TWI573391B - Variable gain amplifying circuit - Google Patents
Variable gain amplifying circuit Download PDFInfo
- Publication number
- TWI573391B TWI573391B TW105104869A TW105104869A TWI573391B TW I573391 B TWI573391 B TW I573391B TW 105104869 A TW105104869 A TW 105104869A TW 105104869 A TW105104869 A TW 105104869A TW I573391 B TWI573391 B TW I573391B
- Authority
- TW
- Taiwan
- Prior art keywords
- current
- signal
- variable gain
- input
- amplifying circuit
- Prior art date
Links
Landscapes
- Amplifiers (AREA)
- Control Of Amplification And Gain Control (AREA)
Description
本發明係關於一種可變增益放大電路。 The present invention relates to a variable gain amplifying circuit.
可變增益放大電路係用以根據一增益控制信號以放大或衰減一輸入信號。第一圖繪示一傳統可變增益放大電路的示意圖。該可變增益放大電路100包含一差動運算放大器(Operational Amplifier)12、具有固定電阻值的電阻R1B和R2B以及具有可變電阻值的電阻R2A和R2B。 The variable gain amplifying circuit is configured to amplify or attenuate an input signal according to a gain control signal. The first figure shows a schematic diagram of a conventional variable gain amplifying circuit. The variable gain amplifying circuit 100 includes a differential operational amplifier 12, resistors R1B and R2B having fixed resistance values, and resistors R2A and R2B having variable resistance values.
如第一圖所示,該等電阻R2A和R2B的每一者具有多個並聯的電路單元,其中每一電路單元由串聯在一起的電晶體開關和電阻所組成。一增益控制器14產生多個邏輯信號至該電阻R2A中的多個電晶體開關,且一增益控制器16產生多個邏輯信號至該電阻R2B中的多個電晶體開關。該等電阻R2A和R2B的阻值由電晶體開關的導通狀態所決定。因此,藉由導通和截止該等開關,該等電阻R2A和R2B的阻值會產生變化,進而改變該可變增益放大電路100的增益。 As shown in the first figure, each of the resistors R2A and R2B has a plurality of circuit units connected in parallel, wherein each circuit unit is composed of a transistor switch and a resistor connected in series. A gain controller 14 generates a plurality of logic signals to a plurality of transistor switches in the resistor R2A, and a gain controller 16 generates a plurality of logic signals to a plurality of transistor switches in the resistor R2B. The resistance of the resistors R2A and R2B is determined by the conduction state of the transistor switch. Therefore, by turning on and off the switches, the resistances of the resistors R2A and R2B are varied, thereby changing the gain of the variable gain amplifying circuit 100.
依此運作方式,當電阻R1A的阻值等於電阻R1B的阻值,且電阻R2A的阻值等於電阻R2B的阻值時,該可變增益放大電路100的增益可由該電阻R2A的阻值和該電阻R1A的 阻值比例所決定。當該可變增益放大電路100的增益需要N級變化時,該等電阻R2A和R2B的每一者中的電路單元需要N個電晶體開關和N個電阻。因此,該可變增益放大電路100的晶片面積會隨著級數N的增加而加大許多。 According to this operation mode, when the resistance of the resistor R1A is equal to the resistance of the resistor R1B, and the resistance of the resistor R2A is equal to the resistance of the resistor R2B, the gain of the variable gain amplifier circuit 100 can be obtained by the resistance of the resistor R2A and Resistance R1A The resistance ratio is determined. When the gain of the variable gain amplifying circuit 100 requires an N-level change, the circuit cells in each of the resistors R2A and R2B require N transistor switches and N resistors. Therefore, the wafer area of the variable gain amplifying circuit 100 increases a lot as the number of stages N increases.
根據本發明一實施例之一種可變增益放大電路,該可變增益放大電路用以放大一第一輸入信號和一第二輸入信號之間的一電壓差值,藉以產生一放大差動輸出信號。該可變增益放大電路包含一運算放大器、一第一輸入元件、一回授元件、一偵測電路、一動態偏壓電路和一轉導放大器。該運算放大器具有一第一輸入端,一第二輸入端和用以提供該放大差動輸出信號的一輸出端。該第一輸入元件具有用以接收該第一輸入信號的一第一端和耦接至該運算放大器的該第一輸入端的一第二端。該回授元件具有耦接至該運算放大器的該第一輸入端的一第一端和耦接至該運算放大器的該輸出端的一第二端。該偵測電路用以根據該第一輸入信號和該第二輸入信號的其中一者的一電壓值或者根據該放大差動輸出信號的一電壓值產生一設定值。該動態偏壓電路用以根據該設定值以產生一偏壓電流。該轉導放大器用以轉換該第一輸入信號和該第二輸入信號之間的該電壓差值以產生一類比輸出電流。該類比輸出電流流經該回授元件。該第一輸入元件具有一固定阻值。該轉導放大器的該類比輸出電流 根據該偏壓電流而改變。 According to an embodiment of the present invention, a variable gain amplifying circuit is configured to amplify a voltage difference between a first input signal and a second input signal to generate an amplified differential output signal. . The variable gain amplifying circuit comprises an operational amplifier, a first input component, a feedback component, a detection circuit, a dynamic bias circuit and a transconductance amplifier. The operational amplifier has a first input, a second input and an output for providing the amplified differential output signal. The first input component has a first end for receiving the first input signal and a second end coupled to the first input of the operational amplifier. The feedback component has a first end coupled to the first input of the operational amplifier and a second end coupled to the output of the operational amplifier. The detecting circuit is configured to generate a set value according to a voltage value of one of the first input signal and the second input signal or according to a voltage value of the amplified differential output signal. The dynamic bias circuit is configured to generate a bias current according to the set value. The transconductance amplifier is configured to convert the voltage difference between the first input signal and the second input signal to generate an analog output current. The analog output current flows through the feedback element. The first input element has a fixed resistance. Analog output current of the transconductance amplifier It changes according to the bias current.
100‧‧‧可變增益放大電路 100‧‧‧Variable gain amplifier circuit
12‧‧‧差動運算放大器 12‧‧‧Differential Operational Amplifier
14‧‧‧增益控制器 14‧‧‧ Gain Controller
16‧‧‧增益控制器 16‧‧‧ Gain Controller
200‧‧‧可變增益放大電路 200‧‧‧Variable gain amplifier circuit
22‧‧‧增益放大器 22‧‧‧Gain Amplifier
224‧‧‧運算放大器 224‧‧‧Operational Amplifier
24,24’‧‧‧轉導放大器 24,24’‧‧‧Transduction Amplifier
26,26’‧‧‧動態偏壓電路 26,26’‧‧‧ Dynamic Bias Circuit
262‧‧‧電流產生電路 262‧‧‧current generation circuit
2622‧‧‧運算放大器 2622‧‧‧Operational Amplifier
264‧‧‧電流鏡電路 264‧‧‧current mirror circuit
400‧‧‧可變增益放大電路 400‧‧‧Variable gain amplifier circuit
42‧‧‧增益放大器 42‧‧‧Gain Amplifier
424‧‧‧運算放大器 424‧‧‧Operational Amplifier
48‧‧‧偵測電路 48‧‧‧Detection circuit
49‧‧‧充電泵 49‧‧‧Charging pump
600‧‧‧可變增益放大電路 600‧‧‧Variable gain amplifier circuit
64‧‧‧切換單元 64‧‧‧Switch unit
66‧‧‧切換單元 66‧‧‧Switch unit
68‧‧‧偵測電路 68‧‧‧Detection circuit
800‧‧‧可變增益放大電路 800‧‧‧Variable gain amplifier circuit
82‧‧‧偵測電路 82‧‧‧Detection circuit
C1,CH‧‧‧電容 C1, CH‧‧‧ capacitor
I1,I2‧‧‧電流源 I1, I2‧‧‧ current source
N1~N5‧‧‧電晶體 N1~N5‧‧‧O crystal
P1~P5‧‧‧電晶體 P1~P5‧‧‧O crystal
R1A,R2A,R1B,R2B‧‧‧電阻 R1A, R2A, R1B, R2B‧‧‧ resistance
R1~R4‧‧‧電阻 R1~R4‧‧‧ resistor
RLEL‧‧‧電阻 RLEL‧‧‧resistance
SW1,SW2‧‧‧開關 SW1, SW2‧‧‧ switch
第一圖繪示一傳統可變增益放大電路的示意圖。 The first figure shows a schematic diagram of a conventional variable gain amplifying circuit.
第二圖顯示結合本發明一實施例之一可變增益放大電路之方塊示意圖。 The second figure shows a block diagram of a variable gain amplifying circuit in accordance with one embodiment of the present invention.
第三圖顯示結合本發明一實施例之該可變增益放大電路之電路圖。 The third figure shows a circuit diagram of the variable gain amplifying circuit in combination with an embodiment of the present invention.
第四圖顯示結合本發明另一實施例之一可變增益放大電路之方塊示意圖。 The fourth figure shows a block diagram of a variable gain amplifying circuit in accordance with another embodiment of the present invention.
第五圖顯示結合本發明另一實施例之一可變增益放大電路之電路圖。 Fig. 5 is a circuit diagram showing a variable gain amplifying circuit in accordance with another embodiment of the present invention.
第六圖顯示結合本發明又一實施例之可增加增益的一可變增益放大電路之方塊示意圖。 Fig. 6 is a block diagram showing a variable gain amplifying circuit which can increase the gain in combination with another embodiment of the present invention.
第七圖顯示第六圖所示的該可變增益放大電路之運作方式。 The seventh figure shows the operation of the variable gain amplifying circuit shown in the sixth figure.
第八圖顯示結合本發明再一實施例之可增加增益的一可變增益放大電路之方塊示意圖。 The eighth figure shows a block diagram of a variable gain amplifying circuit which can increase the gain in combination with still another embodiment of the present invention.
第九圖顯示結合本發明一實施例之該可變增益放大電路之電路圖。 The ninth drawing shows a circuit diagram of the variable gain amplifying circuit in combination with an embodiment of the present invention.
在說明書及後續的申請專利範圍當中使用了某 些詞彙來指稱特定的元件。所屬領域中具有通常知識者應可理解,製造商可能會用不同的名詞來稱呼同樣的元件。本說明書及後續的申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及後續的請求項當中所提及的「包含」或「包含」係為一開放式的用語,故應解釋成「包含但不限定於」。另外,「耦接」一詞在此係包含任何直接及間接的電氣連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表該第一裝置可直接電氣連接於該第二裝置,或透過其他裝置或連接手段間接地電氣連接至該第二裝置。 Used in the specification and subsequent patent applications These words refer to specific components. It should be understood by those of ordinary skill in the art that manufacturers may refer to the same elements by different nouns. The scope of this specification and the subsequent patent application do not use the difference of the names as the means for distinguishing the elements, but the difference in function of the elements as the criterion for distinguishing. The term "including" or "including" as used throughout the specification and subsequent claims is an open term and should be interpreted as "including but not limited to". In addition, the term "coupled" is used herein to include any direct and indirect electrical connection. Therefore, if a first device is coupled to a second device, it means that the first device can be directly electrically connected to the second device or indirectly electrically connected to the second device through other devices or connection means.
第二圖顯示結合本發明一實施例之一可變增益放大電路200之方塊示意圖。參照第二圖,該可變增益放大電路200包含一增益放大器22、一轉導(transconductance)放大器24和一動態偏壓電路26。 The second figure shows a block diagram of a variable gain amplifying circuit 200 in accordance with one embodiment of the present invention. Referring to the second figure, the variable gain amplifying circuit 200 includes a gain amplifier 22, a transconductance amplifier 24, and a dynamic bias circuit 26.
該增益放大器22用以接收一類比輸入信號VI以產生一類比輸出信號VO。在本實施例中,該增益放大器22由一單端輸入單端輸出的運算放大器224、具有固定電阻值的電阻R1以及具有固定電阻值的電阻R2所組成。當轉導放大器24未提供電流至電阻R2時,該增益放大器22的增益G係由式(1)決定。 The gain amplifier 22 is configured to receive an analog input signal VI to generate an analog output signal VO. In the present embodiment, the gain amplifier 22 is composed of a single-ended input single-ended output operational amplifier 224, a resistor R1 having a fixed resistance value, and a resistor R2 having a fixed resistance value. When the transconductance amplifier 24 does not supply current to the resistor R2, the gain G of the gain amplifier 22 is determined by equation (1).
G=R2/R1 (1) G=R2/R1 (1)
然而,該增益放大器22的新增益G’可藉由改變流 過電阻R2的淨電流來獲得。參考第二圖,該轉導放大器24係用以轉換輸入電壓VI和參考電壓VREF的差值以產生一類比輸出電流IGM。接著,該轉導放大器24提供該類比輸出電流IGM至該增益放大器22,藉以調整該增益放大器22的增益G’。注意該轉導放大器24的一偏壓電流IDYN來自該動態偏壓電路26。該偏壓電流IDYN可以根據一輸入信號VLEL而改變。 However, the new gain G' of the gain amplifier 22 can be changed by changing the flow Obtained by the net current of the resistor R2. Referring to the second diagram, the transconductance amplifier 24 is operative to convert the difference between the input voltage VI and the reference voltage VREF to produce an analog output current IGM. Next, the transconductance amplifier 24 supplies the analog output current IGM to the gain amplifier 22, thereby adjusting the gain G' of the gain amplifier 22. Note that a bias current IDYN of the transconductance amplifier 24 is derived from the dynamic bias circuit 26. The bias current IDYN can be varied according to an input signal VLEL.
第三圖顯示結合本發明一實施例之該可變增益放大電路200之電路圖。參考第三圖,該動態偏壓電路26包含一電流產生電路262和一電流鏡電路264。該電流產生電路262由一運算放大器2622、一NMOS電晶體N1和一電阻RLEL所組成。該運算放大器2622具有用以接收該輸入信號VLEL的一正輸入端、耦接至該電阻RLEL的一負輸入端和耦接至該NMOS電晶體N1的一閘極的一輸出端。依此結構,流過該NMOS電晶體N1的電流IN1可由式(2)決定。 The third figure shows a circuit diagram of the variable gain amplifying circuit 200 incorporating an embodiment of the present invention. Referring to the third diagram, the dynamic bias circuit 26 includes a current generating circuit 262 and a current mirror circuit 264. The current generating circuit 262 is composed of an operational amplifier 2622, an NMOS transistor N1 and a resistor RLEL. The operational amplifier 2622 has a positive input terminal for receiving the input signal VLEL, a negative input terminal coupled to the resistor RLEL, and an output terminal coupled to a gate of the NMOS transistor N1. According to this configuration, the current IN1 flowing through the NMOS transistor N1 can be determined by the equation (2).
IN1=VLEL/RLEL (2) IN1=VLEL/RLEL (2)
參照第三圖,該電流鏡電路264由PMOS電晶體P1、P2和P3所組成。該PMOS電晶體P1接收流過該NMOS電晶體N1的電流IN1,而該等PMOS電晶體P2和P3根據寬長比(W/L ratio)而產生比例於該電流IN1的電流。該PMOS電晶體P3的電流做為該轉導放大器24的上偏壓電流。流過該PMOS電晶體P2的電流流至該NMOS電晶體N2,接著,該NMOS電晶體N3根據寬長比而產生比例於該NMOS電晶體N2的電流,以做為該轉 導放大器24的下偏壓電流。 Referring to the third diagram, the current mirror circuit 264 is composed of PMOS transistors P1, P2, and P3. The PMOS transistor P1 receives the current IN1 flowing through the NMOS transistor N1, and the PMOS transistors P2 and P3 generate a current proportional to the current IN1 according to the aspect ratio (W/L ratio). The current of the PMOS transistor P3 serves as the upper bias current of the transconductance amplifier 24. The current flowing through the PMOS transistor P2 flows to the NMOS transistor N2, and then the NMOS transistor N3 generates a current proportional to the NMOS transistor N2 according to the aspect ratio as the turn The lower bias current of the amplifier 24.
該轉導放大器24包含一輸入電晶體對,由串聯的PMOS電晶體P1和NMOS電晶體N4以及串聯的PMOS電晶體P5和NMOS電晶體N5所組成。參照第三圖,該PMOS電晶體P4和該NMOS電晶體N4串聯連接於該PMOS電晶體P3和該NMOS電晶體N3之間,而該PMOS電晶體P5和該NMOS電晶體N5串聯連接於該PMOS電晶體P3和該NMOS電晶體N3之間。 The transconductance amplifier 24 includes an input transistor pair consisting of a series connected PMOS transistor P1 and an NMOS transistor N4 and a series connected PMOS transistor P5 and NMOS transistor N5. Referring to the third figure, the PMOS transistor P4 and the NMOS transistor N4 are connected in series between the PMOS transistor P3 and the NMOS transistor N3, and the PMOS transistor P5 and the NMOS transistor N5 are connected in series to the PMOS. Between the transistor P3 and the NMOS transistor N3.
參照第三圖,該PMOS電晶體P4和該NMOS電晶體N4的閘極用以接收該類比輸入信號VI,而該PMOS電晶體P5和該NMOS電晶體N5的閘極用以接收該參考電壓VREF。因此,該轉導放大器24的該類比輸出電流IGM之電流值會比例於該輸入電壓VI和參考電壓VREF的差值。此外,該轉導放大器24的增益相應於該PMOS電晶體P3或該NMOS電晶體N3的偏壓電流值。 Referring to the third figure, the gates of the PMOS transistor P4 and the NMOS transistor N4 are used to receive the analog input signal VI, and the gates of the PMOS transistor P5 and the NMOS transistor N5 are used to receive the reference voltage VREF. . Therefore, the current value of the analog output current IGM of the transconductance amplifier 24 is proportional to the difference between the input voltage VI and the reference voltage VREF. Furthermore, the gain of the transconductance amplifier 24 corresponds to the bias current value of the PMOS transistor P3 or the NMOS transistor N3.
以下參考第三圖說明該可變增益放大電路200的一運作方式。隨著該輸入信號VLEL的電壓值上升,流過該電阻RLEL的電流也隨之增加。由於電流鏡264會產生一複製電流,其等比例於流過該電阻RLEL的電流。因此,該PMOS電晶體P3和該PMOS電晶體P3的偏壓電流值也會隨之增加。當VI>VREF時,該轉導放大器24產生該類比輸出電流IGM,此時該類比輸出電流IGM會帶走原本流過該電阻R2的電流,故流過電阻R2的淨電流會下降,這使得該增益放大電路22的增 益下降。 An operation of the variable gain amplifying circuit 200 will be described below with reference to the third figure. As the voltage value of the input signal VLEL rises, the current flowing through the resistor RLEL also increases. Since current mirror 264 produces a replica current, it is proportional to the current flowing through resistor RLEL. Therefore, the bias current values of the PMOS transistor P3 and the PMOS transistor P3 also increase. When VI>VREF, the transconductance amplifier 24 generates the analog output current IGM. At this time, the analog output current IGM will carry away the current flowing through the resistor R2, so the net current flowing through the resistor R2 will decrease, which makes The increase of the gain amplifying circuit 22 Benefits decline.
在第三圖中,一單端輸入單端輸出的運算放大器224使用於該增益放大器22中。然而,本發明不應限定於此一型態的運算放大器。該增益放大器22也可以是差動輸入差動輸出放大器的型態。第四圖顯示結合本發明另一實施例之一可變增益放大電路400之方塊示意圖。參照第四圖,該可變增益放大電路400包含一增益放大器42、一轉導放大器24’、一動態偏壓電路26’、一偵測電路48和一充電泵49。第四圖中類似第二圖之元件以類似的參考數字顯示,且電路的細節將不再贅述。 In the third diagram, a single-ended input single-ended output operational amplifier 224 is used in the gain amplifier 22. However, the invention should not be limited to this type of operational amplifier. The gain amplifier 22 can also be of the differential input differential output amplifier. The fourth figure shows a block diagram of a variable gain amplifying circuit 400 in accordance with another embodiment of the present invention. Referring to the fourth figure, the variable gain amplifying circuit 400 includes a gain amplifier 42, a transconductance amplifier 24', a dynamic bias circuit 26', a detecting circuit 48, and a charging pump 49. Elements in the fourth figure that are similar to the second figure are shown with similar reference numerals, and details of the circuit will not be described again.
在本實施例中該增益放大器42為一雙端差動輸入雙端差動輸出放大器的型態。該增益放大器42接收互補的類比輸入信號VIP和VIN以產生互補的類比輸出信號VOP和VON。如第四圖所示,該增益放大器42由一差動運算放大器424和具有固定電阻值的電阻R1,R2,R3,R4所組成。當電阻R1的阻值等於電阻R2的阻值,且電阻R3的阻值等於電阻R4的阻值時,在該轉導放大器24’未提供電流至電阻R3的狀況下,該增益放大器42的增益G係由式(3)決定。 In the present embodiment, the gain amplifier 42 is of the type of a double-ended differential input double-ended differential output amplifier. The gain amplifier 42 receives complementary analog input signals VIP and VIN to produce complementary analog output signals VOP and VON. As shown in the fourth figure, the gain amplifier 42 is composed of a differential operational amplifier 424 and resistors R1, R2, R3, R4 having fixed resistance values. When the resistance of the resistor R1 is equal to the resistance of the resistor R2, and the resistance of the resistor R3 is equal to the resistance of the resistor R4, the gain of the gain amplifier 42 is not provided when the transconductance amplifier 24' does not supply current to the resistor R3. G is determined by equation (3).
G=R3/R1 (3) G=R3/R1 (3)
在此狀況下,當輸入電壓VIP大於輸入電壓VIN時,流過電阻R3的電流的方向和流過R4的電流的方向如第四圖實線所示。隨著輸入電壓VIP和輸入電壓VIN的差值增加, 流過電阻R3和R4的電流也隨之增加。 In this case, when the input voltage VIP is greater than the input voltage VIN, the direction of the current flowing through the resistor R3 and the direction of the current flowing through R4 are as indicated by the solid line in the fourth figure. As the difference between the input voltage VIP and the input voltage VIN increases, The current flowing through resistors R3 and R4 also increases.
另一方面,當該偵測電路48偵測到該可變增益放大電路400的輸出電壓不在一預定範圍內時,該增益放大器42的增益可以開始進行調整。以下參考第五圖說明該可變增益放大電路400的一運作方式。當該偵測電路48偵測到該可變增益放大電路400的輸出電壓VOP,VON不在該預定範圍內時,該偵測電路48產生互補的控制信號UP和DN至該充電泵49。該充電泵49用以產生該信號VLEL。如第五圖所示,該充電泵49包含一上偏壓電流源I1、一下偏壓電流源I2、兩開關SW1和SW2和一電容C1。 On the other hand, when the detecting circuit 48 detects that the output voltage of the variable gain amplifying circuit 400 is not within a predetermined range, the gain of the gain amplifier 42 can start to be adjusted. An operation of the variable gain amplifying circuit 400 will be described below with reference to the fifth figure. When the detecting circuit 48 detects the output voltage VOP of the variable gain amplifying circuit 400, and the VON is not within the predetermined range, the detecting circuit 48 generates complementary control signals UP and DN to the charging pump 49. The charge pump 49 is used to generate the signal VLEL. As shown in the fifth figure, the charge pump 49 includes an upper bias current source I1, a lower bias current source I2, two switches SW1 and SW2, and a capacitor C1.
該充電泵49根據該控制信號UP對該電容C1充電,使得信號VLEL的電壓值上升;該充電泵49根據該控制信號DN對該電容C1放電,使得信號VLEL的電壓值下降。當該偵測電路48偵測到該可變增益放大電路400的輸出電壓VOP,VON不在該預定範圍內時,該充電泵49對該電容C1充電。因此,該信號VLEL的電壓值增加,流過該電阻RLEL的電流也隨之增加。隨著流過該電阻RLEL的電流增加,該PMOS電晶體P3或該NMOS電晶體N3的偏壓電流值也會隨之增加,使得該轉導放大器24的類比輸出電流IJ1和IJ2增加。因此,流過電阻R3和R4的淨電流會下降,這使得該增益放大器42的增益下降。注意該等類比輸出電流IJ1和IJ2的電流方向會相反。當該增益放大器42的增益下降後,該可變增益放大電路400的 輸出電壓VOP,VON最終會回復到該預定範圍內時,使得該信號VLEL的信號不會持續增加且保持一穩定值。 The charge pump 49 charges the capacitor C1 according to the control signal UP such that the voltage value of the signal VLEL rises; the charge pump 49 discharges the capacitor C1 according to the control signal DN, so that the voltage value of the signal VLEL decreases. When the detecting circuit 48 detects the output voltage VOP of the variable gain amplifying circuit 400, and the VON is not within the predetermined range, the charging pump 49 charges the capacitor C1. Therefore, the voltage value of the signal VLEL increases, and the current flowing through the resistor RLEL also increases. As the current flowing through the resistor RLEL increases, the bias current value of the PMOS transistor P3 or the NMOS transistor N3 also increases, so that the analog output currents IJ1 and IJ2 of the transconductance amplifier 24 increase. Therefore, the net current flowing through the resistors R3 and R4 drops, which causes the gain of the gain amplifier 42 to decrease. Note that the analog currents of the output currents IJ1 and IJ2 will be opposite. When the gain of the gain amplifier 42 decreases, the variable gain amplifying circuit 400 When the output voltage VOP, VON eventually returns to the predetermined range, the signal of the signal VLEL does not continue to increase and maintains a stable value.
第二圖和第四圖中的可變增益放大電路可使用在許多通訊系統和信號處理單元中。舉例而言,該可變增益放大電路200可以運用於一音量控制單元中以增加或衰減輸入的音頻信號。第六圖顯示結合本發明又一實施例之可增加增益的一可變增益放大電路600之方塊示意圖。參照第六圖,該可變增益放大電路600包含一增益放大器42、一轉導放大器24’、一切換單元64、一切換單元66、一動態偏壓電路26’、一偵測電路68和一充電泵49。第六圖中類似第四圖之元件以類似的參考數字顯示之。 The variable gain amplifying circuits in the second and fourth figures can be used in many communication systems and signal processing units. For example, the variable gain amplifying circuit 200 can be applied to a volume control unit to increase or attenuate the input audio signal. The sixth figure shows a block diagram of a variable gain amplifying circuit 600 that adds gain in conjunction with yet another embodiment of the present invention. Referring to the sixth figure, the variable gain amplifying circuit 600 includes a gain amplifier 42, a transducing amplifier 24', a switching unit 64, a switching unit 66, a dynamic bias circuit 26', a detecting circuit 68, and A charge pump 49. Elements in the sixth figure that are similar to the fourth figure are shown with similar reference numerals.
現說明該可變增益放大電路600的運作方式。當該偵測電路68偵測到該可變增益放大電路600的輸出電壓VOP和VON不在一較高預定範圍內(例如4V)時,該切換單元64內的開關會導通而該切換單元66內的開關會截止。因此,該轉導放大器24’會根據輸入電壓VIP和輸入電壓VIN間的差值產生輸出電流IJ1和IJ2。接著,該充電泵49對該電容C1充電以增加信號VLEL的電壓值。當信號VLEL的電壓值增加時,流過電阻R3和R4的淨電流減少,這使得該增益放大器42的增益下降。依此方式,當該可變增益放大電路600的輸出電壓VOP和VON不在較高預定範圍內時,該可變增益放大電路600可降低增益。 The mode of operation of the variable gain amplifying circuit 600 will now be described. When the detecting circuit 68 detects that the output voltages VOP and VON of the variable gain amplifying circuit 600 are not within a higher predetermined range (for example, 4 V), the switch in the switching unit 64 is turned on and the switching unit 66 is turned on. The switch will be cut off. Therefore, the transconductance amplifier 24' produces output currents IJ1 and IJ2 based on the difference between the input voltage VIP and the input voltage VIN. Next, the charge pump 49 charges the capacitor C1 to increase the voltage value of the signal VLEL. As the voltage value of the signal VLEL increases, the net current flowing through the resistors R3 and R4 decreases, which causes the gain of the gain amplifier 42 to decrease. In this manner, when the output voltages VOP and VON of the variable gain amplifying circuit 600 are not within a higher predetermined range, the variable gain amplifying circuit 600 can reduce the gain.
另一方面,當該偵測電路48偵測到該可變增益放大電路400的輸出電壓VOP,VON不在一較低預定範圍內(例如0.5V)時,該切換單元64內的開關會截止而該切換單元66內的開關會導通。因此,該轉導放大器24’會根據輸入電壓VIP和輸入電壓VIN間的差值產生輸出電流IJ1和IJ2。在此狀況下,該信號VLEL的電壓值會增加。如第七圖所示,流過電阻R3和R4的淨電流會增加,這使得該增益放大器42的增益上升。 On the other hand, when the detecting circuit 48 detects the output voltage VOP of the variable gain amplifying circuit 400, and the VON is not within a lower predetermined range (for example, 0.5 V), the switch in the switching unit 64 is turned off. The switch in the switching unit 66 is turned on. Therefore, the transconductance amplifier 24' produces output currents IJ1 and IJ2 based on the difference between the input voltage VIP and the input voltage VIN. In this case, the voltage value of the signal VLEL will increase. As shown in the seventh figure, the net current flowing through the resistors R3 and R4 increases, which causes the gain of the gain amplifier 42 to rise.
第八圖顯示結合本發明再一實施例之可增加增益的一可變增益放大電路800之方塊示意圖。參照第八圖,該可變增益放大電路800包含一增益放大器42、一轉導放大器24’、一動態偏壓電路26’、一偵測電路82、一開關SW和一電容CH。第二圖中的可變增益放大電路200和第四圖中的可變增益放大電路400的增益調整未限定在輸入電壓或輸出電壓的零交越處。因此,即使藉由引入小電流IGM至增益放大器22或藉由引入小電流IJ1和IJ2至增益放大器42以微幅的調整放大器增益,在類比輸入電壓的頂端時,仍有可能造成可聽見的瞬變(audible transient)。對於高品質的音響裝置,聲音瞬變是一個問題。為了解決此一問題,該可變增益放大電路800會需要偵測電路72以偵測輸入電壓或輸出電壓的零交越處(zero crossing),例如在輸入電壓或輸出電壓由正值轉變到負值或負值轉變到正值時產生一零交越信號表示信號進入零交越處。 The eighth diagram shows a block diagram of a variable gain amplifying circuit 800 that adds gain in conjunction with yet another embodiment of the present invention. Referring to the eighth figure, the variable gain amplifying circuit 800 includes a gain amplifier 42, a transconductance amplifier 24', a dynamic bias circuit 26', a detecting circuit 82, a switch SW, and a capacitor CH. The gain adjustment of the variable gain amplifying circuit 200 in the second figure and the variable gain amplifying circuit 400 in the fourth figure is not limited to the zero crossing of the input voltage or the output voltage. Therefore, even by introducing a small current IGM to the gain amplifier 22 or by introducing small currents IJ1 and IJ2 to the gain amplifier 42 to adjust the amplifier gain slightly, at the top of the analog input voltage, it is still possible to cause an audible instant. Audible transient. For high quality audio devices, sound transients are a problem. In order to solve this problem, the variable gain amplifying circuit 800 may require the detecting circuit 72 to detect the zero crossing of the input voltage or the output voltage, for example, when the input voltage or the output voltage changes from a positive value to a negative voltage. A zero crossing signal is generated when a value or a negative value transitions to a positive value to indicate that the signal enters a zero crossing.
第九圖顯示結合本發明一實施例之該可變增益 放大電路800之電路圖。第九圖中類似第五圖之元件以類似的參考數字顯示之。參考第九圖,在本實施例中,該偵測電路82接收互補的類比輸出信號VOP和VON並且在輸出信號VOP和VON的零交越處產生一零交越信號ZC。該開關SW只有在零交越信號ZC產生時才會導通,以將該信號VLEL的電壓值傳送至電容CH上。接著,該動態偏壓電路26’根據電容CH上的電壓VD產生提供至該轉導放大器24’上的上偏壓電流和下偏壓電流。依此方式,該增益放大器42只有在偵測電路82偵測到零交越點時才會調整增益值。 The ninth diagram shows the variable gain in connection with an embodiment of the present invention A circuit diagram of the amplifying circuit 800. Elements in the ninth diagram similar to the fifth diagram are shown with similar reference numerals. Referring to the ninth figure, in the present embodiment, the detection circuit 82 receives the complementary analog output signals VOP and VON and generates a zero-crossing signal ZC at the zero crossing of the output signals VOP and VON. The switch SW is only turned on when the zero-over signal ZC is generated to transmit the voltage value of the signal VLEL to the capacitor CH. Next, the dynamic bias circuit 26' generates an upper bias current and a lower bias current supplied to the transconductance amplifier 24' based on the voltage VD across the capacitor CH. In this manner, the gain amplifier 42 adjusts the gain value only when the detection circuit 82 detects a zero crossing point.
本發明之技術內容及技術特點已揭示如上,然而熟悉本項技術之人士仍可能基於本發明之教示及揭示而作種種不背離本發明精神之替換及修飾。因此,本發明之保護範圍應不限於實施例所揭示者,而應包含各種不背離本發明之替換及修飾,並為隨後之申請專利範圍所涵蓋。 The technical and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the present invention is not to be construed as being limited by the scope of the invention, and
200‧‧‧可變增益放大電路 200‧‧‧Variable gain amplifier circuit
22‧‧‧增益放大器 22‧‧‧Gain Amplifier
224‧‧‧運算放大器 224‧‧‧Operational Amplifier
24‧‧‧轉導放大器 24‧‧‧Transduction amplifier
26‧‧‧動態偏壓電路 26‧‧‧ Dynamic Bias Circuit
R1,R2‧‧‧電阻 R1, R2‧‧‧ resistance
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105104869A TWI573391B (en) | 2016-02-18 | 2016-02-18 | Variable gain amplifying circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105104869A TWI573391B (en) | 2016-02-18 | 2016-02-18 | Variable gain amplifying circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI573391B true TWI573391B (en) | 2017-03-01 |
TW201731210A TW201731210A (en) | 2017-09-01 |
Family
ID=58766287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105104869A TWI573391B (en) | 2016-02-18 | 2016-02-18 | Variable gain amplifying circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI573391B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020086651A1 (en) * | 2001-01-02 | 2002-07-04 | Prentice John S. | Precision automatic gain control circuit |
TW200514349A (en) * | 2003-10-01 | 2005-04-16 | Realtek Semiconductor Corp | Linear-in-decibel variable gain amplifier |
US7948315B2 (en) * | 2008-11-19 | 2011-05-24 | Supertex, Inc. | Low noise binary-coded gain amplifier and method for time-gain compensation in medical ultrasound imaging |
-
2016
- 2016-02-18 TW TW105104869A patent/TWI573391B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020086651A1 (en) * | 2001-01-02 | 2002-07-04 | Prentice John S. | Precision automatic gain control circuit |
TW200514349A (en) * | 2003-10-01 | 2005-04-16 | Realtek Semiconductor Corp | Linear-in-decibel variable gain amplifier |
US7948315B2 (en) * | 2008-11-19 | 2011-05-24 | Supertex, Inc. | Low noise binary-coded gain amplifier and method for time-gain compensation in medical ultrasound imaging |
Also Published As
Publication number | Publication date |
---|---|
TW201731210A (en) | 2017-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7750738B2 (en) | Process, voltage and temperature control for high-speed, low-power fixed and variable gain amplifiers based on MOSFET resistors | |
WO2018129967A1 (en) | Low drop-out linear voltage regulator | |
US8742819B2 (en) | Current limiting circuitry and method for pass elements and output stages | |
TW201339785A (en) | Voltage regulator with adaptive miller compensation | |
TW201107920A (en) | Voltage regulator | |
US8854136B2 (en) | Fully differential operational amplifier with common-mode feedback circuit | |
JP2014174737A (en) | Constant voltage circuit | |
US7304540B2 (en) | Source follower and current feedback circuit thereof | |
CN107171650B (en) | Variable gain amplifier circuit | |
JP2005244276A (en) | Differential amplification circuit | |
JP2017126259A (en) | Power supply unit | |
TW201821925A (en) | Voltage regulator | |
CN109690937B (en) | Selectable current limiter circuit | |
TW201602750A (en) | Current source for voltage regulator and voltage regulator thereof | |
JP2011229073A (en) | Gain variation compensator | |
US7728669B2 (en) | Output stage circuit and operational amplifier thereof | |
US9748911B2 (en) | Variable gain amplifying circuit | |
US9831892B1 (en) | Noise reduction circuit and associated delta-sigma modulator | |
WO2015178271A1 (en) | Dummy load circuit and charge detection circuit | |
TW201826695A (en) | Compensation circuit, compensation method and amplifying circuit | |
TW201443606A (en) | Current-to-voltage converter and electronic apparatus thereof | |
TWI573391B (en) | Variable gain amplifying circuit | |
CN103546103B (en) | Amplifier circuit | |
US10230334B2 (en) | Amplifier circuit with overshoot suppression | |
JP2004274207A (en) | Bias voltage generator circuit and differential amplifier |