TWI585859B - Method for forming a silicide layer - Google Patents
Method for forming a silicide layer Download PDFInfo
- Publication number
- TWI585859B TWI585859B TW101136659A TW101136659A TWI585859B TW I585859 B TWI585859 B TW I585859B TW 101136659 A TW101136659 A TW 101136659A TW 101136659 A TW101136659 A TW 101136659A TW I585859 B TWI585859 B TW I585859B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- forming
- metal
- gate
- heat treatment
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 33
- 229910021332 silicide Inorganic materials 0.000 title claims description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 title claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 75
- 239000002184 metal Substances 0.000 claims description 75
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 claims description 45
- 238000010438 heat treatment Methods 0.000 claims description 35
- 239000000758 substrate Substances 0.000 claims description 32
- 229910052723 transition metal Inorganic materials 0.000 claims description 32
- 150000003624 transition metals Chemical class 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 18
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 14
- SCCCLDWUZODEKG-UHFFFAOYSA-N germanide Chemical compound [GeH3-] SCCCLDWUZODEKG-UHFFFAOYSA-N 0.000 claims description 13
- 229910052732 germanium Inorganic materials 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- -1 tungsten nitride Chemical class 0.000 claims description 6
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical group [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 5
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 230000008569 process Effects 0.000 description 17
- 229910001507 metal halide Inorganic materials 0.000 description 14
- 150000005309 metal halides Chemical class 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000002955 isolation Methods 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 229920005591 polysilicon Polymers 0.000 description 6
- 239000010936 titanium Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910052755 nonmetal Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- WJMXTYZCTXTFJM-UHFFFAOYSA-N 1,1,1,2-tetraethoxydecane Chemical compound C(C)OC(C(OCC)(OCC)OCC)CCCCCCCC WJMXTYZCTXTFJM-UHFFFAOYSA-N 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- 229910005883 NiSi Inorganic materials 0.000 description 1
- 229910020684 PbZr Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- KCFIHQSTJSCCBR-UHFFFAOYSA-N [C].[Ge] Chemical compound [C].[Ge] KCFIHQSTJSCCBR-UHFFFAOYSA-N 0.000 description 1
- YNNNNRZMNODXTN-UHFFFAOYSA-N [N].[Ge] Chemical compound [N].[Ge] YNNNNRZMNODXTN-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- CEPICIBPGDWCRU-UHFFFAOYSA-N [Si].[Hf] Chemical compound [Si].[Hf] CEPICIBPGDWCRU-UHFFFAOYSA-N 0.000 description 1
- ILCYGSITMBHYNK-UHFFFAOYSA-N [Si]=O.[Hf] Chemical compound [Si]=O.[Hf] ILCYGSITMBHYNK-UHFFFAOYSA-N 0.000 description 1
- VNSWULZVUKFJHK-UHFFFAOYSA-N [Sr].[Bi] Chemical compound [Sr].[Bi] VNSWULZVUKFJHK-UHFFFAOYSA-N 0.000 description 1
- 150000001463 antimony compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- KQHQLIAOAVMAOW-UHFFFAOYSA-N hafnium(4+) oxygen(2-) zirconium(4+) Chemical compound [O--].[O--].[O--].[O--].[Zr+4].[Hf+4] KQHQLIAOAVMAOW-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000652 nickel hydride Inorganic materials 0.000 description 1
- PCLURTMBFDTLSK-UHFFFAOYSA-N nickel platinum Chemical compound [Ni].[Pt] PCLURTMBFDTLSK-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
本發明係有關半導體製程領域,尤其是關於一種金屬矽化物層的製作方法。 The present invention relates to the field of semiconductor processing, and more particularly to a method of fabricating a metal halide layer.
金屬氧化半導體(metal-oxide-semiconductor,MOS)電晶體是半導體積體電路中非常重要的元件,而其閘極與源極/汲極之電性表現更是MOS電晶體品質的重要關鍵。習知閘極通常包含有一多晶矽層(poly-silicon)用來當作主傳導層,而源極/汲極則是由離子佈植在單晶矽基底的摻雜區所構成,因此會在該多晶矽層與摻雜區的上方再形成一金屬矽化物層,來降低閘極的片電阻(sheet resistance),並提高MOS電晶體的操作速度。 Metal-oxide-semiconductor (MOS) transistors are very important components in semiconductor integrated circuits, and the electrical performance of gate and source/drain is the key to the quality of MOS transistors. Conventional gates typically include a poly-silicon layer used as the primary conductive layer, and the source/drain electrodes are formed by doping regions of ions implanted on the single crystal germanium substrate, so A metal germanide layer is formed over the polysilicon layer and over the doped region to reduce the sheet resistance of the gate and increase the operating speed of the MOS transistor.
值得注意的是,一般金屬矽化物層之製作係需要兩次熱處理(RTP)製程,首先覆蓋一含金屬原子層於基底表面上,進行第一次RTP製程,用來將含金屬原子層與所接觸之基底的矽基材相反應,藉以形成晶粒較小而電阻值較高的過渡金屬矽化物層;然後移除該含金屬原子層使基底表面僅剩下剛形成的過渡金屬矽化物層,再接續進行第二次RTP製程,以一較高的溫度使此過渡金屬矽化物層產生一相轉變並降低其電阻值,而形成一金屬矽化物層。然而在完成第二次RTP之後,形成於基底表面的金屬矽化物層卻存在有輪廓不 均勻的問題,尤其是位於低金屬矽化物佈局圖案密度的區域,嚴重影響金屬矽化物層的品質。 It is worth noting that the general metal halide layer fabrication process requires two heat treatment (RTP) processes, first covering a surface containing a metal atom on the surface of the substrate for the first RTP process to bond the metal atomic layer. The base substrate of the contact substrate reacts to form a transition metal halide layer having a small crystal grain and a high resistance value; and then removing the metal atom-containing layer to leave only the newly formed transition metal telluride layer on the surface of the substrate Then, the second RTP process is continued to cause the transition metal halide layer to undergo a phase transition and lower the resistance value at a higher temperature to form a metal telluride layer. However, after the completion of the second RTP, the metal telluride layer formed on the surface of the substrate has a contour. Uniform problems, especially in areas of low metal telluride layout pattern density, severely affect the quality of the metal telluride layer.
為解決上述問題,本發明提供一種金屬矽化物層的形成方法。首先形成一含金屬原子層於一基底上,接著對該含金屬原子層進行一第一熱處理步驟,以於一特定區域形成一過渡金屬矽化物層,然後移除該含金屬原子層後,再形成一導熱層於該金屬矽化物層表面,然後對該過渡金屬矽化物層進行一第二熱處理。 In order to solve the above problems, the present invention provides a method of forming a metal telluride layer. First forming a metal atom-containing layer on a substrate, and then performing a first heat treatment step on the metal atom-containing layer to form a transition metal halide layer in a specific region, and then removing the metal atom-containing layer, and then removing A thermally conductive layer is formed on the surface of the metal halide layer, and then a second heat treatment is performed on the transition metal halide layer.
本發明的特徵在於,移除含金屬原子層之後與進行第二熱處理之前,先於曝露之過渡金屬矽化物層表面形成一導熱層,如此,藉由該導熱層,第二熱處理所提供的熱量便能更完整且均勻地傳導至過渡金屬矽化物層,相較於習知金屬矽化物層的製作,第二熱處理所需的溫度更低,但形成的金屬矽化物層品質可得到提升。 The invention is characterized in that after removing the metal atom-containing layer and before performing the second heat treatment, a heat conducting layer is formed on the surface of the exposed transition metal halide layer, so that the heat provided by the second heat treatment is provided by the heat conducting layer It can be more completely and uniformly conducted to the transition metal halide layer, and the temperature required for the second heat treatment is lower than that of the conventional metal halide layer, but the quality of the formed metal halide layer can be improved.
為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .
為了方便說明,本發明之各圖式僅為示意以更容易了解本發明,其詳細的比例可依照設計的需求進行調整。在文中所描述對於圖 形中相對元件之上下關係,在本領域之人皆應能理解其係指物件之相對位置而言,因此皆可以翻轉而呈現相同之構件,此皆應同屬本說明書所揭露之範圍,在此容先敘明。 For the convenience of description, the drawings of the present invention are only for the purpose of understanding the present invention, and the detailed proportions thereof can be adjusted according to the design requirements. As described in the text for the figure The relationship between the upper and lower relative elements of the shape should be understood by those skilled in the art to refer to the relative positions of the objects, so that the same components can be flipped and presented, which are all within the scope of the present disclosure. This is described first.
請參考第1~6圖,第1~6圖繪示本發明第一較佳實施例的結構剖面示意圖。首先,如第1圖所示,提供一基底10,例如為矽基底(silicon substrate)、磊晶矽(epitaxial silicon substrate)、矽鍺半導體基底(silicon germanium substrate)或碳化矽基底(silicon carbide substrate)等,本實施例係以塊狀矽基底(bulk silicon substrate)為例,但不以此為限。基底10上可包含有一閘極結構12與一源/汲極區域14,以及一淺溝隔離(shallow trench isolation,STI)16位於基底10中,且環繞閘極結構12以及源/汲極區域14。其中閘極結構12可為金屬閘極或多晶矽閘極等,本實施例係以多晶矽閘極為例說明,因此在源/汲極區域14表面形成金屬矽化物層時,亦同時需於多晶矽閘極表面形成一金屬矽化物層。此外,本實施例另包含有一介電層(圖未示)位於閘極結構12與基底10之間,且閘極結構12周圍包含有一側壁子27覆蓋於閘極結構12的側邊。關於各元件的製作方法,淺溝隔離16則係以蝕刻等方式於基底10中形成複數個淺溝,然後再填入一絕緣物於各淺溝中,而淺摻雜汲極與源/汲極區域14則係以離子佈植等方式,形成於基底10中未被閘極結構12覆蓋之處。上述閘極結構12、源/汲極區域14以及淺溝隔離16的製作方法為本技術領域之專業人員所熟知,故在此不再贅述。 Please refer to FIGS. 1~6, and FIGS. 1~6 are schematic cross-sectional views showing the structure of the first preferred embodiment of the present invention. First, as shown in FIG. 1, a substrate 10 is provided, such as a silicon substrate, an epitaxial silicon substrate, a silicon germanium substrate, or a silicon carbide substrate. In this embodiment, a bulk silicon substrate is taken as an example, but not limited thereto. The substrate 10 can include a gate structure 12 and a source/drain region 14, and a shallow trench isolation (STI) 16 is disposed in the substrate 10 and surrounds the gate structure 12 and the source/drain region 14 . The gate structure 12 can be a metal gate or a polysilicon gate. The present embodiment is described by a polysilicon gate. Therefore, when a metal germanide layer is formed on the surface of the source/drain region 14, a polysilicon gate is also required. A metal telluride layer is formed on the surface. In addition, the embodiment further includes a dielectric layer (not shown) between the gate structure 12 and the substrate 10, and the gate structure 12 includes a sidewall 27 covering the side of the gate structure 12. Regarding the manufacturing method of each element, the shallow trench isolation 16 forms a plurality of shallow trenches in the substrate 10 by etching or the like, and then fills an insulating material in each shallow trench, and the shallow doped drain and the source/germanium The pole region 14 is formed in the substrate 10 by ion implantation or the like without being covered by the gate structure 12. The fabrication of the gate structure 12, the source/drain region 14 and the shallow trench isolation 16 is well known to those skilled in the art and will not be described herein.
接著如第2圖所示,進行一自動對準金屬矽化物(self-aligned silicide,salicide)製程。例如先全面性於基底10表面上形成一含金屬原子層30,並同時覆蓋閘極結構12、源/汲極區域14、淺溝隔離16以及基底10表面其他部分,此含金屬原子層30可例如一金屬層、一金屬合金層或一金屬化合物層,本實施例中係以鎳鉑合金(Ni/Pt)為例說明,但不限於此,也可依製作需求採用其他諸如鈷(Co)、鈦(Ti)等可與矽原子反應之含金屬原子層。接著對此含金屬原子層30進行一第一熱處理40,其中第一熱處理40之溫度較佳介於200~300℃之間,使得含金屬原子層30與接觸之矽材質的表面反應,例如與閘極結構12、源/汲極區域14表面的單晶矽、磊晶矽、矽鍺(SiGe)、矽碳(SiC)或矽磷(SiP)等矽材質反應,生成一過渡金屬矽化物層33。本實施例過渡金屬矽化物層33的主要成分例如為Ni2Si。其中值得注意的是,由於與含金屬原子層30接觸的區域必須含有矽原子,方可生成過渡金屬矽化物層33,因此本實施例中過渡金屬矽化物層33僅可生成於基底10表面、閘極結構12頂部(當閘極結構為一含矽閘極且含矽閘極上方未覆有介電硬遮罩層時)、源/汲極區域14表面或是其他未受到一金屬矽化物層遮罩(silicide block)所遮蔽的矽材質區域。在本發明之另一實施例中,閘極結構12為一疊層結構,多晶矽材料的上方覆有一介電硬遮罩層,因此在進行自動對準矽化物製程後閘極結構上並不會生成矽化物,此一實施例並未另以圖示表示之,但其步驟係與圖1-6所述之步驟相同,差別只是在於圖示中閘極結構12上是否形成矽化物。另外在進行第一熱處理40前,本實施例更可選擇性覆蓋一蓋層32於含金屬原子層30上,以防止含金屬原子層30直接接 觸空氣而氧化,並且幫助維持第一熱處理40過程中,均勻傳導至過渡金屬矽化物層33的熱量,使之不易溢散。本實施例中,蓋層32材質可包含氮化鈦、氮化鉭、氮化鎢等,然而本發明不限於此,蓋層32也可依照實際製作需求由其他材料所構成。含金屬原子層30與蓋層32較佳地係以原位方式(in-situly)或在不破真空的情況下形成,例如兩者是在相同的處理室中形成或者兩者是在同一叢集設備(cluster tool)中的不同處理室中形成。 Next, as shown in Fig. 2, a self-aligned silicide (salicide) process is performed. For example, a metal atom-containing layer 30 is formed on the surface of the substrate 10 at the same time, and simultaneously covers the gate structure 12, the source/drain region 14, the shallow trench isolation 16 and other portions of the surface of the substrate 10. The metal atom-containing layer 30 can be For example, a metal layer, a metal alloy layer or a metal compound layer is described by taking a nickel-platinum alloy (Ni/Pt) as an example, but is not limited thereto, and other materials such as cobalt (Co) may also be used according to the production requirements. a metal-containing atomic layer which can react with germanium atoms such as titanium (Ti). Then, a first heat treatment 40 is performed on the metal atom-containing layer 30, wherein the temperature of the first heat treatment 40 is preferably between 200 and 300 ° C, so that the metal atom-containing layer 30 reacts with the surface of the contact material, such as a gate. The polar structure 12, the single crystal germanium, the epitaxial germanium, the germanium (SiGe), the germanium carbon (SiC) or the germanium phosphorous (SiP) on the surface of the source/drain region 14 react to form a transition metal telluride layer 33. . The main component of the transition metal telluride layer 33 of this embodiment is, for example, Ni 2 Si. It should be noted that the transition metal halide layer 33 can be formed only on the surface of the substrate 10 in this embodiment because the region in contact with the metal atom-containing layer 30 must contain germanium atoms. The top of the gate structure 12 (when the gate structure is a germanium-containing gate and the dielectric gate is not covered with a dielectric hard mask layer), the surface of the source/drain region 14 or other metal halides The area of the enamel material that is covered by the silicide block. In another embodiment of the present invention, the gate structure 12 is a laminated structure, and the polysilicon material is overlaid with a dielectric hard mask layer, so that the gate structure is not automatically performed after the automatic alignment of the germanide process. The telluride is formed. This embodiment is not shown in the drawings, but the steps are the same as those described in FIGS. 1-6, except that the telluride is formed on the gate structure 12 in the figure. In addition, before the first heat treatment 40 is performed, the embodiment further selectively covers a cap layer 32 on the metal atom-containing layer 30 to prevent the metal atom-containing layer 30 from directly contacting the air for oxidation, and helps maintain the first heat treatment 40 process. The heat that is uniformly conducted to the transition metal telluride layer 33 is not easily dissipated. In this embodiment, the material of the cap layer 32 may include titanium nitride, tantalum nitride, tungsten nitride, or the like. However, the present invention is not limited thereto, and the cap layer 32 may be composed of other materials according to actual production requirements. The metal-containing atomic layer 30 and the cap layer 32 are preferably formed in-situly or without breaking vacuum, for example, both are formed in the same processing chamber or both are in the same cluster device. Formed in different processing chambers in the (cluster tool).
之後,如第3圖所示,完全移除蓋層32與未反應之含金屬原子層30,以曝露形成有過渡金屬矽化物層33的源/汲極區域14、閘極結構12頂部與基底10表面,然後可選擇性施以一清洗製程。接續如第4圖所示,再全面性於基底10表面形成一導熱層36,並同時覆蓋形成有過渡金屬矽化物層33的閘極結構12、源/汲極區域14、淺溝隔離16以及基底10表面其他部分。接著如第5圖所示,對過渡金屬矽化物層33進行一第二熱處理42,以較高溫度使過渡金屬矽化物層33產生相轉變成為一電阻較低的金屬矽化物層34,以本實施例來說,亦即將鎳與矽之間的固態反應從富鎳(Ni2Si)轉為具有最低Rs數值之單矽化物(monosilicide)的矽化鎳(NiSi),但不以此為限制。 Thereafter, as shown in FIG. 3, the cap layer 32 and the unreacted metal atom-containing layer 30 are completely removed to expose the source/drain region 14 in which the transition metal telluride layer 33 is formed, the top and the base of the gate structure 12. 10 surface, and then optionally a cleaning process. Next, as shown in FIG. 4, a thermally conductive layer 36 is formed on the surface of the substrate 10, and simultaneously covers the gate structure 12, the source/drain region 14, the shallow trench isolation 16 formed with the transition metal telluride layer 33, and Other parts of the surface of the substrate 10. Next, as shown in FIG. 5, a second heat treatment 42 is performed on the transition metal telluride layer 33 to phase-transform the transition metal telluride layer 33 into a lower-resistance metal halide layer 34 at a higher temperature. In the embodiment, the solid state reaction between nickel and ruthenium is also converted from nickel-rich (Ni 2 Si) to nickel hydride (NiSi) having the lowest Rs value of monosilicide, but is not limited thereto.
另外值得注意的是,本實施例中,第二熱處理42的溫度較佳介於350~700℃,而導熱層36的材質可選自氮化鈦、氮化鉭、氮化鎢等含金屬原子材質,或其非金屬等導熱性良好材質,以幫助第二熱處理42進行時提供的熱量可完整且均勻地傳遞至過渡金屬矽化物層 33,改善生成之金屬矽化物層34的品質。 In addition, in this embodiment, the temperature of the second heat treatment 42 is preferably between 350 and 700 ° C, and the material of the heat conduction layer 36 may be selected from the group consisting of titanium nitride, tantalum nitride, tungsten nitride and the like. Or a non-metallic, or other thermally conductive material to help the heat provided by the second heat treatment 42 be completely and uniformly transferred to the transition metal halide layer 33. Improving the quality of the resulting metal halide layer 34.
值得注意的是,習知的自動對準金屬矽化物(salicide)製作過程中,由於電路設計的不同,使得形成於半導體晶片上之金屬矽化物佈局圖案密度也不同。一般而言,在金屬矽化物佈局圖案密度較大的區域中,金屬矽化物與非金屬矽化物(矽氧化合物或矽氮化合物)的分佈比例大於金屬矽化物佈局圖案密度較小的區域,而金屬矽化物與非金屬矽化物(矽氧化合物或矽氮化合物)的熱傳導率又各不相同,因此在進行完相轉換的第二次熱處理之後,形成於基底表面的金屬矽化物層會存在有輪廓不均勻的問題,尤其是位於低金屬矽化物佈局圖案密度的區域,嚴重影響金屬矽化物層的品質,即使第二次熱處理的溫度大於700℃,對過渡金屬矽化物層產生的相轉變仍非相當完全。而本發明因具有一導熱層36覆蓋於過渡金屬矽化物層33上,因此即使第二熱處理42之溫度不超過700℃,也可使第二熱處理42進行時所提供的熱量能完整且均勻地傳遞至過渡金屬矽化物層33,使金屬矽化物層34成型狀態良好。 It is worth noting that in the conventional automatic alignment metal salicide manufacturing process, the metal germanide layout pattern density formed on the semiconductor wafer is also different due to the difference in circuit design. In general, in a region where the density of the metal telluride layout pattern is large, the distribution ratio of the metal telluride to the non-metal telluride (antimony compound or germanium nitrogen compound) is larger than the region where the metal germanide layout pattern density is small, and The thermal conductivity of the metal telluride and the non-metal telluride (the bismuth oxide compound or the ruthenium nitride compound) is different, so after the second heat treatment for performing the phase change, the metal telluride layer formed on the surface of the substrate may be present. The problem of uneven contour, especially in the area of low metal telluride layout pattern density, seriously affects the quality of the metal telluride layer. Even if the temperature of the second heat treatment is greater than 700 ° C, the phase transition of the transition metal telluride layer is still Not quite complete. However, the present invention has a heat conducting layer 36 covering the transition metal vapor layer 33, so that even if the temperature of the second heat treatment 42 does not exceed 700 ° C, the heat provided by the second heat treatment 42 can be completely and uniformly It is transferred to the transition metal telluride layer 33 to make the metal telluride layer 34 in a good state.
更進一步說明,關於導熱層36的材質,可與蓋層32相同或不相同。且為了方便後續步驟中從金屬矽化物層34表面移除導熱層36,導熱層36材質較佳選用與金屬矽化物層34間具有較高蝕刻選擇比的材質。另外導熱層36較佳由不會與矽原子產生反應的材料,或選用與矽原子的反應溫度高於700℃之材質,避免導熱層36在第二熱處理42的過程中與矽原子反應,而影響金屬矽化物層34的生成。 Further, the material of the heat conductive layer 36 may be the same as or different from the cover layer 32. In order to facilitate the removal of the heat conductive layer 36 from the surface of the metal telluride layer 34 in the subsequent step, the material of the heat conductive layer 36 is preferably a material having a higher etching selectivity ratio with the metal germanide layer 34. In addition, the heat conducting layer 36 is preferably made of a material that does not react with germanium atoms, or a material having a reaction temperature higher than 700 ° C with germanium atoms, to prevent the heat conducting layer 36 from reacting with germanium atoms during the second heat treatment 42. The formation of the metal telluride layer 34 is affected.
最後,如第6圖所示,將導熱層36移除,並可選擇性再施以一清洗製程,即完成本發明所述的金屬矽化物層34。本發明特徵在於,進行第二熱處理42之前,先於曝露的過渡金屬矽化物層33表面形成一導熱層36,再藉由導熱層36使第二熱處理42的熱量能更完整且均勻地傳導至各個過渡金屬矽化物層33,增進金屬矽化物層34的形成品質。 Finally, as shown in Fig. 6, the thermally conductive layer 36 is removed and a cleaning process can be selectively applied to complete the metal halide layer 34 of the present invention. The present invention is characterized in that a heat conducting layer 36 is formed on the surface of the exposed transition metal telluride layer 33 before the second heat treatment 42 is performed, and the heat of the second heat treatment 42 is more completely and uniformly transmitted to the heat conductive layer 36. Each transition metal telluride layer 33 enhances the quality of formation of the metal telluride layer 34.
第7圖繪示本發明第一較佳實施例的製作方法流程圖,如第7圖所示,本發明的製作方法至少包含步驟S10:形成一含金屬原子層於一基板上;步驟S12:對該含金屬原子層進行一第一熱處理,形成一過渡金屬矽化物層;步驟S14:移除該含金屬原子層;步驟S16:形成一導熱層於該過渡金屬矽化物層上;以及步驟S18:對該過渡金屬矽化物層進行一第二熱處理。另外在步驟S10與步驟S12之間,更可選擇性形成一蓋層覆蓋於該含金屬原子層上,還有在步驟S18後,可選擇性將導熱層移除。 7 is a flow chart showing a manufacturing method of the first preferred embodiment of the present invention. As shown in FIG. 7, the manufacturing method of the present invention includes at least step S10: forming a metal atom-containing layer on a substrate; and step S12: Performing a first heat treatment on the metal atom-containing layer to form a transition metal telluride layer; step S14: removing the metal atom-containing layer; step S16: forming a heat conductive layer on the transition metal halide layer; and step S18 : performing a second heat treatment on the transition metal halide layer. In addition, between step S10 and step S12, a cap layer is selectively formed to cover the metal atom-containing layer, and after step S18, the heat conductive layer is selectively removed.
值得注意的是,本發明提供的製作方法也可與後接觸插塞製程(post-contact)整合,第8~9圖繪示本發明第二較佳實施例的結構剖面示意圖,如第8圖所示,於基底10上形成一電晶體,電晶體包含有閘極結構12、源/汲極區域14以及淺溝隔離16,然後形成一介電層20覆蓋電晶體,接著再以蝕刻等方式選擇性形成複數個接觸洞22曝露閘極結構12與源/汲極區域14頂部,之後於各接觸洞22內部進行一金屬矽化物層的製作。其製作方法與本發明第一較佳實施例相同,包括 形成一含金屬原子層(圖未示)與一蓋層(圖未示)於接觸洞22內,然後進行一第一熱處理(圖未示),使含金屬原子層與接觸之矽材質的表面反應生成過渡金屬矽化物層(圖未示),接著移除未反應之含金屬原子層與蓋層後,再形成一導熱層38於接觸洞22內,並進行一第二熱處理42,以將各接觸洞22內之過渡金屬矽化物層(圖未示)相轉換成一金屬矽化物層48。本實施例中的介電層20可以是單一介電層或多層介電層的組合,其材料例如是摻雜有氮、氧或無摻雜的碳化矽(SiC doped with nitrogen or oxygen or undoped SiC)、氮化矽、無摻雜或摻有磷之矽玻璃(USG or PSG)、以四乙氧基矽烷(TEOS)為前驅物所形成的氧化矽、低介電常數(low-k)或超低介電常數(ultra low-k)介電材料、或其任意組合。本實施例與前述第一較佳實施例不同之處在於,形成的金屬矽化物層48僅位於各接觸洞22內,其餘各部件之特徵、材料特性以及製作方法與上述第一較佳實施例相似,故在此並不再贅述。 It should be noted that the manufacturing method provided by the present invention can also be integrated with a post-contact, and the eighth to ninth are schematic cross-sectional views of the second preferred embodiment of the present invention, as shown in FIG. As shown, a transistor is formed on the substrate 10. The transistor includes a gate structure 12, a source/drain region 14 and a shallow trench isolation 16, and then a dielectric layer 20 is formed to cover the transistor, followed by etching or the like. A plurality of contact holes 22 are selectively formed to expose the gate structure 12 and the top of the source/drain regions 14, and then a metal germanide layer is formed inside each of the contact holes 22. The manufacturing method is the same as the first preferred embodiment of the present invention, including Forming a metal atom-containing layer (not shown) and a cap layer (not shown) in the contact hole 22, and then performing a first heat treatment (not shown) to make the surface containing the metal atom layer and the contact material The reaction generates a transition metal halide layer (not shown), and then removes the unreacted metal-containing atomic layer and the cap layer, and then forms a heat conductive layer 38 in the contact hole 22, and performs a second heat treatment 42 to A transition metal telluride layer (not shown) in each contact hole 22 is converted into a metal telluride layer 48. The dielectric layer 20 in this embodiment may be a single dielectric layer or a combination of multiple dielectric layers, such as SiC doped with nitrogen or oxygen or undoped SiC. ), tantalum nitride, undoped or phosphorus-doped bismuth glass (USG or PSG), yttrium oxide formed with tetraethoxy decane (TEOS) as a precursor, low dielectric constant (low-k) or Ultra low-k dielectric material, or any combination thereof. The difference between the present embodiment and the first preferred embodiment is that the formed metal halide layer 48 is only located in each contact hole 22, and the features, material characteristics and manufacturing method of the remaining components are compared with the first preferred embodiment. Similar, so I won't go into details here.
上述第二實施例的金屬矽化物層48完成後,如第9圖所示,可於金屬矽化物層48上方再製作一接觸結構,以與外部的其他元件相連,例如填入一阻障層(圖未示)、導電層24於接觸洞22內,然後再進行一平坦化製程,例如化學機械研磨(Chemical mechanical polishing,CMP),將位於介電層20表面多餘的導熱層38以及導電層24移除,完成複數個接觸結構26。值得注意的是,本實施例中,導熱層38可視情況保留於接觸洞22內。也就是說,進行第二熱處理42之後,可選擇不將導熱層38移除,此時導熱層38可作為接觸結構26 中的阻障層,舉例來說,一般常以鎢(tungsten,W)當作填入接觸洞內的導電層,則當導熱層材質為鈦/氮化鈦層(Ti/TiN)時,就可直接將導熱層38保留於接觸洞22內的金屬矽化物層48上,作為阻障層使用,防止後續製程填入接觸洞22之導電層24擴散到基底10中,而直接填入鎢(W)。當然,本發明第一較佳實施例之金屬矽化物層完成後,也可進一步形成接觸結構(圖未示)於金屬矽化物層上,此時金屬矽化物層可有效降低接觸結構與閘極結構或是源/汲極區域之間的電阻。但值得注意的是,由於第一較佳實施例中導熱層36係完整覆蓋於整個電晶體上,因此需先將導電的導熱層36移除後,才可以繼續進行接觸結構的製作,以免各接觸結構間互相連結而短路,而若導熱層36的材質為非金屬的材質,則可選擇性不加以去除。 After the metal germanide layer 48 of the second embodiment is completed, as shown in FIG. 9, a contact structure may be formed over the metal telluride layer 48 to be connected to other external components, such as a barrier layer. (not shown), the conductive layer 24 is in the contact hole 22, and then a planarization process, such as chemical mechanical polishing (CMP), to remove the excess heat conduction layer 38 and the conductive layer on the surface of the dielectric layer 20. 24 is removed to complete a plurality of contact structures 26. It should be noted that in this embodiment, the heat conductive layer 38 may remain in the contact hole 22 as the case may be. That is, after the second heat treatment 42 is performed, it may be selected not to remove the heat conductive layer 38, and the heat conductive layer 38 may serve as the contact structure 26 at this time. In the case of a barrier layer, for example, tungsten (tungsten, W) is generally used as a conductive layer filled in a contact hole, and when the heat conductive layer is made of a titanium/titanium nitride layer (Ti/TiN), The heat conductive layer 38 can be directly retained on the metal germanide layer 48 in the contact hole 22, and used as a barrier layer to prevent the conductive layer 24 filled in the contact hole 22 from being diffused into the substrate 10 in a subsequent process, and directly filled with tungsten ( W). Of course, after the metal halide layer of the first preferred embodiment of the present invention is completed, a contact structure (not shown) may be further formed on the metal telluride layer, and the metal telluride layer can effectively reduce the contact structure and the gate. Structure or resistance between source/drain regions. However, it is worth noting that since the heat conducting layer 36 is completely covered on the entire transistor in the first preferred embodiment, the conductive heat conducting layer 36 needs to be removed before the contact structure can be further fabricated. The contact structures are connected to each other and short-circuited, and if the material of the heat-conducting layer 36 is made of a non-metal material, it can be selectively removed.
上述實施例中,閘極結構皆是以多晶矽閘極為例,但本發明也可使用金屬閘極,此時金屬矽化物層就不會形成於閘極結構上。此外,金屬閘極亦可與高介電常數優先閘極後製製程(high-k first gate last process)、高介電常數後製閘極後製置製程(high-k last gate last process)或閘極優先製程(gate first process)整合前閘極介電層(high-k first)等之金屬閘極製程相整合,更包括一高介電常數(high dielectric constant,high-k)材料層,其可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide, ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組。又,也可以只在源極/汲極上形成接觸洞而不在金屬閘極上形成接觸洞,因此在進行金屬矽化物製程時含金屬原子層、蓋層、導熱層完全不會接觸到金屬閘極。 In the above embodiments, the gate structure is a typical example of a polysilicon gate, but the metal gate can also be used in the present invention, in which case the metal halide layer is not formed on the gate structure. In addition, the metal gate can also be combined with a high-k first gate last process, a high-k last gate last process or a high-k last gate last process or The gate first process integrates the metal gate process integration of the front high-k first layer, and further includes a high dielectric constant (high-k) material layer. It may be selected from hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride (HfSiON), aluminum oxide (aluminum oxide, Al 2 ). O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), zirconium oxide (ZrO 2 ), Strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), strontium bismuth tantalate (SrBi 2 ) Ta 2 O 9 , SBT), lead zirconate titana Te, PbZr x Ti 1-x O 3 , PZT) and a group consisting of barium strontium titanate (Ba x Sr 1-x TiO 3 , BST). Further, it is also possible to form a contact hole only on the source/drain without forming a contact hole on the metal gate, so that the metal atomic layer, the cap layer, and the heat conductive layer do not contact the metal gate at all during the metal telluride process.
綜上所述,本發明的特徵在於,移除蓋層與未反應之含金屬原子層之後與進行第二熱處理之前,先於曝露之過渡金屬矽化物層表面形成一導熱層,如此,藉由該導熱層,第二熱處理所提供的熱量便能更完整且均勻地傳導至過渡金屬矽化物層,相較於習知金屬矽化物層的製作,第二熱處理所需的溫度更低,但形成的金屬矽化物層品質可得到提升。 In summary, the present invention is characterized in that a heat conducting layer is formed on the surface of the exposed transition metal halide layer before removing the cap layer and the unreacted metal atom-containing layer and before performing the second heat treatment. The heat provided by the second heat treatment can be more completely and uniformly conducted to the transition metal halide layer, and the temperature required for the second heat treatment is lower than that of the conventional metal halide layer, but is formed. The quality of the metal halide layer can be improved.
以上所述僅為本發明之較佳實例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
10‧‧‧基板 10‧‧‧Substrate
12‧‧‧閘極結構 12‧‧‧ gate structure
14‧‧‧源/汲極區域 14‧‧‧Source/bungee area
16‧‧‧淺溝隔離 16‧‧‧Shallow trench isolation
20‧‧‧介電層 20‧‧‧Dielectric layer
22‧‧‧接觸洞 22‧‧‧Contact hole
24‧‧‧導電層 24‧‧‧ Conductive layer
26‧‧‧接觸結構 26‧‧‧Contact structure
27‧‧‧側壁子 27‧‧‧ Sidewall
30‧‧‧含金屬原子層 30‧‧‧Metal atomic layer
32‧‧‧蓋層 32‧‧‧ cover
33‧‧‧過渡金屬矽化物層 33‧‧‧Transition metal telluride layer
34‧‧‧金屬矽化物層 34‧‧‧metal telluride layer
36‧‧‧導熱層 36‧‧‧Conducting layer
38‧‧‧導熱層 38‧‧‧thermal layer
40‧‧‧第一熱處理 40‧‧‧First heat treatment
42‧‧‧第二熱處理 42‧‧‧second heat treatment
48‧‧‧金屬矽化物層 48‧‧‧metal telluride layer
S10~S18‧‧‧步驟 S10~S18‧‧‧Steps
第1~6圖繪示本發明第一較佳實施例的結構剖面示意圖。 1 to 6 are schematic cross-sectional views showing the structure of the first preferred embodiment of the present invention.
第7圖繪示本發明第一較佳實施例的製作方法流程圖。 FIG. 7 is a flow chart showing a manufacturing method of the first preferred embodiment of the present invention.
第8~9圖繪示本發明第二較佳實施例的結構剖面示意圖。 8 to 9 are schematic cross-sectional views showing the structure of a second preferred embodiment of the present invention.
S10~S18‧‧‧步驟 S10~S18‧‧‧Steps
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101136659A TWI585859B (en) | 2012-10-04 | 2012-10-04 | Method for forming a silicide layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101136659A TWI585859B (en) | 2012-10-04 | 2012-10-04 | Method for forming a silicide layer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201415555A TW201415555A (en) | 2014-04-16 |
TWI585859B true TWI585859B (en) | 2017-06-01 |
Family
ID=55182094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101136659A TWI585859B (en) | 2012-10-04 | 2012-10-04 | Method for forming a silicide layer |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI585859B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW513754B (en) * | 2000-09-22 | 2002-12-11 | Samsung Electronics Co Ltd | Semiconductor device having a metal silicide layer and method for manufacturing the same |
TW201137953A (en) * | 2010-04-28 | 2011-11-01 | United Microelectronics Corp | Semiconductor device and method of making the same |
-
2012
- 2012-10-04 TW TW101136659A patent/TWI585859B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW513754B (en) * | 2000-09-22 | 2002-12-11 | Samsung Electronics Co Ltd | Semiconductor device having a metal silicide layer and method for manufacturing the same |
TW201137953A (en) * | 2010-04-28 | 2011-11-01 | United Microelectronics Corp | Semiconductor device and method of making the same |
Also Published As
Publication number | Publication date |
---|---|
TW201415555A (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8765546B1 (en) | Method for fabricating fin-shaped field-effect transistor | |
US9006072B2 (en) | Method of forming metal silicide layer | |
US20150061042A1 (en) | Metal gate structure and method of fabricating the same | |
US20160104673A1 (en) | Fin-shaped field-effect transistor with a germanium epitaxial cap and a method for fabricating the same | |
US10068797B2 (en) | Semiconductor process for forming plug | |
US20150035069A1 (en) | Finfet and method for fabricating the same | |
US20140264480A1 (en) | Semiconductor device and method of forming the same | |
US9070710B2 (en) | Semiconductor process | |
US10910375B2 (en) | Semiconductor device and method of fabrication thereof | |
US8237205B2 (en) | Semiconductor device and method for fabricating the same | |
TW201714208A (en) | Semiconductor component and manufacturing method thereof | |
US9748144B1 (en) | Method of fabricating semiconductor device | |
CN105826174B (en) | Semiconductor device and method of making the same | |
CN101165898A (en) | Semiconductor device and method for manufacturing the same | |
US20150162419A1 (en) | Method of fabricating semiconductor device | |
TWI612666B (en) | Method for fabricating finfet transistor | |
US8962490B1 (en) | Method for fabricating semiconductor device | |
US7635648B2 (en) | Methods for fabricating dual material gate in a semiconductor device | |
CN103117296B (en) | Metal oxide semiconductor transistor and forming method thereof | |
US8598033B1 (en) | Method for forming a salicide layer | |
US20140113425A1 (en) | Method of fabricating semiconductor device | |
US9502499B2 (en) | Semiconductor device structure having multi-layered isolation trench structures | |
US10978556B2 (en) | Semiconductor device and method for fabricating the same | |
CN111554659A (en) | Plug structure and its manufacturing process | |
TWI518783B (en) | Structure of electrical contact and fabrication method thereof |