TWI592788B - Multi-phase clock generator - Google Patents
Multi-phase clock generator Download PDFInfo
- Publication number
- TWI592788B TWI592788B TW100126805A TW100126805A TWI592788B TW I592788 B TWI592788 B TW I592788B TW 100126805 A TW100126805 A TW 100126805A TW 100126805 A TW100126805 A TW 100126805A TW I592788 B TWI592788 B TW I592788B
- Authority
- TW
- Taiwan
- Prior art keywords
- phase
- signal
- clock
- phase clock
- clock signal
- Prior art date
Links
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Description
本發明是有關於一種多相位時脈產生器,且特別是有關於一種內建兩延遲鎖相迴路的多相位時脈產生器。The present invention relates to a multi-phase clock generator, and more particularly to a multi-phase clock generator having a built-in two delay phase locked loop.
在積體電路中,時脈的每個週期通常需要被均分為多個相位,以致使數位電路可從多個相位中選出一個相位來進行資料的取樣。為了要達成上述功能,積體電路通常必須配置多相位時脈產生器(multi-phase clock generator)。In an integrated circuit, each cycle of the clock typically needs to be divided into multiple phases so that the digital circuit can select a phase from multiple phases to sample the data. In order to achieve the above functions, the integrated circuit usually has to be configured with a multi-phase clock generator.
圖1為傳統多相位時脈產生器的方塊圖。如圖1所示,傳統多相位時脈產生器100會依據具有8位元的數位訊號S1,產生具有256種相位選擇的輸出時脈訊號clk12。其中,延遲鎖相迴路(delay locked loop)110會依據輸入時脈訊號clk11同時產生256個相位時脈訊號P0~P255。此外,相位選擇器120則是會依據數位訊號S1,而從256個相位時脈訊號P0~P255中擇一輸出,以作為輸出時脈訊號clk12。換言之,多相位時脈產生器100是由單一延遲鎖相迴路110與單一相位選擇器120所構成,且延遲鎖相迴路110必需同時產生256個相位時脈訊號,才能致使多相位時脈產生器100具有256種的相位選擇。Figure 1 is a block diagram of a conventional multi-phase clock generator. As shown in FIG. 1, the conventional multi-phase clock generator 100 generates an output clock signal clk12 having 256 phase selections according to the 8-bit digital signal S1. The delay locked loop 110 generates 256 phase clock signals P0~P255 according to the input clock signal clk11. In addition, the phase selector 120 selects an output from the 256 phase clock signals P0 to P255 according to the digital signal S1 as the output clock signal clk12. In other words, the multi-phase clock generator 100 is composed of a single delay phase-locked loop 110 and a single phase selector 120, and the delay-locked loop 110 must simultaneously generate 256 phase clock signals to cause the multi-phase clock generator. 100 has 256 phase selections.
然而,在傳統架構下,延遲鎖相迴路110必需藉由串接256個延遲元件才能產生256個相位時脈訊號。因此,當所劃分的相位很多時,將導致傳統多相位時脈產生器100的佈局面積以及功率耗損很大。嚴重的話,甚至會限制住整個電路的最高操作頻率。此外,當所劃分的相位過多時,內建在相位選擇器120中的輸入緩衝器與多工器也會跟著增加,進而導致傳統多相位時脈產生器100的佈局面積以及功率耗損再次地增加。However, in the conventional architecture, the delay phase-locked loop 110 must generate 256 phase clock signals by serially connecting 256 delay elements. Therefore, when the divided phases are large, the layout area and power consumption of the conventional multi-phase clock generator 100 will be large. In the worst case, it will even limit the maximum operating frequency of the entire circuit. In addition, when the divided phases are excessive, the input buffer and the multiplexer built in the phase selector 120 are also increased, thereby causing the layout area and power consumption of the conventional multi-phase clock generator 100 to be increased again. .
本發明提供一種多相位時脈產生器,內建兩延遲鎖相迴路,並藉此降低多相位時脈產生器的佈局面積與功率耗損。The present invention provides a multi-phase clock generator with built-in two delay phase-locked loops, thereby reducing the layout area and power consumption of the multi-phase clock generator.
本發明提出一種多相位時脈產生器,包括第一延遲鎖相迴路、參考訊號產生器以及第二延遲鎖相迴路。第一延遲鎖相迴路依據輸入時脈訊號產生2N個相位時脈訊號,N為正整數。參考訊號產生器依據數位訊號從所述2N個相位時脈訊號中選出第i與第i+1個相位時脈訊號,且在輸入時脈訊號的2M個時脈週期內,參考訊號產生器依據數位訊號於每一時脈週期內從第i與第i+1個相位時脈訊號中擇一輸出,以作為參考時脈訊號,其中i為整數且1≦i≦(2N-1),M為正整數。第二延遲鎖相迴路依據參考時脈訊號與輸出時脈訊號的相位差,延遲第一延遲鎖相迴路所產生的第1個相位時脈訊號,並將輸出時脈訊號予以輸出。The invention provides a multi-phase clock generator comprising a first delay phase locked loop, a reference signal generator and a second delay phase locked loop. The first delay phase-locked loop generates 2 N phase clock signals according to the input clock signal, and N is a positive integer. The reference signal generator selects the i-th and i+1th phase clock signals from the 2 N phase clock signals according to the digital signal, and the reference signal is generated in the 2 M clock cycles of the input clock signal. The device selects an output from the ith and i+1th phase clock signals according to the digital signal in each clock cycle as a reference clock signal, where i is an integer and 1≦i≦(2 N -1) , M is a positive integer. The second delay phase-locked loop delays the first phase clock signal generated by the first delay phase-locked loop according to the phase difference between the reference clock signal and the output clock signal, and outputs the output clock signal.
在本發明之一實施例中,上述之數位訊號的解析度為N+M位元。此外,參考訊號產生器依據數位訊號中的第N+M至第M+1位元,而從所述2N個相位時脈訊號中選出第i與第i+1個相位時脈訊號。之後,參考訊號產生器依據數位訊號中的第M至第1位元,於每一時脈週期內從第i與第i+1個相位時脈訊號中擇一輸出。In an embodiment of the invention, the resolution of the digital signal is N+M bits. In addition, the reference signal generator selects the i-th and i+1-th phase clock signals from the 2 N phase clock signals according to the N+M to M+1th bits in the digital signal. Thereafter, the reference signal generator selects an output from the ith and i+1th phase clock signals in each clock cycle according to the Mth to the first bit in the digital signal.
在本發明之一實施例中,上述之參考訊號產生器利用三角積分調變來控制第i與第i+1個相位時脈訊號在所述2M個時脈週期內作為參考時脈訊號的比例。In an embodiment of the present invention, the reference signal generator uses triangulation integral modulation to control the i-th and i+1th phase clock signals as reference clock signals in the 2 M clock cycles. proportion.
在本發明之一實施例中,上述之參考訊號產生器包括第一多工器、第二多工器、三角積分調變器與第三多工器。第一多工器接收所述2N個相位時脈訊號,並依據數位訊號中的第N+M至第M+1位元輸出第i個相位時脈訊號。第二多工器接收所述2N個相位時脈訊號,依據數位訊號中的第N+M至第M+1位元輸出第i+1個相位時脈訊號。三角積分調變器接收數位訊號中的第M至第1位元與積分時脈訊號,並於每一時脈週期內更新調變訊號。第三多工器依據調變訊號從第i與第i+1個相位時脈訊號中擇一輸出,以作為參考時脈訊號。In an embodiment of the invention, the reference signal generator includes a first multiplexer, a second multiplexer, a delta-sigma modulator, and a third multiplexer. The first multiplexer receives the 2 N phase clock signals, and outputs the i-th phase clock signal according to the N+M to M+1th bits of the digital signal. The second multiplexer receives the 2 N phase clock signals, and outputs an i+1th phase clock signal according to the N+Mth to the M+1th bits of the digital signal. The delta-sigma modulator receives the Mth to the first bit and the integrated clock signal in the digital signal, and updates the modulation signal in each clock cycle. The third multiplexer selects an output from the ith and i+1th phase clock signals according to the modulation signal as a reference clock signal.
在本發明之一實施例中,上述之第二延遲鎖相迴路包括相位偵測器、充電泵、低通濾波器以及壓控延遲線。相位偵測器偵測參考時脈訊號與輸出時脈訊號的相位差,並據以產生多個切換訊號。充電泵依據這些切換訊號產生控制電流。低通濾波器接收控制電流,並據以產生控制電壓。壓控延遲線依據控制電壓延遲第一延遲鎖相迴路所產生的第1個相位時脈訊號,並據以產生輸出時脈訊號。In an embodiment of the invention, the second delay phase locked loop includes a phase detector, a charge pump, a low pass filter, and a voltage controlled delay line. The phase detector detects a phase difference between the reference clock signal and the output clock signal, and generates a plurality of switching signals accordingly. The charge pump generates a control current based on these switching signals. The low pass filter receives the control current and accordingly generates a control voltage. The voltage controlled delay line delays the first phase clock signal generated by the first delay phase locked loop according to the control voltage, and generates an output clock signal accordingly.
基於上述,本發明是透過第一延遲鎖相迴路產生2N個相位時脈訊號,以先將輸入時脈訊號的週期等分成2N個預設相位。此外,本發明更透過參考訊號產生器與第二延遲鎖相迴路,將每一預設相位進一步地等分成2M個子相位。如此一來,本發明之多相位時脈產生器所產生的輸出時脈訊號將有2N+M種的相位選擇,進而降低多相位時脈產生器的佈局面積以及功率耗損。Based on the above, the present invention generates 2 N phase clock signals through the first delay phase locked loop, and first divides the period of the input clock signal into 2 N preset phases. In addition, the present invention further divides each preset phase into 2 M sub-phases by reference to the signal generator and the second delay-locked loop. In this way, the output clock signal generated by the multi-phase clock generator of the present invention has 2 N+M phase selections, thereby reducing the layout area and power consumption of the multi-phase clock generator.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
圖2為依據本發明之一實施例之多相位時脈產生器的方塊圖。參照圖2,多相位時脈產生器200包括第一延遲鎖相迴路210、參考訊號產生器220以及第二延遲鎖相迴路230。其中,第一延遲鎖相迴路210會依據一輸入時脈訊號clk_in產生2N個相位時脈訊號,N為正整數。舉例來說,本實施是以N=4為例,因此第一延遲鎖相迴路210會產生16個相位時脈訊號PH[0]~PH[15]。2 is a block diagram of a multi-phase clock generator in accordance with an embodiment of the present invention. Referring to FIG. 2, the multi-phase clock generator 200 includes a first delay phase locked loop 210, a reference signal generator 220, and a second delay phase locked loop 230. The first delay phase-locked loop 210 generates 2 N phase clock signals according to an input clock signal clk_in, where N is a positive integer. For example, the present embodiment takes N=4 as an example, so the first delay phase-locked loop 210 generates 16 phase clock signals PH[0]~PH[15].
此外,第一延遲鎖相迴路210是以並列方式輸出相位時脈訊號PH[0]~PH[15],因此參考訊號產生器220可同時接收到來自第一延遲鎖相迴路210的相位時脈訊號PH[0]~PH[15]。此外,圖3為依據本發明之一實施例之訊號時序圖,如圖3所示,輸入時脈訊號clk_in與相位時脈訊號PH[0]~PH[15]的週期皆為T3,並在此定義為時脈週期T3。此外,相位時脈訊號PH[0]~PH[15]中兩相鄰相位時脈訊號之間皆相距一預設相位P3。例如,兩相鄰相位時脈訊號PH[1]與PH[2]間的相位差即為P3。In addition, the first delay phase-locked loop 210 outputs the phase clock signals PH[0]~PH[15] in a parallel manner, so the reference signal generator 220 can simultaneously receive the phase clock from the first delay-locked loop 210. Signal PH[0]~PH[15]. In addition, FIG. 3 is a timing diagram of signals according to an embodiment of the present invention. As shown in FIG. 3, the periods of the input clock signal clk_in and the phase clock signals PH[0]~PH[15] are both T3, and This is defined as the clock cycle T3. In addition, the two adjacent phase clock signals in the phase clock signals PH[0]~PH[15] are separated by a preset phase P3. For example, the phase difference between two adjacent phase clock signals PH[1] and PH[2] is P3.
另一方面,參考訊號產生器220會接收具有N+M位元的數位訊號SEL,其中N與M為正整數。此外,參考訊號產生器220會依據數位訊號SEL中的第N+M至第M+1位元,而從所述2N個相位時脈訊號中選出第i與第i+1個相位時脈訊號,其中i為整數且1≦i≦(2N-1)。再者,在2M個時脈週期T3內,參考訊號產生器220會依據數位訊號SEL中的第M至第1位元,於每一時脈週期內從第i與第i+1個相位時脈訊號中擇一輸出,以作為一參考時脈訊號clk_ref。此外,參考訊號產生器220會利用三角積分調變(delta-sigma modulation)來控制第i與第i+1個相位時脈訊號在所述2M個時脈週期內作為參考時脈訊號的比例。On the other hand, the reference signal generator 220 receives the digital signal SEL having N+M bits, where N and M are positive integers. In addition, the reference signal generator 220 selects the i th and i+1th phase clocks from the 2 N phase clock signals according to the N+M to M+1th bits in the digital signal SEL. Signal, where i is an integer and 1≦i≦(2 N -1). Furthermore, in the 2 M clock cycle T3, the reference signal generator 220 will follow the i-th and the i+1th phase in each clock cycle according to the Mth to the first bit in the digital signal SEL. Select an output from the pulse signal as a reference clock signal clk_ref. In addition, the reference signal generator 220 uses delta-sigma modulation to control the ratio of the i-th and i+1-th phase clock signals as reference clock signals in the 2 M clock cycles. .
舉例來說,以N=M=4為例,數位訊號SEL的解析度為8位元。此外,參考訊號產生器220會依據數位訊號SEL的前四位元SEL[8:5]而從相位時脈訊號PH[0]~PH[15]中選擇出相鄰的兩相位時脈訊號,例如:相位時脈訊號PH[1]與PH[2]。此外,當參考時脈訊號clk_ref是由相位時脈訊號PH[1]與PH[2]之其一所構成時,則在16個時脈週期T3內,參考訊號產生器220會依據數位訊號SEL的後四位元SEL[4:1],而於每一時脈週期內從相位時脈訊號PH[1]與PH[2]中擇一作為參考時脈訊號clk_ref。For example, taking N=M=4 as an example, the resolution of the digital signal SEL is 8 bits. In addition, the reference signal generator 220 selects adjacent two-phase clock signals from the phase clock signals PH[0]~PH[15] according to the first four bits SEL[8:5] of the digital signal SEL. For example: phase clock signals PH[1] and PH[2]. In addition, when the reference clock signal clk_ref is composed of one of the phase clock signals PH[1] and PH[2], the reference signal generator 220 according to the digital signal SEL during the 16 clock periods T3. The last four bits SEL[4:1] are selected from the phase clock signals PH[1] and PH[2] as the reference clock signal clk_ref in each clock cycle.
值得注意的是,參考訊號產生器220是以三角積分調變的方式,來控制相位時脈訊號PH[1]與PH[2]在16個時脈週期T3被輸出作為參考時脈訊號clk_ref的比例。亦即,參考訊號產生器220是以三角積分調變的方式,選擇性地輸出相位時脈訊號PH[1]或是相位時脈訊號PH[2]。因此,當SEL[4:1]的位元值越高時,在16個時脈週期T3內,相位時脈訊號PH[2]出現的次數也就越多。相對地,當SEL[4:1]的位元值越低時,在16個時脈週期T3內,相位時脈訊號PH[1]出現的次數也就越多。例如,當SEL[4:1]的位元值為0時,在16個時脈週期T3內,參考訊號產生器220所輸出的參考時脈訊號clk_ref皆由相位時脈訊號PH[1]所構成。It should be noted that the reference signal generator 220 controls the phase clock signals PH[1] and PH[2] to be output as the reference clock signal clk_ref in 16 clock cycles T3 in a triangular integral modulation manner. proportion. That is, the reference signal generator 220 selectively outputs the phase clock signal PH[1] or the phase clock signal PH[2] in a triangular integral modulation manner. Therefore, when the bit value of SEL[4:1] is higher, the number of times of the phase clock signal PH[2] appears in the 16 clock cycles T3. In contrast, when the bit value of SEL[4:1] is lower, the number of times of the phase clock signal PH[1] appears in the 16 clock periods T3. For example, when the bit value of SEL[4:1] is 0, the reference clock signal clk_ref output by the reference signal generator 220 is used by the phase clock signal PH[1] in the 16 clock periods T3. Composition.
另一方面,在2M個時脈週期T3內,第二延遲鎖相迴路230會依序接收由第i個相位時脈訊號或是第i+1個相位時脈訊號所構成的參考時脈訊號clk_ref。此外,第二延遲鎖相迴路230將依據參考時脈訊號clk_ref與輸出時脈訊號clk_out的相位差,延遲第1個相位時脈訊號PH[0],並進行鎖定以調整輸出時脈訊號clk_out。On the other hand, in the 2 M clock cycle T3, the second delay phase-locked loop 230 sequentially receives the reference clock formed by the ith phase clock signal or the i+1th phase clock signal. Signal clk_ref. In addition, the second delay phase locked loop 230 delays the first phase clock signal PH[0] according to the phase difference between the reference clock signal clk_ref and the output clock signal clk_out, and locks to adjust the output clock signal clk_out.
以下將以N=M=4為例,來進一步說明參考訊號產生器220與第二延遲鎖相迴路230的運作。在此,當數位訊號SEL的前四位元SEL[8:5]的位元值為0時,參考時脈訊號clk_ref將是由相位時脈訊號PH[0]或是相位時脈訊號PH[1]所構成。此外,在16個時脈週期T3內,傳送至第二延遲鎖相迴路230的參考時脈訊號clk_ref可以有16種不同的組合。此外,這16種不同的組合將可透過數位訊號SEL的後四位元SEL[4:1]來予以控制,進而致使第二延遲鎖相迴路230可以在相位時脈訊號PH[0]與PH[1]之間進一步地劃分出16個子相位。The operation of the reference signal generator 220 and the second delay phase locked loop 230 will be further described below by taking N=M=4 as an example. Here, when the bit value of the first four bits SEL[8:5] of the digital signal SEL is 0, the reference clock signal clk_ref will be the phase clock signal PH[0] or the phase clock signal PH[ 1] is composed. In addition, the reference clock signal clk_ref transmitted to the second delay phase locked loop 230 may have 16 different combinations within 16 clock cycles T3. In addition, the 16 different combinations can be controlled by the last four bits SEL[4:1] of the digital signal SEL, thereby causing the second delay phase locked loop 230 to be at the phase clock signal PH[0] and PH. Further, 16 sub-phases are divided between [1].
舉例來說,當SEL[4:1]的位元值為0時,在16個時脈週期T3內,依序傳送至第二延遲鎖相迴路230的參考時脈訊號clk_ref皆由相位時脈訊號PH[0]所構成。因此,在經過16個時脈週期T3後,經由第二延遲鎖相迴路230鎖定後的輸出時脈訊號clk_out將與相位時脈訊號PH[0]同步。再者,當SEL[4:1]的位元值為1時,參考訊號產生器220會透過1個時脈週期T3傳送由時脈訊號PH[0]所構成的參考時脈訊號clk_ref,並透過15個時脈週期T3傳送由時脈訊號PH[1]所構成的參考時脈訊號clk_ref。如此一來,在經過16個時脈週期T3後,經由第二延遲鎖相迴路230鎖定後的輸出時脈訊號clk_out,其上升緣將介在相位時脈訊號PH[0]與PH[1]的上升緣之間。For example, when the bit value of SEL[4:1] is 0, the reference clock signal clk_ref sequentially transmitted to the second delay phase-locked loop 230 is phase clocked in 16 clock cycles T3. The signal PH[0] is composed. Therefore, after 16 clock cycles T3 have elapsed, the output clock signal clk_out locked by the second delay phase locked loop 230 will be synchronized with the phase clock signal PH[0]. Furthermore, when the bit value of SEL[4:1] is 1, the reference signal generator 220 transmits the reference clock signal clk_ref formed by the clock signal PH[0] through one clock period T3, and The reference clock signal clk_ref formed by the clock signal PH[1] is transmitted through 15 clock cycles T3. In this way, after 16 clock cycles T3, the output clock signal clk_out locked by the second delay phase locked loop 230, the rising edge of which will be between the phase clock signals PH[0] and PH[1]. Between rising edges.
此外,隨著SEL[4:1]的位元值的變大,輸出時脈訊號clk_out的上升緣將逐漸遠離相位時脈訊號PH[0]的上升緣,但依舊是介在相位時脈訊號PH[0]的上升緣與相位時脈訊號PH[1]的上升緣之間。換言之,當數位訊號SEL的前四位元SEL[8:5]的位元值為0時,隨著數位訊號SEL的後四位元SEL[4:1]之位元值的變動,第二延遲鎖相迴路230將可以在相位時脈訊號PH[0]與PH[1]之間進一步地劃分出16個子相位。亦即,相位時脈訊號PH[0]與PH[1]之間的預設相位P3將可等分成16個子相位。In addition, as the bit value of SEL[4:1] becomes larger, the rising edge of the output clock signal clk_out will gradually move away from the rising edge of the phase clock signal PH[0], but it is still in the phase clock signal PH. The rising edge of [0] is between the rising edge of the phase clock signal PH[1]. In other words, when the bit value of the first four bits SEL[8:5] of the digital signal SEL is 0, the bit value of the last four bits SEL[4:1] of the digital signal SEL changes, and the second The delay phase locked loop 230 will further divide the 16 subphases between the phase clock signals PH[0] and PH[1]. That is, the preset phase P3 between the phase clock signals PH[0] and PH[1] can be equally divided into 16 sub-phases.
相似地,當數位訊號SEL的前四位元SEL[8:5]的位元值為1時,參考時脈訊號clk_ref將是由相位時脈訊號PH[1]或是相位時脈訊號PH[2]所構成。此外,隨著數位訊號SEL之後四位元SEL[4:1]的位元值的變動,第二延遲鎖相迴路230將可在相位時脈訊號PH[1]與PH[2]之間進一步地劃分出16個子相位。亦即,相位時脈訊號PH[1]與PH[2]之間的預設相位P3將可等分成16個子相位。以此類推,相位時脈訊號PH[2]與PH[3]之間的預設相位P3將可等分成16個子相位、相位時脈訊號PH[3]與PH[4]之間的預設相位P3將可等分成16個子相位、....等。Similarly, when the bit value of the first four bits SEL[8:5] of the digital signal SEL is 1, the reference clock signal clk_ref will be the phase clock signal PH[1] or the phase clock signal PH[ 2] constitutes. In addition, as the bit value of the four-bit SEL[4:1] after the digital signal SEL changes, the second delay-locked loop 230 will further extend between the phase clock signals PH[1] and PH[2]. The ground is divided into 16 sub-phases. That is, the preset phase P3 between the phase clock signals PH[1] and PH[2] can be equally divided into 16 sub-phases. By analogy, the preset phase P3 between the phase clock signals PH[2] and PH[3] can be equally divided into presets between 16 subphases, phase clock signals PH[3] and PH[4]. Phase P3 will be equally divided into 16 subphases, ..., and so on.
換言之,多相位時脈產生器200是先透過第一延遲鎖相迴路210產生16個相位時脈訊號PH[0]~PH[15],以先將輸入時脈訊號clk_in的週期等分成16個預設相位P3。之後,多相位時脈產生器200再透過參考訊號產生器220與第二延遲鎖相迴路230,將每一預設相位P3進一步地等分成16個子相位。如此一來,多相位時脈產生器200所產生的輸出時脈訊號clk_out將有256種的相位選擇。In other words, the multi-phase clock generator 200 first generates 16 phase clock signals PH[0]~PH[15] through the first delay phase-locked loop 210, and first divides the period of the input clock signal clk_in into 16 segments. Preset phase P3. Thereafter, the multi-phase clock generator 200 further transmits the predetermined phase P3 into 16 sub-phases through the reference signal generator 220 and the second delay-locked loop 230. As a result, the output clock signal clk_out generated by the multi-phase clock generator 200 will have 256 phase selections.
值得一提的是,由於多相位時脈產生器200無須同時產生256個相位時脈訊號,即可產生具有256種相位選擇的輸出時脈訊號clk_out。因此,多相位時脈產生器200的佈局面積以及功率耗損將可被降低,進而有助於降低多相位時脈產生器200的生產成本。It is worth mentioning that since the multi-phase clock generator 200 does not need to generate 256 phase clock signals at the same time, an output clock signal clk_out having 256 phase selections can be generated. Therefore, the layout area and power consumption of the multi-phase clock generator 200 can be reduced, thereby helping to reduce the production cost of the multi-phase clock generator 200.
更進一步來看,第二延遲鎖相迴路230包括相位偵測器(Phase Detector,PD)231、充電泵(Charge Pump,CP)232、低通濾波器(Low Pass Filter,LPF)233以及壓控延遲線(Voltage-Controlled Delay Line,VCDL)234。其中,相位偵測器231電性連接參考訊號產生器220與壓控延遲線234。充電泵232電性連接相位偵測器231。此外,低通濾波器233電性連接在充電泵232與壓控延遲線234之間。Further, the second delay phase locked loop 230 includes a phase detector (PD) 231, a charge pump (CP) 232, a low pass filter (LPF) 233, and a voltage control. Voltage-Controlled Delay Line (VCDL) 234. The phase detector 231 is electrically connected to the reference signal generator 220 and the voltage controlled delay line 234. The charge pump 232 is electrically connected to the phase detector 231. Further, the low pass filter 233 is electrically connected between the charge pump 232 and the voltage controlled delay line 234.
在操作上,相位偵測器231會偵測參考時脈訊號clk_ref與輸出時脈訊號clk_out的相位差,並據以產生多個切換訊號。再者,充電泵232會依據所述多個切換訊號產生控制電流I2,而低通濾波器233則用以接收控制電流I2,並據以產生控制電壓V2。此外,壓控延遲線234會依據控制電壓V2延遲相位時脈訊號PH[0]。藉此,當參考時脈訊號clk_ref落後輸出時脈訊號clk_out時,充電泵232將依據切換訊號降低控制電流I2。此時,低通濾波器233所產生的控制電壓V2將隨著控制電流I2的降低而下降。In operation, the phase detector 231 detects a phase difference between the reference clock signal clk_ref and the output clock signal clk_out, and generates a plurality of switching signals accordingly. Furthermore, the charge pump 232 generates a control current I2 according to the plurality of switching signals, and the low-pass filter 233 is configured to receive the control current I2 and accordingly generate the control voltage V2. In addition, the voltage controlled delay line 234 delays the phase clock signal PH[0] according to the control voltage V2. Thereby, when the reference clock signal clk_ref lags behind the output clock signal clk_out, the charge pump 232 will lower the control current I2 according to the switching signal. At this time, the control voltage V2 generated by the low pass filter 233 will decrease as the control current I2 decreases.
此外,對於壓控延遲線234而言,控制電壓V2越小,所提供的延遲也就越大。因此,隨著控制電壓V2的下降,壓控延遲線234會增加對相位時脈訊號PH[0]的延遲,進而致使輸出時脈訊號clk_out沿著時間軸往前移動。反之,當參考時脈訊號clk_ref領先輸出時脈訊號clk_out時,充電泵232所產生的控制電流I2將增加,進而提升控制電壓V2的位準。藉此,隨著控制電壓V2的上升,壓控延遲線234會降低對相位時脈訊號PH[0]的延遲,進而致使輸出時脈訊號clk_out沿著時間軸往後移動。Moreover, for the voltage controlled delay line 234, the smaller the control voltage V2, the greater the delay provided. Therefore, as the control voltage V2 decreases, the voltage controlled delay line 234 increases the delay of the phase clock signal PH[0], thereby causing the output clock signal clk_out to move forward along the time axis. On the contrary, when the reference clock signal clk_ref leads the output clock signal clk_out, the control current I2 generated by the charge pump 232 will increase, thereby raising the level of the control voltage V2. Thereby, as the control voltage V2 rises, the voltage controlled delay line 234 reduces the delay of the phase clock signal PH[0], thereby causing the output clock signal clk_out to move backward along the time axis.
圖4為依據本發明之一實施例之參考訊號產生器的方塊示意圖。參照圖4,參考訊號產生器220包括第一多工器410、第二多工器420、第三多工器430以及三角積分調變器(delta-sigma modulator)440。其中,第三多工器430電性連接第一多工器410與第二多工器420。此外,三角積分調變器440電性連接第三多工器430。4 is a block diagram of a reference signal generator in accordance with an embodiment of the present invention. Referring to FIG. 4, the reference signal generator 220 includes a first multiplexer 410, a second multiplexer 420, a third multiplexer 430, and a delta-sigma modulator 440. The third multiplexer 430 is electrically connected to the first multiplexer 410 and the second multiplexer 420. In addition, the delta-sigma modulator 440 is electrically connected to the third multiplexer 430.
在整體運作上,第一多工器410會接收來自第一延遲鎖相迴路210的2N個相位時脈訊號,例如,以N=M=4為例,第一多工器410會接收16個相位時脈訊號PH[0]~PH[15]。此外,第一多工器410會依據數位訊號SEL中的第N+M至第M+1位元,例如:SEL[8:5],輸出第i個相位時脈訊號。其中,圖4以clk_lead表示第i個相位時脈訊號。再者,第二多工器420亦會接收來自第一延遲鎖相迴路210的2N個相位時脈訊號,例如:相位時脈訊號PH[0]~PH[15]。此外,第二多工器420會依據數位訊號SEL中的第N+M至第M+1位元,例如:SEL[8:5],輸出第i+1個相位時脈訊號。其中,圖4以clk_lag表示第i+1個相位時脈訊號。In the overall operation, the first multiplexer 410 receives 2 N phase clock signals from the first delay phase locked loop 210. For example, taking N=M=4 as an example, the first multiplexer 410 receives 16 Phase clock signals PH[0]~PH[15]. In addition, the first multiplexer 410 outputs the i-th phase clock signal according to the N+Mth to the M+1th bits in the digital signal SEL, for example, SEL[8:5]. 4 shows the i-th phase clock signal by clk_lead. Furthermore, the second multiplexer 420 also receives 2 N phase clock signals from the first delay phase locked loop 210, for example, phase clock signals PH[0]~PH[15]. In addition, the second multiplexer 420 outputs the i+1th phase clock signal according to the N+M to M+1th bits in the digital signal SEL, for example, SEL[8:5]. 4 shows the i+1th phase clock signal by clk_lag.
三角積分調變器440會接收數位訊號SEL中的第M至第1位元(例如:SEL[4:1])與一積分時脈訊號clk_ig,其中積分時脈訊號clk_ig的頻率等於輸入時脈訊號clk_in的頻率。此外,三角積分調變器440於每一時脈週期T3內都會更新調變訊號S4,並輸出調變訊號S4至第三多工器430。藉此,第三多工器430將依據調變訊號S4,而從第i個相位時脈訊號clk_lead與第i+1個相位時脈訊號clk_lag中擇一輸出,以作為參考時脈訊號clk_ref。The triangular integral modulator 440 receives the Mth to the first bit (eg, SEL[4:1]) and the integral clock signal clk_ig of the digital signal SEL, wherein the frequency of the integrated clock signal clk_ig is equal to the input clock. The frequency of the signal clk_in. In addition, the delta-sigma modulator 440 updates the modulation signal S4 during each clock cycle T3, and outputs the modulation signal S4 to the third multiplexer 430. Thereby, the third multiplexer 430 selects one of the i-th phase clock signal clk_lead and the i+1th phase clock signal clk_lag according to the modulation signal S4 as the reference clock signal clk_ref.
舉例而言,當數位訊號SEL的前四位元SEL[8:5]的位元值為0時,第一多工器410會選擇相位時脈訊號PH[0],並將其輸出以作為第i個相位時脈訊號clk_lead,且第二多工器420會選擇相位時脈訊號PH[1],並將其輸出以作為第i+1個相位時脈訊號clk_lag。相似地,當數位訊號SEL的前四位元SEL[8:5]的位元值為1時,第一多工器410會選擇相位時脈訊號PH[1],並將其輸出以作為第i個相位時脈訊號clk_lead,且第二多工器420會選擇相位時脈訊號PH[2],並將其輸出以作為第i+1個相位時脈訊號clk_lag。換言之,透過數位訊號SEL的前四位元SEL[8:5],將可設定構成參考時脈訊號clk_ref的兩相位時脈訊號。For example, when the bit value of the first four bits SEL[8:5] of the digital signal SEL is 0, the first multiplexer 410 selects the phase clock signal PH[0] and outputs it as The i-th phase clock signal clk_lead, and the second multiplexer 420 selects the phase clock signal PH[1] and outputs it as the i+1th phase clock signal clk_lag. Similarly, when the bit value of the first four bits SEL[8:5] of the digital signal SEL is 1, the first multiplexer 410 selects the phase clock signal PH[1] and outputs it as the first The i phase clock signals clk_lead, and the second multiplexer 420 selects the phase clock signal PH[2] and outputs it as the i+1th phase clock signal clk_lag. In other words, the two-phase clock signal constituting the reference clock signal clk_ref can be set through the first four bits SEL[8:5] of the digital signal SEL.
再者,三角積分調變器440會依據數位訊號SEL的後四位元SEL[4:1],來決定在16個時脈週期T3內調變訊號S4被設定為邏輯1/0的次數,並依據設定結果於每一時脈週期T3內更新調變訊號S4。舉例來說,當SEL[4:1]的位元值為0時,調變訊號S4被設定為邏輯0的次數將為16,且調變訊號S4被設定為邏輯1的次數將為0。Furthermore, the delta-sigma modulator 440 determines the number of times the modulation signal S4 is set to logic 1/0 in the 16 clock cycles T3 according to the last four bits SEL[4:1] of the digital signal SEL. And the modulation signal S4 is updated in each clock cycle T3 according to the setting result. For example, when the bit value of SEL[4:1] is 0, the number of times the modulation signal S4 is set to logic 0 will be 16, and the number of times the modulation signal S4 is set to logic 1 will be 0.
因此,在每一時脈週期T3內,三角積分調變器440都將調變訊號S4更新為邏輯0。如此一來,在16個時脈週期T3內,第三多工器430都將輸出第i個相位時脈訊號clk_lead,以作為參考時脈訊號clk_ref。此外,當SEL[4:1]的位元值越高時,調變訊號S4被設定為邏輯1的次數將逐一增加。如此一來,在16個時脈週期T3內,參考時脈訊號clk_ref是由第i+1個相位時脈訊號clk_lag構成的次數也將隨之增加。Therefore, the delta-sigma modulator 440 updates the modulation signal S4 to a logic 0 during each clock cycle T3. In this way, in the 16 clock cycles T3, the third multiplexer 430 outputs the i-th phase clock signal clk_lead as the reference clock signal clk_ref. In addition, when the bit value of SEL[4:1] is higher, the number of times the modulation signal S4 is set to logic 1 will increase one by one. In this way, in the 16 clock cycles T3, the number of times when the reference clock signal clk_ref is formed by the (i+1)th phase clock signal clk_lag will also increase.
綜上所述,本發明是透過第一延遲鎖相迴路產生2N個相位時脈訊號,以先將輸入時脈訊號的週期等分成2N個預設相位。此外,本發明更透過參考訊號產生器與第二延遲鎖相迴路,將每一預設相位進一步地等分成2M個子相位。如此一來,本發明之多相位時脈產生器所產生的輸出時脈訊號將有2N+M種的相位選擇。再者,由於本發明之多相位時脈產生器只需同時產生2N個相位時脈訊號,即有2N+M種的相位選擇,故本發明之多相位時脈產生器的佈局面積以及功率耗損將可被降低。In summary, the present invention generates 2 N phase clock signals through the first delay phase-locked loop, and first divides the period of the input clock signal into 2 N preset phases. In addition, the present invention further divides each preset phase into 2 M sub-phases by reference to the signal generator and the second delay-locked loop. In this way, the output clock signal generated by the multi-phase clock generator of the present invention will have 2 N+M phase selections. Furthermore, since the multi-phase clock generator of the present invention only needs to generate 2 N phase clock signals at the same time, that is, there are 2 N+M phase selections, the layout area of the multi-phase clock generator of the present invention and Power consumption can be reduced.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100...傳統多相位時脈產生器100. . . Traditional multiphase clock generator
110...延遲鎖相迴路110. . . Delayed phase locked loop
120...相位選擇器120. . . Phase selector
clk11...輸入時脈訊號Clk11. . . Input clock signal
P0~P255...相位時脈訊號P0~P255. . . Phase clock signal
S1...數位訊號S1. . . Digital signal
clk12...輸出時脈訊號Clk12. . . Output clock signal
200...多相位時脈產生器200. . . Multiphase clock generator
210...第一延遲鎖相迴路210. . . First delay phase locked loop
220...參考訊號產生器220. . . Reference signal generator
230...第二延遲鎖相迴路230. . . Second delay phase locked loop
231...相位偵測器231. . . Phase detector
232...充電泵232. . . Charge pump
233...低通濾波器233. . . Low pass filter
234...壓控延遲線234. . . Voltage controlled delay line
clk_in...輸入時脈訊號Clk_in. . . Input clock signal
PH[0]~PH[15]...相位時脈訊號PH[0]~PH[15]. . . Phase clock signal
SEL、SEL[4:1]、SEL[8:5]...數位訊號SEL, SEL[4:1], SEL[8:5]. . . Digital signal
clk_ref...參考時脈訊號Clk_ref. . . Reference clock signal
I2...控制電流I2. . . Control current
V2...控制電壓V2. . . Control voltage
clk_out...輸出時脈訊號Clk_out. . . Output clock signal
T3...時脈週期T3. . . Clock cycle
P3...預設相位P3. . . Preset phase
410...第一多工器410. . . First multiplexer
420...第二多工器420. . . Second multiplexer
430...第三多工器430. . . Third multiplexer
440...三角積分調變器440. . . Triangular integral modulator
clk_lead...第i個相位時脈訊號Clk_lead. . . I-th phase clock signal
clk_lag...第i+1個相位時脈訊號Clk_lag. . . The i+1th phase clock signal
clk_ig...積分時脈訊號Clk_ig. . . Integral clock signal
S4...調變訊號S4. . . Modulation signal
圖1為傳統多相位時脈產生器的方塊圖。Figure 1 is a block diagram of a conventional multi-phase clock generator.
圖2為依據本發明之一實施例之多相位時脈產生器的方塊圖。2 is a block diagram of a multi-phase clock generator in accordance with an embodiment of the present invention.
圖3為依據本發明之一實施例之訊號時序圖。3 is a timing diagram of signals in accordance with an embodiment of the present invention.
圖4為依據本發明之一實施例之參考訊號產生器的方塊示意圖。4 is a block diagram of a reference signal generator in accordance with an embodiment of the present invention.
200...多相位時脈產生器200. . . Multiphase clock generator
210...第一延遲鎖相迴路210. . . First delay phase locked loop
220...參考訊號產生器220. . . Reference signal generator
230...第二延遲鎖相迴路230. . . Second delay phase locked loop
231...相位偵測器231. . . Phase detector
232...充電泵232. . . Charge pump
233...低通濾波器233. . . Low pass filter
234...壓控延遲線234. . . Voltage controlled delay line
clk_in...輸入時脈訊號Clk_in. . . Input clock signal
PH[0]~PH[15]...相位時脈訊號PH[0]~PH[15]. . . Phase clock signal
SEL...數位訊號SEL. . . Digital signal
clk_ref...參考時脈訊號Clk_ref. . . Reference clock signal
I2...控制電流I2. . . Control current
V2...控制電壓V2. . . Control voltage
clk_out...輸出時脈訊號Clk_out. . . Output clock signal
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100126805A TWI592788B (en) | 2011-07-28 | 2011-07-28 | Multi-phase clock generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100126805A TWI592788B (en) | 2011-07-28 | 2011-07-28 | Multi-phase clock generator |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201305770A TW201305770A (en) | 2013-02-01 |
TWI592788B true TWI592788B (en) | 2017-07-21 |
Family
ID=48169160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100126805A TWI592788B (en) | 2011-07-28 | 2011-07-28 | Multi-phase clock generator |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI592788B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI792830B (en) * | 2021-10-29 | 2023-02-11 | 瑞昱半導體股份有限公司 | Clock signal generating circuit |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9563227B2 (en) * | 2013-02-06 | 2017-02-07 | Nvidia Corporation | Approach to clock frequency modulation of a fixed frequency clock source |
TWI637186B (en) * | 2017-03-28 | 2018-10-01 | 奇景光電股份有限公司 | Method and circuit for detecting abnormal clock |
-
2011
- 2011-07-28 TW TW100126805A patent/TWI592788B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI792830B (en) * | 2021-10-29 | 2023-02-11 | 瑞昱半導體股份有限公司 | Clock signal generating circuit |
Also Published As
Publication number | Publication date |
---|---|
TW201305770A (en) | 2013-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI243548B (en) | Clock generator | |
US8106690B2 (en) | Semiconductor integrated circuit device | |
KR100789408B1 (en) | Delay locked loops circuits and method of generating multiplied clock thereof | |
JP5893026B2 (en) | High speed frequency divider and phase locked loop using the same | |
TWI376876B (en) | Fraction-n frequency divider and method thereof | |
JP2002100982A (en) | Dll circuit | |
KR20090074412A (en) | Division circuit and phase locked loop using the same | |
US7940095B2 (en) | Semiconductor memory device and method for driving the same | |
WO2014189772A1 (en) | Method and apparatus for generating a reference signal for a fractional-n frequency synthesizer | |
US20080204088A1 (en) | High-speed divider with reduced power consumption | |
US7825712B2 (en) | Multi-phase clock signal generating circuit having improved phase difference and a controlling method thereof | |
JP2010200090A (en) | Phase compensation clock synchronizing circuit | |
US20110051779A1 (en) | Spread spectrum clock generating circuit | |
US10784844B2 (en) | Fractional frequency divider and frequency synthesizer | |
US20240195421A1 (en) | Clock signal noise reduction device and noise reduction method, and multi-phase delay phase-locked loop | |
US6707330B2 (en) | Semiconductor device having internal circuit operating in synchronization with internal clock signal | |
JP2004530334A5 (en) | ||
TWI592788B (en) | Multi-phase clock generator | |
KR20100056156A (en) | Phase locked loop circuit, method of operating phase locked loop circuit, and semiconductor memory device including phase locked loop circuit | |
JP5500227B2 (en) | Clock generation circuit and clock generation method | |
US20060145772A1 (en) | Precision frequency and phase synthesis with fewer voltage-controlled oscillator stages | |
KR20100129017A (en) | Delay Synchronous Loops and Electronic Devices Comprising the Same | |
US7157953B1 (en) | Circuit for and method of employing a clock signal | |
KR101207072B1 (en) | Phase locked loop having function of phase interpolation and method for phase interpolation in phase locked loop | |
CN108551342B (en) | A Delay-Locked Loop with Wide Frequency Input Range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |