or the selective cover layer 140. The magnetic junction 100 is also configured to allow the free layer 130 to be switched between stable magnetic states as a write current is passed through the magnetic junction 130. As such, the free layer 130 is switchable using the spin transfer torque.
該被釘扎層110為磁性,且因此可包括鎳、鐵、及鈷中之一或多者。雖然被描繪為一單層,但該被釘扎層110可包括多層。舉例言之,被釘扎層110可為包括經由薄層諸如釕(Ru)而反鐵磁地或鐵磁地耦合的磁性層之一種SAF。於此種SAF中,與釕或其它材料的薄層交插之多層磁性層可被使用。被釘扎層110也可為其它的多層。雖然磁化未被描繪於圖2中,但該自由層可具有超過非在同平面的去磁能之一垂直各向異性能。 The pinned layer 110 is magnetic and thus may include one or more of nickel, iron, and cobalt. Although depicted as a single layer, the pinned layer 110 can include multiple layers. For example, the pinned layer 110 can be a SAF that includes a magnetic layer that is antiferromagnetically or ferromagnetically coupled via a thin layer such as ruthenium (Ru). In such SAF, a multilayer magnetic layer interleaved with a thin layer of tantalum or other material can be used. The pinned layer 110 can also be other layers. Although the magnetization is not depicted in Figure 2, the free layer may have a perpendicular anisotropy energy that exceeds one of the de-magnetic energy in the same plane.
間隔層120為非磁性。於一些實施例中,間隔層120為絕緣體,例如穿隧位障。於此等實施例中,間隔層120可包含結晶性氧化鎂,其可加強該磁性接面的穿隧磁阻(TMR)。於其它實施例中,該間隔層可為諸如銅之導體。於替代實施例中,該間隔層120可具有其它結構,例如於絕緣基材(insulating matrix)中包含傳導性通道的顆粒層。 The spacer layer 120 is non-magnetic. In some embodiments, the spacer layer 120 is an insulator, such as a tunneling barrier. In such embodiments, the spacer layer 120 can comprise crystalline magnesium oxide that enhances the tunneling magnetoresistance (TMR) of the magnetic junction. In other embodiments, the spacer layer can be a conductor such as copper. In alternative embodiments, the spacer layer 120 can have other structures, such as a layer of particles comprising conductive channels in an insulating matrix.
自由層130為磁性,且因此可包括鐵、鎳及/或銅中之至少一者。該自由層130具有可改變磁化(圖中未顯示),其可透過自旋轉移而被切換。該自由層130係描繪為單層。於其它實施例中,自由層130可包括其它層。舉例言之,該自由層可為SAF,其包含與非磁性層交插之鐵磁層 中之一或多者。替代地,該自由層130可包含鐵磁層或其它多層。 The free layer 130 is magnetic and thus may include at least one of iron, nickel, and/or copper. The free layer 130 has a changeable magnetization (not shown) that can be switched by spin transfer. This free layer 130 is depicted as a single layer. In other embodiments, the free layer 130 can include other layers. For example, the free layer may be a SAF comprising a ferromagnetic layer interleaved with a non-magnetic layer One or more of them. Alternatively, the free layer 130 can comprise a ferromagnetic layer or other multilayer.
此外,該自由層130具有磁性各向異性。該磁性各向異性包含至少一個雙軸成分。該磁性各向異性也可包含一單軸成分。該磁性各向異性的該雙軸成分可實質上導致一經改良軟錯誤率而不會不良地影響特性,諸如臨界切換電流Jc0。注意自由層130整體、自由層130部分(例如,一或多層)、或自由層130的一些其它構成可具有雙軸各向異性。 Further, the free layer 130 has magnetic anisotropy. The magnetic anisotropy comprises at least one biaxial component. The magnetic anisotropy may also comprise a uniaxial component. The biaxial component of the magnetic anisotropy can substantially result in an improved soft error rate without adversely affecting characteristics, such as critical switching current Jc0 . Note that the free layer 130 as a whole, the free layer 130 portion (eg, one or more layers), or some other configuration of the free layer 130 may have biaxial anisotropy.
雙軸各向異性的效果可在圖3及4分別地被描繪的線圖150及150’脈絡中被理解。線圖150及150’僅係用於解釋目的,而非意圖反映一特定磁性接面。再者,曲線160、170及180已被偏移以求清晰。參考圖2-4,舉例而言,自由層130的磁性各向異性能可藉由從特定方向的角度之函式表示如下:E(θ)=Kunisin2(θ)+Kbisin2(2θ) The effect of biaxial anisotropy can be understood in the lines 150 and 150' of the lines depicted in Figures 3 and 4, respectively. Line diagrams 150 and 150' are for illustrative purposes only and are not intended to reflect a particular magnetic junction. Again, curves 160, 170, and 180 have been offset for clarity. Referring to Figures 2-4, for example, the magnetic anisotropy energy of the free layer 130 can be expressed by a function from a specific direction as follows: E(θ) = K uni sin 2 (θ) + K bi sin 2 (2θ)
Kunisin2(θ)項(「單軸項」)係相對應於單軸磁性各向異性。Kbisin2(2θ)項(「雙軸項」)係相對應於雙軸磁性各向異性。若該雙軸項為零,則自由層130將具有單軸各向異性。此點係相對應於圖3的單軸能曲線160。該能曲線160沿著易磁化軸(easy axis)方向具有最小值162。如此,單軸能曲線160具有最小值162於θ=-π、0、π。大體而言,此等方向係平行於及反平行於被釘扎層110的磁化(圖中未顯示)。近零度的自由層130之初始狀態係以點164顯示。此等方向 (例如θ=0)碰巧係相對應於自旋轉移矩及場矩的停駐點。在一自旋轉移矩停駐點,該自旋極化電流在自由層130的磁化上施加少的力矩或不施加力矩。針對單軸各向異性,該自旋轉移矩停駐點係相對應於組態,其中自由層130的磁化係在平衡位置且與易磁化軸(θ=0及π)對齊。如此處使用,易磁化軸係相對應於自由層130磁化係只對單軸各向異性為穩定中的方向。由於單軸項係相對應於自由層130磁化為在停駐點處,故回應於一施加臨界電流自由層130有不切換的更高機率。如此,對此一接面的軟錯誤率可更高。 K uni sin 2 (θ) item ( "uniaxial item") is a uniaxial magnetic anisotropy corresponds to. The K bi sin 2 (2θ) term ("biaxial term") corresponds to biaxial magnetic anisotropy. If the biaxial term is zero, the free layer 130 will have uniaxial anisotropy. This point corresponds to the uniaxial energy curve 160 of FIG. The energy curve 160 has a minimum value 162 along the easy axis direction. As such, the uniaxial energy curve 160 has a minimum value of 162 at θ=-π, 0, π. In general, the directions are parallel and anti-parallel to the magnetization of the pinned layer 110 (not shown). The initial state of the near zero free layer 130 is shown at point 164. These directions (eg, θ = 0) happen to correspond to the stopping points of the spin transfer torque and the field moment. At a spin transfer torque stop point, the spin polarized current exerts little or no torque on the magnetization of the free layer 130. For uniaxial anisotropy, the spin transfer torque descent point corresponds to the configuration in which the magnetization of the free layer 130 is in equilibrium and aligned with the easy axis of magnetization (θ = 0 and π). As used herein, the easy magnetization axis corresponds to the direction in which the magnetization of the free layer 130 is only stable to uniaxial anisotropy. Since the uniaxial term is magnetized to the free layer 130 at the dwell point, there is a higher probability that the free layer 130 will not switch in response to a critical current application. In this way, the soft error rate for this connection can be higher.
若該單軸項為零,則針對如上文實施例中的自由層130之各向異性能為雙軸項。自由層130將具有雙軸各向異性。結果,能量最小值(自由層130的穩定狀態)將沿著及垂直於單軸易磁化軸方向兩者(θ=0、π/2、及π)。大體而言,此等方向係平行於、垂直於、及反平行於被釘扎層110的磁化(圖中未顯示)。此等方向中之一者(例如θ=π/2)碰巧係遠離自旋轉移矩的停駐點。然而,其餘兩個方向(θ=0、π)係接近自旋轉移矩的停駐點。 If the uniaxial term is zero, the anisotropy energy for the free layer 130 as in the above embodiment is a biaxial term. The free layer 130 will have biaxial anisotropy. As a result, the energy minimum (the steady state of the free layer 130) will be along and perpendicular to both the uniaxial easy axis directions (θ = 0, π/2, and π). In general, the directions are parallel, perpendicular to, and anti-parallel to the magnetization of the pinned layer 110 (not shown). One of these directions (eg, θ = π/2) happens to be away from the dwell point of the spin transfer torque. However, the remaining two directions (θ = 0, π) are close to the dwell point of the spin transfer torque.
若除了單軸各向異性之外還有一些雙軸各向異性,則單軸能曲線160被雙軸項(Kbisin2(2θ))擾動。能曲線170描繪相對小的雙軸各向異性之角度的能量。易言之,雙軸各向異性的絕對值(或幅值)係小於單軸各向異性的絕對值。然而,雙軸各向異性與單軸各向異性的符號可相同或相異。由於小的雙軸項的導入,曲線170在接近於-π、0及π的最小值172為平坦化。接近0的自由層130之穩定狀態係以 點174顯示。由於能曲線170被平坦化,故自由層130的初始狀態可為較大的展開,而不改變磁化必須克服以切換至相反狀態的能障壁。如此,熱穩定性可能不受影響。自由層130的穩定狀態中之較大展開可相對應於為更可能在距易磁化軸的某個角度處之自由層130磁化。換言之,自由層130磁化更可能在圖3中的零度以外的角度處。如此,自由層的磁化更可能遠離自旋轉移矩的停駐點。結果,自由層130的磁化可更容易地藉由施加臨界切換電流而被切換。 If there is some biaxial anisotropy in addition to uniaxial anisotropy, the uniaxial energy curve 160 is perturbed by the biaxial term (K bi sin 2 (2θ)). The energy curve 170 depicts the energy of the angle of the relatively small biaxial anisotropy. In other words, the absolute value (or amplitude) of biaxial anisotropy is less than the absolute value of uniaxial anisotropy. However, the signs of biaxial anisotropy and uniaxial anisotropy may be the same or different. Due to the introduction of a small biaxial term, the curve 170 is flattened at a minimum value 172 close to -π, 0, and π. The steady state of the free layer 130 near zero is shown at point 174. Since the energy curve 170 is planarized, the initial state of the free layer 130 can be a large expansion without changing the energy barrier that the magnetization must overcome to switch to the opposite state. As such, thermal stability may not be affected. The larger expansion in the steady state of the free layer 130 may correspond to magnetization of the free layer 130 that is more likely to be at an angle from the axis of easy magnetization. In other words, the magnetization of the free layer 130 is more likely to be at an angle other than zero in FIG. As such, the magnetization of the free layer is more likely to be away from the dwell point of the spin transfer torque. As a result, the magnetization of the free layer 130 can be more easily switched by applying a critical switching current.
隨著磁性各向異性能中雙軸項(Kbisin2(2θ))之幅值被進一步增加,單軸能曲線160更受擾動。能曲線180描繪相對於較大雙軸各向異性的角度之能量。曲線180的雙軸各向異性仍係小於單軸各向異性。易言之,雙軸各向異性的絕對值仍係小於單軸各向異性的絕對值。但於各種實施例中,單軸各向異性與雙軸各向異性的符號可相同或相異。由於較大雙軸項的導入,曲線不再於-π、0及π具有最小值。反而,最小值182為距-π、0及π的一個角度。局部最大值184係位在且接近0、-π及π處。易磁化軸與最小值182之間的角度可大於零但小於π/2。於一些實施例中,該角度為至少π/18且不大於π/4(10度-45度)。於一些此等實施例中,該角度為至少π/9且不大於π/6(20度-30度)。如此,自由層130磁化的穩定狀態可位在或接近該角度處(亦即在曲線180的能量最小值)。接近0的自由層130之穩定狀態係以點186顯示。由於能曲線180於0處具有局部最大值184,點186係位在或接近最小值182處。圖4描繪三維中的能曲線 180’。於所顯示的實施例中,曲線180/180’為對稱環繞易磁化軸(角度為0)。於一些實施例中,自由層130磁化可距單軸易磁化軸至少10度且不大於45度。於一些此等實施例中,自由層130磁化可穩定在距單軸易磁化軸至少10度且不大於45度的方向。自由層130的磁性各向異性可稱為錐面各向異性,且為單軸各向異性與雙軸各向異性的組合。自由層130的初始狀態中較大的展開可意謂自由層130的磁化更可能在距易磁化軸小角度或斜切處。換言之,自由層130的磁化更可能在圖3中的零度以外的角度處。如此,自由層130的磁化更可能遠離自旋轉移矩的停駐點。 As the magnitude of the biaxial term (K bi sin 2 (2θ)) in the magnetic anisotropy energy is further increased, the uniaxial energy curve 160 is more disturbed. The energy curve 180 depicts the energy of the angle relative to the larger biaxial anisotropy. The biaxial anisotropy of curve 180 is still less than uniaxial anisotropy. In other words, the absolute value of biaxial anisotropy is still less than the absolute value of uniaxial anisotropy. However, in various embodiments, the signs of uniaxial anisotropy and biaxial anisotropy may be the same or different. Due to the introduction of larger biaxial terms, the curve no longer has a minimum at -π, 0 and π. Instead, the minimum value 182 is an angle from -π, 0, and π. The local maximum 184 is at and near 0, -π, and π. The angle between the easy magnetization axis and the minimum value 182 may be greater than zero but less than π/2. In some embodiments, the angle is at least π/18 and no greater than π/4 (10 degrees - 45 degrees). In some such embodiments, the angle is at least π/9 and no greater than π/6 (20 degrees -30 degrees). As such, the steady state of the magnetization of the free layer 130 can be at or near the angle (ie, the minimum energy at curve 180). The steady state of the free layer 130 near zero is shown at point 186. Since the energy curve 180 has a local maximum 184 at 0, the point 186 is at or near the minimum 182. Figure 4 depicts the energy curve 180' in three dimensions. In the embodiment shown, curve 180/180' is a symmetrically surrounding easy axis (angle is 0). In some embodiments, the free layer 130 magnetization may be at least 10 degrees and no greater than 45 degrees from the uniaxial easy axis. In some of these embodiments, the free layer 130 magnetization may be stabilized in a direction that is at least 10 degrees and no greater than 45 degrees from the uniaxially susceptible axis. The magnetic anisotropy of the free layer 130 may be referred to as cone anisotropy and is a combination of uniaxial anisotropy and biaxial anisotropy. A larger expansion in the initial state of the free layer 130 may mean that the magnetization of the free layer 130 is more likely to be at a small angle or bevel from the axis of easy magnetization. In other words, the magnetization of the free layer 130 is more likely to be at an angle other than zero in FIG. As such, the magnetization of the free layer 130 is more likely to be away from the dwell point of the spin transfer torque.
自由層130中雙軸各向異性之導入可改良自由層130的切換特性。在接近0,能曲線的最小值可被平坦化(能曲線170)或被移離0(能曲線180)。自由層130磁化可因此具有從與易磁化軸排齊傾斜的一穩定狀態。自由層130的磁化可因此被視為更容易藉自旋轉移矩或場感應矩所切換。此特性係相對應於一較低軟錯誤率。此點甚至在高(少於10微秒的過渡時間)資料率時可為真。其也已決定於一些實施例中,此改良可實質上被達成而不會不良地影響臨界切換電流的幅值。再者,磁性接面100的熱安定性及對稱性可不受不良地影響。由於外部磁場可不需要切換磁性接面100,該磁性接面100可較大地擴充至較高記憶體密度。磁性接面100及使用該磁性接面100的一記憶體的效能及彈性可因此被改良。 The introduction of biaxial anisotropy in the free layer 130 improves the switching characteristics of the free layer 130. At near zero, the minimum of the energy curve can be flattened (can be curve 170) or moved away from zero (energy curve 180). The magnetization of the free layer 130 can thus have a stable state that is inclined from the axis of easy magnetization. The magnetization of the free layer 130 can thus be considered to be easier to switch by a rotational or field induced moment. This feature corresponds to a lower soft error rate. This can be true even at high (less than 10 microsecond transition time) data rates. It has also been decided that in some embodiments, this improvement can be substantially achieved without adversely affecting the magnitude of the critical switching current. Furthermore, the thermal stability and symmetry of the magnetic junction 100 can be unaffected adversely. Since the external magnetic field does not require switching the magnetic junction 100, the magnetic junction 100 can be expanded to a higher memory density. The effectiveness and flexibility of the magnetic junction 100 and a memory using the magnetic junction 100 can thus be improved.
其它各向異性可能引起易錐面各向異性,其係類 似於前述之雙軸與單軸各向異性的組合。針對具有在距極軸的一非零角度處的磁矩穩定之自由層出現易錐面各向異性。於此情況下,習知易磁化軸簡併成一錐面,使得若磁化係位在此一錐面,則系統的能量為無變化的。如此,自由層130可具有在距極軸的一非零角度處之能量最小值。尤其,具有不同的角相依性之二或多個各向異性的組合可導致易錐面各向異性。具有在一非零角度處之至少一個能量最小值及其中任何兩項的比率具有角相依性的一總各向異性能可引起易錐面各向異性。易言之,如下文的總能量可引起易錐面各向異性。 Other anisotropy may cause easy taper anisotropy Similar to the aforementioned combination of biaxial and uniaxial anisotropy. Easy cone anisotropy occurs for a free layer having a magnetic moment that is stable at a non-zero angle from the polar axis. In this case, the conventional easy magnetization axis is degenerate into a tapered surface, so that if the magnetization system is at this tapered surface, the energy of the system is unchanged. As such, the free layer 130 can have an energy minimum at a non-zero angle from the polar axis. In particular, a combination of two or more anisotropies with different angular dependence can result in easy cone anisotropy. A total anisotropy energy having an angular dependence of at least one energy minimum at a non-zero angle and a ratio of any two of them may cause easy cone anisotropy. In other words, the total energy as follows can cause easy cone anisotropy.
Etotal(θ)=E1(θ)+E2(θ)+E3(θ)+...+En(θ),其中Ei(θ)/Ej(θ)=f(θ) E total (θ)=E 1 (θ)+E 2 (θ)+E 3 (θ)+...+E n (θ), where E i (θ)/E j (θ)=f(θ )
Etotal(θ)為具有至少一個最小值在θ0(0及極軸係相對應於θ=0。各個Ei(θ),其中i=1、2、...、n為與θ有某些相依性的一能量項。)的自由層之總能。同理,f(θ)為隨θ改變的某個函式。前述的單軸及雙軸各向異性可被視為此種易錐面各向異性的特例。遵照前述標準的其它能項也可能引起易錐面各向異性。舉例言之,假設自由層130的各向異性能為Etotal(θ)=K1sin2(θ)+K2sin4(θ)。於此表示式中,E1(θ)為K1sin2(θ),E2(θ)為K2sin4(θ),及f(θ)為(K1/(K2sin2(θ))。兩個能量項可被視為次冪大於1的單軸項(具有θ相依性而非2θ相依性)。舉例言之,E1(θ)為第二次冪(sin2),而E2(θ)為第四次冪(sin4)。此種組合具有於非零θ處的能量最小值,倘若對K1及K2值的某些限制(特別係K1<0,K2>-K1)被滿足。 總能符合前述標準,因此,確實具有易錐面各向異性。同理,雖然只有存在兩項,Etotal(θ)=K1 *Sin2(θ)+K4 *Sin6(θ)的總能導致一易錐面各向異性。此種易錐面各向異性的另一個實施例為具有斜方六面體晶體結構且以Etotal(θ)=K1 *Sin2(θ)+K2 *Sin4(θ)+K3 *Cos(θ)*Sin3(θ)所表示的總能之自由層130。再者,特定自由層可因為單軸、雙軸、及/或更高次冪單軸各向異性的組合而具有易錐面各向異性。舉例言之,可提供具有Etotal(θ)=K1sin2(θ)+K2sin4(θ)+Kunisin2(θ)+Kbisin2(2θ)的總各向異性能的自由層130。此一自由層具有不僅因為首二較高次冪項所致的易錐面各向異性,同時也具有因為第三項所致的第一次冪單軸各向異性及因為末項所致的雙軸各向異性所致的易錐面各向異性。如此,有具有二或多項的總各向異性能的自由層130具有在非零角度處的能量之至少一個最小值,且其中任兩項的比率隨角度結果而異也導致易錐面各向異性。 E total (θ) has at least one minimum value at θ0 (0 and the polar axis corresponds to θ = 0. Each E i (θ), where i = 1, 2, ..., n is θ with θ The total energy of the free layer of an energy term. Similarly, f(θ) is a function that changes with θ. The aforementioned uniaxial and biaxial anisotropy can be regarded as a special case of such easy taper anisotropy. Other energy terms that comply with the aforementioned criteria may also cause easy taper anisotropy. For example words, assuming anisotropy energy of the free layer 130 E total (θ) = K 1 sin 2 (θ) + K 2 sin 4 (θ). In the expression, E 1 (θ) is K 1 sin 2 (θ), E 2 (θ) is K 2 sin 4 (θ), and f(θ) is (K 1 /(K 2 sin 2 ( θ)). Two energy terms can be considered as uniaxial terms with a power greater than 1 (with θ dependence rather than 2θ dependence). For example, E 1 (θ) is the second power (sin 2 ) And E 2 (θ) is the fourth power (sin 4 ). This combination has the minimum energy at non-zero θ, provided some restrictions on the K1 and K2 values (especially K1<0, K2> -K1) is satisfied. It always meets the above criteria, so it does have easy taper anisotropy. Similarly, although there are only two, E total (θ) = K 1 * Sin 2 (θ) + K 4 * The total energy of Sin 6 (θ) results in an easy taper surface anisotropy. Another embodiment of such easy taper anisotropy is a rhombohedral crystal structure with E total (θ) = K 1 * Sin 2 (θ) + K 2 * Sin 4 (θ) + K 3 * Cos (θ) * Sin 3 (θ) represents the total energy of the free layer 130. Furthermore, the specific free layer can be due to uniaxial, double A combination of axes, and/or higher power uniaxial anisotropy with easy cone anisotropy. For example, it can be provided with E total (θ) = K 1 sin 2 (θ) + K 2 sin 4 (θ) + K uni sin 2 (θ) + K bi sin 2 (2θ) of the total anisotropic energy of the free layer 130. This free layer has not only due to the first two higher power terms It is easy to taper anisotropy, and also has the first power uniaxial anisotropy due to the third term and the easy taper anisotropy due to the biaxial anisotropy caused by the last term. The free layer 130 having a total anisotropy energy of two or more has at least a minimum of energy at a non-zero angle, and the ratio of any two of them varies depending on the angle result also results in easy taper anisotropy.
於一些實施例中,總能Etotal中的各向異性項的主起源為自由層130的磁晶各向異性。不同的磁晶各向異性可能由不同的晶相學結構及具有不同的角相依性所致。同理,易錐面各向異性可被視為至少部分靜磁感應。自由層130的去磁能(Kdemagsin2θ)可被視為具有負能常數Kdemag及對飽和磁化Ms之相依性的單軸各向異性。去磁能Kdemag的幅值可藉由控制Ms而被控制。因此,能量Etotal(θ)中的某些項之常數比率的幅值可藉由控制Ms而被控制。因而可達成期望的易錐面各向異性。同理,易錐面各向異性可藉由毗連自 由層的多個層所感應。舉例言之,上文總能中的能項中之至少一者可藉由隔開自由層130與參考層110或覆蓋層140的一相鄰間隔層120所感應。舉例言之,諸如氧化鎂的材料可感應一垂直各向異性,其促成如上總能、取決於θ,且因此可促成易錐面各向異性。此外,其它各向異性可促成總各向異性能。 In some embodiments, the dominant origin of the anisotropy term in the total energy Etotal is the magnetocrystalline anisotropy of the free layer 130. Different magnetocrystalline anisotropies may be caused by different crystal phase structures and with different angular dependence. Similarly, easy cone anisotropy can be considered as at least partial magnetostatic induction. The demagnetization energy (K demag sin 2 θ) of the free layer 130 can be regarded as a uniaxial anisotropy having a negative energy constant K demag and a dependency on the saturation magnetization M s . The magnitude of the demagnetization energy K demag can be controlled by controlling M s . Therefore, the magnitude of the constant ratio of some of the energies E total (θ) can be controlled by controlling M s . Thus, the desired easy taper anisotropy can be achieved. Similarly, easy cone anisotropy can be induced by multiple layers adjoining the free layer. For example, at least one of the above energy terms can be induced by spacing the free layer 130 from the reference layer 110 or an adjacent spacer layer 120 of the cover layer 140. For example, a material such as magnesium oxide can induce a perpendicular anisotropy which contributes to the above total energy, depends on θ, and thus contributes to easy cone anisotropy. In addition, other anisotropies can contribute to total anisotropy energy.
易錐面各向異性的導入可具有改良自旋矩切換的效益。舉例言之,自由層130展示經改良的切換特性。接近0,能曲線的最小值可被平坦化或從0被移開,類似於圖3-4中所描繪的曲線170及180。自由層130的磁化可因此被視為藉由自旋轉移矩或場感應矩而更易切換。此特性係相對應於較低軟錯誤率。此點甚至於高(少於10微秒的過渡時間)資料率時亦為真。此項改良可實質上被達成而不會不良地影響臨界切換電流的幅值。再者,磁性接面100的熱安定性及對稱性可不受不良地影響。由於可無需外部磁場以切換磁性接面100,故磁性接面100可較大地擴充至較高的記憶體密度。磁性接面100及使用磁性接面100的一記憶體之效能及彈性可因此被改良。 The introduction of easy cone anisotropy can have the benefit of improved spin torque switching. For example, the free layer 130 exhibits improved switching characteristics. Near zero, the minimum of the energy curve can be flattened or removed from 0, similar to curves 170 and 180 depicted in Figures 3-4. The magnetization of the free layer 130 can thus be considered to be easier to switch by a spin transfer torque or a field induced moment. This feature corresponds to a lower soft error rate. This is true even at high (less than 10 microsecond transition time) data rates. This improvement can be achieved substantially without adversely affecting the magnitude of the critical switching current. Furthermore, the thermal stability and symmetry of the magnetic junction 100 can be unaffected adversely. Since the magnetic field 100 can be switched without an external magnetic field, the magnetic junction 100 can be expanded to a higher memory density. The effectiveness and flexibility of the magnetic junction 100 and a memory using the magnetic junction 100 can thus be improved.
易錐面各向異性及/或雙軸各向異性的導入可改良自由層130的特性。有多個方式來獲得此各向異性。圖5描繪具有雙軸各向異性的一自由層130’的一示範實施例。於一些實施例中,該自由層130’也可具有如前文討論的易錐面各向異性。非磁性間隔層120’也被顯示。於所示實施例中,該自由層130’可具有易錐面各向異性及/或雙軸各向 異性,其為結構感應、紋理感應、及/或磁化感應。除了雙軸各向異性之外,自由層130還可具有單軸各向異性。舉例言之,若自由層130’要具有結構感應的雙軸各向異性,則於一個方向的結晶能係數(K1=Kbi)增加,而於第一方向相對的一第二方向的飽和磁化Ms增加。達成此點的一個機制係顯示於圖6。圖6描繪具有雙軸各向異性的一自由層130”的一示範實施例。該自由層130”也可具有單軸各向異性。該自由層130”包括多層。於所示實施例中,四個層132、134、136及138被顯示。其它數量的層可被用在其它實施例。該等層132、134、136及138分別地具有飽和磁化Ms1、Ms2、Ms3及Ms4。同理,該等層132、134、136及138分別地具有雙軸結晶能係數Kbi1、Kbi12、Kbi13及Kbi14。如圖6中所見,較接近非磁性間隔層Ms增加(圖6中未顯示)。同理,較接近非磁性間隔層Kbi減少。此種多層可具有雙軸各向異性。另外或除了前述的機制外,雙軸各向異性可以另一方式於結構上被感應。於其它實施例中,特定材料濃度的分級可被用以達成類似的效果。舉例言之,一負Kbi可被用以提供雙軸各向異性。再者,某些材料更可能產生雙軸各向異性。舉例言之,自由層可包括LaSrMnO3、GaAs、MnAs、MnAl、Nd2Fe14B、Ho2Fe14B、NdFeB、Fe、FeCo、YCo5、Ni、含極少或無Co的鐵氧體、CoOFe2O3、FeO-Fe2O3、MnO-Fe2O3、NiO-Fe2O3、MgO-Fe2O3中之一或多者。如此,自由層130’/130”的結構可經修改(tailored)以達成期望的雙軸各向異性。 The introduction of the easy cone anisotropy and/or biaxial anisotropy improves the characteristics of the free layer 130. There are several ways to get this anisotropy. Figure 5 depicts an exemplary embodiment of a free layer 130' having biaxial anisotropy. In some embodiments, the free layer 130' can also have an easy taper anisotropy as discussed above. A non-magnetic spacer layer 120' is also shown. In the illustrated embodiment, the free layer 130' can have an easy taper anisotropy and/or biaxial anisotropy, which is structural sensing, texture sensing, and/or magnetization sensing. In addition to biaxial anisotropy, the free layer 130 may also have uniaxial anisotropy. For example, if the free layer 130' is to have a structure-induced biaxial anisotropy, the crystallographic energy coefficient (K1=K bi ) increases in one direction, and the saturation magnetization in a second direction opposite to the first direction. M s increases. One mechanism for achieving this is shown in Figure 6. Figure 6 depicts an exemplary embodiment of a free layer 130" having biaxial anisotropy. The free layer 130" may also have uniaxial anisotropy. The free layer 130" includes multiple layers. In the illustrated embodiment, four layers 132, 134, 136, and 138 are shown. Other numbers of layers can be used in other embodiments. The layers 132, 134, 136, and 138 The saturation magnetizations M s1 , M s2 , M s3 , and M s4 are respectively obtained. Similarly, the layers 132, 134, 136, and 138 have biaxial crystal energy coefficients K bi1 , K bi12 , K bi13 , and K bi14 , respectively . As seen in Figure 6, the closer to the nonmagnetic spacer layer M s increases (not shown in FIG. 6). Likewise, nearer K bi nonmagnetic spacer layer is reduced. such a multilayer may have biaxial anisotropy. Additionally or in addition to In addition to the aforementioned mechanisms, biaxial anisotropy can be structurally induced in another manner. In other embodiments, the classification of a particular material concentration can be used to achieve a similar effect. For example, a negative K bi can be to provide biaxial anisotropy. further, some materials are more likely to produce a biaxial anisotropy. for example words, the free layer may include a LaSrMnO 3, GaAs, MnAs, MnAl , Nd 2 Fe14B, Ho 2 Fe14B, NdFeB , Fe, FeCo, YCo 5 , Ni, ferrite with little or no Co, CoOFe 2 O 3 , FeO-Fe One or more of 2 O 3 , MnO—Fe 2 O 3 , NiO—Fe 2 O 3 , MgO—Fe 2 O 3 . Thus, the structure of the free layer 130 ′ / 130 ′′ can be tailored to achieve The desired biaxial anisotropy.
於其它實施例中,易錐面及/或雙軸各向異性可經紋理感應。舉例言之,假設提供具有立方各向異性的磁性層。此外,自由層130’可為具有同平面各向異性的一薄膜。該組合可具有由Asin2(θ)+Bsin22θ+Csin2θ給定之能量,其中A、B及C為係數。於此一實施例中,自由層130”具有雙軸各向異性組合單軸各向異性。此外,雙軸各向異性可透過自由層130’內的磁致伸縮感應。如此,自由層130’/130”具有雙軸各向異性。結果,自由層130/130’當被納入磁性接面時可提供於此描述的一或多個效益。 In other embodiments, the easy taper and/or biaxial anisotropy may be textured. For example, it is assumed that a magnetic layer having cubic anisotropy is provided. Further, the free layer 130' may be a film having the same plane anisotropy. The combination may have a Asin 2 (θ) + Bsin 2 2θ + Csin 2 θ of a given energy, wherein A, B and C are coefficients. In this embodiment, the free layer 130" has a biaxial anisotropic combined uniaxial anisotropy. Furthermore, the biaxial anisotropy is permeable to magnetostrictive sensing within the free layer 130'. Thus, the free layer 130'/130" has biaxial anisotropy. As a result, the free layer 130/130' can provide one or more benefits described herein when incorporated into a magnetic junction.
圖7描繪包括具有易錐面及/或雙軸各向異性的一自由層之磁性接面200之一示範實施例。於一些實施例中,該自由層可具有易錐面各向異性。為求清晰,圖7並非照比例繪製。磁性接面200可用在磁性記憶體,諸如STT-RAM。磁性接面200係類似於磁性接面100,且因此包括類似結構。該磁性接面200包括分別地類似於選擇性晶種層102、選擇性釘扎層104、被釘扎層110、非磁性間隔層120、自由層130及選擇性覆蓋層140的選擇性晶種層202、選擇性釘扎層204、被釘扎層210、非磁性間隔層220、自由層230及選擇性覆蓋層240。該等層210、220、230及240具有分別地類似於該等層110、120、130及140的結構及功能。如前文討論,自由層230具有雙軸各向異性。因此,可達成前述效益。 Figure 7 depicts an exemplary embodiment of a magnetic junction 200 that includes a free layer having easy taper and/or biaxial anisotropy. In some embodiments, the free layer can have an easy taper anisotropy. For the sake of clarity, Figure 7 is not drawn to scale. The magnetic junction 200 can be used in a magnetic memory such as an STT-RAM. Magnetic junction 200 is similar to magnetic junction 100 and thus includes a similar structure. The magnetic junction 200 includes selective seed crystals similar to the selective seed layer 102, the selective pinning layer 104, the pinned layer 110, the non-magnetic spacer layer 120, the free layer 130, and the selective cap layer 140, respectively. Layer 202, selective pinning layer 204, pinned layer 210, non-magnetic spacer layer 220, free layer 230, and selective cap layer 240. The layers 210, 220, 230, and 240 have structures and functions similar to those of the layers 110, 120, 130, and 140, respectively. As discussed above, the free layer 230 has biaxial anisotropy. Therefore, the aforementioned benefits can be achieved.
此外,自由層230具有其易磁化軸232,其實質上位在同平面。如此,垂直各向異性能不超過自由層230的非 在同平面去磁能。由於雙軸各向異性,自由層磁化234的穩定狀態係在距易磁化軸232角度θ處。角度θ係相對應於能曲線180的能量最小值。被釘扎層210也被顯示為具有其磁化212固定在同平面。如此,垂直各向異性能不超過被釘扎層210的非在同平面去磁能。然而,於另一個實施例中,磁化212可係在另一方向。 In addition, the free layer 230 has its easy axis of magnetization 232, which is substantially in the same plane. Thus, the perpendicular anisotropy energy does not exceed the non-free layer 230 Demagnetize energy in the same plane. Due to the biaxial anisotropy, the steady state of the free layer magnetization 234 is at an angle θ from the easy magnetization axis 232. The angle θ corresponds to the energy minimum of the energy curve 180. The pinned layer 210 is also shown with its magnetization 212 fixed in the same plane. As such, the perpendicular anisotropy energy does not exceed the non-in-plane demagnetization energy of the pinned layer 210. However, in another embodiment, the magnetization 212 can be in the other direction.
圖8描繪包括一具有易錐面及/或雙軸各向異性的自由層之一磁性接面200’之一示範實施例。於一些實施例中,該自由層可具有易錐面各向異性。為求清晰,圖8並非照比例繪製。磁性接面200’可用在磁性記憶體,諸如STT-RAM。磁性接面200’係類似於磁性接面100及200,且因此包括類似結構。該磁性接面200’包括分別地類似於選擇性晶種層102/202、選擇性釘扎層104/204、被釘扎層110/210、非磁性間隔層120/220、自由層130/230及選擇性覆蓋層140/240的選擇性晶種層202’、選擇性釘扎層204’、被釘扎層210’、非磁性間隔層220’、自由層230’及選擇性覆蓋層240’。該等層210’、220’、230’及240’具有分別地類似該等層110、120、130及140的結構及功能。此外,至少於某些實施例中,釘扎層204’可被省略。如前文討論,自由層230’具有雙軸各向異性。因此,可達成前述效益。 Figure 8 depicts an exemplary embodiment of a magnetic junction 200' comprising a free layer having an easy taper and/or biaxial anisotropy. In some embodiments, the free layer can have an easy taper anisotropy. For clarity, Figure 8 is not drawn to scale. The magnetic junction 200' can be used in a magnetic memory such as an STT-RAM. The magnetic junction 200' is similar to the magnetic junctions 100 and 200 and thus includes a similar structure. The magnetic junction 200' includes a selective seed layer 102/202, a selective pinning layer 104/204, a pinned layer 110/210, a non-magnetic spacer layer 120/220, and a free layer 130/230, respectively. And the selective seed layer 202' of the selective cap layer 140/240, the selective pinning layer 204', the pinned layer 210', the non-magnetic spacer layer 220', the free layer 230', and the selective cap layer 240' . The layers 210', 220', 230' and 240' have structures and functions similar to those of the layers 110, 120, 130 and 140, respectively. Moreover, at least in some embodiments, the pinned layer 204' can be omitted. As discussed above, the free layer 230' has biaxial anisotropy. Therefore, the aforementioned benefits can be achieved.
此外,自由層230’具有其易磁化軸232’,其實質上垂直於平面。如此,自由層230’的非在同平面去磁能係小於垂直各向異性能。由於雙軸各向異性,自由層磁化234’的穩定狀態係在距易磁化軸232角度θ’處。角度θ’係相對應 於能曲線180的能量最小值。被釘扎層210’也被顯示為具有其被固定垂直於平面的磁化。如此,被釘扎層210’的非在同平面去磁能係小於垂直各向異性能,然而,於另一個實施例中,磁化212’係可在另一方向。 In addition, the free layer 230' has its easy axis of magnetization 232' which is substantially perpendicular to the plane. Thus, the non-in-plane demagnetization energy of the free layer 230' is less than the perpendicular anisotropy energy. Due to the biaxial anisotropy, the steady state of the free layer magnetization 234' is at an angle θ' from the easy magnetization axis 232. Angle θ' corresponds to The energy minimum of the energy curve 180. The pinned layer 210' is also shown to have magnetization that is fixed perpendicular to the plane. As such, the non-in-plane demagnetization energy of the pinned layer 210' is less than the perpendicular anisotropy energy, however, in another embodiment, the magnetization 212' can be in the other direction.
圖9描繪包括一具有雙軸及/或易錐面各向異性的自由層之一磁性接面200”之一示範實施例。為求清晰,圖9並非照比例繪製。磁性接面200”可用在磁性記憶體,諸如STT-RAM。磁性接面200”係類似於磁性接面100/200/200’,且因此包括類似結構。該磁性接面200”包括分別地類似於選擇性晶種層102/202/202’、選擇性釘扎層104/204/204’、被釘扎層110/210/210’、非磁性間隔層120/220/220’、自由層130/230/230’及選擇性覆蓋層140/240/240’的選擇性晶種層202”、選擇性釘扎層204”、被釘扎層210”、非磁性間隔層220”、自由層230”及選擇性覆蓋層240”。該等層210”、220”、230”及240”具有分別地類似於那些層110/210/210’、120/220/220’、130/230/230’及140/240/240’的結構及功能。如前文討論,自由層230”具有雙軸各向異性。因此,可達成前述效益。自由層230”的易磁化軸未被顯示且因此可係在包括垂直於平面或同平面的期望方向中。 Figure 9 depicts an exemplary embodiment of a magnetic junction 200" comprising a free layer having biaxial and/or easy taper anisotropy. For clarity, Figure 9 is not drawn to scale. Magnetic junction 200" is available In magnetic memory, such as STT-RAM. The magnetic junction 200" is similar to the magnetic junction 100/200/200' and thus includes a similar structure. The magnetic junction 200" includes a selective seed layer 102/202/202', respectively, similar to the selective nail Tie layer 104/204/204', pinned layer 110/210/210', non-magnetic spacer layer 120/220/220', free layer 130/230/230' and selective cover layer 140/240/240' The selective seed layer 202", the selective pinning layer 204", the pinned layer 210", the non-magnetic spacer layer 220", the free layer 230", and the selective cap layer 240". The layers 210", 220", 230" and 240" have structures similar to those of layers 110/210/210', 120/220/220', 130/230/230' and 140/240/240', respectively. And function. As previously discussed, the free layer 230" has biaxial anisotropy. Thus, the foregoing benefits can be achieved. The easy magnetization axis of the free layer 230" is not shown and can therefore be in a desired direction including perpendicular to a plane or coplanar.
此外,被釘扎層210”為一SAF,其包括鐵磁層212及216以及非磁性間隔體214。於其它實施例中,被釘扎層210”可包括額外層及/或不同層。鐵磁層212透過交換耦接至釘扎層204’或透過其它機構而具有其磁化被固定。參考層 216係磁性耦接至固定磁化層212。 In addition, the pinned layer 210" is a SAF that includes ferromagnetic layers 212 and 216 and a non-magnetic spacer 214. In other embodiments, the pinned layer 210" can include additional layers and/or different layers. The ferromagnetic layer 212 has its magnetization fixed by exchange coupling to the pinning layer 204' or through other mechanisms. Reference layer The 216 series is magnetically coupled to the fixed magnetization layer 212.
圖10描繪包括一具有雙軸及/或易錐面各向異性的自由層的一磁性接面200’”之一示範實施例。為求清晰,圖10並非照比例繪製。磁性接面200’”可用在諸如STT-RAM的磁性記憶體。磁性接面200’”係類似於磁性接面100/200/200’/200”且因此包括相似的結構。磁性接面200’”包括分別地類似於選擇性晶種層102/202/202’/202”、選擇性釘扎層104/204/204’/204”、被釘扎層110/210/210’/210”、非磁性間隔層120/220/220’/220”、自由層130/230/230’/230”及選擇性覆蓋層140/240/240’/240”的選擇性晶種層202’”、一選擇性釘扎層204’”、一被釘扎層210’”、一非磁性間隔層220’”、一自由層230’”及選擇性覆蓋層240’”。該等層210’”、220’”、230’”及240’”分別地具有類似於那些層110/210/210’/210”、120/220/220’/220”、130/230/230’/230”及140/240/240’/240”的結構及功能。如前文討論,自由層230’”具有雙軸各向異性。因此,可達成前述效益。自由層230’”的易磁化軸未被顯示且因此可係在包括垂直於平面或同平面的期望方向中。 Figure 10 depicts an exemplary embodiment of a magnetic junction 200'" including a free layer having biaxial and/or easy taper anisotropy. For clarity, Figure 10 is not drawn to scale. Magnetic junction 200' Can be used in magnetic memory such as STT-RAM. The magnetic junction 200'" is similar to the magnetic junction 100/200/200'/200" and thus includes a similar structure. The magnetic junction 200'" includes a selective seed layer 102/202/202'/202", a selective pinning layer 104/204/204'/204", a pinned layer 110/210/210, respectively. Selective seed layer of '/210', non-magnetic spacer layer 120/220/220'/220", free layer 130/230/230'/230" and selective cover layer 140/240/240'/240" 202'", a selective pinning layer 204'", a pinned layer 210'", a non-magnetic spacer layer 220'", a free layer 230'" and a selective cover layer 240'". 210'", 220'", 230'" and 240'" respectively have similar layers 110/210/210'/210", 120/220/220'/220", 130/230/230'/230 Structure and function of "and 140/240/240'/240". As discussed above, the free layer 230'" has biaxial anisotropy. Therefore, the aforementioned benefits can be achieved. The easy magnetization axis of the free layer 230'" is not shown and thus may be in a desired direction including perpendicular to the plane or the same plane.
此外,自由層230’”為一SAF,其包括鐵磁層232及236以及非磁性間隔體234。鐵磁層232及236係磁性地耦合。於一些實施例中,該等層232及236為反鐵磁性對齊。於其它實施例中,該等層232及236為鐵磁性對齊。自由層230’”也可包括額外層及/或不同層。於各種實施例中,鐵磁層232及236中之一或二者包括雙軸各向異性。如此,可達 成此處討論的效益。 In addition, the free layer 230'" is a SAF comprising ferromagnetic layers 232 and 236 and a non-magnetic spacer 234. The ferromagnetic layers 232 and 236 are magnetically coupled. In some embodiments, the layers 232 and 236 are Antiferromagnetic alignment. In other embodiments, the layers 232 and 236 are ferromagnetic aligned. The free layer 230'" may also include additional layers and/or different layers. In various embodiments, one or both of the ferromagnetic layers 232 and 236 comprise biaxial anisotropy. So, reachable Become the benefit discussed here.
圖11描繪包括一具有雙軸及/或易錐面各向異性的自由層的一磁性接面200””之一示範實施例。為求清晰,圖11並非照比例繪製。磁性接面200””可用在諸如STT-RAM的磁性記憶體。磁性接面200””係類似於磁性接面100/200/200’/200”/200’”且因此包括相似的結構。磁性接面200””包括分別地類似於選擇性晶種層102/202/202’/202”/202’”、選擇性釘扎層104/204/204’/204”/204’”、被釘扎層110/210/210’/210”/210’”、非磁性間隔層120/220/220’/220”/220’”、自由層130/230/230’/230”/230’”及選擇性覆蓋層140/240/240’/240”/240’”的選擇性晶種層202””、一選擇性釘扎層204””、一被釘扎層210””、一非磁性間隔層220””、一自由層230””及選擇性覆蓋層240””。該等層210””、220””、230””及240””分別地具有類似於那些層110/210/210’/210”/210’”、120/220/220’/220”/220’”、130/230/230’/230”/230’”及140/240/240’/240”/240’”的結構及功能。如前文討論,自由層230””具有雙軸各向異性。因此,可達成前述效益。自由層230””的易磁化軸未被顯示且因此係可在包括垂直於平面或同平面的期望方向中。 Figure 11 depicts an exemplary embodiment of a magnetic junction 200"" including a free layer having biaxial and/or easy taper anisotropy. For the sake of clarity, Figure 11 is not drawn to scale. The magnetic junction 200"" can be used in a magnetic memory such as an STT-RAM. The magnetic junction 200"" is similar to the magnetic junction 100/200/200'/200"/200'" and thus includes a similar structure. The magnetic junction 200"" includes a selective seed layer 102/202/202'/202"/202'", a selective pinning layer 104/204/204'/204"/204'", respectively, Pinned layer 110/210/210'/210"/210'", non-magnetic spacer layer 120/220/220'/220"/220'", free layer 130/230/230'/230"/230'" And a selective cover layer 140"240/240'/240"/240'" selective seed layer 202"", a selective pinning layer 204"", a pinned layer 210"", a non-magnetic Spacer layer 220"", a free layer 230"" and a selective cover layer 240"". The layers 210"", 220"", 230"" and 240"" respectively have similar layers 110/210/210'/210"/210'", 120/220/220'/220"/220 Structure and function of '', 130/230/230'/230"/230'" and 140/240/240'/240"/240'". As discussed above, the free layer 230"" has biaxial anisotropy. Therefore, the aforementioned benefits can be achieved. The easy magnetization axis of the free layer 230"" is not shown and thus may be in a desired direction including perpendicular to the plane or the same plane.
於所示實施例中,自由層230””及被釘扎層210””各自為一SAF。被釘扎層210””包括鐵磁層212’及216’以及非磁性間隔體214’。鐵磁層212’透過交換耦接至釘扎層204””或透過其它機制而具有其磁化被固定。參考層216’係 磁性耦接至固定磁化層214’。自由層230””因此包括鐵磁層232’及236’以及非磁性間隔體234’。鐵磁層232’及236’係磁性地耦合。於一些實施例中,該等層232’及236’為反鐵磁性對齊。於其它實施例中,該等層232’及236’為鐵磁性對齊。於各種實施例中,鐵磁層232’及236’中之一或二者包括雙軸各向異性。如此,可達成此處討論的效益。 In the illustrated embodiment, the free layer 230"" and the pinned layer 210"" are each a SAF. The pinned layer 210"" includes ferromagnetic layers 212' and 216' and a non-magnetic spacer 214'. The ferromagnetic layer 212' is coupled to the pinning layer 204"" by exchange or through other mechanisms with its magnetization fixed. Reference layer 216' Magnetically coupled to the fixed magnetization layer 214'. The free layer 230"" thus includes ferromagnetic layers 232' and 236' and a non-magnetic spacer 234'. Ferromagnetic layers 232' and 236' are magnetically coupled. In some embodiments, the layers 232' and 236' are antiferromagnetic aligned. In other embodiments, the layers 232' and 236' are ferromagnetic aligned. In various embodiments, one or both of the ferromagnetic layers 232' and 236' comprise biaxial anisotropy. In this way, the benefits discussed here can be achieved.
圖12描繪包括一具有雙軸及/或易錐面各向異性的自由層的一磁性接面300之一示範實施例。為求清晰,圖12並非照比例繪製。磁性接面300可用在諸如STT-RAM的磁性記憶體。磁性接面300係類似於磁性接面100/200/200’/200”/200’”/200””且因此包括相似的結構。磁性接面300包括分別地類似於選擇性晶種層102/202/202’/202”/202’”/202””、選擇性釘扎層104/204/204’/204”/204’”/204””、被釘扎層110/210/210’/210”/210’”/210””、非磁性間隔層120/220/220’/220”/220’”/220””、自由層130/230/230’/230”/230’”/230””及選擇性覆蓋層140/240/240’/240”/240’”/240””的選擇性晶種層302、一選擇性釘扎層304、一被釘扎層310、一非磁性間隔層320、一自由層330、及選擇性覆蓋層370。該等層310、320、330及370分別地具有類似於那些層110/210/210’/210”/210’”/210””、120/220/220’/220”/220’”/220””、130/230/230’/230”/230’”/230””及140/240/240’/240”/240’”/240””的結構及功能。自由層330的 易磁化軸未被顯示且因此可係在包括垂直於平面或同平面的期望方向中。 Figure 12 depicts an exemplary embodiment of a magnetic junction 300 that includes a free layer having biaxial and/or easy taper anisotropy. For the sake of clarity, Figure 12 is not drawn to scale. The magnetic junction 300 can be used in a magnetic memory such as an STT-RAM. The magnetic joint 300 is similar to the magnetic joint 100/200/200'/200"/200'"/200"" and thus includes a similar structure. Magnetic junction 300 includes a selective seed layer 102/202/202'/202"/202'"/202"", selective pinning layer 104/204/204'/204"/204', respectively. /204"", pinned layer 110/210/210'/210"/210'"/210"", non-magnetic spacer layer 120/220/220'/220"/220'"/220"", free Layer 130/230/230'/230"/230'"/230"" and selective cover layer 140/240/240'/240"/240'"/240"" selective seed layer 302, a selection The pinning layer 304, a pinned layer 310, a non-magnetic spacer layer 320, a free layer 330, and a selective capping layer 370. The layers 310, 320, 330, and 370 have similar layers 110/210/210'/210"/210'"/210"", 120/220/220'/220"/220'"/220, respectively. Structure and function of "", 130/230/230'/230"/230'"/230"" and 140/240/240'/240"/240'"/240"". Free layer 330 The easy magnetization axis is not shown and can therefore be tied in a desired direction that is perpendicular to the plane or the same plane.
磁性接面300也包括額外非磁性間隔層340、額外被釘扎層350、及額外釘扎層360。非磁性間隔層340係類似於非磁性間隔層320。額外被釘扎層350及選擇性額外釘扎層360分別係類似於該等層310及304。如此,磁性接面300為雙接面。舉例言之,若非磁性間隔層320及340為絕緣穿隧位障層,諸如結晶氧化鎂,則磁性接面300為雙重MTJ。若非磁性間隔層320及340為傳導性,則磁性接面300為雙自旋閥。非磁性間隔層320及340的其它結構亦是可能的。再者,非磁性間隔層320及340無需為相同。 Magnetic junction 300 also includes an additional non-magnetic spacer layer 340, an additional pinned layer 350, and an additional pinning layer 360. The non-magnetic spacer layer 340 is similar to the non-magnetic spacer layer 320. The additional pinned layer 350 and the optional additional pinned layer 360 are similar to the layers 310 and 304, respectively. As such, the magnetic junction 300 is a double junction. For example, if the non-magnetic spacer layers 320 and 340 are insulating tunneling barrier layers, such as crystalline magnesium oxide, the magnetic junction 300 is a dual MTJ. If the non-magnetic spacer layers 320 and 340 are conductive, the magnetic junction 300 is a dual spin valve. Other configurations of the non-magnetic spacer layers 320 and 340 are also possible. Furthermore, the non-magnetic spacer layers 320 and 340 need not be identical.
自由層330具有雙軸各向異性。再者,自由層330可為類似於自由層130、230、230’、230”、230’”及/或230””中之任一者。因此,於雙磁性穿隧接面可達成前述之效益。舉例言之,磁性接面300可具有較低軟錯誤率而不犧牲熱安定性、擴充性、及低臨界切換電流。 The free layer 330 has biaxial anisotropy. Further, the free layer 330 can be similar to any of the free layers 130, 230, 230', 230", 230'" and/or 230"". Therefore, the aforementioned benefits can be achieved at the dual magnetic tunnel junction. For example, magnetic junction 300 can have a lower soft error rate without sacrificing thermal stability, scalability, and low critical switching current.
各種磁性接面100、200、200’、200”、200’”、200””及300已被揭示。注意磁性接面100、200、200’、200”、200’”、200””及300的各種特徵可被組合。如此,可達成磁性接面100、200、200’、200”、200’”、200””及300之諸如減低軟錯誤率、垂直各向異性能、熱安定性及/或可擴充性的效益中之一或多者。 Various magnetic junctions 100, 200, 200', 200", 200'", 200"" and 300 have been disclosed. Note that various features of the magnetic junctions 100, 200, 200', 200", 200'", 200"" and 300 can be combined. In this way, benefits such as reduced soft error rate, perpendicular anisotropy energy, thermal stability and/or expandability of the magnetic junctions 100, 200, 200', 200", 200'", 200"" and 300 can be achieved. One or more of them.
再者,磁性接面100、200、200’、200”、200’”、200””及300可用在磁性記憶體。圖13描繪此種記憶體400之 一示範實施例。磁性記憶體400包括讀取/寫入行選擇驅動器402及406以及字線選擇驅動器404。注意可提供其它組件及/或不同組件。記憶體400的儲存區包括磁性儲存胞元410。各個磁性儲存胞元包括至少一個磁性接面412及至少一個選擇裝置414。在一些實施例中,該選擇裝置414為一電晶體。該磁性接面412可為磁性接面100、200、200’、200”、200’”、200””及300中之一者。雖然每個胞元410顯示一個磁性接面412,但於其它實施例中,每個胞元可提供其它數目的磁性接面412。因而磁性記憶體400可分享前述效益,諸如較低軟錯誤率及低臨界切換電流。 Furthermore, the magnetic junctions 100, 200, 200', 200", 200'", 200"" and 300 can be used in magnetic memory. Figure 13 depicts such a memory 400 An exemplary embodiment. Magnetic memory 400 includes read/write row select drivers 402 and 406 and word line select driver 404. Note that other components and/or different components may be provided. The storage area of the memory 400 includes magnetic storage cells 410. Each magnetic storage cell includes at least one magnetic junction 412 and at least one selection device 414. In some embodiments, the selection device 414 is a transistor. The magnetic interface 412 can be one of the magnetic junctions 100, 200, 200', 200", 200'", 200"" and 300. While each cell 410 displays a magnetic junction 412, in other embodiments, each cell may provide a different number of magnetic junctions 412. The magnetic memory 400 can thus share the aforementioned benefits, such as a lower soft error rate and a low critical switching current.
圖14描繪製造磁性次結構之方法500的一示範實施例。為求簡明,可省略或組合某些步驟。方法500係以磁性接面100的脈絡被描述。然而,方法500可用在其它磁性接面上,諸如接面200、200’、200”、200’”、200””及/或300。再者,方法500可被納入磁性記憶體的製造,諸如磁性記憶體400。如此,方法500可被用在製造STT-RAM或其它磁性記憶體。方法500可於提供晶種層102及選擇性釘扎層104之後開始。 FIG. 14 depicts an exemplary embodiment of a method 500 of fabricating a magnetic secondary structure. For the sake of brevity, some steps may be omitted or combined. Method 500 is depicted with the context of magnetic junction 100. However, method 500 can be used on other magnetic interfaces, such as junctions 200, 200', 200", 200'", 200"" and/or 300. Moreover, method 500 can be incorporated into the fabrication of magnetic memory, such as magnetic memory 400. As such, method 500 can be used to fabricate STT-RAM or other magnetic memory. The method 500 can begin after the seed layer 102 and the selective pinning layer 104 are provided.
透過步驟502,提供被釘扎層110。步驟502可包括在被釘扎層110的期望厚度處沈積期望的材料。再者,步驟502可包括提供一SAF。透過步驟504,提供非磁化層120。步驟504可包括沈積期望的非磁性材料,包括但不限於結晶性氧化鎂。此外,於步驟502可沈積期望厚度的材料。 Through the step 502, the pinned layer 110 is provided. Step 502 can include depositing a desired material at a desired thickness of the pinned layer 110. Again, step 502 can include providing an SAF. Through step 504, a non-magnetized layer 120 is provided. Step 504 can include depositing a desired non-magnetic material including, but not limited to, crystalline magnesium oxide. Additionally, at step 502, a desired thickness of material can be deposited.
透過步驟506提供具有雙軸各向異性的自由層 130。於一些實施例中,步驟506可藉由沈積多層、SAF及/或其它結構被完成。然後透過步驟508完成製造。舉例言之,可提供覆蓋層140。於其它實施例中,可提供額外間隔層340、額外被釘扎層350及選擇性額外釘扎層360。於一些實施例中,其中磁性接面的該等層係沈積為一堆疊體,然後被界定,步驟508可包括界定磁性接面100、進行退火、或以其它方式完成磁性接面100的製造。再者,若磁性接面100被納入於記憶體中,諸如STT-RAM 400,則步驟508可包括提供接點、偏壓結構、及記憶體400的其它部分。 Providing a free layer having biaxial anisotropy through step 506 130. In some embodiments, step 506 can be accomplished by depositing multiple layers, SAFs, and/or other structures. Manufacturing is then completed through step 508. For example, an overlay 140 can be provided. In other embodiments, an additional spacer layer 340, an additional pinned layer 350, and a selective additional pinning layer 360 can be provided. In some embodiments, wherein the layers of magnetic junctions are deposited as a stack and then defined, step 508 can include defining magnetic junctions 100, annealing, or otherwise completing the fabrication of magnetic junctions 100. Moreover, if magnetic junction 100 is incorporated into a memory, such as STT-RAM 400, step 508 can include providing a contact, a biasing structure, and other portions of memory 400.
如此,磁性接面100、200、200’、200”、200’”、200””及/或300被形成。因此,可達成磁性接面的效益。 Thus, magnetic junctions 100, 200, 200', 200", 200'", 200"" and/or 300 are formed. Therefore, the benefits of the magnetic junction can be achieved.
用於提供一磁性接面及使用磁性記憶體元件/磁性次結構製造的記憶體之方法及系統已被描述。該方法及系統已經根據所示示範實施例來描述,且熟諳技藝人士將容易認知到可對該等實施例做出變化,而任何變化將係在於該方法及系統之精神及範圍內。因此,熟諳技藝人士可在不背離隨附之申請專利範圍的精神及範圍的情況下做出許多修改。 Methods and systems for providing a magnetic junction and memory fabricated using magnetic memory components/magnetic secondary structures have been described. The method and system have been described in terms of the illustrated exemplary embodiments, and those skilled in the art will readily recognize that changes can be made to the embodiments, and any changes are within the spirit and scope of the method and system. Therefore, a skilled person can make many modifications without departing from the spirit and scope of the appended claims.
範例1 根據此一範例,提供一種用於一磁性裝置的磁性接面,其包含:一被釘扎層;一非磁性間隔層;及具有一磁性各向異性能的一自由層,該非磁性間隔層位在該被釘扎層與該自由層間,該磁性各向異性能的至少一部分為一易錐面各向異性能,該易錐面各向異性能包括具有不同角相依性的多個能量項,使得該等多個能量項中之任二者的一比 率具有一角相依性,該易錐面各向異性能具有在一非零角度處的至少一個能量最小值;其中該磁性接面經組配使得當一寫入電流係通過該磁性接面時,該自由層係在多個穩定磁性狀態間可切換。 Example 1 According to this example, a magnetic junction for a magnetic device is provided, comprising: a pinned layer; a non-magnetic spacer layer; and a free layer having a magnetic anisotropy energy, the non-magnetic spacer a layer between the pinned layer and the free layer, at least a portion of the magnetic anisotropy energy being an easy taper surface anisotropy energy, the easy taper surface anisotropy energy comprising a plurality of energies having different angular dependence a term such that a ratio of any one of the plurality of energy terms has an angular dependence, the easy taper surface anisotropy energy having at least one energy minimum at a non-zero angle; wherein the magnetic junction The assembly is such that when a write current is passed through the magnetic junction, the free layer is switchable between a plurality of stable magnetic states.
範例2 此一範例包括範例1之磁性接面,其中該等多個能量項包括至少一個單軸各向異性,其包括具有大於1的次冪之項。 Example 2 This example includes the magnetic junction of Example 1, wherein the plurality of energy terms includes at least one uniaxial anisotropy comprising a term having a power greater than one.
範例3 此一範例包括範例2之磁性接面,其中該單軸各向異性相對應於一易磁化軸(easy axis),其中該磁性各向異性能在距該易磁化軸之該非零角度處具有該至少一個最小值。 Example 3 This example includes the magnetic junction of Example 2, wherein the uniaxial anisotropy corresponds to an easy axis, wherein the magnetic anisotropy energy is at the non-zero angle from the easy axis of magnetization Having the at least one minimum value.
範例4 此一範例包括範例1之磁性接面,其中導致易錐面各向異性的該等各向異性項中之至少部分為結晶感應的。 Example 4 This example includes the magnetic junction of Example 1, wherein at least a portion of the anisotropy terms that result in easy cone anisotropy are crystal induced.
範例5 此一範例包括範例1之磁性接面,其中導致易錐面各向異性的該等各向異性項中之至少部分為靜磁感應的。 Example 5 This example includes the magnetic junction of Example 1, wherein at least a portion of the anisotropy terms that result in an easy taper anisotropy is magnetostatically induced.
範例6 此一範例包括範例1之磁性接面,其中該等能量項中之至少一者藉由將該自由層與該參考層分開的相鄰間隔層所感應。 Example 6 This example includes the magnetic junction of Example 1, wherein at least one of the energy terms is induced by an adjacent spacer layer separating the free layer from the reference layer.
範例7 此一範例包括範例1之磁性接面,其中該非磁性間隔層係為一穿隧位障層。 Example 7 This example includes the magnetic junction of Example 1, wherein the non-magnetic spacer layer is a tunneling barrier layer.
範例8 此一範例包括範例1之磁性接面,其中該非磁性間隔層係為一傳導性間隔層。 Example 8 This example includes the magnetic junction of Example 1, wherein the non-magnetic spacer layer is a conductive spacer layer.
範例9 此一範例包括範例1之磁性接面,其中該被釘扎層包括一參考層、一間隔層、及一固定磁化層,該間隔層位在該參考層與該固定磁化層間。 Example 9 This example includes the magnetic junction of Example 1, wherein the pinned layer includes a reference layer, a spacer layer, and a fixed magnetization layer, the spacer layer being between the reference layer and the fixed magnetization layer.
範例10 此一範例包括範例1之磁性接面,其中該自由層包括一垂直各向異性能及一非在同平面(out-of-plane)去磁能,該非在同平面去磁能係小於該垂直各向異性能。 Example 10 This example includes the magnetic junction of Example 1, wherein the free layer includes a perpendicular anisotropy energy and a non-in-plane demagnetization energy, the non-in-plane demagnetization energy system being smaller than the vertical Anisotropic energy.
範例11 此一範例包括範例8之磁性接面,其中該被釘扎層包括一被釘扎層垂直各向異性能及一被固定層非在同平面去磁能,該被釘扎層非在同平面去磁能係小於該被釘扎層垂直各向異性能。 Example 11 This example includes the magnetic junction of Example 8, wherein the pinned layer includes a pinned layer perpendicular anisotropy energy and a fixed layer non-in-plane demagnetization energy, the pinned layer is not in the same The planar demagnetization energy system is smaller than the vertical anisotropy energy of the pinned layer.
範例12 此一範例包括範例1之磁性接面,其中該自由層包括一垂直各向異性能及一非在同平面去磁能,該非在同平面去磁能係大於或等於該垂直各向異性能。 Example 12 This example includes the magnetic junction of Example 1, wherein the free layer includes a perpendicular anisotropy energy and a non-in-plane demagnetization energy greater than or equal to the perpendicular anisotropy energy.
範例13 此一範例包括範例1之磁性接面,其進一步包含:一額外被釘扎層;及一額外非磁性間隔層,該額外非磁性間隔層位在該自由層與該額外被釘扎層間。 Example 13 This one example comprises a sample of the magnetic surface of the 1, further comprising: an additional pinned layer; and an additional non-magnetic spacer layer, the additional nonmagnetic spacer layer located in the free layer and the additional between-pinned layer .
範例14 此一範例包括範例13之磁性接面,其中該非磁性間隔層及該額外非磁性間隔層中之至少一者包括結晶性氧化鎂。 Example 14 This example includes the magnetic junction of Example 13, wherein at least one of the non-magnetic spacer layer and the additional non-magnetic spacer layer comprises crystalline magnesium oxide.
範例15 根據此一範例,提供一種磁性記憶體,其包含:多個磁性儲存胞元,該等多個磁性儲存胞元各自包括至少一個磁性接面,該至少一個磁性接面包括一被釘扎層、一非磁性間隔層、及具有一磁性各向異性能的一自由層,該非磁性間隔層位在該被釘扎層與該自由層間,該磁性 各向異性的至少一部分係為n個易錐面各向異性能之至少一者,該易錐面各向異性能包括具有不同角相依性的多個能量項,使得該等多個能量項中之任二者的一比率具有一角相依性,該易錐面各向異性能具有在一非零角的至少一個能量最小值,該至少一個磁性接面係經組配以當一寫入電流係通過該磁性接面時,允許該自由層在多個穩定磁性狀態間被切換。 Example 15 According to this example, a magnetic memory is provided, comprising: a plurality of magnetic storage cells, each of the plurality of magnetic storage cells each comprising at least one magnetic junction, the at least one magnetic junction comprising a pinned a layer, a non-magnetic spacer layer, and a free layer having a magnetic anisotropy layer between the pinned layer and the free layer, at least a portion of the magnetic anisotropy is n At least one of the tapered anisotropy energy, the easy cone surface anisotropy energy comprising a plurality of energy terms having different angular dependences such that a ratio of any one of the plurality of energy terms has an angular dependence The easy taper anisotropy energy has at least one energy minimum at a non-zero angle, the at least one magnetic junction being assembled to allow the free layer when a write current is passed through the magnetic junction Switched between multiple stable magnetic states.
範例16 此一範例包括範例15之磁性記憶體,其中該等多個能量項包括至少一個單軸各向異性,其包括具有大於1的次冪之項。 Example 16 This example includes the magnetic memory of Example 15, wherein the plurality of energy terms comprise at least one uniaxial anisotropy comprising a term having a power greater than one.
範例17 此一範例包括範例15之磁性記憶體,其中該單軸各向異性相對應於一易磁化軸及其中該磁性各向異性相對應於在距該易磁化軸之該非零角具有該至少一個最小值的一磁性各向異性能。 Example 17 This example includes the magnetic memory of Example 15, wherein the uniaxial anisotropy corresponds to an easy magnetization axis and the magnetic anisotropy thereof corresponds to the non-zero angle from the easy axis of magnetization having the at least A magnetic anisotropy energy of a minimum.
範例18 此一範例包括範例15之磁性記憶體,其中該易錐面各向異性係為結晶感應的、靜磁感應的、結構感應的、及磁致伸縮感應的中之至少一者。 Example 18 This example includes the magnetic memory of Example 15, wherein the easy cone anisotropy is at least one of crystal induced, magnetostatically induced, structurally induced, and magnetostrictive.
範例19 此一範例包括範例15之磁性記憶體,其中該非磁性間隔層係為一穿隧位障層。 Example 19 This example includes the magnetic memory of Example 15, wherein the non-magnetic spacer layer is a tunneling barrier layer.
範例20 此一範例包括範例15之磁性記憶體,其中該被釘扎層包括一參考層、一間隔層、及一固定磁化層,該間隔層位在該參考層與該固定磁化層間。 Example 20 This example includes the magnetic memory of Example 15, wherein the pinned layer includes a reference layer, a spacer layer, and a fixed magnetization layer, the spacer layer being between the reference layer and the fixed magnetization layer.
範例21 此一範例包括範例15之磁性記憶體,其中該自由層包括一垂直各向異性能及一非在同平面去磁 能,該非在同平面去磁能係小於該垂直各向異性能。 Example 21 This example includes the magnetic memory of Example 15, wherein the free layer includes a perpendicular anisotropy energy and a non-in-plane demagnetization energy, the non-in-plane demagnetization energy system being less than the perpendicular anisotropy energy.
範例22 此一範例包括範例15之磁性記憶體,其中該自由層包括一垂直各向異性能及一非在同平面去磁能,該非在同平面去磁能係大於或等於該垂直各向異性能。 Example 22 This example includes the magnetic memory of Example 15, wherein the free layer includes a perpendicular anisotropy energy and a non-in-plane demagnetization energy greater than or equal to the perpendicular anisotropy energy.
範例23 此一範例包括範例15之磁性記憶體,其中該磁性接面進一步包括:一額外被釘扎層;及一額外非磁性間隔層,該額外非磁性間隔層位在該自由層與該額外被釘扎層間。 Example 23 This example includes the magnetic memory of Example 15, wherein the magnetic junction further comprises: an additional pinned layer; and an additional non-magnetic spacer layer in which the additional non-magnetic spacer layer is located Pinned between layers.
範例24 此一範例包括範例23之磁性接面,其中該非磁性間隔層及該額外非磁性間隔層中之至少一者包括結晶性氧化鎂。 Example 24 This example includes the magnetic junction of Example 23, wherein at least one of the non-magnetic spacer layer and the additional non-magnetic spacer layer comprises crystalline magnesium oxide.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/739,959 | 2013-01-11 | ||
US13/739,959 US8780665B2 (en) | 2010-08-11 | 2013-01-11 | Method and system for providing magnetic tunneling junction elements having an easy cone anisotropy |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201436316A TW201436316A (en) | 2014-09-16 |
TWI624088B true TWI624088B (en) | 2018-05-11 |
Family
ID=51146755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103100976A TWI624088B (en) | 2013-01-11 | 2014-01-10 | Method and system for providing magnetic tunneling junction elements having an easy cone anisotropy |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102199622B1 (en) |
CN (1) | CN103928607B (en) |
TW (1) | TWI624088B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3300534B1 (en) * | 2015-06-05 | 2020-11-11 | Allegro MicroSystems, LLC | Spin valve magnetoresistance element with improved response to magnetic fields |
US9966901B2 (en) * | 2015-11-19 | 2018-05-08 | Samsung Electronics Co., Ltd. | Spin-torque oscillator based on easy-cone anisotropy |
KR101897916B1 (en) | 2017-06-20 | 2018-10-31 | 고려대학교 산학협력단 | Magnetic Tunnel Junction Device with a magnetic layer of easy-cone state |
US10777345B2 (en) | 2018-02-21 | 2020-09-15 | Allegro Microsystems, Llc | Spin valve with bias alignment |
US10636964B2 (en) * | 2018-03-30 | 2020-04-28 | Applied Materials, Inc. | Magnetic tunnel junctions with tunable high perpendicular magnetic anisotropy |
CN109628890B (en) * | 2019-01-10 | 2020-12-29 | 河北大学 | A strontium ruthenate/lanthanum strontium manganese oxide transition metal oxide heterojunction and preparation method thereof |
US11127518B2 (en) | 2019-08-30 | 2021-09-21 | Allegro Microsystems, Llc | Tunnel magnetoresistance (TMR) element having cobalt iron and tantalum layers |
US11217626B2 (en) | 2019-08-30 | 2022-01-04 | Allegro Microsystems, Llc | Dual tunnel magnetoresistance (TMR) element structure |
WO2021056483A1 (en) * | 2019-09-27 | 2021-04-01 | 华为技术有限公司 | Mtj unit, vcma driving method and mram |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6376260B1 (en) * | 1999-07-19 | 2002-04-23 | Motorola, Inc. | Magnetic element with improved field response and fabricating method thereof |
US20020105823A1 (en) * | 2000-12-07 | 2002-08-08 | Commissariat A L'energie Atomique | Magnetic spin polarisation and magnetisation rotation device with memory and writing process, using such a device |
US20020105827A1 (en) * | 2000-12-07 | 2002-08-08 | Commissariat A L'energie Atomique | Three-layered stacked magnetic spin polarisation device with memory, using such a device |
US20030059588A1 (en) * | 2001-09-27 | 2003-03-27 | Hannah Eric C. | Electron spin mechanisms for inducing magnetic-polarization reversal |
US20040136231A1 (en) * | 2003-01-10 | 2004-07-15 | Yiming Huai | Magnetostatically coupled magnetic elements utilizing spin transfer and an mram device using the magnetic element |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003007980A (en) * | 2001-06-20 | 2003-01-10 | Sony Corp | Modulation method for magnetic characteristic and magnetiic functional device |
US6992359B2 (en) | 2004-02-26 | 2006-01-31 | Grandis, Inc. | Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization |
US8497559B2 (en) | 2007-10-10 | 2013-07-30 | Magic Technologies, Inc. | MRAM with means of controlling magnetic anisotropy |
US8546896B2 (en) * | 2010-07-16 | 2013-10-01 | Grandis, Inc. | Magnetic tunneling junction elements having magnetic substructures(s) with a perpendicular anisotropy and memories using such magnetic elements |
US8399941B2 (en) * | 2010-11-05 | 2013-03-19 | Grandis, Inc. | Magnetic junction elements having an easy cone anisotropy and a magnetic memory using such magnetic junction elements |
US8446761B2 (en) | 2010-12-31 | 2013-05-21 | Grandis, Inc. | Method and system for providing multiple logic cells in a single stack |
-
2014
- 2014-01-09 KR KR1020140002927A patent/KR102199622B1/en active IP Right Grant
- 2014-01-10 TW TW103100976A patent/TWI624088B/en active
- 2014-01-10 CN CN201410012720.XA patent/CN103928607B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6376260B1 (en) * | 1999-07-19 | 2002-04-23 | Motorola, Inc. | Magnetic element with improved field response and fabricating method thereof |
US20020105823A1 (en) * | 2000-12-07 | 2002-08-08 | Commissariat A L'energie Atomique | Magnetic spin polarisation and magnetisation rotation device with memory and writing process, using such a device |
US20020105827A1 (en) * | 2000-12-07 | 2002-08-08 | Commissariat A L'energie Atomique | Three-layered stacked magnetic spin polarisation device with memory, using such a device |
US20030059588A1 (en) * | 2001-09-27 | 2003-03-27 | Hannah Eric C. | Electron spin mechanisms for inducing magnetic-polarization reversal |
US20040136231A1 (en) * | 2003-01-10 | 2004-07-15 | Yiming Huai | Magnetostatically coupled magnetic elements utilizing spin transfer and an mram device using the magnetic element |
Also Published As
Publication number | Publication date |
---|---|
TW201436316A (en) | 2014-09-16 |
KR20140091481A (en) | 2014-07-21 |
KR102199622B1 (en) | 2021-01-08 |
CN103928607A (en) | 2014-07-16 |
CN103928607B (en) | 2018-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103069602B (en) | There is the magnetic tunneling junction element of biaxial anisotropy | |
TWI624088B (en) | Method and system for providing magnetic tunneling junction elements having an easy cone anisotropy | |
CN103887424B (en) | Magnetic junction and its offer method and magnetic memory | |
JP5101298B2 (en) | MTJ element having high spin polarization layer configured to switch spin transfer, and spintronic device using the magnetic element | |
JP5961785B2 (en) | Method and system for providing a hybrid magnetic tunnel junction element with improved switching | |
CN103855299B (en) | The method and system for the magnetic junction for having thermostabilization and easy switching magnetic free layer is provided | |
KR102198034B1 (en) | Method and system for providing magnetic junctions including heusler multilayers | |
CN103178205B (en) | Method for providing magnetic junctions and magnetic storage comprising the magnetic junctions | |
US8780665B2 (en) | Method and system for providing magnetic tunneling junction elements having an easy cone anisotropy | |
KR20130006375A (en) | Method and system for providing a magnetic junction using half metallic ferromagnets | |
KR102325455B1 (en) | Method and device for providing magnetic junctions with rare earth-transition metal layers | |
KR102412195B1 (en) | Magnetic junction, magnetic memory and method for providing magnetic junction | |
US9142758B2 (en) | Method and system for providing a magnetic junction configured for precessional switching using a bias structure | |
KR102300702B1 (en) | Low moment free layer magnetic junctions usable in spin transfer torque applications and methods for providing the same | |
KR102163823B1 (en) | Magnetic junction usable in a magnetic device and fabricating the same | |
CN105762274B (en) | Method and system for providing a magnetic junction including a Co-free layer |