TWI600988B - Machining expert system for CNC machine tool and controller processing parameters generation method - Google Patents
Machining expert system for CNC machine tool and controller processing parameters generation method Download PDFInfo
- Publication number
- TWI600988B TWI600988B TW105137249A TW105137249A TWI600988B TW I600988 B TWI600988 B TW I600988B TW 105137249 A TW105137249 A TW 105137249A TW 105137249 A TW105137249 A TW 105137249A TW I600988 B TWI600988 B TW I600988B
- Authority
- TW
- Taiwan
- Prior art keywords
- processing
- machine tool
- cnc machine
- controller
- input information
- Prior art date
Links
Landscapes
- Numerical Control (AREA)
Description
本發明係關於一種CNC工具機,特別係一種用於CNC工具機的加工專家系統及控制器加工參數產生方法。The invention relates to a CNC machine tool, in particular to a machining expert system for a CNC machine tool and a controller processing parameter generating method.
因應於不同產品特性,CNC工具機進行加工時通常會以切削速度(speed)、幾何精度(accuracy)及表面品質(surface quality)等性能指標作為加工需求目標。而影響這些性能指標的因素有很多種,其中CNC控制器運作時所使用之加工參數(例如,最大加速度、加加速度、轉角速度等)對加工結果影響甚多,因此該CNC控制器即扮演著該加工結果是否能符合加工需求目標的重要角色。傳統CNC控制器的控制參數通常係選用出廠時的標準設定,使用者很少會進一步考慮機台的組裝製成、機械特性、加工目標來動態地調整控制器加工參數。而隨著社會與科技的演進,現今加工產品已逐漸朝向少量、樣式多元及作工精緻等趨勢發展,客戶更有許多客製化的要求,套用標準設定的單一控制器加工參數通常無法達到預設的加工需求目標。雖然使用者可依據經驗或使用廠商所提供的資料來自行調整控制器加工參數,但使用者可能需要多次反覆試驗且廠商的資料甚少,最後不僅造成使用者的困擾與不便,更可能影響加工效率與品質。由此可知,如何提供較佳的控制器加工參數以達到所欲的加工需求目標是相關業者努力的目標之一。Due to the different product characteristics, CNC machine tools usually use the performance indexes such as cutting speed, accuracy and surface quality as processing requirements. There are many factors that affect these performance indicators. The machining parameters used in the operation of the CNC controller (for example, maximum acceleration, jerk, corner speed, etc.) have a great influence on the machining results, so the CNC controller plays a role. Whether the processing result can meet the important role of the processing demand goal. The control parameters of the traditional CNC controller are usually selected from the factory standard settings, and the user rarely further considers the assembly, mechanical characteristics, and machining targets of the machine to dynamically adjust the controller processing parameters. With the evolution of society and technology, today's processed products have gradually developed toward a small number, diverse styles and exquisite workmanship. Customers have many customization requirements. The processing parameters of a single controller set by standard are usually not up to standard. Set processing demand targets. Although the user can adjust the controller processing parameters based on experience or using the information provided by the manufacturer, the user may need to repeat the test several times and the manufacturer's information is very small. In the end, it not only causes trouble and inconvenience to the user, but is more likely to affect the user. Processing efficiency and quality. It can be seen that how to provide better controller processing parameters to achieve the desired processing demand is one of the goals of the relevant industry.
有鑑於上述之缺失,本發明之目的在於提供一種用於CNC工具機的加工專家系統及控制器加工參數產生方法,其易於使用者操作,且能取得較精確的加工參數,並有助於提昇CNC控制器的性能、加工效率及加工品質。In view of the above-mentioned deficiencies, an object of the present invention is to provide a processing expert system for a CNC machine tool and a controller processing parameter generating method, which are easy for a user to operate, can obtain more precise processing parameters, and contribute to improvement. CNC controller performance, processing efficiency and processing quality.
為達成上述目的,本發明提供一種用於CNC工具機的加工專家系統,該CNC工具機係基於多個控制器加工參數來運作,而該加工專家系統包含有一顯示單元、一輸入單元及一處理單元;該顯示單元用以顯示具有三加工需求指標的一使用者介面,其中該三加工需求指標包含有一速度指標、一精度指標及一表面品質指標;該輸入單元用以接收在該使用者介面上對應於該三加工需求指標的輸入資訊;而該處理單元耦接該顯示單元及該輸入單元,該處理單元並依據該輸入資訊並透過一最佳化演算法計算一目標函數之結果,以得出對應於該輸入資訊的該些控制器加工參數,其中該目標函數係基於一機器學習演算法所建構。To achieve the above object, the present invention provides a processing expert system for a CNC machine tool that operates based on a plurality of controller processing parameters, the processing expert system including a display unit, an input unit, and a processing The display unit is configured to display a user interface having three processing demand indicators, wherein the three processing demand indicators include a speed indicator, a precision indicator, and a surface quality indicator; the input unit is configured to receive the user interface. Inputting information corresponding to the three processing demand indicators; and the processing unit is coupled to the display unit and the input unit, and the processing unit calculates the result of an objective function according to the input information and through an optimization algorithm, The controller processing parameters corresponding to the input information are derived, wherein the objective function is constructed based on a machine learning algorithm.
此外,本發明另一提供一種用於CNC工具機之控制器加工參數產生方法,該CNC工具機基於多個加工參數來運作,而該控制器加工參數產生方法包括下列步驟:顯示具有三加工需求指標的一使用者介面,其中該三加工需求指標包含有一速度指標、一精度指標及一表面品質指標;接收在該使用者介面上對應於該三加工需求指標的輸入資訊;以及依據該輸入資訊並透過一最佳化演算法計算一目標函數之結果,以得出對應於該輸入資訊的該些控制器加工參數,其中該目標函數係基於一機器學習演算法所建構。In addition, the present invention further provides a controller processing parameter generating method for a CNC machine tool, the CNC machine tool operating based on a plurality of processing parameters, and the controller processing parameter generating method comprises the following steps: displaying three processing requirements a user interface of the indicator, wherein the three processing demand indicators include a speed indicator, a precision indicator, and a surface quality indicator; receiving input information corresponding to the three processing demand indicators on the user interface; and receiving the information according to the input information And calculating an objective function result by an optimization algorithm to obtain the controller processing parameters corresponding to the input information, wherein the objective function is constructed based on a machine learning algorithm.
藉此,使用者只要輕易地在該使用者介面上輸入對於該等加工需求指標的偏好需求量,該加工專家系統即可在多組控制器加工參數之間找到最符合該偏好需求量的結果。Thereby, the user can easily input the preference demand for the processing demand indicators on the user interface, and the processing expert system can find the result that best meets the preference demand among the plurality of sets of controller processing parameters. .
請參照第1圖係本發明一較佳實施例的加工專家系統1,其包含有一顯示單元10、一輸入單元30、一處理單元50耦接該顯示單元10及該輸入單元30、以及一儲存單元70耦接該處理單元50。該加工專家系統1可內建於一CNC工具機(圖未示)中或作為一獨立裝置運作。Referring to FIG. 1 , a processing expert system 1 of a preferred embodiment of the present invention includes a display unit 10 , an input unit 30 , a processing unit 50 coupled to the display unit 10 and the input unit 30 , and a storage unit The unit 70 is coupled to the processing unit 50. The processing expert system 1 can be built into a CNC machine tool (not shown) or operated as a stand-alone device.
該顯示單元10可以係LCD、LED等類型的視訊顯示單元,該顯示單元10並用以顯示一使用者介面供使用者操作,該使用者介面待後續實施例詳細說明。The display unit 10 can be a video display unit of the type such as an LCD or an LED. The display unit 10 is used to display a user interface for user operation. The user interface is described in detail in the following embodiments.
該輸入單元30可以係電容式、電阻式等類型的觸控面板、按鈕、鍵盤或滑鼠等,該輸入單元30用以接收使用者對於該使用者介面上的輸入操作所取得之輸入資訊。The input unit 30 can be a touch panel, a button, a keyboard or a mouse. The input unit 30 is configured to receive input information obtained by a user for an input operation on the user interface.
該處理單元50可以係中央處理單元、晶片或其他可程式化之一般用途或特殊用途的微控制器等具有訊號處理、參數運算等功能的類似元件或上述元件的組合,該處理單元50用以控制該加工專家系統1的所有功能運作。The processing unit 50 can be a central processing unit, a chip or other programmable general purpose or special purpose microcontroller, or the like having a function of signal processing, parameter calculation, etc., or a combination of the above components. Control all functional functions of the processing expert system 1.
該儲存單元70可以係隨機存取記憶體、快閃記憶體、唯讀記憶體、可抹除可編程唯讀記憶體或電子抹除式可複寫唯讀記憶體等類型的儲存媒介,該儲存單元70用以儲存用於該CNC工具機的各種控制參數(例如,最大加速度、加加速度(jerk)、轉角速度等CNC控制器(圖未示)之加工參數、直線、方形以及圓形加工軌跡、透過該CNC工具機之光學尺(圖未示)所取得之加工路徑(即座標位置資訊)等)、該輸入資訊、多組實際運作樣本等參數及資料。該等實際運作樣本包含有多個既有控制參數及對應之多個加工特性(例如,一加工時間、一輪廓誤差及一追蹤誤差等),而該CNC工具機之CNC控制器係基於每一該既有控制參數中的控制器加工參數而實際運作後得出具有對應之加工特性的結果。The storage unit 70 can be a storage medium of a type such as a random access memory, a flash memory, a read-only memory, an erasable programmable read-only memory, or an electronic erasable rewritable read-only memory. The unit 70 is configured to store various control parameters (for example, maximum acceleration, jerk, angular velocity, etc.) of the CNC controller (not shown), processing parameters, straight lines, squares, and circular machining paths. The processing path (ie, coordinate position information) obtained by the optical tool (not shown) of the CNC machine tool, the input information, the plurality of sets of actual working samples, and the like. The actual operating samples include a plurality of existing control parameters and corresponding plurality of processing characteristics (eg, a processing time, a contour error, and a tracking error, etc.), and the CNC machine tool of the CNC machine tool is based on each The controller processing parameters in the existing control parameters are actually operated to obtain the result with the corresponding processing characteristics.
前述說明是相關於加工專家系統1之結構與元件設計,以下將搭配第2圖進一步說明加工專家系統1的控制器加工參數產生方法。The foregoing description is related to the structure and component design of the processing expert system 1. The controller processing parameter generation method of the processing expert system 1 will be further described below with reference to FIG.
請參照第2圖,在步驟S21中,該處理單元50透過該顯示單元10顯示具有三加工需求指標的該使用者介面。於本實施例中,該三加工需求指標即係相關於加工效能指標的一速度指標、一精度指標及一表面品質指標。該三加工需求指標彼此相互牴觸,實際的加工結果並無法同時讓該三加工需求指標皆達到最高的偏好需求量。例如,第3圖係一較佳實施例的使用者介面80,該使用者介面80具有一以該速度指標、該精度指標及該表面品質指標為頂點的三角形區域81。使用者可在該三角形區域81中選取對於該三加工需求指標的一目標位置P,此目標位置P即代表該使用者對於每一該加工需求指標的偏好需求量。Referring to FIG. 2, in step S21, the processing unit 50 displays the user interface having three processing demand indicators through the display unit 10. In this embodiment, the three processing demand indicators are a speed index, a precision index, and a surface quality index related to the processing performance index. The three processing demand indicators are in conflict with each other, and the actual processing results cannot simultaneously achieve the highest preference demand for the three processing demand indicators. For example, Figure 3 is a user interface 80 of a preferred embodiment having a triangular region 81 centered at the velocity index, the accuracy index, and the surface quality index. The user can select a target position P for the three processing demand indicators in the triangle area 81, and the target position P represents the user's preferred demand for each processing demand indicator.
需說明的是,該三角形區域81之界定係由於該三加工需求指標彼此的對應關係,然該使用者介面80的變化可能有很多種,其可能係可調整該些偏好需求量之百分比的介面、供選項直接輸入該些偏好需求量之介面等。It should be noted that the definition of the triangular area 81 is due to the corresponding relationship between the three processing demand indicators. However, the user interface 80 may have various changes, which may be an interface that can adjust the percentage of the preferred demand. , for the option to directly enter the interface of the preferred demand, and so on.
而當使用者選取該三角形區域81中的目標位置P時,該處理單元50可透過該輸入單元30接收在該使用者介面上80對應於該三加工需求指標的一輸入資訊(步驟S23),該輸入資訊即係該三角形區域81中的該目標位置P。When the user selects the target position P in the triangular area 81, the processing unit 50 can receive an input information corresponding to the three processing demand indicators on the user interface 80 through the input unit 30 (step S23). The input information is the target position P in the triangular area 81.
在步驟S25中,該處理單元50依據該輸入資訊並透過一最佳化演算法計算一目標函數之結果,以得出對應於該輸入資訊的該些控制器加工參數。於本實施例中,該目標函數即係該些控制器加工參數及該三加工需求指標之間的對應連結。也就是說,將該三加工需求指標輸入至該目標函數即可得出對應的控制器加工參數。而該最佳化演算法之目標函數定義為方程式(1): …(1) 為該目標函數, r為該目標位置P與三頂點位置之間的距離( 、 、 )之倒數(即 , i為1、2、3), 為一加工時間函數(直線、方形與圓形加工軌跡之加工時間的平均), 為一輪廓誤差函數(方形與圓形加工軌跡之輪廓誤差的平均), 為一追蹤誤差函數(直線、方形與圓形加工軌跡之追蹤誤差的平均)。 In step S25, the processing unit 50 calculates a result of an objective function according to the input information and through an optimization algorithm to obtain the controller processing parameters corresponding to the input information. In this embodiment, the objective function is a corresponding link between the controller processing parameters and the three processing demand indicators. That is to say, the three processing demand indicators are input to the objective function to obtain corresponding controller processing parameters. The objective function of the optimization algorithm is defined as equation (1): …(1) For the objective function, r is the distance between the target position P and the position of the three vertices ( , , Reciprocal (ie , i is 1, 2, 3), Is a processing time function (average of processing time for straight lines, squares and circular machining tracks), Is a contour error function (the average of the contour errors of the square and circular machining trajectories), Is a tracking error function (average of tracking error between straight lines, squares and circular machining trajectories).
該處理單元50計算該目標位置P與三頂點位置之間的距離之倒數( 、 、 ),以作為該三加工需求指標的權重值(即偏好需求量)。而本實施例的最佳化演算法係採用一粒子群最佳化演算法,該處理單元50並依據該些權重值而透過該粒子群最佳化演算法計算該目標函數之最小值(並限制該CNC控制器之多個加工參數的範圍)的結果,以得出該些控制器加工參數(例如,該CNC控制器之加工參數)。例如,該處理單元50依據該目標函數定義一解空間,初始化多個粒子之在該解空間中的位置(即解或結果)及速度,並評估該些粒子的適應值以決定是否更新該些粒子的最佳位置及該些粒子所組成之群體的最佳位置而移動該些粒子,並迭代演算搜尋找到該些粒子的最佳位置以作為該些控制參數。 The processing unit 50 calculates a reciprocal of the distance between the target position P and the three vertex positions ( , , ), as the weight value of the three processing demand indicators (ie, the preferred demand). The optimization algorithm of the embodiment adopts a particle swarm optimization algorithm, and the processing unit 50 calculates the minimum value of the objective function through the particle swarm optimization algorithm according to the weight values (and The results of limiting the range of the plurality of machining parameters of the CNC controller are derived to derive the controller processing parameters (eg, the machining parameters of the CNC controller). For example, the processing unit 50 defines a solution space according to the objective function, initializes the position (ie, solution or result) and speed of the plurality of particles in the solution space, and evaluates the adaptation values of the particles to determine whether to update the The optimal position of the particles and the optimal position of the group of particles are moved to move the particles, and the iterative calculation seeks to find the optimal positions of the particles as the control parameters.
需說明的是,該粒子群最佳化演算法係一種利用群體智慧所發展出來的演算法,其能夠在最佳化的問題中得出最佳解,並有效地節省成本與時間。然該最佳化演算法事實上有很多種,於其他實施例中,最佳化演算法亦可依據需求而變更為模擬退化、基因等類型的演算法,而該目標函數及該些權重值需適當調整以符合對應演算法。It should be noted that the particle swarm optimization algorithm is an algorithm developed by using group wisdom, which can obtain an optimal solution in the optimization problem and effectively save cost and time. However, there are actually many optimization algorithms. In other embodiments, the optimization algorithm can be changed to simulate degradation, gene, and the like according to requirements, and the objective function and the weight values are used. Appropriate adjustments are required to comply with the corresponding algorithm.
該處理單元50便可透過該顯示單元10在該使用者介面80的一訊息顯示欄位83中顯示該些控制器加工參數,或者透過一通訊單元(圖未示,例如利用USB、WiFi等有線或無線通訊技術)將該些控制器加工參數傳送並設定於該CNC工具機的CNC控制器。The processing unit 50 can display the controller processing parameters in a message display field 83 of the user interface 80 through the display unit 10, or through a communication unit (not shown, for example, using USB, WiFi, etc. Or wireless communication technology) transmitting and setting the controller processing parameters to the CNC controller of the CNC machine tool.
值得注意的是,本發明的目標函數係基於一機器學習演算法所建構。而本實施例的機器學習演算法係採用一倒傳遞類神經網路演算法。該倒傳遞類神經網路演算法係一種模仿生物神經網路架構發展出來的演算法,其係基於一監督式學習,當該處理單元50(自該儲存單元70或該輸入單元30)取得該CNC控制器實際運作下的該等實際運作樣本時,該處理單元50可依據該些實際運作樣本得出該些加工特性(輸出層神經元)與該些既有控制參數(輸入層神經元)之間的所有連結權重(包含隱藏層神經元),該處理單元50即可基於該些連接權重建構該目標函數。而前述建構方式請參照第4圖,該處理單元50初始化該些連接權重,並基於該些既有控制參數及該些連接權重而得出多個預估特性(例如,一預估加工時間、一預估輪廓誤差及一預估追蹤誤差等)。該處理單元50計算該些加工特性及該些預估特性之間的預估誤差,並透過最小化該些實際運作樣本的預估誤差而調整該些連接權重,最終該處理單元50可得出該目標函數。It is worth noting that the objective function of the present invention is constructed based on a machine learning algorithm. The machine learning algorithm of this embodiment adopts a reverse transfer type neural network algorithm. The inverse transfer type neural network algorithm is an algorithm developed by imitating a biological neural network architecture, based on a supervised learning, when the processing unit 50 (from the storage unit 70 or the input unit 30) obtains the CNC When the controller actually operates the actual working samples, the processing unit 50 may obtain the processing characteristics (output layer neurons) and the existing control parameters (input layer neurons) according to the actual operating samples. All of the connection weights (including hidden layer neurons), the processing unit 50 can reconstruct the objective function based on the connection rights. For the foregoing construction manner, refer to FIG. 4, the processing unit 50 initializes the connection weights, and obtains a plurality of estimation characteristics based on the existing control parameters and the connection weights (for example, an estimated processing time, An estimated contour error and an estimated tracking error, etc.). The processing unit 50 calculates the prediction errors between the processing characteristics and the estimated characteristics, and adjusts the connection weights by minimizing the estimation errors of the actual operating samples, and finally the processing unit 50 can obtain The objective function.
需說明的是,該機器學習演算法事實上有很多種,諸如支援向量機、決策樹、線性回歸等演算法皆可應用於建構該目標函數或形成一目標模型,而該些實際運作樣本之內容則需依據不同演算法而調整。It should be noted that there are actually many kinds of machine learning algorithms, such as support vector machines, decision trees, linear regression and other algorithms can be applied to construct the objective function or form a target model, and the actual operation samples The content needs to be adjusted according to different algorithms.
而由於該三角形區域81中不同位置對應於該三加工需求指標之不同偏好需求量,因此使用者可選取的偏好需求量之組合有非常多種,即便使用者透過經驗法則或廠商資料亦難以推論出精確的對應控制器加工參數(即該三加工需求指標與基於該些控制器加工參數所產生之加工特性相差過大)。反觀本發明實施例結合該機器學習演算法及該最佳化演算法,其可基於部份已知的實際運作樣本而推算出特定數值範圍內的不同控制器加工參數與該三加工需求指標之間對應連結(即該目標函數),再快速地推算出該目標函數之最佳結果以作為對應的控制器加工參數。藉此,使用者只要依據所欲之加工需求指標輕鬆地選取該三角形區域81中的目標位置P,該處理單元50便可快速地得出精確的控制器加工參數(即該三加工需求指標接近基於該些控制器加工參數所產生之加工特性),更能進一步提昇該CNC控制器的性能、加工效率及加工品質。Since the different positions in the triangular area 81 correspond to the different preference requirements of the three processing demand indicators, the user can select a combination of the preferred demand quantities, even if the user can easily infer through the rule of thumb or the manufacturer's data. Accurate corresponding controller processing parameters (ie, the three processing demand indicators are too different from the processing characteristics generated based on the processing parameters of the controllers). In contrast, the embodiment of the present invention combines the machine learning algorithm and the optimization algorithm, which can calculate different controller processing parameters and the three processing demand indicators in a specific numerical range based on some known actual operating samples. The corresponding link (ie, the objective function) is used to quickly derive the best result of the objective function as the corresponding controller processing parameter. Thereby, the user can easily select the target position P in the triangular area 81 according to the desired processing demand index, and the processing unit 50 can quickly obtain accurate controller processing parameters (ie, the three processing demand indicators are close to Based on the processing characteristics generated by the processing parameters of the controllers, the performance, processing efficiency and processing quality of the CNC controller can be further improved.
上述僅為本發明實施例的說明,不可用來限制本發明的專利範圍,舉凡未超脫本發明精神所作的簡易結構潤飾或變化,仍應屬於本發明申請專利範圍涵蓋的範疇。The above is only the description of the embodiments of the present invention, and is not intended to limit the scope of the present invention. Any simple structural retouching or variation that does not depart from the spirit of the present invention is still within the scope of the patent application scope of the present invention.
1‧‧‧加工專家系統1‧‧‧Processing expert system
10‧‧‧顯示單元10‧‧‧Display unit
30‧‧‧輸入單元30‧‧‧Input unit
50‧‧‧處理單元50‧‧‧Processing unit
70‧‧‧儲存單元70‧‧‧ storage unit
S21~S25‧‧‧步驟S21~S25‧‧‧Steps
80‧‧‧使用者介面80‧‧‧User interface
81‧‧‧三角形區域81‧‧‧Triangle area
83‧‧‧訊息顯示欄位83‧‧‧Message display field
P‧‧‧目標位置P‧‧‧target location
‧‧‧距離 ‧‧‧distance
第1圖係本發明一較佳實施例之加工專家系統的元件方塊圖。 第2圖係本發明一較佳實施例之控制器加工參數產生方法的流程圖。 第3圖係本發明一較佳實施例之使用者介面的示意圖。 第4圖係本發明一較佳實施例之倒傳遞神經網路學習架構之示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram of the components of a processing expert system in accordance with a preferred embodiment of the present invention. 2 is a flow chart showing a method of generating a processing parameter of a controller according to a preferred embodiment of the present invention. Figure 3 is a schematic illustration of a user interface of a preferred embodiment of the present invention. Figure 4 is a schematic diagram of an inverted-transition neural network learning architecture in accordance with a preferred embodiment of the present invention.
80‧‧‧使用者介面 80‧‧‧User interface
81‧‧‧三角形區域 81‧‧‧Triangle area
83‧‧‧訊息顯示欄位 83‧‧‧Message display field
P‧‧‧目標位置 P‧‧‧target location
d 1~d 3‧‧‧距離 d 1 ~ d 3 ‧‧‧ distance
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105137249A TWI600988B (en) | 2016-11-15 | 2016-11-15 | Machining expert system for CNC machine tool and controller processing parameters generation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105137249A TWI600988B (en) | 2016-11-15 | 2016-11-15 | Machining expert system for CNC machine tool and controller processing parameters generation method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI600988B true TWI600988B (en) | 2017-10-01 |
TW201818170A TW201818170A (en) | 2018-05-16 |
Family
ID=61011345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105137249A TWI600988B (en) | 2016-11-15 | 2016-11-15 | Machining expert system for CNC machine tool and controller processing parameters generation method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI600988B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112269353A (en) * | 2020-08-06 | 2021-01-26 | 中国地质大学(武汉) | Jewelry processing platform control system and method based on EtherCAT bus |
US11316452B2 (en) | 2020-01-15 | 2022-04-26 | Delta Electronics, Inc. | Electronic device and control method thereof |
CN114453630A (en) * | 2022-01-20 | 2022-05-10 | 湖北文理学院 | Method, device, electronic device and storage medium for controlling non-stick milling tool in machine tool |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI665564B (en) * | 2018-11-28 | 2019-07-11 | 財團法人資訊工業策進會 | Machine tool equipment operation efficienty scoring apparatus and method |
TWI845262B (en) * | 2023-04-19 | 2024-06-11 | 國立臺灣大學 | Error prediction method, control parameter planning method and system for cnc machine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200625199A (en) * | 2006-02-14 | 2006-07-16 | Univ Ling Tung | The neural network thermal error compensation system of CNC machine tools |
CN101477351A (en) * | 2008-11-18 | 2009-07-08 | 天津大学 | Intelligent numerical control method with three-stage process self-optimization function |
TW201220010A (en) * | 2010-11-02 | 2012-05-16 | Syntec Inc | Parameter learning controller in a machine device and learning method thereof |
CN102063088B (en) * | 2010-11-05 | 2013-05-01 | 江俊逢 | Method and system for planning auxiliary discrete movement of computer |
CN103235556A (en) * | 2013-03-27 | 2013-08-07 | 南京航空航天大学 | Feature-based numerical-control method for processing and manufacturing complicated parts |
CN105607575A (en) * | 2016-01-27 | 2016-05-25 | 电子科技大学 | FA-LSSVM based numerical control machine tool main shaft heat drift modeling method |
-
2016
- 2016-11-15 TW TW105137249A patent/TWI600988B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200625199A (en) * | 2006-02-14 | 2006-07-16 | Univ Ling Tung | The neural network thermal error compensation system of CNC machine tools |
CN101477351A (en) * | 2008-11-18 | 2009-07-08 | 天津大学 | Intelligent numerical control method with three-stage process self-optimization function |
TW201220010A (en) * | 2010-11-02 | 2012-05-16 | Syntec Inc | Parameter learning controller in a machine device and learning method thereof |
CN102063088B (en) * | 2010-11-05 | 2013-05-01 | 江俊逢 | Method and system for planning auxiliary discrete movement of computer |
CN103235556A (en) * | 2013-03-27 | 2013-08-07 | 南京航空航天大学 | Feature-based numerical-control method for processing and manufacturing complicated parts |
CN105607575A (en) * | 2016-01-27 | 2016-05-25 | 电子科技大学 | FA-LSSVM based numerical control machine tool main shaft heat drift modeling method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11316452B2 (en) | 2020-01-15 | 2022-04-26 | Delta Electronics, Inc. | Electronic device and control method thereof |
CN112269353A (en) * | 2020-08-06 | 2021-01-26 | 中国地质大学(武汉) | Jewelry processing platform control system and method based on EtherCAT bus |
CN114453630A (en) * | 2022-01-20 | 2022-05-10 | 湖北文理学院 | Method, device, electronic device and storage medium for controlling non-stick milling tool in machine tool |
Also Published As
Publication number | Publication date |
---|---|
TW201818170A (en) | 2018-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI600988B (en) | Machining expert system for CNC machine tool and controller processing parameters generation method | |
US10261497B2 (en) | Machine tool for generating optimum acceleration/deceleration | |
JP2019066135A (en) | Air-conditioning control system | |
JP2017167607A (en) | Setting support apparatus, setting support method, information processing program, and record medium | |
US20170031328A1 (en) | Controller-equipped machining apparatus having machining time measurement function and on-machine measurement function | |
TWI600987B (en) | Method of constructing processing expert system and electronic device using the method | |
WO2004070569B1 (en) | Integrated optimization and control using modular model predictive controller | |
US20170090452A1 (en) | Machine tool for generating speed distribution | |
US20210049033A1 (en) | Information processing device, information processing method, and non-transitory computer-readable storage medium | |
CN105453217B (en) | For controlling the method using the ratio flow controller of feedback He Xi System | |
CN105588274A (en) | Natural wind control method and device | |
JP2019505889A (en) | Cost function design system, cost function design method, and cost function design program | |
US11137728B2 (en) | Processing device, control parameter determination method, and non-transitory recording medium storing a control parameter determination program | |
Gebhardt et al. | flapAssist: How the integration of VR and visualization tools fosters the factory planning process | |
JP2021074807A5 (en) | ||
JP2019520642A (en) | Control objective function integration system, control objective function integration method, and control objective function integration program | |
CN104951055B (en) | The method and apparatus and air-conditioning equipment of the operation mode of equipment are set | |
CN117033860A (en) | Parameter sensitivity analysis method and device for driving shaft tracking error | |
US20220253062A1 (en) | Moving body control system | |
Faia et al. | Dynamic fuzzy estimation of contracts historic information using an automatic clustering methodology | |
CN109341014B (en) | Air conditioner and control method and device thereof | |
WO2016121328A1 (en) | Prediction result display system, prediction result display method and prediction result display program | |
CN110340884A (en) | Measure action parameter adjustment device, machine learning device and system | |
WO2022095030A1 (en) | Sowing control method and device for solid materials, and sowing machine and movable platform | |
WO2025004241A1 (en) | Parameter adjustment device and parameter adjustment method |