TWI601353B - Distributed module type grid connection conversion device and its control method - Google Patents
Distributed module type grid connection conversion device and its control method Download PDFInfo
- Publication number
- TWI601353B TWI601353B TW105121838A TW105121838A TWI601353B TW I601353 B TWI601353 B TW I601353B TW 105121838 A TW105121838 A TW 105121838A TW 105121838 A TW105121838 A TW 105121838A TW I601353 B TWI601353 B TW I601353B
- Authority
- TW
- Taiwan
- Prior art keywords
- power
- grid
- converters
- converter
- management module
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 43
- 238000000034 method Methods 0.000 title claims description 10
- 238000010248 power generation Methods 0.000 claims description 11
- 239000003990 capacitor Substances 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 4
- 230000033228 biological regulation Effects 0.000 claims description 3
- 230000002457 bidirectional effect Effects 0.000 claims description 2
- 239000000446 fuel Substances 0.000 description 18
- 238000004891 communication Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/20—Smart grids as enabling technology in buildings sector
Landscapes
- Inverter Devices (AREA)
Description
本發明係與燃料電池之轉換裝置有關;特別是指一種分散模組式併網轉換裝置及其控制方法。The invention relates to a conversion device of a fuel cell; in particular to a decentralized modular grid-connecting device and a control method thereof.
由於全球氣候變遷對人類帶來警訊,各種綠色能源科技快速發展,例如太陽能、風能以及氫能等發電技術均有顯著突破。特別是燃料電池,燃料電池可將化學能連續地直接轉換成電能,具有低汙染、低噪音、免充電、高效率、壽命長、適用範圍廣以及可以分散式供電等諸多優點,除了可應用於太空計劃,也可應用於民生發電、交通載具、軍事、可攜式電源以及電子產品等方面。As global climate change has alerted people, various green energy technologies have developed rapidly, and power generation technologies such as solar energy, wind energy and hydrogen energy have made significant breakthroughs. In particular, fuel cells, fuel cells can directly convert chemical energy into electrical energy continuously, with low pollution, low noise, no charging, high efficiency, long life, wide application range and decentralized power supply, etc. The space program can also be applied to people's livelihood power generation, transportation vehicles, military, portable power supplies, and electronic products.
習用燃料電池發電系統為多級串接式電力轉換架構,通常搭配備載電池(Back-up Battery)使用,系統包含有一升壓轉換器以及一直流/交流變流器,其中升壓轉換器用以將低壓輸入轉換至直流高壓準位,而位於後端之直流/交流變流器用以將直流高壓轉換成交流電,以供家用負載使用。The conventional fuel cell power generation system is a multi-stage serial power conversion architecture, usually equipped with a back-up battery, and the system includes a boost converter and a DC/AC converter, wherein the boost converter is used. The low voltage input is converted to a DC high voltage level, and the DC/AC converter at the back end is used to convert DC high voltage to AC power for use by a household load.
然而,習用多級式電力轉換的控制器必須分別獨立設計,分別對直流鏈電壓以及交流輸出作控制,具有複雜、高成本以及系統可靠度降低的缺點;另一方面,其能量傳送的過程經過多次高頻電力轉換,轉換效率較差;再加上習用燃料電池的變流器產品為高壓啟動規格,不適用各式低壓輸出型之燃料電池。是以,為提升能源的使用效能以及降低能源生產過程所造成的汙染,如何提高應用有燃料電池之發電系統的轉換效率,實在是當前發展綠色能源的過程中,所必須面對的課題。However, controllers that use multi-stage power conversion must be independently designed to control the DC link voltage and AC output separately, which has the disadvantages of complexity, high cost, and reduced system reliability. On the other hand, the process of energy transmission passes through Multiple high-frequency power conversion, conversion efficiency is poor; coupled with the conventional fuel cell converter products for high-voltage start-up specifications, not suitable for all types of low-pressure output fuel cells. Therefore, in order to improve the energy efficiency and reduce the pollution caused by the energy production process, how to improve the conversion efficiency of the fuel cell power generation system is indeed a problem that must be faced in the current development of green energy.
有鑑於此,本發明之目的在於提供一種分散模組式併網轉換裝置,具有高效率電能轉換、大量模組化、擴充運用靈活、且適用於各式標準的低壓輸出型燃料電池等特性。In view of the above, the object of the present invention is to provide a distributed modular grid-connected conversion device, which has the characteristics of high-efficiency power conversion, large modularization, flexible expansion and application, and is applicable to various standard low-voltage output fuel cells.
緣以達成上述目的,本發明提供的一種分散模組式併網轉換裝置供與一電網電性連接,用以提供交流電力予該電網,該分散模組式併網轉換裝置包括有一電池模組,用以輸出一直流電力;一功率轉換模組,與該電池模組以及該電網電性連接,該功率轉換模組包含有至少二變流器,該些變流器之間並聯連接,該功率轉換模組用以接收該電池模組所輸出的直流電力並轉換為一交流電力輸出,且所輸出之該交流電力係供應予該電網;一電源管理模組,與該電池模組以及該功率轉換模組電性連接,該電源管理模組係依據該電網的負載用電量,對各該變流器進行功率調控,以輸出相應於該負載用電量的交流電力。In order to achieve the above objective, the present invention provides a decentralized modular grid-connecting device for electrically connecting to a power grid for providing AC power to the power grid. The distributed modular grid-connecting device includes a battery module. a power conversion module is electrically connected to the battery module and the power grid, and the power conversion module includes at least two converters, and the converters are connected in parallel. The power conversion module is configured to receive the DC power output by the battery module and convert it into an AC power output, and the output AC power is supplied to the power grid; a power management module, the battery module, and the The power conversion module is electrically connected, and the power management module performs power regulation on each of the converters according to the load power consumption of the power grid to output AC power corresponding to the load power consumption.
本發明另提供一種分散模組式併網轉換裝置的控制方法,其包含有以下步驟:A、偵測該電網的負載用電量;B、依據步驟A所偵測之負載用電量,作以下其中一個步驟:B1、該電網的負載用電量大於一第一閥值時,該電源管理模組對至少二該變流器發出啟動訊號,以使至少二該變流器進行運作;B2、該電網的負載用電量小於一第二閥值時,該電源管理模組對至少一該變流器發出關閉訊號,以使至少一該變流器停止運作。The invention further provides a control method for a distributed modular grid-connected device, which comprises the following steps: A, detecting the load power consumption of the power grid; B, according to the load power consumption detected in step A, One of the following steps: B1, when the load power consumption of the power grid is greater than a first threshold, the power management module sends a start signal to at least two of the converters to enable at least two of the converters to operate; When the power consumption of the power grid is less than a second threshold, the power management module sends a shutdown signal to at least one of the converters to stop at least one of the converters from operating.
本發明之效果在於該分散模組式併網轉換裝置可直接將電池模組之電力傳送至市電網以省去蓄電池組成本,且該分散模組式併網轉換裝置採用返馳式變流器,可以滿足燃料電池寬廣輸入電壓範圍的要求,使其適用於各式標準的低壓輸出型燃料電池;該分散模組式併網轉換裝置採用控制器區域網路匯流排,能大幅縮減各模組間連接時之電線的使用量,也相對的減少許多線路上的接點,有效提升該分散模組式併網轉換裝置之可靠度;而並聯之結構設計使擴充與應用更靈活,方便對綠色能源發電規模的調整,且當單一變流器故障時,可針對該故障變流器進行故障排除與檢修,不須將全系統停止運轉。The effect of the invention is that the decentralized modular grid-connecting device can directly transfer the power of the battery module to the municipal grid to save the battery component, and the decentralized grid-connected converter adopts a flyback converter. It can meet the requirements of the wide input voltage range of the fuel cell, making it suitable for all kinds of standard low-voltage output fuel cells. The decentralized modular grid-connecting device uses the controller area network bus bar, which can greatly reduce the modules. The amount of wires used during the connection is also relatively reduced on many lines, effectively improving the reliability of the distributed modular grid-connecting device; and the parallel structural design makes the expansion and application more flexible, convenient to green The scale of energy generation is adjusted, and when a single converter fails, the fault converter can be trouble-shooted and repaired without stopping the whole system.
為能更清楚地說明本發明,茲舉一較佳實施例並配合圖式詳細說明如後。請參圖1所示,為本發明一較佳實施例之分散模組式併網轉換裝置100,其用以供與一電網10電性連接並可提供交流電力予該電網10。更詳而言之,該電網10係用以提供用電的輸電網路,其可以是家庭型微電網、社區型電網及城市型電網等不同規模大小的電網種類,而於本實施例中,該電網10茲以市電(城市型電網)為例,但於其他實際實施上並不以此為限。In order to explain the present invention more clearly, a preferred embodiment will be described in detail with reference to the drawings. Referring to FIG. 1 , a decentralized modular grid-connected device 100 for electrically connecting to a grid 10 and providing AC power to the grid 10 is shown in FIG. 1 . More specifically, the power grid 10 is used to provide power transmission lines, which may be different types of power grids, such as a home type micro grid, a community type power grid, and a city type power grid. In this embodiment, The grid 10 is based on the municipal power (urban power grid), but it is not limited to other practical implementations.
該分散模組式併網轉換裝置100包含有一電池模組20、一功率轉換模組30以及一電源管理模組40。The decentralized modular grid-connecting device 100 includes a battery module 20, a power conversion module 30, and a power management module 40.
該電池模組20用以輸出一直流電力,於本實施例中係選用直流電型式之燃料電池系統作為該電池模組20,且其啟動電壓為15V。另外由於燃料電池本身之電氣特性,其輸出為低壓時電流大,且電壓會隨著輸出電流而變化,意即,當該電池模組20供予負載之電流越大時,該電池模組20之電壓將越低。The battery module 20 is configured to output DC power. In the present embodiment, a DC battery fuel cell system is selected as the battery module 20, and its starting voltage is 15V. In addition, due to the electrical characteristics of the fuel cell itself, the current is large when the output is low voltage, and the voltage varies with the output current, that is, when the current supplied by the battery module 20 to the load is larger, the battery module 20 The voltage will be lower.
請參圖2以及圖3所示,該功率轉換模組30與該電池模組20以及該電網10電性連接,用以接收該電池模組20所輸出的直流電力並轉換為一交流電力輸出供應予該電網10。於本實施例中,該功率轉換模組30包含有多個變流器32、多個整流電路34以及多個濾波電路36,該些濾波電路36設置於該電網10前,本實施例中,該些濾波電路36採用LC濾波電路。各該變流器32與相對應之各該整流電路34電性連接,各該整流電路34與相對應之各該濾波電路36電性連接,且該些變流器32之間並聯連接,而各該變流器32係選用單級返馳式變流器之設計,且各該變流器32電路為多向分流設計,而該些整流電路34則採用低頻全橋整形開關;其中,該變流器32具有一一次側322(即本發明所界定的直流側)與一二次側324(即本發明所界定的交流側),該一次側322耦接該電池模組20,該二次側324耦接該整流電路34。該功率轉換模組30之設計目的,在於該電池模組20所選用之燃料電池是經由化學反應而產生能量,其暫態響應較長,若所供電之負載瞬間抽取大電流時,該電池模組20將發生輸出電壓驟降的情況,而會造成電路的導通損失遽增以及轉換效率降低的情況發生,進而導致該電池模組20整體發電性能下降之情況,據此,透過各該變流器32電路為多向分流之設計,該電池模組20之電流得以平均經過各該變流器32,使電路導通損失降低,同時抑制高頻電流漣波,有效地降低電路高頻損失,且該電池模組20之功率控制響應亦得到提昇。As shown in FIG. 2 and FIG. 3 , the power conversion module 30 is electrically connected to the battery module 20 and the power grid 10 for receiving DC power output by the battery module 20 and converting it into an AC power output. It is supplied to the grid 10. In this embodiment, the power conversion module 30 includes a plurality of converters 32, a plurality of rectifier circuits 34, and a plurality of filter circuits 36. The filter circuits 36 are disposed in front of the power grid 10. In this embodiment, The filter circuits 36 employ LC filter circuits. Each of the converters 32 is electrically connected to the corresponding rectifier circuit 34. Each of the rectifier circuits 34 is electrically connected to the corresponding filter circuit 36, and the converters 32 are connected in parallel. Each of the converters 32 is designed as a single-stage flyback converter, and each of the converters 32 is a multi-directional shunt design, and the rectifying circuits 34 are low-frequency full-bridge shaping switches; The current collector 32 has a primary side 322 (ie, the DC side defined by the present invention) and a secondary side 324 (the AC side defined by the present invention) coupled to the battery module 20, The secondary side 324 is coupled to the rectifier circuit 34. The purpose of the power conversion module 30 is that the fuel cell selected by the battery module 20 generates energy through a chemical reaction, and the transient response is long. If the power supply load instantaneously draws a large current, the battery module The group 20 will have a sudden drop in the output voltage, which may cause a decrease in the conduction loss of the circuit and a decrease in the conversion efficiency, thereby causing a decrease in the overall power generation performance of the battery module 20, and accordingly, through the respective current changes. The circuit of the device 32 is designed for multi-directional shunting, and the current of the battery module 20 is averaged through each of the converters 32, so that the circuit conduction loss is reduced, and the high-frequency current chopping is suppressed, thereby effectively reducing the high-frequency loss of the circuit, and The power control response of the battery module 20 is also improved.
值得一提的是,該些變流器32於本實施例中採用單級返馳式變流器並同時導入準諧振切換技術,將可實現模擬直流鏈操作原理之效果,使達到高效率電能轉換,返馳式轉換電路之電壓增益為可升降壓特性,可使其適用於各式標準的低壓輸出型(15V~80V)燃料電池。另外,該準諧振切換技術之電路架構包含有至少一主開關元件(圖未示)、至少一主開關寄生電容(圖未示)以及一漏感(圖未示),該主開關元件、該主開關寄生電容以及該漏感皆位於該一次側322。透過準諧振切換技術並利用該漏感與該主開關寄生電容產生共振,將可降低該一次側322之該主開關元件之應力,使該主開關元件達到零電壓柔性切換,並且可大幅降低該二次側324之逆向回復電流損失,使該功率轉換模組30的各該變流器32都能達到高轉換效率。It is worth mentioning that in the embodiment, the converter 32 adopts a single-stage flyback converter and simultaneously introduces a quasi-resonant switching technology, which can realize the effect of the analog DC link operation principle, so as to achieve high efficiency power. The voltage gain of the conversion and flyback converter circuit is adjustable for buck-boost, making it suitable for all types of standard low-voltage output (15V~80V) fuel cells. In addition, the circuit structure of the quasi-resonant switching technology includes at least one main switching element (not shown), at least one main switching parasitic capacitance (not shown), and a leakage inductance (not shown), the main switching element, the main switching element The primary switch parasitic capacitance and the leakage inductance are located on the primary side 322. By quasi-resonant switching technology and utilizing the leakage inductance to resonate with the parasitic capacitance of the main switch, the stress of the main switching element of the primary side 322 can be reduced, the main switching element can achieve zero voltage flexible switching, and the main switching element can be greatly reduced. The reverse recovery current loss of the secondary side 324 enables each of the converters 32 of the power conversion module 30 to achieve high conversion efficiency.
此外,各該整流電路34採用低頻全橋整形開關之設計,便可將半正弦波電流整形成正弦波電流,而連接於該電網10前的各該濾波電路36,則可以濾除高頻雜訊,藉以使輸出至該電網10之波形較為平滑,而可達到減少失真以及諧波之效果。當該變流器32與市電電壓頻率達到同步時,便可經由交流電壓/電流之回授得知市電電壓以及各該變流器32輸出電流,提供該電源管理模組40判斷是否適合進行能量饋入市電作業。除此之外,於本實施例中,該功率轉換模組30更包含有二薄膜電容38,各該薄膜電容38分別耦接於一該變流器32與一該整流電路34之間,用以對各該變流器32所輸出的半弦波電壓進行濾波並輸出予各該整流電路34。如此一來,該功率轉換模組30之電路運作是於該二次側324之各該薄膜電容38上以模擬直流鏈操作原理來形成半正弦波波形電壓,故不需額外的高壓電解電容,此特點使該些變流器32具有長壽命之優勢。In addition, each of the rectifying circuits 34 adopts a design of a low-frequency full-bridge shaping switch to form a half-sine wave current into a sine wave current, and each of the filtering circuits 36 connected to the front of the power grid 10 can filter high-frequency impurities. The signal is used to make the waveform output to the grid 10 smoother, and the effect of reducing distortion and harmonics can be achieved. When the current transformer 32 is synchronized with the mains voltage frequency, the mains voltage and the output current of each of the converters 32 can be obtained through feedback of the AC voltage/current, and the power management module 40 is provided to determine whether the energy is suitable for energy. Feed into the mains operation. In addition, in the embodiment, the power conversion module 30 further includes two film capacitors 38, and each of the film capacitors 38 is coupled between the converter 32 and a rectifier circuit 34, respectively. The half-sine wave voltage outputted from each of the converters 32 is filtered and output to each of the rectifier circuits 34. In this way, the circuit of the power conversion module 30 operates on the film capacitor 38 of the secondary side 324 to form a half sine wave waveform voltage by using an analog DC link operation principle, so that no additional high voltage electrolytic capacitor is needed. This feature gives the converters 32 the advantage of a long life.
請參圖4,該電源管理模組40與該電池模組20以及該功率轉換模組30電性連接,於本實施例中,該電源管理模組40包含有一控制器42、一顯示器44、一輸入器46以及一輔助電源48。其中,該輸入器46用以供使用者輸入該電源管理模組40之各種狀態的資訊,透過該顯示器44顯示該電源管理模組40之各種狀態的資訊;該輔助電源48用以提供該電源管理模組40所需之電力;該控制器42用以偵測該電網10的負載用電量,並依據負載用電量對各該變流器32輸出控制訊號。較佳者,於一實施例當中,該電源管理模組40係可透過一控制器區域網路匯流排(CAN-BUS)以對各該變流器32下達對應的控制訊號,例如:該電源管理模組40係可透過變頻式脈波寬度調變控制訊號,以個別地對各該變流器32進行功率調控,以輸出相應於負載用電量的交流電力。Referring to FIG. 4 , the power management module 40 is electrically connected to the battery module 20 and the power conversion module 30. In this embodiment, the power management module 40 includes a controller 42 and a display 44. An input device 46 and an auxiliary power source 48. The input device 46 is configured to allow the user to input information about various states of the power management module 40, and display information about various states of the power management module 40 through the display 44. The auxiliary power source 48 is configured to provide the power. The controller 42 is configured to detect the load power consumption of the power grid 10, and output a control signal to each of the converters 32 according to the load power consumption. Preferably, in an embodiment, the power management module 40 can transmit a corresponding control signal to each of the converters 32 through a controller area network bus (CAN-BUS), for example, the power supply. The management module 40 can individually adjust the power of each of the converters 32 through the variable frequency pulse width modulation control signal to output AC power corresponding to the load power consumption.
該控制器42持續監控各該變流器32,並對該些變流器32做故障檢測,除此之外,該控制器42更可與一家庭能源管理系統50(HEMS)進行通訊,該家庭能源管理系統50用以發出即時調度命令,並透過該顯示器44告之使用者系統狀態或透過通訊告知該控制器42,以實現即時處理與提高系統可靠度。The controller 42 continuously monitors the converters 32 and performs fault detection on the converters 32. In addition, the controller 42 can communicate with a home energy management system 50 (HEMS). The home energy management system 50 is configured to issue an immediate dispatch command and notify the controller 42 via the display 44 of the user's system status or via communication to achieve immediate processing and improved system reliability.
舉例而言,當每台變流器32之供應瓦數可達300瓦,當該電網10的負載用電量大於一第一閥值(本實施例中設定為1000瓦)時,則需啟動相對較多台之該變流器32,此時,該電源管理模組40便會向對應之各該變流器32發出啟動訊號,以使其中四台該變流器32進行運作,以供應足夠之用電量給該電網10的負載使用;另外,當該電網10的負載用電量小於一第二閥值(本實施例中設定為500瓦)時,則僅需要啟動一部分的變流器32,此時,該電源管理模組40便會向對應之各該變流器32發出關閉訊號,以使部分的該變流器32停止運作,而僅保留其中兩台持續運作,即可提供足夠的電量供該電網10使用。For example, when the supply wattage of each converter 32 can reach 300 watts, when the load power consumption of the power grid 10 is greater than a first threshold (1000 watts set in this embodiment), it needs to be activated. The power converter module 40 sends a start signal to each of the corresponding converters 32 to enable four of the converters 32 to operate to supply the converters 32. Sufficient power is used for the load of the grid 10; in addition, when the load power consumption of the grid 10 is less than a second threshold (500 watts set in this embodiment), only a part of the converter needs to be activated. At this time, the power management module 40 sends a shutdown signal to each of the corresponding converters 32, so that part of the converter 32 stops operating, and only two of them remain in operation. Sufficient power is provided for use by the grid 10.
如此一來,透過因應負載用電量大小來控制啟動相應數量的該些變流器32作動的方式,可進而達到節約能源之效果。In this way, by controlling the amount of power consumption of the load to control the activation of the corresponding number of the converters 32, the energy saving effect can be further achieved.
另外,於本實施例中,各該變流器32與該電源管理模組40係透過一控制器區域網路匯流排60(CAN-BUS)進行雙向資訊(例如燃料電池的電壓/電流、電網之電壓/電流等)傳輸,採用該控制器區域網路匯流排60之好處,在於能大幅縮減電線的使用量,相對的,也減少線路上之接點,進而可減少布線成本並可增加線路穩定度。除此之外,當任一該變流器32有壞損的情況發生時,該家庭能源管理系統50更可透過該控制器區域網路匯流排60回報給該電源管理模組40以進行檢修,而後便可進一步控制該功率轉換模組30關閉異常的該變流器32以進行降載操作模式,此創新方式改善了習用變流器系統故障就必須停機的問題、有效地減少客戶端的發電損失。另外,該控制器區域網路匯流排60更具有穩定、有效通訊距離長、容錯以及抗干擾之能力,而可提升該分散模組式併網轉換裝置100之泛用性。In addition, in this embodiment, each of the converters 32 and the power management module 40 performs bidirectional information through a controller area network bus 60 (CAN-BUS) (eg, fuel cell voltage/current, power grid). The voltage/current, etc. transmission, the advantage of using the controller area network bus 60 is to greatly reduce the amount of wire used, and also reduce the contact on the line, thereby reducing wiring costs and increasing Line stability. In addition, when any of the converters 32 is damaged, the home energy management system 50 can be returned to the power management module 40 through the controller area network bus 60 for maintenance. Then, the power conversion module 30 can be further controlled to close the abnormal converter 32 to perform the load-down operation mode. This innovative method improves the problem that the conventional converter system must be shut down, and effectively reduces the power generation of the client. loss. In addition, the controller area network bus 60 has more stable, effective communication distance, fault tolerance and anti-interference ability, and can improve the versatility of the distributed modular grid-connecting device 100.
請配合圖5所示,於該分散模組式併網轉換裝置100啟動後,作為運作中樞的電源管理模組40將啟動,並檢測其與家庭能源管理系統50之間是否有發生連線逾時的情況,其中,若是,則表示系統發生故障或異常,此時該電源管理模組40便控制該些變流器停止供電;若否,則表示電源管理模組40與家庭能源管理系統50運作正常;接者,便可透過CAN-BUS收集所有變流器32的資訊(例如:變流器的故障資訊、實際發電量、命令與回授量等資訊),藉以獲悉各該變流器當前的工作狀態等資訊;接著,更新家庭能源管理系統20所回傳之負載用電量以及能量轉換指令,藉以供該電源管理模組40依據該負載用電量以及能量轉換指令對各該變流器發布控制訊號,其中,較佳者,於對各該變流器發布控制訊號之前係可執行一自我檢驗程序藉以標記出可投入併電網發電的變流器編號及/或標記出無法工作的變流器編號。As shown in FIG. 5, after the decentralized modular grid-connected device 100 is activated, the power management module 40, which is the operation hub, will be activated and detected whether there is a connection between the home energy management system 50 and the home energy management system 50. In the case of the time, if it is, it indicates that the system is faulty or abnormal. At this time, the power management module 40 controls the converters to stop supplying power; if not, the power management module 40 and the home energy management system 50 Normal operation; the receiver can collect all the information of the converter 32 through the CAN-BUS (for example, information on the fault of the converter, actual power generation, command and feedback), so as to learn about each converter. Information such as the current working status; and then, the load power consumption and the energy conversion command returned by the home energy management system 20 are updated, so that the power management module 40 can change the power according to the load power consumption and the energy conversion command. The streamer issues a control signal, wherein, preferably, a self-checking program can be executed to mark the converter that can be put into the grid and generate electricity before issuing a control signal to each of the converters. Number and / or ID mark converter not work.
請參圖6所示,所述的自我檢驗程序的一實施態樣,首先,設定有一變數N,並將該變數N初始化為0,以及清除所有變流器上的標記(或稱狀態標籤),接著,進入一檢驗迴圈,以每次N遞增加1的順序,檢驗變流器第N號機是否發生異常,若該變流器第N號機為屬於正常可供作狀態,則標記該變流器第N號機為可投入併網發電的變流器,直到所有變流器皆已完成檢驗,亦即,直到變數N已遞增至大於最大變流器數量為止,以結束自我檢驗的程序。其中,透過該自我檢驗程序,便可檢驗出各該變流器(例如變流器第1~N號機)的狀態是否正常。Referring to FIG. 6, an embodiment of the self-checking program first sets a variable N, initializes the variable N to 0, and clears all the tags (or status tags) on the converter. Then, enter a check loop, and check whether the Nth machine of the converter has an abnormality in the order of incrementing N by each time. If the Nth machine of the converter is in a normal available state, the flag is marked. The converter No. N is a converter that can be put into grid-connected power generation until all the converters have been tested, that is, until the variable N has increased to be greater than the maximum number of converters, to end the self-test program of. Through the self-checking program, it can be checked whether the state of each of the converters (for example, the first to Nth converters) is normal.
接著,復參圖5所示,於執行完自我檢驗程序後,即根據是否執行該能量轉換指令作後續的步驟,若否,便控制所有變流器停止供電;若是,則進一步判斷負載用電量是否大於已標記(係指可正常工作之標記)的總變流器的發電量,其中,若是,則控制所有已標記的變流器滿載公電;若否,則根據負載用電量的多寡,分配適當數量的變流器投入併網發電即可,藉以達到因應負載用電量大小來控制啟動相應數量的變流器作動,進而達到節約能源之效果。Then, as shown in FIG. 5, after the self-checking procedure is executed, the subsequent steps are performed according to whether the energy conversion command is executed, and if not, all the converters are controlled to stop supplying power; if yes, the load power is further determined. Whether the quantity is greater than the total power converter of the marked (referred to as the working mark), if it is, then control all marked converters to be fully loaded with electricity; if not, according to the amount of power used by the load By assigning an appropriate number of converters to the grid and generating electricity, it is possible to control the activation of the corresponding number of converters according to the amount of power used by the load, thereby achieving the effect of saving energy.
值得一提的是,基於上述架構,可採用MK64FN1M0VLL12數位訊號處理器(DSP)作為該電源管理模組40的控制器42,並透過CAN-BUS來調控燃料電池之輸出電流,而可使該一次側322的電流波形追隨一整流後弦波電流命令,而後利用全橋開關電路進行半正弦波低頻切換,進一步將該二次側324的電流依正負半週經LC濾波電路注入該電網10。另外,在該變流器32控制韌體實現上,則可採用TMS320F28335(內含有A/D轉換器、計數器、PWM輸出等功能模組)配合週邊感測電路設計進行韌體演算,藉以減少硬體電路的複雜度。此外,本實施例所開發的該電源管理模組40及其通訊介面49,則可採用RS-232/RS-485通信標準以實現該家庭能源管理系統50與該電源管理模組40之間的遠程通信,並可藉由上述設計達到調控燃料電池輸出功率與併網電流的效果。值得說明的是,該電源管理模組40之電力來源是經由該輔助電源48(AC/DC)提供三組隔離的五伏特,該電源管理模組40亦可透過該輸入器46(本實施例中採用KEYPAD)輸入系統狀態之資訊並將系統狀態之資訊顯示於該顯示器44(本實施例中採用LCD)或回傳至該家庭能源管理系統50。另外,於一實施例當中,上述之通訊介面49亦可同樣採用CAN-BUS或其他通信標準,而不以上述說明為限。It is worth mentioning that, based on the above architecture, the MK64FN1M0VLL12 digital signal processor (DSP) can be used as the controller 42 of the power management module 40, and the output current of the fuel cell can be adjusted through the CAN-BUS. The current waveform of side 322 follows a rectified sine wave current command, and then a half bridge sinusoidal low frequency switching is performed using a full bridge switching circuit, and the current of the secondary side 324 is further injected into the grid 10 via the LC filter circuit in positive and negative half cycles. In addition, in the converter to control the firmware implementation, the TMS320F28335 (with A/D converter, counter, PWM output and other functional modules) can be used together with the peripheral sensing circuit design for firmware calculation, thereby reducing the hard The complexity of the body circuit. In addition, the power management module 40 and the communication interface 49 developed in this embodiment may adopt an RS-232/RS-485 communication standard to implement the relationship between the home energy management system 50 and the power management module 40. Remote communication, and the above design can achieve the effect of regulating fuel cell output power and grid-connected current. It should be noted that the power source of the power management module 40 is provided by the auxiliary power source 48 (AC/DC) to provide three sets of isolated five volts. The power management module 40 can also pass through the input unit 46 (this embodiment) The KEYPAD is used to input information about the state of the system and display information of the system status on the display 44 (in this embodiment, LCD) or back to the home energy management system 50. In addition, in an embodiment, the communication interface 49 may also adopt CAN-BUS or other communication standards, and is not limited to the above description.
綜上所述,本發明之該分散模組式併網轉換裝置100可直接將該電池模組20之電力傳送至市電網以省去蓄電池組成本,且該分散模組式併網轉換裝置100採用返馳式變流器,返馳式變流器的電路之電壓增益為可升降壓特性,可以使其適用於各式標準的低壓輸出型燃料電池,因此具有市場通用性;該分散模組式併網轉換裝置100採用該控制器區域網路匯流排60,能大幅縮減各該變流器32間連接時之電線的使用量,也相對的減少許多線路上的接點,有效提升該分散模組式併網轉換裝置100之可靠度;而該些變流器32並聯之結構設計使擴充與應用更靈活,方便對綠色能源發電規模的調整,且當單一該變流器32故障時,可針對該故障變流器32進行故障排除與檢修,不需將全系統停止運轉,有效地減少客戶端的發電損失。如此一來,本發明改善了習用應用綠色能源時轉換效率不彰的問題,並成功地提升綠色能源的轉換效率,進而提高了人們對於綠色能源的使用意願。In summary, the decentralized modular grid-connected device 100 of the present invention can directly transfer the power of the battery module 20 to the city grid to save the battery component, and the decentralized modular grid-connecting device 100 With the flyback converter, the voltage gain of the circuit of the flyback converter is the buck-boost characteristic, which can be applied to various standard low-voltage output fuel cells, so it has market versatility; The grid-connected switching device 100 adopts the controller area network bus bar 60, which can greatly reduce the amount of wires used when connecting the converters 32, and relatively reduce the contacts on many lines, thereby effectively improving the dispersion. The reliability of the modular grid-connected conversion device 100; and the structural design of the converters 32 in parallel makes the expansion and application more flexible, facilitates the adjustment of the scale of the green energy power generation, and when a single converter 32 fails, The faulty converter 32 can be trouble-shooted and repaired, and the whole system is not required to be stopped, thereby effectively reducing the power generation loss of the client. In this way, the invention improves the problem of poor conversion efficiency when the application of green energy is applied, and successfully improves the conversion efficiency of green energy, thereby increasing people's willingness to use green energy.
以上所述僅為本發明較佳可行實施例而已,舉凡應用本發明說明書及申請專利範圍所為之等效變化,理應包含在本發明之專利範圍內。The above is only a preferred embodiment of the present invention, and equivalent changes to the scope of the present invention and the scope of the patent application are intended to be included in the scope of the present invention.
[本發明][this invention]
100‧‧‧分散模組式併網轉換裝置100‧‧‧Distributed modular grid-connected converter
10‧‧‧電網10‧‧‧ Grid
20‧‧‧電池模組20‧‧‧Battery module
30‧‧‧功率轉換模組30‧‧‧Power Conversion Module
32‧‧‧變流器32‧‧‧Converter
322‧‧‧一次側322‧‧‧primary side
324‧‧‧二次側324‧‧‧second side
34‧‧‧整流電路34‧‧‧Rectifier circuit
36‧‧‧濾波電路36‧‧‧Filter circuit
38‧‧‧薄膜電容38‧‧‧ Film Capacitance
40‧‧‧電源管理模組40‧‧‧Power Management Module
42‧‧‧控制器42‧‧‧ Controller
44‧‧‧顯示器44‧‧‧ display
46‧‧‧輸入器46‧‧‧ Inputs
48‧‧‧輔助電源48‧‧‧Auxiliary power supply
49‧‧‧通訊介面49‧‧‧Communication interface
50‧‧‧家庭能源管理系統50‧‧‧Home Energy Management System
60‧‧‧控制器區域網路匯流排60‧‧‧Controller area network bus
圖1為本發明一較佳實施例之分散模組式併網轉換裝置的電路架構示意圖。 圖2為上述較佳實施例之分散模組式併網轉換裝置的單一變流器之電路圖。 圖3為上述較佳實施例之分散模組式併網轉換裝置的單一變流器之電路工作波形圖。 圖4為上述較佳實施例之分散模組式併網轉換裝置的電源管理模組之電路架構示意圖。 圖5為上述較佳實施例之分散模組式併網轉換裝置的流程圖。 圖6為上述較佳實施例之分散模組式併網轉換裝置的自我檢驗程序的流程圖。1 is a schematic diagram of a circuit architecture of a distributed modular grid-connected conversion device according to a preferred embodiment of the present invention. 2 is a circuit diagram of a single converter of the distributed modular grid-connected converter of the above preferred embodiment. 3 is a circuit operation waveform diagram of a single converter of the distributed modular grid-connected device of the above preferred embodiment. 4 is a schematic diagram showing the circuit structure of a power management module of the distributed modular grid-connected device of the above preferred embodiment. FIG. 5 is a flow chart of the decentralized modular grid-connecting device of the above preferred embodiment. Fig. 6 is a flow chart showing the self-checking procedure of the distributed modular grid-connecting device of the above preferred embodiment.
100‧‧‧分散模組式併網轉換裝置 100‧‧‧Distributed modular grid-connected converter
10‧‧‧電網 10‧‧‧ Grid
20‧‧‧電池模組 20‧‧‧Battery module
30‧‧‧功率轉換模組 30‧‧‧Power Conversion Module
32‧‧‧變流器 32‧‧‧Converter
40‧‧‧電源管理模組 40‧‧‧Power Management Module
50‧‧‧家庭能源管理系統 50‧‧‧Home Energy Management System
60‧‧‧控制器區域網路匯流排 60‧‧‧Controller area network bus
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105121838A TWI601353B (en) | 2016-07-12 | 2016-07-12 | Distributed module type grid connection conversion device and its control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105121838A TWI601353B (en) | 2016-07-12 | 2016-07-12 | Distributed module type grid connection conversion device and its control method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI601353B true TWI601353B (en) | 2017-10-01 |
TW201803241A TW201803241A (en) | 2018-01-16 |
Family
ID=61011150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105121838A TWI601353B (en) | 2016-07-12 | 2016-07-12 | Distributed module type grid connection conversion device and its control method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI601353B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI651911B (en) * | 2017-11-13 | 2019-02-21 | 國立清華大學 | Cascaded power converter apparatus |
CN112421739A (en) * | 2020-04-24 | 2021-02-26 | 葛炽昌 | Electric vehicle alternating current charging system |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI679439B (en) * | 2018-10-01 | 2019-12-11 | 緯穎科技服務股份有限公司 | Power management system and method for managing power |
TWI699065B (en) * | 2019-09-20 | 2020-07-11 | 台達電子工業股份有限公司 | Power system applied to solid state transformer structure with communication function and communication module applied to solid state transformer structure |
CN116937814A (en) | 2019-09-20 | 2023-10-24 | 台达电子工业股份有限公司 | Power systems and communication modules for solid-state transformer structures with communication functions |
TWI700883B (en) * | 2019-11-27 | 2020-08-01 | 公準精密工業股份有限公司 | Micro turbine power generation system and its power management method |
TWI755807B (en) * | 2020-08-05 | 2022-02-21 | 行政院原子能委員會核能研究所 | Apparatus of integrating grid with parallel power-generating solid oxide fuel cell |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM418489U (en) * | 2011-05-06 | 2011-12-11 | Fortune Inst Technology | Flyback inverter for ac/dc transformation |
CN103166278A (en) * | 2011-12-09 | 2013-06-19 | 现代自动车株式会社 | Recharge systems and methods |
CN103515947A (en) * | 2012-06-14 | 2014-01-15 | 罗伯特·博世有限公司 | Method and device for discharging an electrical network |
TWM501038U (en) * | 2014-11-14 | 2015-05-11 | Univ Nat United | Power grid system to improve power supply efficiency |
-
2016
- 2016-07-12 TW TW105121838A patent/TWI601353B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM418489U (en) * | 2011-05-06 | 2011-12-11 | Fortune Inst Technology | Flyback inverter for ac/dc transformation |
CN103166278A (en) * | 2011-12-09 | 2013-06-19 | 现代自动车株式会社 | Recharge systems and methods |
CN103515947A (en) * | 2012-06-14 | 2014-01-15 | 罗伯特·博世有限公司 | Method and device for discharging an electrical network |
TWM501038U (en) * | 2014-11-14 | 2015-05-11 | Univ Nat United | Power grid system to improve power supply efficiency |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI651911B (en) * | 2017-11-13 | 2019-02-21 | 國立清華大學 | Cascaded power converter apparatus |
CN112421739A (en) * | 2020-04-24 | 2021-02-26 | 葛炽昌 | Electric vehicle alternating current charging system |
CN112421739B (en) * | 2020-04-24 | 2024-01-02 | 葛炽昌 | Alternating-current charging system of electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
TW201803241A (en) | 2018-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI601353B (en) | Distributed module type grid connection conversion device and its control method | |
CN112290583B (en) | DC coupling off-grid hydrogen production system and control cabinet power supply device and control method thereof | |
CN202019227U (en) | Air conditioner and power supply system thereof | |
CN112803472A (en) | Direct-current coupling hydrogen production system and control method thereof | |
CN103441566A (en) | System and method for supplying power cooperatively by mains supply, photovoltaic cell and energy storage battery | |
CN202841003U (en) | A new three-phase photovoltaic grid-connected inverter system structure | |
CN108777494A (en) | Collecting and distributing type light stores up charging system and its control method | |
WO2013000185A1 (en) | Grid-connected inverter | |
AU2019262602A1 (en) | Systems and methods of DC power conversion and transmission for solar fields | |
CN108683247A (en) | A kind of uninterruptible power system and method for hybrid fuel cell and ultracapacitor | |
WO2014079268A1 (en) | Bi-directional storing inverter used in grid connected power system | |
EP2996237A1 (en) | Resonant bidirectional DC/DC converter | |
AU2023200034B2 (en) | Hydrogen production power supply system | |
CN105978008A (en) | A flow battery energy storage system with black start function of wind field and its working method | |
CN103618327A (en) | Large power energy storage current transformer and main circuit thereof | |
CN110752657A (en) | Power supply circuit and power supply control method based on multi-channel parallel input power supply | |
CN201821130U (en) | A solar photovoltaic power generation controller | |
CN104184396A (en) | Photovoltaic power supply system and control method thereof | |
TWM408678U (en) | Photovoltaic powered system | |
CN206542324U (en) | Power-supply management system | |
CN201839065U (en) | Power distribution system of large automatic control system | |
TWI547062B (en) | DC power supply recovery system | |
CN102832682A (en) | High-power charging and discharging machine with reactive compensation function | |
CN203219215U (en) | Solar energy system comprising power optimizing apparatus | |
CN202737480U (en) | Photovoltaic grid-connected inverter with high frequency link |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |