[go: up one dir, main page]

TWI586027B - Fuel cell stack unit - Google Patents

Fuel cell stack unit Download PDF

Info

Publication number
TWI586027B
TWI586027B TW105132710A TW105132710A TWI586027B TW I586027 B TWI586027 B TW I586027B TW 105132710 A TW105132710 A TW 105132710A TW 105132710 A TW105132710 A TW 105132710A TW I586027 B TWI586027 B TW I586027B
Authority
TW
Taiwan
Prior art keywords
fluid
oxygen
fuel
flow
anode
Prior art date
Application number
TW105132710A
Other languages
Chinese (zh)
Other versions
TW201814949A (en
Inventor
王錫福
盧錫全
Original Assignee
國立臺北科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺北科技大學 filed Critical 國立臺北科技大學
Priority to TW105132710A priority Critical patent/TWI586027B/en
Application granted granted Critical
Publication of TWI586027B publication Critical patent/TWI586027B/en
Publication of TW201814949A publication Critical patent/TW201814949A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

燃料電池堆單元Fuel cell stack unit

本發明是有關於一種燃料電池堆(fuel cell stack)單元,特別是指一種平板型固態氧化物燃料電池堆單元。The present invention relates to a fuel cell stack unit, and more particularly to a flat type solid oxide fuel cell stack unit.

燃料電池可將燃料中的化學能轉換成電能,無需充電或替換即可持續提供穩定電力,其中平板型固態氧化物燃料電池(solid oxide fuel cell, SOFC)由於可簡單透過堆疊串接燃料電池堆單元而提高產出的電能,並具有長期穩定性及低成本的優點,所以在各應用領域受到青睞。The fuel cell converts the chemical energy in the fuel into electrical energy, which can provide stable power without charging or replacing. The solid oxide fuel cell (SOFC) can be simply connected to the fuel cell stack by stacking. The unit improves the output of electric energy and has the advantages of long-term stability and low cost, so it is favored in various application fields.

然而,現有燃料電池堆單元在封裝時往往會因為密封材料變形而影響燃料流動,或是密封材料容易因為與燃料接觸而發生作用或溶出,進而影響SOFC的發電效能及穩定性。此外,現有燃料電池堆單元的功率密度、燃料利用率、發電效率亦有提升空間。However, the existing fuel cell stack unit tends to affect the fuel flow due to deformation of the sealing material during packaging, or the sealing material is likely to act or dissolve due to contact with the fuel, thereby affecting the power generation efficiency and stability of the SOFC. In addition, the power density, fuel utilization rate, and power generation efficiency of the existing fuel cell stack unit also have room for improvement.

因此,本發明之目的,即在提供一種燃料電池堆單元,可以克服上述先前技術的缺點。Accordingly, it is an object of the present invention to provide a fuel cell stack unit that overcomes the above-discussed shortcomings of the prior art.

於是,本發明燃料電池堆單元包含二雙極板(bipolar plates)、一膜電極組(membrane electrode assembly, MEA)、一陽極分隔模組及一陰極分隔模組。每一雙極板包括一陽極側及一與該陽極側相對設置的陰極側。該陽極側具有一組流體燃料進口流道(inlet channels)、一組流體燃料出口流道(outlet channels)及一連通該組流體燃料進口流道與該組流體燃料出口流道的流體燃料流場(flow field)。該陰極側具有一組含氧流體進口流道、一組含氧流體出口流道及一連接該組含氧流體進口流道與該組含氧流體出口流道的含氧流體流場。該膜電極組設置於該二雙極板之間,包括:一與該流體燃料流場對應設置的陽極金屬網、一與該含氧流體流場對應設置的陰極金屬網及一設置於該陽極金屬網及該陰極金屬網之間的電解質膜(electrolyte membrane),該陽極金屬網的邊界是由該電解質膜、該流體燃料流場與一陽極密封區(sealing region)共同圍繞界定,該陰極金屬網的邊界是由該電解質膜、該含氧流體流場與一陰極密封區共同圍繞界定。該陽極分隔模組設置於該雙極板的該陽極側,以密封地分隔該組流體燃料進口流道與該陽極密封區,並密封地分隔該組流體燃料出口流道與該陽極密封區。該陰極分隔模組設置於該雙極板的該陰極側,以密封地分隔該組含氧流體進口流道與該陰極密封區,並密封地分隔該組含氧流體出口流道與該陰極密封區。Therefore, the fuel cell stack unit of the present invention comprises two bipolar plates, a membrane electrode assembly (MEA), an anode separation module and a cathode separation module. Each bipolar plate includes an anode side and a cathode side disposed opposite the anode side. The anode side has a set of fluid fuel inlet channels, a set of fluid fuel outlet channels, and a fluid fuel flow field communicating the set of fluid fuel inlet channels and the set of fluid fuel outlet channels (flow field). The cathode side has a set of oxygen-containing fluid inlet flow passages, a set of oxygen-containing fluid outlet flow passages, and an oxygen-containing fluid flow field connecting the set of oxygen-containing fluid inlet flow passages and the set of oxygen-containing fluid outlet flow passages. The membrane electrode assembly is disposed between the two bipolar plates, and includes: an anode metal mesh disposed corresponding to the fluid fuel flow field, a cathode metal mesh disposed corresponding to the oxygen-containing fluid flow field, and a cathode metal mesh disposed at the anode An electrolyte membrane between the metal mesh and the cathode metal mesh, the boundary of the anode metal mesh being defined by the electrolyte membrane, the fluid fuel flow field and an anode sealing region, the cathode metal The boundary of the mesh is defined by the electrolyte membrane, the oxygen-containing fluid flow field and a cathode sealing zone. The anode separation module is disposed on the anode side of the bipolar plate to sealingly separate the set of fluid fuel inlet flow channels from the anode sealing zone and sealingly separate the set of fluid fuel outlet flow channels from the anode sealing zone. The cathode separation module is disposed on the cathode side of the bipolar plate to sealingly separate the set of oxygen-containing fluid inlet flow channels from the cathode sealing zone, and sealingly separates the set of oxygen-containing fluid outlet flow channels from the cathode seal Area.

本發明之功效在於:該燃料電池堆單元可使該等密封區在封裝時不致變形而影響流體的流動,且可避免流體與該等密封區的材料發生作用或使其溶出。The invention has the effect that the fuel cell stack unit can prevent the sealing regions from being deformed during packaging to affect the flow of the fluid, and can prevent the fluid from interacting with or dissolving the materials of the sealing regions.

以下將就本發明內容進行詳細說明:The contents of the present invention will be described in detail below:

較佳地,該陽極分隔模組是可拆離地嵌設於該組流體燃料進口流道及該組流體燃料出口流道,該陰極分隔模組是可拆離地嵌設於該組含氧流體進口流道及該組含氧流體出口流道。Preferably, the anode separation module is detachably embedded in the set of fluid fuel inlet flow channels and the set of fluid fuel outlet flow channels, and the cathode separation module is detachably embedded in the group of oxygen a fluid inlet flow passage and the set of oxygen-containing fluid outlet flow passages.

可選擇地,該二雙極板、該陽極分隔模組及該陰極分隔模組為單件式(single piece)。Optionally, the two bipolar plates, the anode separation module and the cathode separation module are single pieces.

較佳地,該組流體燃料進口流道與該流體燃料流場連通處的流道橫截面積大於該組流體燃料出口流道與該流體燃料流場連通處的流道橫截面積。Preferably, the flow path cross-sectional area of the set of fluid fuel inlet flow passages communicating with the fluid fuel flow flow passage is greater than the flow passage cross-sectional area of the set of fluid fuel outlet flow passages communicating with the fluid fuel flow flow passage.

較佳地,該陽極分隔模組與該流體燃料流場位在同一平面,該陰極分隔模組與該含氧流體流場位在同一平面。Preferably, the anode separation module is in the same plane as the fluid fuel flow field, and the cathode separation module is in the same plane as the oxygen-containing fluid flow field.

較佳地,該組流體燃料進口流道與該組流體燃料出口流道為互相對應的直線型流道,該組含氧流體進口流道與該組含氧流體出口流道互相對應的直線型流道,以利控制流體流動方向且具有整流作用。更佳地,該組流體燃料進口流道與該組流體燃料出口流道分別位在該流體燃料流場的兩對邊,該組含氧流體進口流道與該組含氧流體出口流道分別位在該含氧流體流場的兩對邊。又更佳地,該組流體燃料進口流道及該組流體燃料出口流道的延伸方向垂直於該組含氧流體進口流道及該組含氧流體出口流道的延伸方向。Preferably, the set of fluid fuel inlet flow passages and the set of fluid fuel outlet flow passages are mutually corresponding linear flow passages, and the set of oxygen-containing fluid inlet flow passages and the set of oxygen-containing fluid outlet flow passages correspond to each other in a straight line type The flow path is used to control the direction of fluid flow and has a rectifying effect. More preferably, the set of fluid fuel inlet flow passages and the set of fluid fuel outlet flow passages are respectively located on two opposite sides of the fluid fuel flow field, and the set of oxygen-containing fluid inlet flow passages and the set of oxygen-containing fluid outlet flow passages are respectively Located on two opposite sides of the oxygen-containing fluid flow field. Still more preferably, the set of fluid fuel inlet flow passages and the set of fluid fuel outlet flow passages extend perpendicularly to the set of oxygen-containing fluid inlet flow passages and the direction in which the set of oxygen-containing fluid outlet flow passages extend.

較佳地,該流體燃料流場及該含氧流體流場分別具有一呈棋盤狀設置的凸柱陣列,以分別形成一呈網格狀的流道網。Preferably, the fluid fuel flow field and the oxygen-containing fluid flow field respectively have a column array arranged in a checkerboard shape to respectively form a mesh network.

較佳地,該陽極密封區及該陰極密封區的材料是選自於玻璃陶瓷(glass ceramics)、雲母或焊料合金(solder alloy),以分別對該陽極金屬網及該陰極金屬網構成絕緣。Preferably, the material of the anode sealing zone and the cathode sealing zone is selected from glass ceramics, mica or solder alloy to insulate the anode metal mesh and the cathode metal mesh, respectively.

較佳地,該二雙極板、該陽極分隔模組及該陰極分隔模組的材料是不鏽鋼,例如但不限於、SUS 430、SUS 431、SUS 441、Crofer® 22。Preferably, the material of the two bipolar plates, the anode separation module and the cathode separation module is stainless steel, such as, but not limited to, SUS 430, SUS 431, SUS 441, and Crofer® 22.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.

本發明將就以下實施例來作進一步說明,但應瞭解的是,該等實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。The invention is further described in the following examples, but it should be understood that these examples are for illustrative purposes only and are not to be construed as limiting.

參閱圖1至圖3,本發明平板型固態氧化物燃料電池堆單元1之一第一實施例包含二雙極板2、一膜電極組3、一陽極分隔模組4及一陰極分隔模組5。Referring to FIG. 1 to FIG. 3, a first embodiment of a flat type solid oxide fuel cell stack unit 1 of the present invention comprises two bipolar plates 2, a membrane electrode assembly 3, an anode separation module 4 and a cathode separation module. 5.

每一雙極板2包括一陽極側24及一與該陽極側24相對設置的陰極側25。Each bipolar plate 2 includes an anode side 24 and a cathode side 25 disposed opposite the anode side 24.

該陽極側24具有一組流體燃料進口流道241、一組流體燃料出口流道242(參閱圖7)及一連通該組流體燃料進口流道241與該組流體燃料出口流道242的流體燃料流場243(參閱圖7)。該組流體燃料進口流道241與該組流體燃料出口流道242為互相對應的直線型流道,且分別位在該流體燃料流場243的兩對邊。該流體燃料流場243具有一呈棋盤狀設置的陽極凸柱陣列248(參閱圖7),以形成一呈網格狀的陽極流道網249(參閱圖7)。The anode side 24 has a set of fluid fuel inlet runners 241, a set of fluid fuel outlet runners 242 (see FIG. 7), and a fluid fuel that communicates the set of fluid fuel inlet runners 241 with the set of fluid fuel outlet runners 242. Flow field 243 (see Figure 7). The set of fluid fuel inlet flow passages 241 and the set of fluid fuel outlet flow passages 242 are mutually corresponding linear flow passages and are located on opposite sides of the fluid fuel flow field 243, respectively. The fluid fuel flow field 243 has an anode stud array 248 (see Fig. 7) arranged in a checkerboard shape to form a grid-shaped anode runner network 249 (see Fig. 7).

該陰極側25具有一組含氧流體進口流道251、一組含氧流體出口流道252及一連接該組含氧流體進口流道251與該組含氧流體出口流道252的含氧流體流場253。該組含氧流體進口流道251與該組含氧流體出口流道252為互相對應的直線型流道,且分別位在該含氧流體流場253的兩對邊。該含氧流體流場253具有一呈棋盤狀設置的陰極凸柱陣列258(參閱圖6),以形成一呈網格狀的陰極流道網259(參閱圖6)。The cathode side 25 has a set of oxygen-containing fluid inlet channels 251, a set of oxygen-containing fluid outlet channels 252, and an oxygen-containing fluid connecting the set of oxygen-containing fluid inlet channels 251 and the set of oxygen-containing fluid outlet channels 252. Flow field 253. The set of oxygen-containing fluid inlet flow passages 251 and the set of oxygen-containing fluid outlet flow passages 252 are linear flow passages corresponding to each other, and are respectively located at two opposite sides of the oxygen-containing fluid flow field 253. The oxygen-containing fluid flow field 253 has a cathode stud array 258 (see Fig. 6) arranged in a checkerboard shape to form a grid-like cathode runner network 259 (see Fig. 6).

該組流體燃料進口流道241及該組流體燃料出口流道242的延伸方向垂直於該組含氧流體進口流道251及該組含氧流體出口流道252的延伸方向。The set of fluid fuel inlet runners 241 and the set of fluid fuel outlet runners 242 extend perpendicularly to the direction in which the set of oxygenated fluid inlet runners 251 and the set of oxygenated fluid outlet runners 252 extend.

該膜電極組3設置於該二雙極板2之間,包括:一與該流體燃料流場243對應設置的陽極金屬網34、一與該含氧流體流場253對應設置的陰極金屬網35及一設置於該陽極金屬網34及該陰極金屬網35之間的固態氧化物電解質膜33,該陽極金屬網34的邊界是由該電解質膜33、該流體燃料流場243與一陽極密封區36共同圍繞界定,該陰極金屬網35的邊界是由該電解質膜33、該含氧流體流場253與一陰極密封區37共同圍繞界定。The membrane electrode assembly 3 is disposed between the two bipolar plates 2, and includes: an anode metal mesh 34 disposed corresponding to the fluid fuel flow field 243, and a cathode metal mesh 35 disposed corresponding to the oxygen-containing fluid flow field 253. And a solid oxide electrolyte membrane 33 disposed between the anode metal mesh 34 and the cathode metal mesh 35, the anode metal mesh 34 is bordered by the electrolyte membrane 33, the fluid fuel flow field 243 and an anode sealing zone 36 is collectively defined, the boundary of the cathode metal mesh 35 is defined by the electrolyte membrane 33, the oxygen-containing fluid flow field 253 and a cathode sealing zone 37.

在該第一實施例中,該陽極密封區36及該陰極密封區37的材料皆為玻璃陶瓷,以分別對該陽極金屬網34及該陰極金屬網35構成絕緣。In the first embodiment, the anode sealing region 36 and the cathode sealing region 37 are made of glass ceramic to insulate the anode metal mesh 34 and the cathode metal mesh 35, respectively.

參閱圖2至圖4,該陽極分隔模組4設置於該雙極板2的該陽極側24,可拆離地嵌設於該組流體燃料進口流道241及該組流體燃料出口流道242(參閱圖7),並與該流體燃料流場243位在同一平面,以密封地分隔該組流體燃料進口流道241與該陽極密封區36,並密封地分隔該組流體燃料出口流道242與該陽極密封區36,以使該陽極密封區36在封裝該燃料電池堆單元1時得以均勻受力,不致隨著該組流體燃料進口流道241及該組流體燃料出口流道242而變形,且可避免該組流體燃料進口流道241及該組流體燃料出口流道242中的流體燃料與該陽極密封區36的材料發生作用或使其溶出。Referring to FIGS. 2 to 4 , the anode separation module 4 is disposed on the anode side 24 of the bipolar plate 2 and is detachably embedded in the set of fluid fuel inlet flow passages 241 and the set of fluid fuel outlet passages 242 . (See FIG. 7) and in the same plane as the fluid fuel flow field 243 to sealingly separate the set of fluid fuel inlet runners 241 from the anode seal zone 36 and sealingly separate the set of fluid fuel outlet runners 242 And the anode sealing zone 36, so that the anode sealing zone 36 is evenly stressed when the fuel cell stack unit 1 is packaged, and is not deformed with the set of fluid fuel inlet flow passages 241 and the set of fluid fuel outlet flow passages 242. And the fluid fuel in the set of fluid fuel inlet flow passages 241 and the set of fluid fuel outlet flow passages 242 can be prevented from acting or dissolving the material of the anode sealing zone 36.

參閱圖1至圖3,該陰極分隔模組5設置於該雙極板2的該陰極側25,可拆離地嵌設於該組含氧流體進口流道251及該組含氧流體出口流道252,並與該含氧流體流場253位在同一平面,以密封地分隔該組含氧流體進口流道251與該陰極密封區37,並密封地分隔該組含氧流體出口流道252與該陰極密封區37,以使該陰極密封區37在封裝該燃料電池堆單元1時得以均勻受力,不致隨著該組含氧流體進口流道251及該組含氧流體出口流道252而變形,且可避免該組含氧流體進口流道251及該組含氧流體出口流道252中的含氧流體與該陰極密封區37的材料發生作用或使其溶出。Referring to FIG. 1 to FIG. 3, the cathode separation module 5 is disposed on the cathode side 25 of the bipolar plate 2, and is detachably embedded in the set of oxygen-containing fluid inlet flow passages 251 and the set of oxygen-containing fluid outlet flows. Lane 252 and in the same plane as the oxygen-containing fluid flow field 253 to sealingly separate the set of oxygen-containing fluid inlet flow passages 251 from the cathode seal region 37 and sealingly separate the set of oxygen-containing fluid outlet passages 252 And the cathode sealing zone 37, so that the cathode sealing zone 37 is evenly stressed when the fuel cell stack unit 1 is packaged, so as not to follow the set of oxygen-containing fluid inlet flow channels 251 and the set of oxygen-containing fluid outlet flow channels 252. The deformation and the oxygen-containing fluid inlet flow passage 251 and the oxygen-containing fluid in the set of oxygen-containing fluid outlet passages 252 are prevented from acting or dissolving with the material of the cathode sealing zone 37.

在該第一實施例中,該組流體燃料進口流道241與該流體燃料流場243連通處的流道橫截面積(約為22.1 mm 2)大於該組流體燃料出口流道242與該流體燃料流場243連通處的流道橫截面積(約為13.26 mm 2)。 In the first embodiment, the flow path cross-sectional area (about 22.1 mm 2 ) at which the set of fluid fuel inlet runners 241 communicate with the fluid fuel flow field 243 is greater than the set of fluid fuel outlet runners 242 and the fluid The cross-sectional area of the flow path at the junction of the fuel flow field 243 (approximately 13.26 mm 2 ).

在該第一實施例中,該二雙極板2的材料為不鏽鋼,該陽極分隔模組4及該陰極分隔模組5各自為二片不鏽鋼片,可耐高溫且在高溫下具有良好導電性。In the first embodiment, the material of the two bipolar plates 2 is stainless steel, and the anode separation module 4 and the cathode separation module 5 are each two stainless steel sheets, which are resistant to high temperature and have good electrical conductivity at high temperatures. .

參閱圖5至圖7,以該燃料電池堆單元1進行發電時,一流體燃料由該組流體燃料進口流道241流入該流體燃料流場243,並藉由該陽極凸柱陣列248均勻分布,流經該陽極金屬網34,在該電解質膜33發生氧化反應,剩餘的流體燃料由該組流體燃料出口流道242流出;同時,一含氧流體由該組含氧流體進口流道251流入該含氧流體流場253,並藉由該陰極凸柱陣列258均勻分布,流經該陰極金屬網35,在該電解質膜33發生還原反應,剩餘的含氧流體由該組含氧流體出口流道252流出。Referring to FIGS. 5-7, when the fuel cell stack unit 1 performs power generation, a fluid fuel flows into the fluid fuel flow field 243 from the set of fluid fuel inlet channels 241, and is evenly distributed by the anode stud array 248. Flowing through the anode metal mesh 34, an oxidation reaction occurs in the electrolyte membrane 33, and the remaining fluid fuel flows out of the set of fluid fuel outlet flow passages 242; meanwhile, an oxygen-containing fluid flows into the oxygen-containing fluid inlet flow passage 251. The oxygen-containing fluid flow field 253 is uniformly distributed by the cathode stud array 258, flows through the cathode metal mesh 35, and a reduction reaction occurs in the electrolyte membrane 33, and the remaining oxygen-containing fluid is discharged from the oxygen-containing fluid outlet flow path. 252 outflow.

本發明燃料電池堆單元1之一第二實施例與該第一實施例相類似,差異之處在於在該第二實施例中,該組流體燃料進口流道241與該流體燃料流場243連通處的流道橫截面積等於該組流體燃料出口流道242與該流體燃料流場243連通處的流道橫截面積(皆約為22.1 mm 2)。 A second embodiment of a fuel cell stack unit 1 of the present invention is similar to the first embodiment in that the set of fluid fuel inlet flow passages 241 are in communication with the fluid fuel flow field 243 in the second embodiment. The cross-sectional area of the flow path is equal to the cross-sectional area of the flow path at which the set of fluid fuel outlet flow passages 242 communicate with the fluid fuel flow field 243 (both about 22.1 mm 2 ).

分別從該第一實施例及該第二實施例的燃料電池堆單元1 (單層)的該組流體燃料進口流道241通入氫氮混合氣(含3%水蒸氣),並分別從該組含氧流體進口流道251通入乾燥空氣,進行100小時,使用電子負載(electronic load) [設定拉載電流(tensile load current)為32.4 A,操作電壓為0.6~0.7 V]測量最大功率密度(650℃)、燃料利用率及發電效率(測試溫度620℃),結果分別如下表1所示。 【表1】 <TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td>   </td><td> 最大功率密度 </td><td> 燃料利用率 </td><td> 發電效率 </td></tr><tr><td> 實施例1 </td><td> 0.643 W/cm<sup>2</sup></td><td> 71.69% </td><td> 38.37% </td></tr><tr><td> 實施例2 </td><td> 0.602 W/cm<sup>2</sup></td><td> 67.71% </td><td> 36.18% </td></tr></TBODY></TABLE>a hydrogen-nitrogen mixed gas (containing 3% water vapor) is introduced from the set of fluid fuel inlet flow passages 241 of the first embodiment and the fuel cell stack unit 1 (single layer) of the second embodiment, respectively, and The oxygen-containing fluid inlet flow passage 251 is passed through dry air for 100 hours, and the maximum power density is measured using an electronic load [setting load current of 32.4 A and operating voltage of 0.6 to 0.7 V]. (650 ° C), fuel utilization rate and power generation efficiency (test temperature 620 ° C), the results are shown in Table 1 below. 【Table 1】         <TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td> </td><td> Maximum Power Density</td><td> Fuel Utilization </ Td><td> power generation efficiency</td></tr><tr><td> Example 1 </td><td> 0.643 W/cm<sup>2</sup></td><td> 71.69% </td><td> 38.37% </td></tr><tr><td> Example 2 </td><td> 0.602 W/cm<sup>2</sup></td ><td> 67.71% </td><td> 36.18% </td></tr></TBODY></TABLE>

由上表1可以得知,該第一實施例的最大功率密度、燃料利用率及發電效率皆大於該第二實施例,顯示該第一實施例之流體燃料在其流體燃料流場243中的流動均勻性較佳。As can be seen from the above Table 1, the maximum power density, fuel utilization rate and power generation efficiency of the first embodiment are greater than that of the second embodiment, showing that the fluid fuel of the first embodiment is in its fluid fuel flow field 243. Flow uniformity is preferred.

綜上所述,本發明燃料電池堆單元1藉由設置於該雙極板2的陽極分隔模組4及陰極分隔模組5,密封地分隔該等流道241, 242, 251, 252與該等密封區36, 37,可使該等密封區36, 37在封裝時得以均勻受力,不致變形而影響流體燃料及含氧流體的流動,且可避免該等流道241, 242, 251, 252中的流體燃料及含氧流體與該等密封區36, 37的材料發生作用或使其溶出,故確實能達成本發明之目的。In summary, the fuel cell stack unit 1 of the present invention sealingly separates the flow channels 241, 242, 251, 252 and the anode separation module 4 and the cathode separation module 5 disposed on the bipolar plate 2 The sealing regions 36, 37 can uniformly load the sealing regions 36, 37 during packaging, affecting the flow of the fluid fuel and the oxygen-containing fluid without deformation, and avoiding the flow passages 241, 242, 251, The fluid fuel and oxygen-containing fluid in 252 interact with or dissolve the materials of the seal regions 36, 37, so that the object of the present invention can be achieved.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the equivalent equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still The scope of the invention is covered.

1‧‧‧燃料電池堆單元
2‧‧‧雙極板
24‧‧‧陽極側
241‧‧‧流體燃料進口流道
242‧‧‧流體燃料出口流道
243‧‧‧流體燃料流場
248‧‧‧陽極凸柱陣列
249‧‧‧陽極流道網
25‧‧‧陰極側
251‧‧‧含氧流體進口流道
252‧‧‧含氧流體出口流道
253‧‧‧含氧流體流場
258‧‧‧陰極凸柱陣列
259‧‧‧陰極流道網
3‧‧‧膜電極組
33‧‧‧電解質膜
34‧‧‧陽極金屬網
35‧‧‧陰極金屬網
36‧‧‧陽極密封區
37‧‧‧陰極密封區
4‧‧‧陽極分隔模組
5‧‧‧陰極分隔模組
1‧‧‧fuel cell stack unit
2‧‧‧ bipolar plates
24‧‧‧ anode side
241‧‧‧Fluid fuel inlet runner
242‧‧‧Fluid fuel outlet runner
243‧‧‧Fluid fuel flow field
248‧‧‧Anode column array
249‧‧‧Anode flow channel network
25‧‧‧ Cathode side
251‧‧‧Oxygen fluid inlet runner
252‧‧‧Oxygen-containing fluid outlet flow path
253‧‧‧Oxygen-containing fluid flow field
258‧‧‧cathode pillar array
259‧‧‧Cathodic flow channel network
3‧‧‧ membrane electrode group
33‧‧‧ electrolyte membrane
34‧‧‧Anode metal mesh
35‧‧‧Cathed metal mesh
36‧‧‧Anode sealing area
37‧‧‧Cathodic sealing area
4‧‧‧Anode separation module
5‧‧‧Cathode separation module

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: [圖1]是本發明燃料電池堆單元的一第一實施例的一立體圖; [圖2]是該第一實施例的一立體分解示意圖; [圖3]是該第一實施例的一雙極板、一陽極分隔模組及一陰極分隔模組的一立體分解圖; [圖4]是沿著圖1中的線Ⅳ–Ⅳ所截取的剖視示意圖; [圖5]是沿著圖1中的線Ⅴ–Ⅴ所截取的剖視示意圖; [圖6]是該第一實施例的該雙極板、該陽極分隔模組及該陰極分隔模組的一俯視示意圖;及 [圖7]是該第一實施例的該雙極板、該陽極分隔模組及該陰極分隔模組的一仰視示意圖。Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: FIG. 1 is a perspective view of a first embodiment of the fuel cell stack unit of the present invention; [FIG. 2] An exploded perspective view of the first embodiment; [Fig. 3] is an exploded perspective view of a bipolar plate, an anode separation module and a cathode separation module of the first embodiment; [Fig. 4] A cross-sectional view taken along line IV-IV in FIG. 1; [FIG. 5] is a cross-sectional view taken along line V-V in FIG. 1; [FIG. 6] is the first embodiment. A top view of the bipolar plate, the anode separation module and the cathode separation module; and [FIG. 7] is the bipolar plate, the anode separation module and the cathode separation module of the first embodiment Looking up at the schematic.

1‧‧‧燃料電池堆單元 1‧‧‧fuel cell stack unit

2‧‧‧雙極板 2‧‧‧ bipolar plates

24‧‧‧陽極側 24‧‧‧ anode side

25‧‧‧陰極側 25‧‧‧ Cathode side

253‧‧‧含氧流體流場 253‧‧‧Oxygen-containing fluid flow field

3‧‧‧膜電極組 3‧‧‧ membrane electrode group

33‧‧‧電解質膜 33‧‧‧ electrolyte membrane

34‧‧‧陽極金屬網 34‧‧‧Anode metal mesh

35‧‧‧陰極金屬網 35‧‧‧Cathed metal mesh

36‧‧‧陽極密封區 36‧‧‧Anode sealing area

37‧‧‧陰極密封區 37‧‧‧Cathodic sealing area

4‧‧‧陽極分隔模組 4‧‧‧Anode separation module

5‧‧‧陰極分隔模組 5‧‧‧Cathode separation module

Claims (10)

一種燃料電池堆單元,包含: 二雙極板,每一雙極板包括: 一陽極側,具有一組流體燃料進口流道、一組流體燃料出口流道及一連通該組流體燃料進口流道與該組流體燃料出口流道的流體燃料流場,及 一與該陽極側相對設置的陰極側,具有一組含氧流體進口流道、一組含氧流體出口流道及一連接該組含氧流體進口流道與該組含氧流體出口流道的含氧流體流場; 一膜電極組,設置於該二雙極板之間,包括:一與該流體燃料流場對應設置的陽極金屬網、一與該含氧流體流場對應設置的陰極金屬網及一設置於該陽極金屬網及該陰極金屬網之間的電解質膜,該陽極金屬網的邊界是由該電解質膜、該流體燃料流場與一陽極密封區共同圍繞界定,該陰極金屬網的邊界是由該電解質膜、該含氧流體流場與一陰極密封區共同圍繞界定; 一陽極分隔模組,設置於該雙極板的該陽極側,以密封地分隔該組流體燃料進口流道與該陽極密封區,並密封地分隔該組流體燃料出口流道與該陽極密封區;及 一陰極分隔模組,設置於該雙極板的該陰極側,以密封地分隔該組含氧流體進口流道與該陰極密封區,並密封地分隔該組含氧流體出口流道與該陰極密封區。A fuel cell stack unit comprising: two bipolar plates, each bipolar plate comprising: an anode side having a set of fluid fuel inlet flow channels, a set of fluid fuel outlet flow channels, and a communication fluid flow inlet passageway a fluid fuel flow field with the set of fluid fuel outlet passages, and a cathode side disposed opposite the anode side, having a set of oxygen-containing fluid inlet flow passages, a set of oxygen-containing fluid outlet flow passages, and a connection group An oxygen-containing fluid flow field and an oxygen-containing fluid flow field of the set of oxygen-containing fluid outlet channels; a membrane electrode group disposed between the two bipolar plates, comprising: an anode metal corresponding to the fluid fuel flow field a mesh, a cathode metal mesh corresponding to the flow field of the oxygen-containing fluid, and an electrolyte membrane disposed between the anode metal mesh and the cathode metal mesh, the boundary of the anode metal mesh being the electrolyte membrane, the fluid fuel The flow field is defined together with an anode sealing zone, and the boundary of the cathode metal mesh is defined by the electrolyte membrane, the oxygen-containing fluid flow field and a cathode sealing zone; an anode separation module is disposed on The anode side of the bipolar plate sealingly partitions the set of fluid fuel inlet flow channels from the anode sealing zone and sealingly separates the set of fluid fuel outlet flow channels from the anode sealing zone; and a cathode separation module is disposed On the cathode side of the bipolar plate, the set of oxygen-containing fluid inlet flow channels and the cathode sealing zone are sealingly separated, and the set of oxygen-containing fluid outlet flow channels and the cathode sealing zone are sealingly separated. 如請求項1所述的燃料電池堆單元,其中,該陽極分隔模組是可拆離地嵌設於該組流體燃料進口流道及該組流體燃料出口流道,該陰極分隔模組是可拆離地嵌設於該組含氧流體進口流道及該組含氧流體出口流道。The fuel cell stack unit of claim 1, wherein the anode separation module is detachably embedded in the set of fluid fuel inlet flow channels and the set of fluid fuel outlet flow channels, the cathode separation module is The detached ground is embedded in the set of oxygen-containing fluid inlet flow channels and the set of oxygen-containing fluid outlet flow channels. 如請求項1所述的燃料電池堆單元,其中,該組流體燃料進口流道與該流體燃料流場連通處的流道橫截面積大於該組流體燃料出口流道與該流體燃料流場連通處的流道橫截面積。The fuel cell stack unit of claim 1, wherein a cross-sectional area of the flow path of the set of fluid fuel inlet flow passages communicating with the fluid fuel flow field is greater than a flow of the set of fluid fuel outlet flow passages communicating with the fluid fuel flow field The cross-sectional area of the runner. 如請求項1所述的燃料電池堆單元,其中,該陽極分隔模組與該流體燃料流場位在同一平面,該陰極分隔模組與該含氧流體流場位在同一平面。The fuel cell stack unit of claim 1, wherein the anode separation module is in the same plane as the fluid fuel flow field, and the cathode separation module is in the same plane as the oxygen-containing fluid flow field. 如請求項1所述的燃料電池堆單元,其中,該組流體燃料進口流道與該組流體燃料出口流道為互相對應的直線型流道,該組含氧流體進口流道與該組含氧流體出口流道互相對應的直線型流道。The fuel cell stack unit of claim 1, wherein the set of fluid fuel inlet flow passages and the set of fluid fuel outlet flow passages are mutually corresponding linear flow passages, the set of oxygen-containing fluid inlet flow passages and the set of A linear flow path in which the oxygen fluid outlet flow paths correspond to each other. 如請求項5所述的燃料電池堆單元,其中,該組流體燃料進口流道與該組流體燃料出口流道分別位在該流體燃料流場的兩對邊,該組含氧流體進口流道與該組含氧流體出口流道分別位在該含氧流體流場的兩對邊。The fuel cell stack unit of claim 5, wherein the set of fluid fuel inlet flow passages and the set of fluid fuel outlet flow passages are respectively located on opposite sides of the fluid fuel flow field, the set of oxygen-containing fluid inlet flow passages And the set of oxygen-containing fluid outlet flow channels are respectively located on opposite sides of the oxygen-containing fluid flow field. 如請求項6所述的燃料電池堆單元,其中,該組流體燃料進口流道及該組流體燃料出口流道的延伸方向垂直於該組含氧流體進口流道及該組含氧流體出口流道的延伸方向。The fuel cell stack unit of claim 6, wherein the set of fluid fuel inlet flow channels and the set of fluid fuel outlet flow paths extend perpendicular to the set of oxygen-containing fluid inlet flow channels and the set of oxygen-containing fluid outlet flows The direction of the road. 如請求項1所述的燃料電池堆單元,其中,該流體燃料流場及該含氧流體流場分別具有一呈棋盤狀設置的凸柱陣列,以分別形成一呈網格狀的流道網。The fuel cell stack unit according to claim 1, wherein the fluid fuel flow field and the oxygen-containing fluid flow field respectively have a column array arranged in a checkerboard shape to respectively form a grid-like flow channel network. . 如請求項1所述的燃料電池堆單元,其中,該陽極密封區及該陰極密封區的材料是選自於玻璃陶瓷、雲母或焊料合金。The fuel cell stack unit of claim 1, wherein the material of the anode sealing zone and the cathode sealing zone is selected from the group consisting of glass ceramics, mica or solder alloy. 如請求項1所述的燃料電池堆單元,其中,該二雙極板、該陽極分隔模組及該陰極分隔模組的材料是不鏽鋼。The fuel cell stack unit of claim 1, wherein the material of the two bipolar plates, the anode separation module and the cathode separation module is stainless steel.
TW105132710A 2016-10-11 2016-10-11 Fuel cell stack unit TWI586027B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105132710A TWI586027B (en) 2016-10-11 2016-10-11 Fuel cell stack unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105132710A TWI586027B (en) 2016-10-11 2016-10-11 Fuel cell stack unit

Publications (2)

Publication Number Publication Date
TWI586027B true TWI586027B (en) 2017-06-01
TW201814949A TW201814949A (en) 2018-04-16

Family

ID=59687997

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105132710A TWI586027B (en) 2016-10-11 2016-10-11 Fuel cell stack unit

Country Status (1)

Country Link
TW (1) TWI586027B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10170786B1 (en) 2016-12-22 2019-01-01 National Taipei University Of Technology Modular planar interconnect device for a solid oxide fuel cell and the solid oxide fuel cell containing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI221041B (en) * 2002-05-21 2004-09-11 Idatech L L C Bipolar plate assembly, fuel cell stacks and fuel cell systems incorporating the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI221041B (en) * 2002-05-21 2004-09-11 Idatech L L C Bipolar plate assembly, fuel cell stacks and fuel cell systems incorporating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10170786B1 (en) 2016-12-22 2019-01-01 National Taipei University Of Technology Modular planar interconnect device for a solid oxide fuel cell and the solid oxide fuel cell containing the same

Also Published As

Publication number Publication date
TW201814949A (en) 2018-04-16

Similar Documents

Publication Publication Date Title
CN101796677B (en) Improvements in gaskets and bipolar plates for PEM fuel cells
KR102055951B1 (en) Stack structure for fuel cell
JP2004087497A (en) Fuel cell stack and fuel cell module
TWI652851B (en) Modular planar interconnect device for a solid oxide fuel cell and the solid oxide fuel cell containing the same
CN109473681B (en) A fuel cell bipolar plate with a discontinuous structure
CN106033818A (en) Guide plate and fuel cell stack containing the same
CN102017253A (en) Separator for fuel cell and fuel cell provided with same
CN107579262B (en) A flat-plate solid oxide fuel cell connecting part and its application
CN102007634B (en) Fuel cell separator and fuel cell comprising said separator
TWI594491B (en) Bipolar plate and fuel cell stack unit
TWI586027B (en) Fuel cell stack unit
CN103515639B (en) A kind of flat-tube type solid oxide fuel cell stack
US20090169969A1 (en) Bipolar plate of solid oxide fuel cell
CN204720508U (en) Baffler and the fuel cell pack containing this baffler
CA2685573A1 (en) Repeater unit for a fuel cell stack
TWI648902B (en) Fuel cell stack unit
KR101315622B1 (en) Fuelcell stack using branched channel
KR101040107B1 (en) Separator in Solid Oxide Fuel Cell Stack
JP6519576B2 (en) Fuel cell stack
JP2020013771A (en) Modular planar coupling device for solid oxide fuel cell and solid oxide fuel cell including the same
CN110291670A (en) Fuel cell stack
KR20160008213A (en) Gas inlet for soc unit
KR20160008214A (en) Gas inlet for soec unit
KR20140100041A (en) Flat-tubular solid oxide cell and sealing apparatus for the same
KR101672087B1 (en) bipolar plates for fuel cells and manufacturing method of stack using thereof