TWI590491B - Method for producing nano-pattern, patterned stamp and optoelectronics device with nano-pattern - Google Patents
Method for producing nano-pattern, patterned stamp and optoelectronics device with nano-pattern Download PDFInfo
- Publication number
- TWI590491B TWI590491B TW101113669A TW101113669A TWI590491B TW I590491 B TWI590491 B TW I590491B TW 101113669 A TW101113669 A TW 101113669A TW 101113669 A TW101113669 A TW 101113669A TW I590491 B TWI590491 B TW I590491B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- pattern
- patterned
- epitaxial layer
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 230000005693 optoelectronics Effects 0.000 title description 2
- 239000000758 substrate Substances 0.000 claims description 198
- 239000010410 layer Substances 0.000 claims description 115
- 238000000034 method Methods 0.000 claims description 46
- 238000012546 transfer Methods 0.000 claims description 37
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 21
- 238000005530 etching Methods 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 15
- 238000000059 patterning Methods 0.000 claims description 11
- 239000004033 plastic Substances 0.000 claims description 11
- 229920003023 plastic Polymers 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 7
- 230000004888 barrier function Effects 0.000 claims description 6
- 229910002601 GaN Inorganic materials 0.000 claims description 5
- 229910052732 germanium Inorganic materials 0.000 claims description 5
- 238000001746 injection moulding Methods 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 3
- 239000011247 coating layer Substances 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- 229910003468 tantalcarbide Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims 1
- 229910052797 bismuth Inorganic materials 0.000 claims 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims 1
- 238000011536 re-plating Methods 0.000 claims 1
- 229920002120 photoresistant polymer Polymers 0.000 description 67
- 239000002096 quantum dot Substances 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 210000003298 dental enamel Anatomy 0.000 description 11
- 238000001312 dry etching Methods 0.000 description 11
- 230000000737 periodic effect Effects 0.000 description 11
- 229910052594 sapphire Inorganic materials 0.000 description 11
- 239000010980 sapphire Substances 0.000 description 11
- 238000011161 development Methods 0.000 description 9
- 239000002585 base Substances 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000010453 quartz Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 5
- 238000000609 electron-beam lithography Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000001127 nanoimprint lithography Methods 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 238000002348 laser-assisted direct imprint lithography Methods 0.000 description 4
- 238000001459 lithography Methods 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000004049 embossing Methods 0.000 description 3
- 238000000025 interference lithography Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005323 electroforming Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010147 laser engraving Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000004038 photonic crystal Substances 0.000 description 2
- 238000005211 surface analysis Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 238000010023 transfer printing Methods 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000001015 X-ray lithography Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000002174 soft lithography Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
本發明是有關於一種圖樣化結構,且特別是有關於一種圖樣化結構之製造方法、製得之圖案化模板或基板,以及具圖樣化結構之光電元件。The present invention relates to a patterned structure, and more particularly to a method of fabricating a patterned structure, a patterned template or substrate produced, and a photovoltaic element having a patterned structure.
發光二極體(Light-Emitting Diode,LED)在作為各種光源的應用上,其發光效率的提升為目前最重要課題,且隨著應用範圍的擴展,在極大的增加LED輸出光量上的需求也日益重要。而大部分製作藍、綠光的LED製程上均使用藍寶石基板作為其磊晶基板的選擇。透過圖案化藍寶石基板(Pattern Sapphire Substrate,PSS)結構設計,於磊晶成長的過程中可降低GaN磊晶層上的貫穿式差排缺陷(Threading Dislocations,TDs),以提高GaN內部發光效率及外部量子效率。若針對LED激發光源萃取的效率而言,圖案化的藍寶石基板也會改變光線在LED內部行徑的方向與角度。第1圖為圖案化藍寶石基板改變光行徑方向之示意圖。其中,基板10上方的發光層(如多層量子井MQW)12係夾置於電性相反(如P型和N型)的兩磊晶層11和13之間。圖中實線代表由發光層12發出的光線在無圖案化基板10的LED內部之行徑路線,未進入LED逃逸角錐(Escape Cone)130臨界角度(如23.6°)內的光則在LED內部無限的反射。圖中虛線代表由發光層12發出的光線在圖案化基板(如圖中一組側壁10a所指處)的LED內部之行徑路線,圖案化基板可改變光的行徑方向,使其進入LED逃逸角錐130臨界角度內的光比例能有效提昇,進而增加LED發光效率。基於前述的優點,使得圖案化藍寶石基板的重要性也日益彰顯。除前述圖案化基板之應用方式外,週期性結構亦常被應用於LED或太陽能電池(Solar Cell)元件之表面作為表面粗化抗反射層(Surface Texture Anti-Reflection Coating,ARC)或光子晶體(Photonic Crystal,PhC)等多項應用領域之中。Light-Emitting Diode (LED) is the most important issue in the application of various light sources. With the expansion of the application range, the demand for LED output light is greatly increased. More and more important. Most of the blue and green LED processes use sapphire substrates as their choice for epitaxial substrates. Through the patterned Sapphire Substrate (PSS) structure design, the Threading Dislocations (TDs) on the GaN epitaxial layer can be reduced during the epitaxial growth process to improve the internal GaN luminous efficiency and externality. Quantum efficiency. The patterned sapphire substrate also changes the direction and angle of light travel within the LEDs for the efficiency of LED excitation source extraction. Fig. 1 is a schematic view showing the direction of the light path of the patterned sapphire substrate. Wherein, the light-emitting layer (such as the multilayer quantum well MQW) 12 above the substrate 10 is sandwiched between the two epitaxial layers 11 and 13 of opposite electrical properties (such as P-type and N-type). The solid line in the figure represents the path of the light emitted by the luminescent layer 12 inside the LED of the unpatterned substrate 10, and the light that does not enter the critical angle of the LED Escape Cone 130 (e.g., 23.6°) is infinite within the LED. reflection. The dashed line in the figure represents the path of the light emitted by the luminescent layer 12 inside the LED of the patterned substrate (as indicated by a set of sidewalls 10a in the figure), and the patterned substrate can change the direction of the light to enter the LED escape cone. The ratio of light within the critical angle of 130 can be effectively increased, thereby increasing the luminous efficiency of the LED. Based on the aforementioned advantages, the importance of patterned sapphire substrates is also becoming increasingly apparent. In addition to the application of the aforementioned patterned substrate, the periodic structure is also often applied to the surface of an LED or solar cell component as a Surface Texture Anti-Reflection Coating (ARC) or a photonic crystal ( Photonic Crystal, PhC) and many other applications.
近年來奈米科技蓬勃發展。1965年英特爾公司的共同創辦人高登‧摩爾(Gordon Moore)提出了摩爾定律(Moore’s Law),預言了在每一年半到兩年之間在同樣大小的晶片上之電晶體數目會以倍數成長。半導體工業也不斷的按照摩爾定律的預言,勢必使得元件的線寬不同的縮小,從之前的數百微米一直縮小到現今主流的一百奈米以下的線寬尺寸。而於光電元件應用之上,由於奈米結構除了具備傳統微米結構圖樣之散射作用之外,亦可藉由調整圖樣尺寸至與光波長相近甚至更小之維度使用具備繞射特性達到控制光行進、準直性及偏極化性等多樣優勢而漸受重視,因此許多製作奈米結構圖樣的方法相繼被發表展示。In recent years, nanotechnology has flourished. In 1965, Intel co-founder Gordon Moore proposed Moore's Law, predicting that the number of transistors on a wafer of the same size would be multiplied between one and a half years to two years. growing up. The semiconductor industry is also constantly following the predictions of Moore's Law, which will inevitably reduce the line width of components from the previous hundreds of micrometers to the current mainstream line width of less than 100 nanometers. On the optoelectronic component application, in addition to the scattering effect of the traditional micro-structure pattern, the nanostructure can also control the light travel by adjusting the pattern size to a dimension close to or smaller than the wavelength of the light. Many advantages such as collimation and polarization have been paid more and more attention. Therefore, many methods for making nanostructure patterns have been published.
光學微影製程(Photolithography)是目前半導體業界最普偏的圖樣製作方法,其主要係藉由一具備特定圖樣之金屬光罩(Metal Mask)置於元件(或基板)與曝光光源之間,並藉由光罩圖型來定義曝光圖樣區塊。然而,光學微影製程之圖樣尺寸受限於成像原理之極限,此外於奈米尺度下光學微影製程設備價格不扉,使得該領域進入門檻較高,造成多數廠商無法投入開發研製。除了光學微影製程,還可利用電子束微影技術(E-beam Lithography)和干涉微影技術(Interferometry Lithography)來製作奈米圖樣結構。Photolithography is the most common patterning method in the semiconductor industry. It is mainly placed between a component (or substrate) and an exposure source by a metal mask with a specific pattern. The exposure pattern block is defined by the reticle pattern. However, the size of the optical lithography process is limited by the imaging principle. In addition, the price of the optical lithography process equipment at the nanometer scale is not high, which makes the entry threshold higher in the field, and most manufacturers cannot invest in development. In addition to the optical lithography process, electron beam lithography (E-beam Lithography) and interference lithography (Interferometry Lithography) can be used to fabricate nanopattern structures.
電子束微影技術是使用電子束在晶片或光罩上曝光,首先要先設計及描繪圖案或線路,使用電腦工作站或個人電腦並利用繪圖軟體(例如:L-edit、OPUS或Auto CAD)以描繪圖案或線路並產生GDS II的檔案格式。圖形檔案製作完成後將其輸入電子束曝光系統的控制電腦中,圖形檔案在經過電子束曝光系統本身所提供的應用程式再進一步轉換成本身能讀取的資料格式,即可經由電腦控制電子束依照原先設計好的圖案並藉由基座平台以x-y方向的定位移動定義在製作好光阻層的晶片、基板或光罩上。而後使用ICP乾蝕刻設備將定義出的圖案或線路轉移到所使用的晶片、基板或是光罩上。為了要將電子束定義出的圖案能成功的轉移到所使用基材之上,一般基材的選擇多為矽、玻璃或石英等材質。使用電子束微影技術來製作圖案化基模仁,其最大缺點是流程非常耗時,是雷射刻版微影技術的好幾倍時間,若是在如此長的時間內,出現問題如聚焦錯誤(focus error),就必須重新曝光。因此屬耗時,良率低且成本高的方法。干涉微影原理是利用左右對稱之光束線相互干涉,產生週期性之明暗條紋,照射於基材表上之光阻劑上,定義出圖形;此方法可製備大面積,週期性之圖案,但不易製備非週期性圖案。由於雷射光是高斯分佈,產生的干涉條紋也會有高斯的強弱分佈,因此使用干涉微影技術來製作圖案化模仁的最大缺點是容易產生圖案不均勻的問題。Electron beam lithography uses an electron beam to expose a wafer or reticle. The first step is to design and trace the pattern or line, using a computer workstation or PC and using a drawing software (eg L-edit, OPUS or Auto CAD). Depicts a pattern or line and produces a file format for the GDS II. After the graphic file is created, it is input into the control computer of the electron beam exposure system. The graphic file is further converted into a data format that can be read by the application provided by the electron beam exposure system itself, and the electron beam can be controlled via the computer. The wafer, substrate or reticle on which the photoresist layer is formed is defined in accordance with the originally designed pattern and by the positioning movement of the susceptor in the xy direction. The defined pattern or line is then transferred to the wafer, substrate or mask used using an ICP dry etching apparatus. In order to successfully transfer the pattern defined by the electron beam to the substrate used, the selection of the substrate is generally made of materials such as germanium, glass or quartz. The biggest disadvantage of using the electron beam lithography technology to make the patterned base mold is that the process is very time consuming and is several times longer than the laser engraving lithography technology. If it is such a long time, problems such as focus error ( Focus error), you must re-exposure. Therefore, it is a time consuming method with low yield and high cost. The principle of interference lithography is to use the left and right symmetrical beam lines to interfere with each other to produce periodic light and dark stripes, which are irradiated on the photoresist on the surface of the substrate to define a pattern; this method can prepare large-area, periodic patterns, but It is not easy to prepare a non-periodic pattern. Since the laser light is Gaussian, the resulting interference fringes also have a Gaussian distribution, so the biggest disadvantage of using the interference lithography technique to make the patterned mold is that the pattern unevenness is easy to occur.
基於前述以微影方式製作奈米圖樣之多項問題考量,半導體業持續不停的開發新奈米圖樣製作技術,而又以奈米轉印技術(Nano-Imprint Lithography,NIL)為其中一種極具潛力的製程方式。使用奈米轉印技術在製作圖案化藍寶石基板上,與一般使用光罩曝光來定義圖形的方式不同,此技術主要是使用轉印的方式來定義出所要的圖形,而所欲定義的圖形取決於轉印用的模仁表面。第2A-2G圖為使用奈米轉印技術製作圖案化基板的流程示意圖。在選取之基板(第2A圖)20上形成一樹脂層或光阻層(第2B圖)21,將一具有特殊圖案的模仁23壓印在樹脂層/光阻層(第2C圖)21,之後脫模(第2D圖)和移除圖案外的樹脂或光阻(第2E圖)以定義出所需要的樹脂/光阻圖形,再根據圖案樹脂層/光阻層22進行乾或濕蝕刻而形成蝕刻後的基板20’(第2F圖),最後去除圖案樹脂層/光阻層(第2G圖)22,而將模仁23上的圖案轉移至基板20上即可完成圖案化之基板20’。Based on the above-mentioned multiple considerations of making nano-patterns by lithography, the semiconductor industry continues to develop new nano-patterning techniques, and nano-Imprint Lithography (NIL) is one of them. The process of potential. Using nano transfer technology to make a patterned sapphire substrate, unlike the way in which reticle exposure is generally used to define graphics, this technique uses transfer to define the desired pattern, and the desired pattern depends on the graphics. For the surface of the mold for transfer. 2A-2G is a flow chart showing the production of a patterned substrate using a nano transfer technique. A resin layer or a photoresist layer (Fig. 2B) 21 is formed on the selected substrate (Fig. 2A) 20, and a mold core 23 having a special pattern is imprinted on the resin layer/photoresist layer (Fig. 2C). Then, demolding (Fig. 2D) and removing the resin or photoresist (Fig. 2E) outside the pattern to define the desired resin/resist pattern, and then dry or wet etching according to the pattern resin layer/photoresist layer 22. The etched substrate 20' (FIG. 2F) is formed, and finally the pattern resin layer/photoresist layer (2G) 22 is removed, and the pattern on the mold 23 is transferred onto the substrate 20 to complete the patterned substrate. 20'.
目前轉印技術主要可區分為熱壓成形式奈米轉印技術(Nano-Imprint Lithography,NIL)、紫外光硬化奈米轉印(UV-NanoImprint,UV-NIL)、可撓性奈米轉印(Soft Lithography)和雷射輔助直接轉印技術(Laser-Assisted Direct Imprint,LADI)等四種。At present, the transfer technology can be mainly divided into Nano-Imprint Lithography (NIL), UV-Nanoprint (UV-NIL), and flexible nano transfer. (Soft Lithography) and Laser-Assisted Direct Imprint (LADI).
熱壓成形式奈米轉印技術主要是利用電子束微影、X光微影或是傳統的光學微影在矽基板上曝寫後蝕刻出凹凸相反的奈米或微米圖型,以此作為奈米轉印之模仁,在高溫高壓的情況下將模仁壓印在熱塑性的高分子材料上(例如PMMA、光阻等)、當熱塑性的高分子材料溫度超過其玻璃轉換溫度Tg(glass transform temperature)時,材料會隨著外力而產生形變,可以得到一個與模仁凹凸相反的圖形,最後再以乾蝕刻清除底部殘留高分子後便完成了奈米轉印。紫外光硬化奈米轉印(UV-NIL)主要是由高透光度及高強度之石英玻璃作為模仁,在室溫中施加壓力,使塗佈在基板上的光阻劑可以壓入模仁之中,再使用UV光源照射,光阻劑因為受到紫外光的照射之後會產生聚合反應而凝固,脫膜之後再以乾蝕刻方法除去底部殘留的光阻劑,便可得到所欲轉印之圖形。可撓性奈米轉印技術則是利用可撓性高分子材料如PDMS作為模仁,並沾上具有自我組裝之高分子光阻(Self-Assembly Monomer,SAM),以仿照沾墨蓋章的方式將沾有SAM之模仁與鍍上金屬薄膜的基板接觸,由於SAM與金屬薄膜容易產生強烈的鍵結,因此可以在基板上定義出奈米圖形。雷射輔助直接轉印技術(LADI)可利用透明之石英基板當模仁,將有奈米圖形的模仁與矽基板接觸,當雷射光透過石英照射到矽基板時,雷射光的能量瞬間使矽基材融化,此時再對模仁施加一個而外的壓力,便可將模仁上的圖型轉印到矽基板上,而此方法所需的時間非常短,大約數百個奈米秒即可完成。The hot-pressing form of nano-transfer technology mainly uses electron beam lithography, X-ray lithography or conventional optical lithography to etch the negative or negative nano or micro pattern on the enamel substrate. The mold of nano transfer is imprinted on a thermoplastic polymer material (such as PMMA, photoresist, etc.) under high temperature and high pressure, when the temperature of the thermoplastic polymer material exceeds its glass transition temperature Tg (glass) At the time of the transform temperature, the material deforms with the external force, and a pattern opposite to the convexity of the mold is obtained. Finally, the nano-transfer is completed by dry etching to remove the residual polymer at the bottom. Ultraviolet hardening nanotransfer (UV-NIL) is mainly made of quartz glass with high transparency and high strength as a mold. Pressure is applied at room temperature, so that the photoresist coated on the substrate can be pressed into the mold. In the kernel, the UV light source is used for irradiation, and the photoresist is solidified by the polymerization reaction after being irradiated by the ultraviolet light. After the film is removed, the photoresist remaining at the bottom is removed by dry etching to obtain the desired transfer. Graphics. The flexible nano transfer technology utilizes a flexible polymer material such as PDMS as a mold and is coated with a Self-Assembly Monomer (SAM) to imitate the ink seal. The method is to contact the mold with SAM and the substrate coated with the metal film. Since the SAM and the metal film are prone to strong bonding, a nano pattern can be defined on the substrate. Laser-assisted direct transfer technology (LADI) can use a transparent quartz substrate as a mold to contact a mold with a nano-pattern and a germanium substrate. When laser light is transmitted through the quartz to the germanium substrate, the energy of the laser light is instantaneously made. When the substrate is melted, an additional pressure is applied to the mold to transfer the pattern on the mold to the substrate. The time required for this method is very short, about several hundred nanometers. It can be done in seconds.
上述這些奈米轉印技術利用其模仁可重覆壓印於整面晶圓、基板之上的特點,因此極適合應用於量產製程使用。再者,以同一模仁轉印製作出之奈米結構圖樣均勻性較佳,有助於良率及可靠度上之提昇。因此,如何製作具備奈米圖樣結構之模仁是製作圖案化藍寶石基板的主要重點技術項目之一。These nano-transfer technologies are characterized by the fact that their mold cores can be repeatedly imprinted on the entire surface of the wafer and the substrate, so it is very suitable for mass production processes. Moreover, the uniformity of the nanostructure pattern produced by the same mold transfer is better, which contributes to the improvement of the yield and the reliability. Therefore, how to make a mold core with a nano-pattern structure is one of the main key technical projects for making a patterned sapphire substrate.
本發明係有關於一種奈米圖樣化結構之製造方法、製得之圖案化模板或基板,以及具奈米圖樣化結構之光電元件。應用具圖樣化結構之光電元件可有效提升其出光效率。The present invention relates to a method of fabricating a nanopatterned structure, a patterned template or substrate produced, and a photovoltaic element having a nanopatterned structure. The use of a photovoltaic element with a patterned structure can effectively improve its light extraction efficiency.
根據本發明,係提出一種奈米圖樣化結構之製造方法,包括:提供一基板,該基板上具有一感光塗層;將該基板設置於一機台,並令機台旋轉基板;提供一雷射源,使雷射源之一雷射光間隔性地照射於旋轉之基板上之感光塗層,且雷射光係自對應基板之圓心沿著基板之一半徑向外位移以進行間歇地曝光(如特定周期曝光),以於感光塗層上形成一曝光區域;和顯影去除曝光區域之感光塗層,以形成一感光圖案,其中感光圖案係包括複數個點狀結構,自基板之圓心逐漸向外呈螺旋狀分佈排列。According to the present invention, a method for fabricating a nano patterning structure is provided, comprising: providing a substrate having a photosensitive coating thereon; placing the substrate on a machine table and rotating the substrate; providing a mine The source is such that one of the laser sources is irradiated intermittently on the photosensitive coating on the rotating substrate, and the laser light is displaced outward from the center of the corresponding substrate along a radius of the substrate for intermittent exposure (eg, a specific period of exposure) to form an exposed region on the photosensitive coating; and developing to remove the photosensitive coating of the exposed region to form a photosensitive pattern, wherein the photosensitive pattern comprises a plurality of dot structures gradually from the center of the substrate Arranged in a spiral shape.
根據本發明,係提出一種圖案化模板,包括:複數個孔洞形成一模板上,且該些孔洞係自接近模板之圓心逐漸向外呈螺旋狀排列分佈。According to the present invention, there is provided a patterned template comprising: a plurality of holes formed on a template, and the holes are arranged in a spiral arrangement from a center of the proximity template.
根據本發明,係提出一種具圖樣化結構之光電元件,包括一基板、一第一磊晶層於基板之上;一第二磊晶層於第一磊晶層上,且第二磊晶層具一第一導電性;一主動磊晶層於第二磊晶層之上;一第三磊晶層於主動磊晶層之上,且第三磊晶層具一第二導電性。其中,基板或第三磊晶層處具有一圖樣化結構,且圖樣化結構包括複數個奈米圖案。According to the present invention, a photovoltaic element having a patterned structure includes a substrate, a first epitaxial layer over the substrate, a second epitaxial layer on the first epitaxial layer, and a second epitaxial layer. Having a first conductivity; an active epitaxial layer over the second epitaxial layer; a third epitaxial layer over the active epitaxial layer, and a third epitaxial layer having a second conductivity. Wherein, the substrate or the third epitaxial layer has a patterned structure, and the patterned structure comprises a plurality of nano patterns.
為讓本發明之上述內容能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下:In order to make the above-mentioned contents of the present invention more comprehensible, the following specific embodiments, together with the drawings, are described in detail below:
實施例係提出圖樣化結構之製造方法,可用以製得一圖案化模板以做為奈米轉印時重覆壓印之模仁;亦可直接在元件之基板上直接定義出圖樣化結構。而應用實施例之圖樣化結構的光電元件可有效提升其出光效率。The embodiment proposes a manufacturing method of the patterned structure, which can be used to obtain a patterned template as a mold for re-imprinting during nano transfer; or directly define a patterned structure on the substrate of the element. The photoelectric element of the patterned structure of the application embodiment can effectively improve the light extraction efficiency.
第3圖為一實施例之以刻版機製作圖樣化結構之示意圖。刻版機(Laser Beam Recorder,LBR)之雷射源31,如(Ar/Kr laser),經過電光調制器(Electro-Optical Modulator,EOM)32控制雷射功率,聲光調變器(Acoustic-Optical Modulator,AOM) 34輸出預定圖案之訊號(pattern signal),並搭配自動對焦系統35,係對旋轉基座36上的基材40進行預定圖案的雷射曝寫。Fig. 3 is a schematic view showing the construction of a patterned structure by a stenciling machine according to an embodiment. Laser source 31 (Laser Beam Recorder, LBR) laser source 31, such as (Ar/Kr laser), through the Electro-Optical Modulator (EOM) 32 to control the laser power, sound and light modulator (Acoustic- The Optical Modulator (AOM) 34 outputs a predetermined pattern signal and, in conjunction with the autofocus system 35, performs a laser exposure of a predetermined pattern on the substrate 40 on the spin base 36.
第4A圖為第3圖中基材於旋轉基座上雷射曝寫之局部示意圖。第4B圖為實施例之一種具圖樣化結構之基材之示意圖。如第4A圖所示,為刻版機的曝光方式,藉由基座36(如圓形基座,Spindle)的旋轉(如R方向)並搭配雷射光束的位移(Slide)特性,使曝光用雷射光束能以特定時間分佈(依預定圖案之訊號而定),自接近基座36之中心往外側逐漸移動(如M方向)而做間歇性地曝光照射,亦即對應近基材40之圓心0沿其一半徑方向往外位移而進行特定(或不特定)周期與間隔之曝光。此方式可快速的定義出如第4B圖所示之複數個點狀結構41,該些點狀結構41係自基板40之圓心0逐漸向外呈螺旋狀分佈排列。Figure 4A is a partial schematic view of the laser exposure of the substrate on the rotating pedestal in Figure 3. Figure 4B is a schematic view of a substrate having a patterned structure of the embodiment. As shown in Fig. 4A, for the exposure mode of the engraving machine, the rotation of the susceptor 36 (such as a circular pedestal, such as the R direction) and the displacement characteristics of the laser beam are used to make the exposure. The laser beam can be distributed for a specific time (depending on the signal of the predetermined pattern), and is gradually moved from the center of the susceptor 36 to the outside (such as the M direction) to perform intermittent exposure, that is, corresponding to the near substrate 40. The center of the circle 0 is displaced outward in one of its radial directions for specific (or unspecified) periods and intervals of exposure. In this manner, a plurality of dot structures 41 as shown in FIG. 4B can be quickly defined, and the dot structures 41 are arranged in a spiral shape gradually from the center 0 of the substrate 40.
而有關點狀結構41的分佈排列方式,可透過調整刻版機的參數加以改變。如第5A圖所示,係為雷射開關不同之工作週期與形成圖案之示意圖。圖樣週期D代表意義為雷射光束刻寫之奈米圖案兩點間之距離,此可由雷射開關之工作週期(Duty Cycle)進行控制。圖樣寬度(Pattern Width)d1代表奈米圖案之寬度大小,由集束雷射光之雷射光斑尺寸決定。圖樣長度(Pattern Length)d2代表刻寫之奈米圖案之長度,由雷射開關之工作週期(Duty Cycle)所決定。The arrangement of the dot structures 41 can be changed by adjusting the parameters of the engraving machine. As shown in FIG. 5A, it is a schematic diagram of different working cycles and patterning of the laser switch. The pattern period D represents the distance between two points of the nano pattern inscribed by the laser beam, which can be controlled by the duty cycle of the laser switch (Duty Cycle). The Pattern Width d1 represents the width of the nanopattern and is determined by the size of the laser spot of the bundled laser. The pattern length d2 represents the length of the inscribed nano pattern, which is determined by the duty cycle of the laser switch (Duty Cycle).
藉由改變參數於雷射刻版時可於目標載體上刻寫出具週期性或隨機之圖案分佈,適用於量產及變化性高之奈米圖案刻寫製程。以同樣形成圖樣寬度d1_1的圖案為例,當雷射開啟的時間越長,圖樣長度d2就越長,如奈米點狀圖案511的圖樣長度d2_1小於奈米點狀圖案512的圖樣長度d2_2,奈米點狀圖案512的圖樣長度d2_2小於奈米點狀圖案513的圖樣長度d2_3(d2_1<d2_2<d2_3),而使奈米點狀圖案511、512和513可分別呈圓形、橢圓形和長橢圓形。而點狀圖案之間的圖樣週期D可以相同也可以不同,如奈米點狀圖案512和513之間的雷射關閉時間D_2長於奈米點狀圖案512和511之間的雷射關閉時間D_1。依照實施例之製造方法,其大小範圍可調整由次微米至奈米尺寸。By changing the parameters in the laser engraving, a periodic or random pattern distribution can be written on the target carrier, which is suitable for mass production and high-variability nano-pattern writing process. Taking the pattern of the same pattern width d1_1 as an example, the longer the laser opening time is, the longer the pattern length d2 is. For example, the pattern length d2_1 of the nano dot pattern 511 is smaller than the pattern length d2_2 of the nano dot pattern 512. The pattern length d2_2 of the nano dot pattern 512 is smaller than the pattern length d2_3 of the nano dot pattern 513 (d2_1<d2_2<d2_3), and the nano dot patterns 511, 512, and 513 are respectively circular, elliptical, and Long oval. The pattern period D between the dot patterns may be the same or different, for example, the laser off time D_2 between the nano dot patterns 512 and 513 is longer than the laser off time D_1 between the nano dot patterns 512 and 511. . According to the manufacturing method of the embodiment, the size range can be adjusted from sub-micron to nano-sized.
另外,藉由改變LBR刻版機之r,θ值,可控制奈米點狀圖案之間的週期變化及圖型變化,達成多週期多角度的圖案刻寫;其中r為奈米點狀圖案與基板40的圓心0之距離,θ為奈米點狀圖案與外側相鄰軌道之兩奈米點狀圖案所形成之夾角。In addition, by changing the r and θ values of the LBR engraving machine, the periodic variation and pattern change between the nano dot patterns can be controlled to achieve multi-cycle multi-angle pattern writing; wherein r is a nano dot pattern and The distance from the center 0 of the substrate 40, θ is the angle formed by the nano dot pattern of the nano dot pattern and the outer adjacent track.
如第5B圖所示,為形成圖案之局部示意圖。奈米點狀圖案515與外側相鄰軌道上的奈米點狀圖案524和525係呈θ2夾角,奈米點狀圖案525與外側相鄰軌道上的奈米點狀圖案534和535係呈θ1夾角,θ1夾角和θ2夾角可相等或不相等,視實際應用所需而決定。軌距週期(Track Pitch)P代表意義為螺旋狀之螺紋間距,當雷射光束向外移動的徑向速度M為定值時,軌距為固定。As shown in Fig. 5B, a partial schematic view of the pattern is formed. The nano dot pattern 515 and the nano dot patterns 524 and 525 on the outer adjacent tracks are at an angle of θ2, and the nano dot patterns 525 and the nano dot patterns 534 and 535 on the outer adjacent tracks are θ1. The angle between the angle θ1 and the angle θ2 may be equal or unequal, depending on the actual application. The track pitch P represents a helical pitch, and the gauge is fixed when the radial velocity M of the outward movement of the laser beam is constant.
第6圖為實施例之一種螺旋狀分佈排列的圖樣化結構之示意圖,其中D代表圖樣週期(Pattern Pitch)。此螺旋線圖案的軌跡,可以極座標方程式:ρ=ρ0+υtθ/2π表示。其中,ρ0為雷射刻寫第一點與圓心0的距離。υ為雷射光束沿徑向,向外移動的速度。t為兩雷射刻寫點雷射關閉的時間。使用LBR刻版機進行雷射曝寫奈米圖案,其圖案參數還可包括如前所述之軌距週期、圖樣寬度、圖樣長度等設計。Figure 6 is a schematic diagram of a spirally arranged patterning structure of the embodiment, wherein D represents a pattern period (Pattern Pitch). The trajectory of this spiral pattern can be expressed by the polar coordinate equation: ρ=ρ0+υtθ/2π. Where ρ0 is the distance between the first point and the center 0 of the laser. υ is the speed at which the laser beam moves radially and outward. t is the time for the two lasers to write a point laser off. The LBR engraving machine is used to perform a laser exposure nano pattern, and the pattern parameters may also include a design of a gauge period, a pattern width, a pattern length, and the like as described above.
另外,由於雷射曝光刻版技術是以利用旋轉基座36搭配雷射光束的位移以進行曝光刻版,因旋轉基座36有其最大轉速限制,可能會有一小中心面積無法曝光而無圖案。因此,實際應用時,可選擇較大尺寸基板曝光刻版,以前述如第3-4B圖之製程完成模仁之製造程序後,以形成一具有圖樣化結構(如第6圖所示)之大面積模仁70,針對有圖案的部份切割出應用所需尺寸之較小面積之模仁72以進行後續轉印流程。第7圖係繪示將大面積模仁切割出較小面積之模仁的示意圖。雖然第7圖係以切割出四片較小面積之模仁72為例做說明,但並不以此為限,亦可切割出其他片數以獲得比模仁72面積更大或更小之模仁,其可視實際應用之條件而決定。In addition, since the laser exposure engraving technique uses the rotation of the rotating base 36 to match the displacement of the laser beam for exposure and engraving, since the rotating base 36 has its maximum rotational speed limit, there may be a small central area that cannot be exposed without a pattern. . Therefore, in practical application, a larger size substrate exposure stencil can be selected, and the manufacturing process of the mold core is completed by the above-mentioned process as shown in FIG. 3-4B to form a large patterned structure (as shown in FIG. 6). The area mold core 70 cuts a small area of the mold core 72 of the desired size for the patterned portion for the subsequent transfer process. Figure 7 is a schematic view showing a large area of the mold core cut out of a smaller area of the mold. Although the figure 7 is illustrated by taking four small-area mold cores 72 as an example, it is not limited thereto, and other pieces may be cut to obtain a larger or smaller area than the mold core 72. Mold, which can be determined according to the conditions of actual application.
而依上述實施例之方法製作出模仁後,可應用於現有多種轉印技術中,例如熱壓成形式奈米轉印技術(NIL)、紫外光硬化奈米轉印(UV-NIL)、可撓性奈米轉印(Soft Lithography)和雷射輔助直接轉印技術(LADI)等多種技術。After the mold core is manufactured according to the method of the above embodiment, it can be applied to various existing transfer technologies, such as hot press forming nano transfer printing technology (NIL), ultraviolet light hardening nano transfer (UV-NIL), Various technologies such as Flexible Lithography and Laser Assisted Direct Transfer (LADI).
使用雷射曝光技術定義出圖型的方式,並搭配乾蝕刻、電鑄與射出成形等技術可成功製造具有各種深度、寬度與具週期性或非週期性的孔洞狀、柱狀和光柵狀結構。而前所描述的點狀圖形其結構大小可界於微米和次微米等級,甚至可到100 nm以下的線寬。如圖5A、圖6之實施例方式,在選擇性的調整孔洞的軌距週期P、圖樣寬度d1、圖樣長度d2、以及圖樣週期D等參數後,可製作出不同態樣之具週期性之奈米點狀圖案的模仁。The use of laser exposure technology to define the pattern, and with dry etching, electroforming and injection molding technology can successfully produce a variety of depths, widths and periodic or non-periodic pores, columns and grating structures . The dot pattern described above has a structure size that can be bound to the micron and submicron levels, and even to line widths below 100 nm. As shown in the embodiment of FIG. 5A and FIG. 6 , after selectively adjusting the gauge period P of the hole, the width d1 of the pattern, the length d2 of the pattern, and the period D of the pattern, periodicity of different patterns can be produced. The mold of the nano dot pattern.
在一實施例中,孔洞的軌距週期P、圖樣寬度d1、圖樣長度d2、以及圖樣週期D各自均固定,且圖樣寬度d1等於圖樣長度d2時,孔洞係呈六方最密堆積結構分佈,如圖8A所示。在另一實施例中,孔洞的軌距週期P與圖樣週期D各自均固定,圖樣寬度d1與圖樣長度d2相異時,則如圖8B所示。在又另一實施例中,孔洞的軌距週期P、圖樣寬度d1、圖樣長度d2、以及圖樣週期D各自為變數時,則可製作出如圖8C所示之不規則的圖樣。關於孔洞的軌距週期P、圖樣寬度d1、圖樣長度d2、以及圖樣週期D等參數的調整,使用者可自行設定,以獲得需求的奈米圖樣化之模仁,故本發明並不以此為限。In one embodiment, the gauge period P of the hole, the width d1 of the pattern, the length d2 of the pattern, and the period D of the pattern are each fixed, and when the width d1 of the pattern is equal to the length d2 of the pattern, the hole is distributed in the hexagonal closest packed structure, such as Figure 8A shows. In another embodiment, the gauge period P of the hole and the pattern period D are each fixed. When the pattern width d1 is different from the pattern length d2, it is as shown in FIG. 8B. In still another embodiment, when the gauge period P of the hole, the width d1 of the pattern, the length d2 of the pattern, and the pattern period D are each a variable, an irregular pattern as shown in FIG. 8C can be produced. Regarding the adjustment of the parameters such as the gauge period P of the hole, the width d1 of the pattern, the length d2 of the pattern, and the period D of the pattern, the user can set it himself to obtain the mold of the desired nano pattern, so the present invention does not Limited.
於前述的實施例中,連續兩孔洞之距離尺寸例如是100 nm-4000 nm,各孔洞之直徑、或寬度及長度尺寸例如是50 nm-3000 nm,孔洞之高度尺寸例如是200 nm-4000 nm,圖案化模仁(模板/基板)之材料例如是矽、碳化矽、砷化鎵、氧化鋁、磷化銦、氮化鎵、鍺、矽鍺、鎳、鋁或塑膠。但本發明並不限於該些實施例所提出之範圍和材料。In the foregoing embodiments, the distance between two consecutive holes is, for example, 100 nm to 4000 nm, and the diameter, or the width and length of each hole are, for example, 50 nm to 3000 nm, and the height of the hole is, for example, 200 nm to 4000 nm. The material of the patterned mold core (template/substrate) is, for example, tantalum, tantalum carbide, gallium arsenide, aluminum oxide, indium phosphide, gallium nitride, tantalum, niobium, nickel, aluminum or plastic. However, the invention is not limited to the scope and materials set forth in the embodiments.
此技術根據後段製程中所搭配的技術不同,可產出不同材質的壓印模仁。以下係以三種不同材質的模仁製作方式為例做說明。This technology can produce different imprinting molds according to the different techniques in the back-end process. The following is an example of a mold making method using three different materials.
以雷射技術製作次微米或奈米等級的圖型,所使用的雷射光源在定位與聚焦上必須講求高精密性。而使用的基板具有低反射率甚至是透明的材質才不會造成曝光過程中來自於基板反射雷射光波的干擾,因此在轉印模仁的製作上一般可選用透明的基板材質(如玻璃、石英)。Using laser technology to produce sub-micron or nano-scale patterns, the laser source used must be highly precise in positioning and focusing. The substrate used has a low reflectivity or even a transparent material, which does not cause interference from the reflected laser light from the substrate during the exposure process. Therefore, a transparent substrate material (such as glass, quartz).
使用單晶矽晶圓作為雷射曝光技術之基板,也具有乾蝕刻容易的優點。儘管矽晶圓對於可見光波具有40-50%的反射率,但仍在雷射曝光技術的容忍範圍內,因此製作高深寬比的圖型上常使用矽材質基板。The use of a single crystal germanium wafer as a substrate for laser exposure technology also has the advantage of easy dry etching. Although tantalum wafers have a reflectance of 40-50% for visible light waves, they are still within the tolerance of laser exposure technology, so tantalum substrates are often used in the production of high aspect ratio patterns.
第9A-9E圖為實施例之一種矽材質轉印模仁之製作方法流程圖。首先,在選定的基板上沈積一層正型或負型光阻材料,光阻材料的選定主要取決於欲製作的圖型,對於雷射曝光技術而言是無差別的;同樣的光阻材質可為有機或是無機光阻。如第9A圖所示,於一基板81上(如單晶矽晶圓、玻璃或石英等矽材質基板)塗佈一光阻82,其中係以有機正型光阻為例。將已塗佈光阻82完成的基板81進行軟烤除去多餘的溶劑,並如第9B圖所示以一雷射源83對光阻82進行雷射曝光,以定義出欲製作的圖案,包括曝光區82a和非曝光區82b。曝光後之基板81隨後進行顯影製程,如第9C圖所示,使用適當的顯影液將與雷射反應的曝光區82a之光阻除去,而在基板81上留下非曝光區82b之光阻圖案。之後,如第9D所示,利用此圖案作為蝕刻遮罩,對基板81進行乾蝕刻;其中利用乾蝕刻中的蝕刻氣體對於光阻82與基板81材質的反應速率上的差異針對未覆蓋光阻區域的基板81進行蝕刻。完成蝕刻後,將殘餘的光阻(即非曝光區82b之光阻)除去即可得到轉印用之模仁81’,如第9E所示。9A-9E is a flow chart of a method for manufacturing a enamel material transfer mold. First, a positive or negative photoresist material is deposited on the selected substrate. The choice of the photoresist material depends mainly on the pattern to be fabricated, and is indistinguishable from the laser exposure technology; the same photoresist material can be used. It is an organic or inorganic photoresist. As shown in FIG. 9A, a photoresist 82 is applied to a substrate 81 (for example, a germanium substrate such as a single crystal germanium wafer, glass or quartz), and an organic positive photoresist is taken as an example. The substrate 81 which has been coated with the photoresist 82 is soft baked to remove excess solvent, and the photoresist 82 is laser exposed by a laser source 83 as shown in FIG. 9B to define a pattern to be formed, including The exposed area 82a and the non-exposed area 82b. The exposed substrate 81 is subsequently subjected to a developing process, as shown in Fig. 9C, the photoresist of the exposed region 82a which is reacted with the laser is removed using a suitable developer, and the photoresist of the non-exposed region 82b is left on the substrate 81. pattern. Thereafter, as shown in FIG. 9D, the substrate 81 is dry etched using the pattern as an etch mask; wherein the difference in the reaction rate of the etching gas in the dry etching with respect to the material of the photoresist 82 and the substrate 81 is directed to the uncovered photoresist The substrate 81 of the region is etched. After the etching is completed, the residual photoresist (i.e., the photoresist of the non-exposed area 82b) is removed to obtain a mold 81' for transfer, as shown in Fig. 9E.
金屬轉印模仁的製作可搭配電鑄來進行。第10A-10F圖為實施例之一種金屬材質轉印模仁之製作方法流程圖。類似上述矽材質轉印模仁之製程,在選定的金屬基板91上塗佈一適當厚度與適當材質的光阻92,如第10A圖所示。並如第10B圖所示以一雷射源93對光阻92進行雷射曝光,包括曝光區92a和非曝光區92b,以定義出欲製作的圖案。曝光後之基板91隨後進行顯影製程,如第10C圖所示,將曝光區92a之光阻除去而在基板91上留下非曝光區92b之光阻圖案。之後,使用化學電鍍方式在基板91表面沈積一金屬層95,厚度例如0.3 mm-1 mm,金屬材質例如鎳或鋁,如第10D圖所示。再將金屬層95與基板91剝離後,即可得到一具有相反圖型的金屬材質轉印用模仁95’,如第10E圖所示。若是欲得到與非曝光區92b之光阻圖案相同圖型的模仁,可再於如10E圖所示的金屬模仁95’上再電鍍一層金屬層和剝離後,即可完成翻模而得到另一金屬模仁96,如第10F圖所示。其中金屬模仁96與95’為互補之圖型。The metal transfer mold can be produced by electroforming. 10A-10F is a flow chart of a method for manufacturing a metal material transfer mold in the embodiment. A photoresist 92 of a suitable thickness and a suitable material is applied to the selected metal substrate 91, similar to the above-described process for transferring the mold core, as shown in FIG. 10A. The photoresist 92 is laser exposed by a laser source 93 as shown in Fig. 10B, including an exposed region 92a and a non-exposed region 92b to define the pattern to be fabricated. The exposed substrate 91 is then subjected to a developing process, and as shown in FIG. 10C, the photoresist of the exposed region 92a is removed to leave a photoresist pattern of the non-exposed region 92b on the substrate 91. Thereafter, a metal layer 95 is deposited on the surface of the substrate 91 by chemical plating, for example, having a thickness of, for example, 0.3 mm to 1 mm, and a metal material such as nickel or aluminum, as shown in Fig. 10D. Further, after peeling off the metal layer 95 and the substrate 91, a metal mold transfer 95' having a reverse pattern can be obtained as shown in Fig. 10E. If the mold is to be obtained in the same pattern as the photoresist pattern of the non-exposed area 92b, a metal layer can be further electroplated on the metal mold 95' as shown in FIG. 10E and peeled off. Another metal mold core 96 is shown in Fig. 10F. The metal mold cores 96 and 95' are complementary patterns.
製作塑膠材質轉印用模仁與金屬模仁的作法類似,可參照第10A-10F圖。同樣在選定的金屬基板上塗佈光阻,在經由雷射曝光和顯影製程後定義出光阻圖案,並電鍍一金屬層於基板表面。在剝離金屬層與基板之後,將得到的具有相反圖案的金屬模仁置於射出成形機中進行進行塑膠模仁的射出。經由射出成形所得到的塑膠模仁,其圖案與光阻圖案相同但與用於射出成形的金屬模仁相反。The method of making a plastic material transfer mold is similar to that of a metal mold core, and can be referred to the figure 10A-10F. A photoresist is also applied to the selected metal substrate, a photoresist pattern is defined after the laser exposure and development process, and a metal layer is plated on the surface of the substrate. After the metal layer and the substrate are peeled off, the obtained metal mold having the opposite pattern is placed in an injection molding machine to perform injection of the plastic mold. The plastic mold core obtained by injection molding has the same pattern as the photoresist pattern but is opposite to the metal mold core used for injection molding.
在實施例一中先如前述製程形成奈米轉印矽模仁,再以矽模仁如同印章般進行壓印和蝕刻而得到奈米級圖案化基板。比較具傳統平板基板和實施例之圖案化基板的LED元件,發現實施例之圖案化基板的確提升了LED元件的出光效率。In the first embodiment, a nano-transfer enamel mold is formed as described above, and then the enamel mold is imprinted and etched as a stamp to obtain a nano-sized patterned substrate. Comparing the LED elements having the conventional flat substrate and the patterned substrate of the embodiment, it was found that the patterned substrate of the embodiment did improve the light-emitting efficiency of the LED element.
請參照第11A-11F圖,其繪示依照實施例一之奈米轉印矽模仁之製作方法流程圖。如第11A圖所示使用6吋矽晶圓當作基材101,並如第11B圖所示在其上濺鍍一層100 nm厚度的無機正型光阻102。接著如第11C圖所示,將基材101設置在如前述之刻版機(LBR)的旋轉基座上,使刻版機之雷射源103對光阻102進行曝光,包括曝光區102a和非曝光區102b,以定義出圖案(如第4B圖所示之複數個點狀結構41)。其中,刻版線速度CLV 4.0 m/s、功率3.0 mW。雷射曝光完成之後,使用鹼液將與雷射反應的區域(曝光區102a)除去,如第11D圖所示,所使用的顯影液為氫氧化鉀(KOH),濃度0.05M,顯影時間為45 sec。完成顯影後,浸泡於去離子水中10分鐘除去殘留的顯影液。將完成顯影後之6吋矽晶圓基材置於反應性離子蝕刻設備中針對矽基材101進行蝕刻,如第11E圖所示,蝕刻使用氣體為氬氣(Ar,9 sccm)、六氟化硫(SF6,25 sccm),蝕刻功率100 W,蝕刻真空值5 mTorr,蝕刻時間1分鐘50秒。完成蝕刻後,基材101上殘餘的光阻(非曝光區102b之光阻)使用酸液除去,以形成如第11F圖所示之圖案化基材101’;其中去光阻的溶液配置例如是HCl(37%):H2O=2:1(體積比),浸泡時間10分鐘,完成後於去離子水中浸泡約15分鐘以除去殘留鹽酸。Please refer to FIG. 11A-11F for a flow chart of a method for fabricating a nano-transfer enamel according to the first embodiment. As shown in Fig. 11A, a 6-inch wafer was used as the substrate 101, and a 100 nm-thick inorganic positive-type photoresist 102 was sputtered thereon as shown in Fig. 11B. Next, as shown in FIG. 11C, the substrate 101 is placed on a rotating base such as the aforementioned engraving machine (LBR), and the laser source 103 of the engraving machine exposes the photoresist 102, including the exposure area 102a and The non-exposed regions 102b define a pattern (such as a plurality of dot structures 41 as shown in FIG. 4B). Among them, the engraved line speed CLV 4.0 m / s, power 3.0 mW. After the laser exposure is completed, the area (exposure area 102a) which reacts with the laser is removed using an alkali solution. As shown in Fig. 11D, the developing solution used is potassium hydroxide (KOH) at a concentration of 0.05 M, and the development time is 45 sec. After the development was completed, the remaining developer was removed by immersing in deionized water for 10 minutes. The developed 6-inch wafer substrate is placed in a reactive ion etching apparatus for etching the tantalum substrate 101. As shown in FIG. 11E, the etching gas is argon (Ar, 9 sccm), hexafluoride. Sulfur (SF 6 , 25 sccm), etching power 100 W, etching vacuum value 5 mTorr, etching time 1 minute 50 seconds. After the etching is completed, the residual photoresist on the substrate 101 (the photoresist of the non-exposed region 102b) is removed using an acid solution to form a patterned substrate 101' as shown in FIG. 11F; wherein the photoresist-dissolving solution configuration is, for example It was HCl (37%): H2O = 2:1 (volume ratio), soaking time was 10 minutes, and after completion, it was immersed in deionized water for about 15 minutes to remove residual hydrochloric acid.
以下係自多組矽模仁製作實驗中,列出兩組不同圖案之顯微觀察與其應用之LED元件之光學特性比較。The following is a comparison of the optical characteristics of two sets of different patterns and the optical characteristics of the LED components used in the experiment.
以掃描電子顯微鏡(scanning electron microscope,SEM)對未乾蝕刻前含無機光阻的矽模仁表面(對應第11d圖)進行觀察,發現形成之孔洞邊緣平整,形狀整齊(見附圖1)。第12A和12B圖為對於曝光顯影後,未乾蝕刻前含無機光阻的矽模仁,使用原子力顯微鏡(Atomic Force Microscopy,AFM)進行表面分析之結果。其中,第12A圖代表的矽模仁圖案規格為:軌距週期P=圖樣週期D=800 nm,圖樣寬度d1=圖樣長度d2=350 nm;第12B圖代表的矽模仁圖案規格為:軌距週期P=圖樣週期D=600 nm,圖樣寬度d1=圖樣長度d2=250 nm。再者,附圖2A和2B為對於曝光顯影後未乾蝕刻前含無機光阻的矽模仁,使用掃描電子顯微鏡(SEM)拍攝之影像,其中附圖2A代表的矽模仁圖案規格為:軌距週期P=圖樣週期D=800 nm,圖樣寬度d1=圖樣長度d2=400 nm;附圖2B代表的矽模仁圖案規格為:軌距週期P=圖樣週期D=600 nm,圖樣寬度d1=圖樣長度d2=300 nm。Scanning electron microscope (SEM) was used to observe the surface of the enamel containing inorganic photoresist before the dry etching (corresponding to the 11th chart), and it was found that the formed holes were flat and neat in shape (see Fig. 1). 12A and 12B are the results of surface analysis using an atomic force microscope (AFM) after the exposure and development, before the dry etching, the inorganic mold containing the inorganic photoresist. Among them, the pattern of the die model represented by Fig. 12A is: gauge period P = pattern period D = 800 nm, pattern width d1 = pattern length d2 = 350 nm; Figure 12B represents the model of the die model: rail The interval period P = pattern period D = 600 nm, the pattern width d1 = pattern length d2 = 250 nm. 2A and 2B are images taken by scanning electron microscopy (SEM) for the enamel mold containing inorganic photoresist before the dry etching after exposure and development, wherein the pattern of the enamel mold represented by FIG. 2A is: The gauge period P = pattern period D = 800 nm, pattern width d1 = pattern length d2 = 400 nm; Figure 2B represents the pattern of the 矽 model: rail period P = pattern period D = 600 nm, pattern width d1 = pattern length d2 = 300 nm.
第13A-13F圖為使用矽模仁壓印蝕刻以製作圖案化基板的流程示意圖。在選取之基板(第13A圖)131上形成一抗蝕性薄膜(第13B圖)如光阻132,基板131例如是藍寶石基板。並將以上述製作之具有特殊圖案的圖案化基材(矽模仁)101’壓印在光阻132上(第13C圖),之後脫模和移除圖案外的光阻以定義出所需要的光阻圖形132’(第13D圖),再根據光阻圖形132’對基板131進行乾或濕蝕刻(第13E圖),最後去除光阻圖形132’,而可完成圖案化之基板131’(第13F圖)。附圖3A和3B為以前述方式製作出之矽模仁壓印之具備奈米圖案藍寶石基板的AFM量測圖及實品圖,其中附圖3A和3B分別是由圖樣週期為800 nm和600 nm之矽模仁壓印而成。13A-13F are schematic flow diagrams of using a stencil embossing etch to make a patterned substrate. A resist film (Fig. 13B) such as a photoresist 132 is formed on the selected substrate (Fig. 13A) 131, and the substrate 131 is, for example, a sapphire substrate. The patterned substrate (the mold core 101) having the special pattern prepared as described above is imprinted on the photoresist 132 (Fig. 13C), and then the photoresist outside the pattern is demolded and removed to define the desired The photoresist pattern 132' (Fig. 13D) is further dry or wet etched according to the photoresist pattern 132' (Fig. 13E), and finally the photoresist pattern 132' is removed, and the patterned substrate 131' can be completed ( Figure 13F). 3A and 3B are AFM measurement diagrams and actual drawings of a nano-patterned sapphire substrate imprinted by the above-described method, wherein FIGS. 3A and 3B are patterned by a period of 800 nm and 600, respectively. The mold of nm is embossed.
表1為圖樣週期為800 nm和600 nm和不同工作週期(Duty Cycle)之矽模仁,所壓印製得的基板圖案之高度值。Table 1 shows the height values of the imprinted substrate patterns for the mold cores of the pattern period of 800 nm and 600 nm and different duty cycles (Duty Cycle).
當然,除了如第13A-13F圖所示以矽模仁壓印蝕刻以製作圖案化基板的方式之外,也可以如第14A-14F圖所示直接以LBR於基板的塗層(如具蝕刻阻擋特性的感光塗層,或是蝕刻阻擋層和感光塗層所形成之複合層)上刻寫出奈米級圖樣結構,再以蝕刻方式於基板上定義出圖型結構。在基板141(例如是藍寶石基板)上形成一塗層如光阻142。並如第14C圖所示,將基板141直接設置在刻版機(LBR)的旋轉基座上,使刻版機之雷射源對光阻142進行曝光(包括曝光區142a和非曝光區142b)。曝光顯影後,基板141上形成對應非曝光區142b之塗層圖案,如第14D圖所示。再以此光阻圖案為遮罩對基板141進行蝕刻,如第14E圖所示。完成蝕刻後,除去光阻圖案,以形成如第14F圖所示之圖案化基板141’。Of course, in addition to the embossing etching of the enamel mold to form the patterned substrate as shown in FIGS. 13A-13F, it is also possible to directly apply the LBR to the substrate as shown in FIGS. 14A-14F (eg, with etching). A photosensitive coating layer having a barrier property or a composite layer formed by etching the barrier layer and the photosensitive coating layer is formed with a nano-pattern structure, and a pattern structure is defined on the substrate by etching. A coating such as a photoresist 142 is formed on the substrate 141 (for example, a sapphire substrate). And as shown in FIG. 14C, the substrate 141 is directly disposed on the rotating base of the engraving machine (LBR), and the laser source of the engraving machine exposes the photoresist 142 (including the exposed area 142a and the non-exposed area 142b). ). After exposure development, a coating pattern corresponding to the non-exposed regions 142b is formed on the substrate 141 as shown in Fig. 14D. The substrate 141 is etched by using the photoresist pattern as a mask, as shown in FIG. 14E. After the etching is completed, the photoresist pattern is removed to form a patterned substrate 141' as shown in Fig. 14F.
以第14F圖所示之圖案化基板141’為例,其工作週期(Duty Cycle)可定義為a/b。一實施例中,工作週期0.6-0.8時,高度150 nm-200 nm,同一軌距相鄰兩點距離550 nm-650 nm。一實施例中,工作週期0.4-0.6時,高度200 nm-350 nm,同一軌距相鄰兩點距離750 nm-850 nm。當然本發明並不以此為限。Taking the patterned substrate 141' shown in Fig. 14F as an example, the duty cycle (Duty Cycle) can be defined as a/b. In one embodiment, when the duty cycle is 0.6-0.8, the height is 150 nm-200 nm, and the distance between adjacent two points of the same gauge is 550 nm-650 nm. In one embodiment, when the duty cycle is 0.4-0.6, the height is 200 nm-350 nm, and the distance between adjacent two points of the same gauge is 750 nm-850 nm. Of course, the invention is not limited thereto.
另外,雖然如圖案化基板131’和141’所示之圖案為梯形凸塊,但並不限制於此,也可以是其他如圓錐圖案或半球狀圖案。Further, although the patterns shown as the patterned substrates 131' and 141' are trapezoidal bumps, they are not limited thereto, and may be other patterns such as a conical pattern or a hemispherical pattern.
不論是使用奈米轉印技術製作出圖案化基板,或是直接在基板上以LBR方式定義出圖案,都可以作為應用之光電元件(如LED)之圖案化基板。請參照第15A-15C圖,其繪示具圖案化基板之LED元件之製作流程示意圖。首先如第15A圖所示,提供一圖案化基板151’,其第一表面151a上具有一圖樣化結構。Whether it is to use a nano-transfer technology to create a patterned substrate, or to define a pattern directly on the substrate in LBR mode, it can be used as a patterned substrate for an applied photovoltaic element (such as an LED). Please refer to FIG. 15A-15C, which is a schematic diagram showing the manufacturing process of the LED component with the patterned substrate. First, as shown in Fig. 15A, a patterned substrate 151' having a patterned structure on the first surface 151a is provided.
一實施例中,圖樣化結構可包括複數個奈米圖案,係近該基板之圓心0逐漸向外呈螺旋狀分佈排列。且該些奈米圖案可呈週期性或非週期性分佈。一實施例中,該些奈米圖案係具有圓形截面或橢圓形截面。連續兩奈米圖案之距離尺寸例如約為100 nm-4000 nm,各奈米圖案之直徑、或寬度及長度尺寸例如約為50 nm-3000 nm,奈米圖案之高度尺寸例如約為200 nm-4000 nm。In one embodiment, the patterned structure may include a plurality of nano patterns arranged in a spiral shape near the center 0 of the substrate. And the nano patterns may be periodically or non-periodically distributed. In one embodiment, the nanopatterns have a circular cross section or an elliptical cross section. The distance between two consecutive nanometer patterns is, for example, about 100 nm to 4000 nm, and the diameter, or width and length of each nano pattern is, for example, about 50 nm to 3000 nm, and the height of the nano pattern is, for example, about 200 nm. 4000 nm.
接著,如第15B圖所示,形成一第一磊晶層153於圖案化基板151’上且覆蓋該圖樣化結構,並形成一第二磊晶層154於第一磊晶層153上,且第二磊晶層154具一第一導電性;之後形成一主動磊晶層155於第二磊晶層154上;以及形成一第三磊晶層156於主動磊晶層155上,且第三磊晶層156具一第二導電性。之後,如第15C圖所示,分別設置一第一電極157和一第二電極158與第二磊晶層154和第三磊晶層156連接。Then, as shown in FIG. 15B, a first epitaxial layer 153 is formed on the patterned substrate 151' and covers the patterned structure, and a second epitaxial layer 154 is formed on the first epitaxial layer 153, and The second epitaxial layer 154 has a first conductivity; an active epitaxial layer 155 is formed on the second epitaxial layer 154; and a third epitaxial layer 156 is formed on the active epitaxial layer 155, and a third The epitaxial layer 156 has a second conductivity. Thereafter, as shown in FIG. 15C, a first electrode 157 and a second electrode 158 are respectively connected to the second epitaxial layer 154 and the third epitaxial layer 156.
可應用之光電元件例如是發光二極體、太陽能電池、光檢測器、或光二極體。以發光二極體為例,第15C圖中的主動磊晶層155例如是一發光層,第二磊晶層154和第三磊晶層156係分別為不同導電性之一N型材料層和一P型材料層。而一實施例中發光層(主動磊晶層155)與圖案化基板151’之距離T範圍例如是大於等於3 μm。Photoelectric elements that can be used are, for example, light-emitting diodes, solar cells, photodetectors, or photodiodes. Taking the light-emitting diode as an example, the active epitaxial layer 155 in FIG. 15C is, for example, a light-emitting layer, and the second epitaxial layer 154 and the third epitaxial layer 156 are respectively one of different conductivity N-type material layers and A P-type material layer. In the embodiment, the distance T between the light-emitting layer (active epitaxial layer 155) and the patterned substrate 151' is, for example, 3 μm or more.
第16圖為LED元件成長於實施例之圖案化基板(nPSS),圖樣週期為600 nm,和成長於傳統平板基板(CSS)之電流與出光功率之曲線圖。表2係列出第16圖中當電流為20mA、100mA和200mA時,LED元件具有實施例之圖案化基板(nPSS)與具有傳統平板基板相較,其出光功率(Output Power)增加的百分比。其中,曲線npss(600 nm-1)和npss(600 nm-2)所代表之圖案規格請參見表1。Fig. 16 is a graph showing the growth of the LED element in the patterned substrate (nPSS) of the embodiment, the pattern period is 600 nm, and the current and the output power of the conventional flat substrate (CSS). Table 2 series shows the percentage of the increase in the output power of the patterned component substrate (nPSS) of the embodiment when the current is 20 mA, 100 mA, and 200 mA, compared with the conventional flat substrate. For the pattern specifications represented by the curves npss (600 nm-1) and npss (600 nm-2), see Table 1.
自第16圖之曲線走勢和表2之相關數據,可清楚得知:實施例所製作之奈米級圖案化基板確實可用以增加LED發光效率。From the curve trend of Fig. 16 and the related data of Table 2, it is clear that the nano-patterned substrate produced in the examples can be used to increase the luminous efficiency of the LED.
第17圖為LED元件成長於實施例之圖案化基板(nPSS),圖樣週期為800 nm,和成長於傳統平板基板(CSS)之電流與出光功率之曲線圖。表3係列出第17圖中當電流為20mA、100mA和200mA時,LED元件具有實施例之圖案化基板(nPSS)與具有傳統平板基板相較,其出光功率增加的百分比。其中,曲線npss(800 nm-1)、npss(800 nm-2)、npss(800 nm-3)和npss(800 nm-4)所代表之圖案規格請參見表1。Fig. 17 is a graph showing the growth of the LED element in the patterned substrate (nPSS) of the embodiment, the pattern period is 800 nm, and the current and the output power of the conventional flat substrate (CSS). Table 3 series shows the percentage of the output power of the LED element having the patterned substrate (nPSS) of the embodiment as compared with the conventional flat substrate when the current is 20 mA, 100 mA, and 200 mA. For the pattern specifications represented by the curves npss (800 nm-1), npss (800 nm-2), npss (800 nm-3), and npss (800 nm-4), see Table 1.
自第17圖之曲線走勢和表3之相關數據,可清楚得知:實施例所製作之奈米級圖案化基板確實可用以增加LED發光效率。From the curve trend of Fig. 17 and the related data of Table 3, it is clear that the nano-patterned substrate produced in the examples can be used to increase the luminous efficiency of the LED.
第18圖為LED元件成長於實施例之圖案化基板npss(800 nm-1)、npss(600 nm-1),和成長於傳統平板基板(CSS)之電流與出光功率之曲線比較圖。表4係列出第18圖中當電流為20mA、100mA和200mA時,LED元件具有圖案化基板npss(800 nm-1)、npss(600 nm-1)與具有傳統平板基板相較,其出光功率增加的百分比。Fig. 18 is a graph comparing the current and the output power of the LED substrate grown in the patterned substrate npss (800 nm-1), npss (600 nm-1), and the conventional flat substrate (CSS). In Table 4, when the currents are 20 mA, 100 mA, and 200 mA in Figure 18, the LED components have patterned substrates npss (800 nm-1), npss (600 nm-1) compared to conventional flat substrates, and their output power is compared. The percentage increase.
自第18圖之曲線走勢和表4之相關數據,可清楚看出:實施例所製作之奈米級圖案化基板,不論是npss(800 nm-1)或npss(600 nm-1),都確實可用以增加LED發光效率。其中,當電流為200mA時,圖案化基板npss(800 nm-1)和npss(600 nm-1)之出光效率分別高達約35%和42%,From the trend of the curve in Figure 18 and the relevant data in Table 4, it can be clearly seen that the nano-patterned substrate produced in the examples, whether npss (800 nm-1) or npss (600 nm-1), It can be used to increase the luminous efficiency of LEDs. Among them, when the current is 200 mA, the light-emitting efficiencies of the patterned substrates npss (800 nm-1) and npss (600 nm-1) are as high as about 35% and 42%, respectively.
上述實施例可應用於具抗反射層之LED元件和太陽能(Solar Cell)元件。第19A、19B圖係分別繪示兩種具圖案化基板之覆晶型LED元件。圖中箭頭代表出光方向。以覆晶型(Flip-Chip)封裝製程接合於矽基板結構上之LED元件和太陽能元件,於元件原基板面所製作之具奈米級結構,能提供一具備結構化圖樣表面,可以提高LED元件之光萃取效率,或提昇太陽能元件之光入射比例。The above embodiments are applicable to LED elements and solar cell elements having an anti-reflection layer. 19A and 19B show two flip-chip type LED elements with patterned substrates, respectively. The arrows in the figure represent the direction of light. The LED component and the solar component bonded to the 矽 substrate structure by a Flip-Chip packaging process, and the nano-scale structure fabricated on the original substrate surface of the component can provide a structured pattern surface and can improve the LED The light extraction efficiency of the component, or the light incident ratio of the solar component.
如第19A圖所示,與第15C圖類似,LED元件中的圖樣化結構係對應於基板的第一表面151a,以形成圖案化基板151’。因此第一磊晶層153係形成於基板之第一表面151a上並覆蓋該圖樣化結構。LED元件並接合一封裝結構161上。As shown in Fig. 19A, similar to Fig. 15C, the patterned structure in the LED element corresponds to the first surface 151a of the substrate to form the patterned substrate 151'. Therefore, the first epitaxial layer 153 is formed on the first surface 151a of the substrate and covers the patterned structure. The LED elements are bonded to a package structure 161.
如第19B圖所示,基板具有第一表面152a和相對之第二表面152b,第一磊晶層153同樣形成於第一表面152a上,而圖案化基板152’上的圖樣化結構則位於第二表面152b上。As shown in FIG. 19B, the substrate has a first surface 152a and an opposite second surface 152b. The first epitaxial layer 153 is also formed on the first surface 152a, and the patterned structure on the patterned substrate 152' is located. On the second surface 152b.
前述實施例一是應用級圖案化基板於LED元件中,而實施例二則是以如前述製程形成奈米轉印矽模仁於LED元件中之表面壓印和蝕刻出結構粗糙面,或者是直接於LED元件中之表面刻寫出結構粗糙面。實施例二同樣可提升了LED元件的出光效率。In the first embodiment, the application level patterned substrate is used in the LED component, and in the second embodiment, the surface of the LED component is imprinted and etched by the surface of the LED component as described above, or The structural roughness is written directly on the surface of the LED component. The second embodiment can also improve the light extraction efficiency of the LED element.
請參照第20A-20G圖,其繪示使用奈米轉印技術製作出具粗糙表面之LED元件之流程示意圖。首先,如第20A圖所示,提供一LED結構,依序包括基板191、一第一磊晶層193、具第一導電性之一第二磊晶層194、一主動磊晶層195、具第二導電性之一第三磊晶層196。接著,如第20B圖所示,於第三磊晶層196上形成一抗蝕性薄膜如光阻197,並如第20C圖所示將如上述製作之具有特殊圖案的模仁131’壓印在光阻197上;之後脫模和移除圖案外的光阻以定義出所需要的光阻圖形197’,如第20D圖所示。再根據光阻圖形197’對第三磊晶層196進行壓印和蝕刻(第20E圖),並去除光阻圖形197’,以形成圖案化之第三磊晶層196’,如第20F圖所示。之後,如第20G圖所示,分別設置一第一電極198和一第二電極199與第二磊晶層194和圖案化之第三磊晶層196’連接,完成LED元件之製作。Please refer to FIG. 20A-20G for a schematic diagram of a process for fabricating a rough surfaced LED component using a nano transfer technique. First, as shown in FIG. 20A, an LED structure is provided, including a substrate 191, a first epitaxial layer 193, a second epitaxial layer 194 having a first conductivity, an active epitaxial layer 195, and a device. The third conductivity layer is a third epitaxial layer 196. Next, as shown in FIG. 20B, a resist film such as photoresist 197 is formed on the third epitaxial layer 196, and the mold core 131' having a special pattern as described above is imprinted as shown in FIG. 20C. On photoresist 197; the photoresist outside the pattern is then demolded and removed to define the desired photoresist pattern 197', as shown in Figure 20D. The third epitaxial layer 196 is then embossed and etched according to the photoresist pattern 197' (Fig. 20E), and the photoresist pattern 197' is removed to form a patterned third epitaxial layer 196', as shown in Fig. 20F. Shown. Then, as shown in FIG. 20G, a first electrode 198 and a second electrode 199 are respectively connected to the second epitaxial layer 194 and the patterned third epitaxial layer 196' to complete the fabrication of the LED element.
第21A-21G圖,其繪示直接使用刻版機(LBR)於LED元件之表面刻寫結構粗糙面之流程示意圖。同樣的,提供如第21A圖所示之一LED結構(第21A圖)。於第三磊晶層196上形成光阻197(第21B圖),並將LED結構直接設置在刻版機(LBR)的旋轉基座上,使刻版機之雷射源對光阻197進行曝光,顯影後定義出光阻圖形197’(第21C圖)。之後可使光阻圖形197’薄化,以達到所需高度之光阻圖形197”(第21D圖)。再根據光阻圖形197”對第三磊晶層196進行蝕刻(第21E圖),並去除光阻圖形197”,以形成圖案化之第三磊晶層196’(第21F圖)。之後,如第21G圖所示,分別設置一第一電極198和一第二電極199與第二磊晶層194和圖案化之第三磊晶層196’連接,完成LED元件之製作。21A-21G, which is a schematic flow diagram of directly writing a rough surface of a structure on a surface of an LED component using a stenciling machine (LBR). Similarly, an LED structure as shown in Fig. 21A is provided (Fig. 21A). A photoresist 197 is formed on the third epitaxial layer 196 (FIG. 21B), and the LED structure is directly disposed on the rotating base of the engraving machine (LBR), so that the laser source of the engraving machine is applied to the photoresist 197. After exposure, the photoresist pattern 197' is defined after development (Fig. 21C). The photoresist pattern 197' can then be thinned to achieve the desired height of the photoresist pattern 197" (Fig. 21D). The third epitaxial layer 196 is then etched according to the photoresist pattern 197" (Fig. 21E), And removing the photoresist pattern 197" to form a patterned third epitaxial layer 196' (FIG. 21F). Thereafter, as shown in FIG. 21G, a first electrode 198 and a second electrode 199 are respectively disposed. The two epitaxial layers 194 are connected to the patterned third epitaxial layer 196' to complete the fabrication of the LED elements.
綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
10、20、81、131、141、191...基板10, 20, 81, 131, 141, 191. . . Substrate
10a...側壁10a. . . Side wall
12...發光層12. . . Luminous layer
11、13...磊晶層11,13. . . Epitaxial layer
130...逃逸角錐130. . . Escape angle cone
20’...圖案化之基板20’. . . Patterned substrate
21、82、92、102、132、142、197...光阻21, 82, 92, 102, 132, 142, 197. . . Photoresist
82a、92a、102a、142a...曝光區82a, 92a, 102a, 142a. . . Exposure area
82b、92b、102b、142b...非曝光區82b, 92b, 102b, 142b. . . Non-exposed area
22...圖案光阻twenty two. . . Pattern photoresist
23...模仁twenty three. . . Mold
31、83、93、103...雷射源31, 83, 93, 103. . . Laser source
32...電光調制器32. . . Electro-optic modulator
34...聲光調變器34. . . Acousto-optic modulator
35...自動對焦系統35. . . Autofocus system
36...旋轉基座36. . . Rotating base
40、101...基材40, 101. . . Substrate
41...點狀結構41. . . Dot structure
511、512、513、515、524、525、534、535...奈米點狀圖案511, 512, 513, 515, 524, 525, 534, 535. . . Nano dot pattern
70...大面積模仁70. . . Large area
72...小面積模仁72. . . Small area
81’...矽模仁81’. . .矽模仁
91...金屬基板91. . . Metal substrate
95...金屬層95. . . Metal layer
95’、96...金屬模仁95’, 96. . . Metal mold
101’...圖案化基材101’. . . Patterned substrate
132’、197’、197”...光阻圖形132', 197', 197"... photoresist pattern
131’、141’、151’...圖案化基板131', 141', 151'. . . Patterned substrate
151a、152a...第一表面151a, 152a. . . First surface
152b...第二表面152b. . . Second surface
153、193...第一磊晶層153, 193. . . First epitaxial layer
154、194...第二磊晶層154, 194. . . Second epitaxial layer
155、195...主動磊晶層155, 195. . . Active epitaxial layer
156、196...第三磊晶層156, 196. . . Third epitaxial layer
196’...圖案化之第三磊晶層196’. . . Patterned third epitaxial layer
157、198...第一電極157, 198. . . First electrode
158、199...第二電極158, 199. . . Second electrode
161...封裝結構161. . . Package structure
O...基板圓心O. . . Center of the substrate
P...軌距週期P. . . Gauge period
r...LBR刻版機旋轉半徑r. . . LBR engraving machine radius of rotation
θ...LBR刻板機之偏移角度θ. . . Offset angle of LBR stereotype machine
D...圖樣週期D. . . Pattern cycle
D_2、D_1...雷射關閉時間D_2, D_1. . . Laser off time
d1、d1_1...圖樣寬度D1, d1_1. . . Pattern width
d2、d2_1、d2_2、d2_3...圖樣長度D2, d2_1, d2_2, d2_3. . . Pattern length
T...主動磊晶層與圖案化基板之距離T. . . Distance between active epitaxial layer and patterned substrate
第1圖為圖案化藍寶石基板改變光行徑方向之示意圖。Fig. 1 is a schematic view showing the direction of the light path of the patterned sapphire substrate.
第2A-2G圖為使用奈米轉印技術製作圖案化基板的流程示意圖。2A-2G is a flow chart showing the production of a patterned substrate using a nano transfer technique.
第3圖為一實施例之以刻版機製作圖樣化結構之示意圖。Fig. 3 is a schematic view showing the construction of a patterned structure by a stenciling machine according to an embodiment.
第4A圖為第3圖中基材於旋轉基座上雷射曝寫之局部示意圖。Figure 4A is a partial schematic view of the laser exposure of the substrate on the rotating pedestal in Figure 3.
第4B圖為實施例之一種具圖樣化結構之基材之示意圖。Figure 4B is a schematic view of a substrate having a patterned structure of the embodiment.
第5A圖係為雷射開關不同之工作週期與形成圖案之示意圖。Figure 5A is a schematic diagram of different duty cycles and patterning of the laser switch.
第5B圖係為形成圖案之局部示意圖。Figure 5B is a partial schematic view of the formation of a pattern.
第6圖為實施例之一種螺旋狀分佈排列的圖樣化結構之示意圖。Fig. 6 is a schematic view showing a spirally arranged patterning structure of the embodiment.
第7圖係繪示將大面積模仁切割出較小面積之模仁的示意圖。Figure 7 is a schematic view showing a large area of the mold core cut out of a smaller area of the mold.
第8A圖繪示應用實施例以製作出一種具週期性之奈米點狀圖案。Figure 8A illustrates an application embodiment to produce a periodic nano dot pattern.
第8B圖繪示應用實施例以製作出另一種具週期性之奈米點狀圖案。Figure 8B illustrates an application embodiment to create another periodic nano dot pattern.
第8C圖繪示應用實施例以製作出一種不具週期性之奈米點狀圖案。Figure 8C illustrates an application embodiment to produce a nano dot pattern that is non-periodic.
第9A-9E圖為實施例之一種矽材質轉印模仁之製作方法流程圖。9A-9E is a flow chart of a method for manufacturing a enamel material transfer mold.
第10A-10F圖為實施例之一種金屬材質轉印模仁之製作方法流程圖。10A-10F is a flow chart of a method for manufacturing a metal material transfer mold in the embodiment.
第11A-11F圖,其繪示依照實施例一之奈米轉印矽模仁之製作方法流程圖。11A-11F are a flow chart showing a method for fabricating a nano-transfer enamel according to the first embodiment.
第12A和12B圖為對於曝光顯影後,未乾蝕刻前含無機光阻的矽模仁,使用原子力顯微鏡進行表面分析之結果。Fig. 12A and Fig. 12B show the results of surface analysis using an atomic force microscope after the exposure and development, before the dry etching, the inorganic mold containing the inorganic photoresist.
第13A-13F圖為使用矽模仁壓印蝕刻以製作圖案化基板的流程示意圖。13A-13F are schematic flow diagrams of using a stencil embossing etch to make a patterned substrate.
第14A-14F圖為直接使用刻版機(LBR)於基板的塗層上刻寫奈米級圖樣結構之流程示意圖。Figures 14A-14F are schematic diagrams showing the flow of a nanoscale pattern structure on a coating of a substrate using a direct engraving machine (LBR).
第15A-15C圖繪示具圖案化基板之LED元件之製作流程示意圖。15A-15C are schematic diagrams showing the manufacturing process of the LED component with the patterned substrate.
第16圖為LED元件成長於實施例之圖案化基板(nPSS),圖樣週期為600 nm,和成長於傳統平板基板(CSS)之電流與出光功率之曲線圖。Fig. 16 is a graph showing the growth of the LED element in the patterned substrate (nPSS) of the embodiment, the pattern period is 600 nm, and the current and the output power of the conventional flat substrate (CSS).
第17圖為LED元件成長於實施例之圖案化基板(nPSS),圖樣週期為800 nm,和成長於傳統平板基板(CSS)之電流與出光功率之曲線圖。Fig. 17 is a graph showing the growth of the LED element in the patterned substrate (nPSS) of the embodiment, the pattern period is 800 nm, and the current and the output power of the conventional flat substrate (CSS).
第18圖為LED元件成長於實施例之圖案化基板npss(800 nm-1)、npss(600 nm-1),和成長於傳統平板基板(CSS)之電流與出光功率之曲線比較圖。Fig. 18 is a graph comparing the current and the output power of the LED substrate grown in the patterned substrate npss (800 nm-1), npss (600 nm-1), and the conventional flat substrate (CSS).
第19A、19B圖係分別繪示兩種具圖案化基板之覆晶型LED元件。19A and 19B show two flip-chip type LED elements with patterned substrates, respectively.
第20A-20G圖繪示使用奈米轉印技術製作出具粗糙表面之LED元件之流程示意圖。20A-20G are schematic diagrams showing the process of fabricating a rough surfaced LED component using a nano transfer technique.
第21A-21G圖繪示直接使用刻版機(LBR)於LED元件之表面刻寫結構粗糙面之流程示意圖。21A-21G is a flow chart showing the rough surface of the surface of the LED element directly written by the engraving machine (LBR).
P...軌距週期P. . . Gauge period
D...圖樣週期D. . . Pattern cycle
d1...圖樣寬度D1. . . Pattern width
d2...圖樣長度D2. . . Pattern length
Claims (31)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101113669A TWI590491B (en) | 2012-04-17 | 2012-04-17 | Method for producing nano-pattern, patterned stamp and optoelectronics device with nano-pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101113669A TWI590491B (en) | 2012-04-17 | 2012-04-17 | Method for producing nano-pattern, patterned stamp and optoelectronics device with nano-pattern |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201344960A TW201344960A (en) | 2013-11-01 |
TWI590491B true TWI590491B (en) | 2017-07-01 |
Family
ID=49990335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101113669A TWI590491B (en) | 2012-04-17 | 2012-04-17 | Method for producing nano-pattern, patterned stamp and optoelectronics device with nano-pattern |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI590491B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220197134A1 (en) * | 2020-12-23 | 2022-06-23 | Canon Kabushiki Kaisha | System and Method of Determining Shaping Parameters Based on Contact Line Motion |
CN115216177B (en) * | 2022-05-25 | 2023-04-28 | 湖南大学 | A modified photosensitive ink-assisted large-area metal patterning material and its preparation method |
JP2024042807A (en) * | 2022-09-16 | 2024-03-29 | キオクシア株式会社 | Laser processing equipment, laser peeling method, and semiconductor device manufacturing method |
TWI875671B (en) * | 2024-10-21 | 2025-03-01 | 聯華電子股份有限公司 | Patterning method |
-
2012
- 2012-04-17 TW TW101113669A patent/TWI590491B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201344960A (en) | 2013-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qiao et al. | Toward scalable flexible nanomanufacturing for photonic structures and devices | |
JP5392793B2 (en) | Mold for optical element having antireflection structure | |
US20190079013A1 (en) | Methods for creating large-area complex nanopatterns for nanoimprint molds | |
US9782917B2 (en) | Cylindrical master mold and method of fabrication | |
CN104181769B (en) | A kind of preparation method of volcano shape of the mouth as one speaks graphical sapphire substrate | |
CN101356454A (en) | Optical element, manufacturing method of original disk for optical element manufacturing, and photoelectric conversion device | |
JP6167609B2 (en) | Nanoimprint template, pattern formation method using nanoimprint template, and method for producing nanoimprint template | |
TWI590491B (en) | Method for producing nano-pattern, patterned stamp and optoelectronics device with nano-pattern | |
Huang et al. | A review of the scalable nano-manufacturing technology for flexible devices | |
JP5020251B2 (en) | Method for forming a support on which a shaped body such as a lithography mask is mounted | |
US20090162799A1 (en) | Method and system for fabricating three-dimensional structures with sub-micron and micron features | |
CN106226846A (en) | A kind of preparation method of force-responsive photon crystal material based on reversion imprint nano forming technique | |
JP5774536B2 (en) | Near-field exposure mask and pattern forming method | |
CN103730339B (en) | The manufacture method of micro/nano-scale figure stricture of vagina impressing mould | |
CN101246307A (en) | Method for manufacturing imprint template by using semiconductor process and imprint template manufactured by same | |
JP2009531734A (en) | Nanopattern forming method and substrate having pattern formed thereby | |
Kang et al. | Photopatterning via photofluidization of azobenzene polymers | |
KR100884811B1 (en) | Manufacturing method of large area stamp using imprint lithography | |
CN104698742A (en) | Manufacturing method of nano patterned sapphire substrate (PSS) structure | |
KR100881233B1 (en) | Stamp for imprint lithography and imprint lithography method using same | |
CN116300304B (en) | Mask plate suitable for UV-NIL technology, and preparation method and application thereof | |
KR101385070B1 (en) | A method for preparing pattern in large scale using laser interference lithography, a method for transferring the pattern onto non-uniform surface and an article transferred pattern using the same | |
Si et al. | Image inverting, topography and feature size manipulation using organic/inorganic bi-layer lift-off for nanoimprint template | |
CN114296168B (en) | A method of fabricating variable-period narrow gratings using wide grating nanoimprint templates | |
KR20050099888A (en) | Nano wire manufacturing method |