[go: up one dir, main page]

TWI569225B - A Method of Estimating Traffic Information Based on Multiple Regression Model of Mobile Network Signaling - Google Patents

A Method of Estimating Traffic Information Based on Multiple Regression Model of Mobile Network Signaling Download PDF

Info

Publication number
TWI569225B
TWI569225B TW104140682A TW104140682A TWI569225B TW I569225 B TWI569225 B TW I569225B TW 104140682 A TW104140682 A TW 104140682A TW 104140682 A TW104140682 A TW 104140682A TW I569225 B TWI569225 B TW I569225B
Authority
TW
Taiwan
Prior art keywords
signaling
vehicle speed
road
regression model
mobile network
Prior art date
Application number
TW104140682A
Other languages
Chinese (zh)
Other versions
TW201721574A (en
Inventor
jian-xiang Chen
zhi-hua Chen
Jiang-Xiang Wan
ling-zhi Gao
ming-feng Zhang
Original Assignee
Chunghwa Telecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Telecom Co Ltd filed Critical Chunghwa Telecom Co Ltd
Priority to TW104140682A priority Critical patent/TWI569225B/en
Application granted granted Critical
Publication of TWI569225B publication Critical patent/TWI569225B/en
Publication of TW201721574A publication Critical patent/TW201721574A/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

運用行動網路信令的多元迴歸模型交通資訊估計方法 Multivariate regression model traffic information estimation method using mobile network signaling

本發明係有關於一種運用行動網路信令的多元迴歸模型交通資訊估計方法。特別指一種利用移動行動用戶與網路間發生之特定信令資料,設計一行動網路信令車速估計演算法,綜合分析交遞信令估計車速、一般位置更新信令估計車速、以及多元迴歸模型估計車速,來推估一或多條指定道路範圍內之交通資訊(以車速資訊為例),產生一或多條指定道路範圍的交通資訊之系統與方法。 The invention relates to a multi-regression model traffic information estimation method using mobile network signaling. Specifically, it refers to a specific signaling data generated between mobile mobile users and the network, and designs a mobile network signaling vehicle speed estimation algorithm, comprehensively analyzes handover signaling estimated vehicle speed, general location update signaling, estimated vehicle speed, and multiple regression. The model estimates the speed of the vehicle to estimate the traffic information within one or more specified road ranges (taking the speed information as an example) to generate one or more systems and methods for specifying traffic information for the road range.

手機定位技術應用於即時交通資訊收集已成為目前交通運輸領域研究的熱門議題之一,由於其投資小、覆蓋範圍大、資料量豐富等優點,在智慧型運輸系統(Intelligent Transportation System,ITS)領域具有巨大的應用潛力。目前,國內外已發展大量的理論和實際測試研究,例如:英國ITIS公司、美國Maryland大學、美國Berkeley大學、法國交通研究協會等,主要針對位置更新(Location Update,LU)、路由區域更新(Routing Area Update,RAU)、以及換手(Handover)來計算即時交通資訊。目前主要的方法可以分為下列3個方法:(1)監測控制和語音傳輸頻道之手機數量、(2)利用手機定位機制估計車速、以及(3)交遞信令和一般位置更新信令(Normal Location Update,NLU)定位機制估計車速。 The application of mobile phone location technology to instant traffic information collection has become one of the hot topics in the field of transportation research. Due to its small investment, large coverage and abundant data, it is in the field of Intelligent Transportation System (ITS). Has great application potential. At present, a large number of theoretical and practical test researches have been developed at home and abroad, such as: UK ITIS, University of Maryland, Berkeley University, French Transportation Research Association, etc., mainly for location update (LU), routing area update (Routing) Area Update, RAU), and Handover to calculate instant traffic information. At present, the main methods can be divided into the following three methods: (1) monitoring the number of mobile phones in the control and voice transmission channels, (2) estimating the vehicle speed using the mobile phone positioning mechanism, and (3) handover signaling and general location update signaling ( The Normal Location Update (NLU) positioning mechanism estimates the speed of the vehicle.

監測控制和語音傳輸頻道之手機數量:由於當手機即使在待機模式,當移動到不同的位置區域(Location Area,LA)或路由區域(Routing Area,RA)時,手機也會主動向行動通訊網路進行位置更新或路由區域更新,因此可運用統計LU和RAU的數量進行流量估計之參考。而當手機進行通話時,將會與行動通訊網路連線,建立新通話、結束通話,以及換手程序等,因此可運用統計新通話、進行通話、換手等數量,估計目前在道路的手機數量,並與過去的歷史資料比對,觀察是否有異常狀況,以進行異常交通狀況之推論。然而,此方法雖然能反應交通大致的變化,卻無法即時估計精確的車速資訊。 Number of mobile phones monitoring and controlling voice transmission channels: Since the mobile phone moves to a different location area (LA) or routing area (RA) when the mobile phone is in standby mode, the mobile phone actively takes the mobile communication network. Location update or routing area update is performed, so the number of statistical LUs and RAUs can be used for traffic estimation. When the mobile phone makes a call, it will connect with the mobile communication network to establish a new call, end the call, and change the procedure. Therefore, it is possible to use the number of new calls, call, change hands, etc. to estimate the current mobile phone on the road. Quantity, and compare with historical data in the past, to observe whether there are abnormal conditions to make inferences about abnormal traffic conditions. However, although this method can reflect the general changes in traffic, it cannot accurately estimate the accurate speed information.

利用手機定位機制估計車速:在手機定位機制的方法上可採用位置服務(Location Services,LCS)標準流程,其中主要定義了數個定位方法,包含有:A-GPS、Cell-ID、TOA(Time of Arrival)、TDOA(Time Difference of Arriva)、E-OTD(Enhanced Observed Time Difference)、以及OTDOA(Observed Time Difference of Arrival)等。透過LCS方法精確定位出手機位置後,連續取得2次以上的定位資訊和時間差即可估計出手機移動速度。然而,此方法雖然可以精確定位手機位置和車速資訊,卻需要安裝特定程式於手機上或將造成網路端較大的負擔。 Estimating the speed of the vehicle by using the mobile phone positioning mechanism: The location service (LCS) standard process can be adopted in the method of the mobile phone positioning mechanism, wherein a plurality of positioning methods are mainly defined, including: A-GPS, Cell-ID, TOA (Time) Of Arrival), TDOA (Time Difference of Arriva), E-OTD (Enhanced Observed Time Difference), and OTDOA (Observed Time Difference of Arrival). After accurately positioning the location of the mobile phone through the LCS method, the mobile phone moving speed can be estimated by continuously obtaining the positioning information and the time difference twice or more. However, although this method can accurately locate the location of the mobile phone and the speed information, it needs to install a specific program on the mobile phone or it will cause a large burden on the network.

交遞信令和一般位置更新信令資訊定位機制估計車速:在行動網路中,基地台(Base Station,BS)可以傳輸無線訊號提供網路服務,該無線訊號覆蓋之服務區域稱為細胞(cell)。每一個細胞都擁有唯一的CGI(Cell Global Identity),並由基地台週期地廣播其CGI給細胞內的所有手機。當手機(以下稱為行動台(Mobile Station,MS))連上行動網路時,MS將取得並紀錄所處細胞之CGI。當MS撥出或接通通話時,將與基地台進行連線。此時,如果通話中的MS 從目前的細胞移動至另一個細胞時,將會發生交遞(Handover)信令。透過估計交遞信令發生位置和兩次交遞信令的時間差,將可依此估計MS的移動速度。相同地,當手機從目前的位置區域移動至另一個位置區域時,將會發生一般位置更新信令。因此,將可以運用兩次的一般位置更新信令來估計手機的移動狀況和移動速度。然而,此方法雖然能得到車速資訊,但運用交遞信令取得車速的有效樣本數太少;運用一般位置更新信令取得車速,則因為位置區域範圍較大,而無法即時反應小路段的車速變化。 Handover signaling and general location update signaling information positioning mechanism to estimate the speed of the vehicle: In the mobile network, the base station (BS) can transmit wireless signals to provide network services, and the service area covered by the wireless signal is called a cell ( Cell). Each cell has a unique CGI (Cell Global Identity), and the base station periodically broadcasts its CGI to all mobile phones in the cell. When a mobile phone (hereinafter referred to as a Mobile Station (MS)) is connected to the mobile network, the MS will acquire and record the CGI of the cell in which it is located. When the MS dials out or connects to the call, it will be connected to the base station. At this point, if the MS in the call Handover signaling will occur when moving from the current cell to another cell. By estimating the time difference between the location of the handover signaling and the two handover signaling, the moving speed of the MS can be estimated accordingly. Similarly, general location update signaling will occur when the handset moves from the current location area to another location area. Therefore, it is possible to estimate the mobile condition and the moving speed of the mobile phone by using the general location update signaling twice. However, although this method can obtain the vehicle speed information, the number of valid samples for obtaining the vehicle speed by using the handover signaling is too small; using the general position update signaling to obtain the vehicle speed, because the range of the location area is large, the speed of the small section cannot be immediately reflected. Variety.

由此可見,上述習用方式仍有諸多缺失,實非一良善之設計,而亟待加以改良。 It can be seen that there are still many shortcomings in the above-mentioned methods of use, which is not a good design, but needs to be improved.

本案發明人鑑於上述習用方式所衍生的各項缺點,乃亟思加以改良創新,並經多年苦心孤詣潛心研究後,終於成功研發完成本件運用行動網路信令的多元迴歸模型交通資訊估計方法。 In view of the shortcomings derived from the above-mentioned conventional methods, the inventor of the present invention has improved and innovated, and after years of painstaking research, he finally succeeded in research and development of the multi-regression model traffic information estimation method using mobile network signaling.

本發明之目的提供一種運用行動網路信令的多元迴歸模型交通資訊估計方法,將先運用一般位置更新信令(Normal Location Update,NLU)過濾和追蹤出可能在道路上移動的手機,再利用多元迴歸車速技術綜合分析這些被追蹤手機的通話到達(Call Arrival,CA)信令和通訊結束(Call Completion,CC)信令數量、一般位置更新信令數量、以及道路上的手機數以估計車速資訊。並利用建立行動網路信令車速估計演算法融合交遞信令估計車速、一般位置更新信令估計車速、多元迴歸車速,來提供用路人所需之即時車速資訊。 The object of the present invention is to provide a multi-regression model traffic information estimation method using mobile network signaling, which first uses a general location update signaling (NLU) to filter and track mobile phones that may be moving on the road, and then reuse The multi-regressive vehicle speed technology comprehensively analyzes the call arrival (Call Arrival, CA) signaling and communication completion (Call Completion, CC) signaling quantity, the number of general location update signaling, and the number of mobile phones on the road to estimate the speed of the vehicle. News. And use the established mobile network signaling speed estimation algorithm to combine the handover signaling to estimate the vehicle speed, the general position update signaling to estimate the vehicle speed, and the multiple return vehicle speed to provide the instantaneous vehicle speed information required by the passerby.

本發明提供一種運用行動網路信令的多元迴歸模型交通資訊估計方法,主要是關於一種行動網路信令車速估計系統,其係先收集行動網路信令(包含有交遞信令估計車速、一般位置更新信令估計車速、通話到達和通話結束信令數量、一般位置更新信令數量、以及道路上的手機數),再結合地理資訊系統的地圖資訊,輸入至道路路段資料和過濾模組中依基地台和位置區域的位置資訊估計基地台和基地台間交遞信令和一般位置更新信令發生的位置來劃分道路路段。再運用上述各種行動網路信令產生車速資訊,並輸入至行動網路信令車速估計演算法得到車速資訊。 The invention provides a multi-regression model traffic information estimation method using mobile network signaling, which mainly relates to a mobile network signaling vehicle speed estimation system, which first collects mobile network signaling (including handover signaling to estimate vehicle speed). The general location update signaling estimates the vehicle speed, the number of call arrival and call end signaling, the number of general location update signaling, and the number of mobile phones on the road, and then combines the map information of the geographic information system to input the road segment data and the filtering mode. The group divides the road segments according to the location information of the base station and the location area to estimate the location where the handover between the base station and the base station and the general location update signaling occur. The vehicle speed information is generated by using the above various mobile network signalings, and input to the mobile network signaling speed estimation algorithm to obtain the vehicle speed information.

本發明提供一種運用行動網路信令的多元迴歸模型交通資訊估計方法,主要是關於一種行動網路信令車速估計演算法,其係運用交遞信令估計車速、一般位置更新信令估計車速、通話到達和通話結束信令數量、一般位置更新信令數量、以及道路上的手機數這5個交通資訊估計因子作為行動網路訊號車速估計資料以進行車速資訊的估計。另外,本發明並設計車速資料收集模組,運用其他的交通資訊估計方法(包含有全球定位系統、車輛偵測器等),依道路路段資料和過濾模組所切割出來的路段資訊取得各路段的車速歷史資料,過濾出在觀察路段上發生一般位置更新信令的手機及其後續的信令,搭配一般位置更新信令估計車速、通話到達和通話結束信令數量、一般位置更新信令數量、以及道路上的手機數輸入路段車速歷史資料機器學習模組進行資料訓練和學習,得到多元迴歸模型估計車速方法中的相關參數,以提供後續車速估計使用。最後,分別將交遞信令估計車速、一般位置更新信令估計車速、以及多元迴歸模型估計車速之結果輸入至行動網路信令車速估計演算法得到車速資訊。 The invention provides a multi-regression model traffic information estimation method using mobile network signaling, which mainly relates to a mobile network signaling vehicle speed estimation algorithm, which uses handover signaling to estimate vehicle speed and general position update signaling to estimate vehicle speed. The five traffic information estimation factors, the number of call arrival and call end signaling, the number of general location update signaling, and the number of mobile phones on the road, are used as the mobile network signal speed estimation data to estimate the vehicle speed information. In addition, the present invention also designs a vehicle speed data collection module, and uses other traffic information estimation methods (including a global positioning system, a vehicle detector, etc.) to obtain each section according to the road section data and the section information cut by the filter module. The vehicle speed history data filters out the mobile phone and its subsequent signaling that generate general location update signaling on the observed road segment, and estimates the vehicle speed, the number of call arrival and call end signaling, and the number of general location update signaling with general location update signaling. And the number of mobile phones on the road input section speed history data machine learning module for data training and learning, the multi-regression model to estimate the relevant parameters in the vehicle speed method to provide subsequent vehicle speed estimation use. Finally, the results of the handover signaling estimated vehicle speed, the general position update signaling estimated vehicle speed, and the multiple regression model estimated vehicle speed are respectively input to the mobile network signaling vehicle speed estimation algorithm to obtain the vehicle speed information.

101‧‧‧行動網路信令監測模組 101‧‧‧Mobile Network Signaling Monitoring Module

102‧‧‧基地台和位置區域資料模組 102‧‧‧Base station and location area data module

103‧‧‧地理資訊系統 103‧‧‧Geographic Information System

104‧‧‧道路路段資料和過濾模組 104‧‧‧Road section data and filter module

105‧‧‧行動網路信令車速估計資料模組 105‧‧‧Mobile network signaling speed estimation data module

106‧‧‧車速資訊收集模組 106‧‧‧Speed Information Collection Module

107‧‧‧路段車速歷史資料機器學習模組 107‧‧‧Segment speed history data machine learning module

108‧‧‧行動網路信令車速估計方法模組 108‧‧‧Mobile network signaling speed estimation method module

200‧‧‧道路上移動手機 200‧‧‧Mobile mobile phones on the road

201‧‧‧位置區域0(LA0)之基地台 201‧‧‧Base station of location area 0 (LA0)

202‧‧‧位置區域1(LA1)之基地台 202‧‧‧Base station of location area 1 (LA1)

203~206‧‧‧位置區域2(LA2)之基地台 203~206‧‧‧Base station of location area 2 (LA2)

207‧‧‧位置區域3(LA3)之基地台 207‧‧‧Base station of location area 3 (LA3)

208‧‧‧NLUIN信令及其發生時間和地點 208‧‧‧NLU IN signaling and when and where it occurred

209‧‧‧HO1信令及其發生時間和地點 209‧‧‧HO1 signalling and when and where it occurred

210‧‧‧HO2信令及其發生時間和地點 210‧‧‧HO2 signaling and when and where it occurred

211‧‧‧HO3信令及其發生時間和地點 211‧‧‧HO3 Signaling and when and where it occurred

212‧‧‧NLUOUT或HO4信令及其發生時間和地點 212‧‧‧NLU OUT or HO4 signaling and when and where it occurred

301‧‧‧道路上移動手機之行動網路信令 301‧‧‧Mobile network signalling for mobile handsets on the road

302‧‧‧交遞信令估計車速 302‧‧‧Handing Signaling Estimated Vehicle Speed

303‧‧‧一般位置更新信令估計車速 303‧‧‧General location update signaling to estimate vehicle speed

304‧‧‧通話到達和通話結束信令數量 304‧‧‧Number of call arrival and call completion signaling

305‧‧‧一般位置更新信令數量 305‧‧‧General Location Update Signaling Quantity

306‧‧‧道路上的手機數 306‧‧‧ Number of mobile phones on the road

307‧‧‧多元迴歸模型估計車速 307‧‧‧Multivariate regression model to estimate vehicle speed

308‧‧‧行動網路信令車速估計演算法 308‧‧‧Mobile network signaling speed estimation algorithm

309‧‧‧車速資訊 309‧‧‧Speed Information

圖1係為本發明行動網路信令車速估計系統之系統架構示意圖;圖2為道路路段示意圖;以及圖3為行動網路信令車速估計之資料模型示意圖。 1 is a schematic diagram of a system architecture of a mobile network signaling vehicle speed estimation system according to the present invention; FIG. 2 is a schematic diagram of a road section; and FIG. 3 is a schematic diagram of a data model of a mobile network signaling vehicle speed estimation.

請參閱1~3,本發明運用行動網路信令的多元迴歸模型交通資訊估計方法,係先由基地台和位置區域資料模組102向資料庫查詢取得各個基地台的位置資訊(包含有經緯度、方位角、訊號強度、以及所屬的位置區域編號),再結合地理資訊系統103向資料庫所查詢的基地台附近(例如:方圓2公里)的路段資料,輸入至道路路段資料和過濾模組104中依基地台和位置區域的位置資訊估計基地台和基地台間道路上移動手機之行動網路信令301(包含有交遞信令、一般位置更新信令、通話到達信令、通訊結束信令)中的交遞信令和一般位置更新信令發生的位置來劃分道路路段。再過濾出有發生道路上移動手機之行動網路信令301作為觀察和分析目標。取得道路上移動手機之行動網路信令301後,運用下列5個交通資訊估計因子作為行動網路信令車速估計資料以進行車速資訊的估計: Please refer to 1~3. The multi-regression model traffic information estimation method using the mobile network signaling is firstly obtained by the base station and the location area data module 102 to obtain the location information of each base station (including the latitude and longitude). , azimuth, signal strength, and the location area number to which it belongs, combined with the information of the section near the base station (for example, 2 km) that the GIS 103 queries to the database, input to the road segment data and filter module. In 104, the mobile network signaling 301 (including handover signaling, general location update signaling, call arrival signaling, and communication end) of the mobile phone on the road between the base station and the base station is estimated according to the location information of the base station and the location area. The location of the handover signaling in the signaling) and the location of the general location update signaling are used to divide the road segments. The mobile network signaling 301 of the mobile handset on the road is filtered out as an observation and analysis target. After obtaining the mobile network signaling 301 of the mobile phone on the road, the following five traffic information estimation factors are used as the mobile network signaling speed estimation data to estimate the vehicle speed information:

a.交遞信令估計車速302 a. Handover signaling estimated vehicle speed 302

b.一般位置更新信令估計車速303 b. General Location Update Signaling Estimated Vehicle Speed 303

c.通話到達和通話結束信令數量304 c. Call arrival and call end signaling number 304

d.一般位置更新信令數量305 d. General location update signaling number 305

e.道路上的手機數306。 e. Number of mobile phones on the road 306.

另外,本發明透過車速資料收集模組106(全球定位系統探偵車或車輛偵測器),依道路路段資料和過濾模組104所切割出來的路段資訊取得各路段的車速歷史資料,搭配一般位置更新信令估計車速303、通話到達和通話結束信令數量304、一般位置更新信令數量305、以及道路上的手機數306輸入路段車速歷史資料機器學習模組107進行資料訓練和學習,得到多元迴歸模型估計車速307中的相關參數,以提供後續車速估計使用。最後,分別將交遞信令估計車速302、一般位置更新信令估計車速303、以及多元迴歸模型估計車速307之結果輸入至行動網路信令車速估計方法模組108得到車速資訊。 In addition, the present invention obtains the speed history data of each section by using the vehicle speed data collection module 106 (Global Positioning System Detector or Vehicle Detector) according to the road section data and the section information cut by the filtering module 104, and is matched with the general position. Update signaling estimation vehicle speed 303, call arrival and call end signaling quantity 304, general location update signaling quantity 305, and mobile phone number 306 on the road input road speed history data machine learning module 107 for data training and learning, and obtain multiple The regression model estimates the relevant parameters in vehicle speed 307 to provide subsequent vehicle speed estimation use. Finally, the results of the handover signaling estimated vehicle speed 302, the general position update signaling estimated vehicle speed 303, and the multiple regression model estimated vehicle speed 307 are input to the mobile network signaling vehicle speed estimation method module 108 to obtain the vehicle speed information.

在道路路段切割的部分,主要考慮當手機在跨越位置區域時將會發生一般位置更新信令,且若手機在通話中時,其跨越基地台範圍時將會發生交遞信令。以圖2為例,當手機200從位置區域0(LA0)201進入到位置區域1(LA1)202時,將發生一般位置更新信令,此時道路上移動手機之行動網路信令將被過濾出來,並且持續收集和分析此手機後續的信令。當手機進入位置區域2(LA2)203發生的一般位置更新信令,對路段1而言即為一種進入該路段的信令,後續將稱之為NLUIN;而當手機進入LA3時所發生的一般位置更新信令,對路段1而言即為一種離開該路段的信令,後續將稱之為NLUOUT。另外,若手機在通話中時進入新的基地台傳輸範圍將會發生交遞信令,如圖2中的HO1、HO2、HO3以及HO4,將可運用這些信令將路段分為路段2(NLUIN位置到HO1位置)、路段3(HO1位置到HO2位置)、路段4(HO2位置到HO3位置)、以及路段5(HO3位置到HO4位置);此外,本發明亦考量可以間隔一到多個交遞信令位置之路段合併的情況,例如圖2中的路段6(HO1位置到HO3位置)。 In the part cut in the road section, it is mainly considered that general location update signaling will occur when the mobile phone crosses the location area, and handover signaling will occur when the mobile phone is in the middle of the call. Taking FIG. 2 as an example, when the mobile phone 200 enters the location area 1 (LA1) 202 from the location area 0 (LA0) 201, general location update signaling will occur, and the mobile network signaling of the mobile mobile phone on the road will be Filter out and continuously collect and analyze the subsequent signaling of this phone. When the mobile phone enters the general location update signaling that occurs in location area 2 (LA2) 203, it is a type of signaling for entering the road segment for the road segment 1, which will be referred to as NLU IN later; and occurs when the mobile phone enters LA3. The general location update signaling is a kind of signaling leaving the road segment for the road segment 1, which will be referred to as NLU OUT . In addition, if the mobile phone enters the new base station transmission range during the call, handover signaling will occur, such as HO1, HO2, HO3 and HO4 in Figure 2, and these signalings can be used to divide the link into the link 2 (NLU). IN position to HO1 position), road segment 3 (HO1 position to HO2 position), road segment 4 (HO2 position to HO3 position), and road segment 5 (HO3 position to HO4 position); in addition, the present invention also considers that one or more intervals can be The case where the road segments of the handover signaling position are merged, for example, the road segment 6 in FIG. 2 (the HO1 position to the HO3 position).

在本發明所提出之行動網路信令車速估計之資料模型(如圖1所示)針對道路路段資料和過濾模組104過濾後之可能在道路上移動手機之行動網路信令301進行分析,並使行動網路信令車速估計資料模組105對在同一個路段上的道路上移動手機之行動網路信令301(包含有交遞信令、一般位置更新信令、通話到達信令和通訊結束信令)進行分析。經由行動網路信令車速估計資料模組105分析後將分別可以取得5個交通資訊估計因子:交遞信令估計車速302、一般位置更新信令估計車速303、通話到達和通話結束信令數量304、一般位置更新信令數量305、以及道路上的手機數306,分述如下。 The data model of the mobile network signaling speed estimation proposed by the present invention (as shown in FIG. 1) is analyzed for the mobile network signaling 301 of the mobile phone that is filtered on the road after filtering the road segment data and the filtering module 104. And causing the mobile network signaling speed estimation data module 105 to move the mobile phone's mobile network signaling 301 on the road on the same road segment (including handover signaling, general location update signaling, call arrival signaling) And communication end signaling) for analysis. After analyzing the mobile network signaling speed estimation data module 105, five traffic information estimation factors can be obtained respectively: handover signaling estimated vehicle speed 302, general location update signaling estimated vehicle speed 303, call arrival and call end signaling number. 304, the general location update signaling number 305, and the number of mobile phones 306 on the road are described as follows.

交遞信令估計車速:行動網路信令車速估計資料模組105分析同一手機在該路段(如圖2之路段3、路段4、以及路段6)上發生兩次交遞信令的距離差和時間差估計車速。例如:路段3的交遞信令估計車速可以運用HO1發生的位置l 2和時間點t 2與HO2發生的位置l 3和時間點t 3,依l 2l 3之道路路距離與之t 2t 3時間差計算其車速。其中,由於兩個細胞之間的交遞位置分布在一較大的區間,使得利用次一交遞位置估計之車速常有很大的誤差而無利用價值,例如:圖2之路段2和路段5因接臨無法利用的交遞位置,將不會有交遞信令估計車速。 Handover Signaling Estimated Vehicle Speed: The mobile network signaling vehicle speed estimation data module 105 analyzes the distance difference between the same mobile phone in the road segment (such as the road segment 3, the road segment 4, and the road segment 6 of FIG. 2) And the time difference estimates the speed of the car. For example: the handover signaling link 3 can use the estimated vehicle position l HO1 point occurs and the time t 2 l 2 with the position of point 3 and HO2 occurrence time t 3, l 2 and L 3 by way of the path distance with t The speed difference between 2 and t 3 is calculated. Among them, since the intersection position between the two cells is distributed in a large interval, the vehicle speed estimated by the second-transfer position is often greatly error-free and has no utility value, for example, the road segment 2 and the road segment of FIG. 5 There will be no delivery signaling to estimate the speed of the vehicle due to the unreachable handover location.

一般位置更新信令估計車速:行動網路信令車速估計資料模組105分析同一手機在該路段(如圖2之路段1)上發生兩次一般位置更新信令的距離差和時間差估計車速。例如:路段1的交遞信令估計車速可以運用NLUIN發生的位置l 1和時間點t 1與NLUOUT發生的位置l 5和時間點t 5,依l 1l 5之道路路距離與之t 1t 5時間差計算其車速。 The general location update signaling estimates the vehicle speed: the mobile network signaling vehicle speed estimation data module 105 analyzes the distance difference and the time difference estimated vehicle speed of the same mobile phone on the road segment (such as the road segment 1 of FIG. 2). For example, the handover signaling of the road segment 1 can estimate the vehicle speed using the position l 1 and the time point t 1 where the NLU IN occurs and the position l 5 and the time point t 5 where the NLU OUT occurs, according to the road distance between the l 1 and the l 5 The speed difference between t 1 and t 5 is calculated.

通話到達和通話結束信令數量:行動網路信令車速估計資料模組105統計在該時間週期內所有在該路段(如圖2之路段1~路段6)上移動的手機之通 話到達和通話結束信令的數量。以圖2之路段2為例,將可以統計該時間週期內在該路段上移動的手機於發生NLUIN信令後且在發生HO1信令前之通話到達信令和通訊結束信令。此因子將可反應路段交通密度。 Call arrival and call end signaling number: The mobile network signaling vehicle speed estimation data module 105 counts all the call arrivals and calls of the mobile phones moving on the road segment (such as the road segment 1 to the road segment 6 in FIG. 2) during the time period. The number of signaling ends. Taking the road segment 2 of FIG. 2 as an example, it is possible to count the call arrival signaling and communication end signaling of the mobile phone moving on the road segment during the time period after the NLU IN signaling occurs and before the HO1 signaling occurs. This factor will reflect the traffic density of the road segment.

一般位置更新信令數量:行動網路信令車速估計資料模組105統計在該時間週期內所有在該路段(如圖2之路段1)上移動的手機之一般位置更新信令(如圖2中的NLUIN信令)的數量。此因子將可反應路段交通流量。 The number of general location update signaling: the mobile network signaling vehicle speed estimation data module 105 collects general location update signaling of all mobile phones moving on the road segment (such as the road segment 1 in FIG. 2) during the time period (see FIG. 2). The number of NLU IN signaling). This factor will reflect traffic flow on the road.

道路上的手機數:行動網路信令車速估計資料模組105分別統計(請說明由何模組進行統計?)在該時間週期內手機進入該路段(如圖2之路段1)發生的一般位置更新信令(NLUIN)數量和離開該路段發生的一般位置更新信令(NLUOUT)數量,運用這兩個數量估計在道路上的手機數。例如,路段1可以運用NLUIN數量加上上一個時間週期的道路上手機數,再減去NLUOUT數量來估計目前週期的道路上手機數。此因子將可反應路段交通密度。 Number of mobile phones on the road: The mobile network signaling speed estimation data module 105 counts separately (please specify which module to perform statistics?) During the time period, the mobile phone enters the road section (such as the road segment 1 in Figure 2). The number of location update signaling (NLU IN ) and the number of general location update signaling (NLU OUT ) that have left the segment, using these two quantities to estimate the number of handsets on the road. For example, the road segment 1 can use the number of NLU IN plus the number of mobile phones on the road in the previous time period, and then subtract the number of NLU OUT to estimate the number of mobile phones on the road in the current cycle. This factor will reflect the traffic density of the road segment.

由於通話到達和通話結束信令數量、一般位置更新信令數量、以及道路上的手機數不是直接反應車速資訊,故本發明將這3個因子運用多元迴歸模型結合歷史資料進行機器學習並估計車速。在多元迴歸模型估計車速307的部分,本發明以線性迴歸方法作為實施例,可分為兩個階段:(1)學習階段和(2)應用階段,詳述如下。 Since the number of call arrival and call end signaling, the number of general location update signaling, and the number of mobile phones on the road are not direct response to vehicle speed information, the present invention uses these multiple factors to combine multiple historical regression models with historical data for machine learning and estimate vehicle speed. . In the part of estimating the vehicle speed 307 in the multiple regression model, the present invention takes the linear regression method as an embodiment and can be divided into two phases: (1) the learning phase and (2) the application phase, which are detailed below.

(1)學習階段:運用車速資料收集模組106向資料庫取得k個時間週期之車速資訊,以及行動網路信令車速估計資料模組105取得和統計對應的時間週期通話到達和通話結束信令數量、一般位置更新信令數量、道路上的手機數,並定義第t個時間週期之車速為v t 、通話到達和通話結束信令數量c t (例如:在第t個時間週期裡總共發生1000通通話到達和900通通話結束紀錄,則第t個時間週期 通話到達和通話結束信令數量c t 為1900)、一般位置更新信令數量n t (例如:在第t個時間週期裡總共發生5000次一般位置更新信令紀錄,則第t個時間週期一般位置更新信令數量n t 為5000)、道路上的手機數p t (例如:在第t-1個時間週期道路上的手機數p t-1為500,而進入此位置區域的一般位置更新信令數量為4900,而離開此位置區域的一般位置更新信令數量為5000裡,則第t個時間週期道路上的手機數p t 為500+4900-5000=400)。其中,本發明透過運用時間屬性進行資料分類,並將資料分別計算後將可以得到更高的準確度。因此,該k個時間週期得依時間屬性進行資料分類(例如:星期一~四的部分,可分為上班時段為一類、下班時段為一類、其他時段為一類),再由路段車速歷史資料機器學習模組107分別以公式(1)~(3)進行資料訓練取得線性迴歸模型參數a c b c a n b n a p b p ,即可完成機器學習過程。 (1) Learning phase: the vehicle speed data collection module 106 is used to obtain the vehicle speed information of the k time periods from the database, and the mobile network signaling speed estimation data module 105 obtains and counts the corresponding time period call arrival and call end information. Order quantity, general location update signaling number, number of mobile phones on the road, and define the t- th time period of the vehicle speed v t , call arrival and call end signaling quantity c t (for example: total in the t- th time period) When the 1000-way call arrival and the 900-way call end record occur, the t- th time period call arrival and call end signaling number c t is 1900), and the general location update signaling quantity n t (for example, in the t- th time period) 5000 total record general location update signaling occurs, the number of time periods t general location update signaling n-t 5000), the phone number P t on the road (for example: in the first time periods t -1 road p t -1 phone number 500, and enter the number of location area update signaling for the general location 4900, this location area away from the general location update signaling in the number of 5000, the period of time t road The phone number is 500 p t + 4900-5000 = 400). Among them, the present invention can obtain higher accuracy by using the time attribute to classify the data and calculate the data separately. Therefore, the k time periods are classified according to the time attribute (for example, the part from Monday to Thursday can be divided into one class for work hours, one for work hours, and one for other time periods), and then the road speed history data machine The learning module 107 performs data training by formulas (1) to (3) to obtain linear regression model parameters a c , b c , a n , b n , a p , b p , respectively, to complete the machine learning process.

a c :通話到達和通話結束信令數量車速線性迴歸模型參數斜率 a c : call arrival and call end signaling number vehicle speed linear regression model parameter slope

b c :通話到達和通話結束信令數量車速線性迴歸模型參數截距 b c : call arrival and call end signaling number vehicle speed linear regression model parameter intercept

a n :一般位置更新信令數量車速線性迴歸模型參數斜率 a n : general position update signaling quantity vehicle speed linear regression model parameter slope

b n :一般位置更新信令數量車速線性迴歸模型參數截距 b n : general position update signaling quantity vehicle speed linear regression model parameter intercept

a p :道路上的手機數線性迴歸模型參數斜率 a p : slope of the linear regression model parameter of the number of mobile phones on the road

b p :道路上的手機數線性迴歸模型參數截距 b p : number of mobile phone numbers on the road, linear regression model parameter intercept

(2)應用階段:當手機在觀察路段上發生一般位置更新信令後,將被過濾出道路上移動手機之行動網路信令(包含有交遞信令、一般位置更新信令、通話到達信令和通訊結束信令),並追蹤手機之手機信令的後續狀況,並由此統計該路段上即時之通話到達和通話結束信令數量c r 、一般位置更新信令數量n r 、道路上的手機數p r 時,可以運用公式(1)~(3)分別計算出各因子對應的車速通話到達和通話結束信令數量車速線性迴歸模型估計之車速v c 、一般位置更新信令數量車速線性迴歸模型估計之車速v n 、道路上的手機數線性迴歸模型估計之車速v p ,並得設定車速通話到達和通話結束信令數量車速線性迴歸模型估計之車速v c 的權重值w c 、一般位置更新信令數量車速線性迴歸模型估計之車速v n 的權重值w n 、以及道路上的手機數線性迴歸模型估計之車速v p 的權重值w p ,然後運用公式(4)進行加權平均取得多元迴歸模型估計車速v(2) Application phase: When the mobile phone performs general location update signaling on the observed road segment, it will be filtered out of the mobile network signaling of the mobile phone on the road (including handover signaling, general location update signaling, and call arrival). Signaling and communication end signaling), and tracking the subsequent status of the mobile phone signaling of the mobile phone, and thereby counting the instantaneous call arrival and end of call signaling c r on the road segment, the general location update signaling quantity n r , the road when the phone number of the p r, can use the formula (1) to (3) were calculated for each factor corresponding to the vehicle speed reaches the call signaling and call number of the end of the estimated vehicle speed of the linear regression model vehicle speed v c, Usually the number of location update signaling The vehicle speed linear regression model estimates the vehicle speed v n , the mobile phone number on the road, the linear regression model estimates the vehicle speed v p , and sets the vehicle speed call arrival and the call end signaling number. The vehicle speed linear regression model estimates the vehicle speed v c weight value w c right right, typically the number of location update signaling linear regression model vehicle speed v n of the weight value w n, and the number of the phone on the road linear regression model weight of the vehicle speed v p value w p , and then use the formula (4) to perform a weighted average to obtain a multivariate regression model to estimate the vehicle speed v .

v=w c ×v c +w n ×v n +w p ×v p where w c +w n +w p =1 (4) v = w c × v c + w n × v n + w p × v p where w c + w n + w p =1 (4)

最後,本發明利用行動網路信令車速估計方法模組以行動網路信令車速估計演算法308,由行動網路信令車速估計方法模組108綜合交遞信令估計車速302、一般位置更新信令估計車速303、多元迴歸模型估計車速307的資訊產生即時車速資訊309予用路人決策參考。其中,由於根據過去的研究成果指出 當從順暢開始進入塞車狀態時,一般位置更新信令估計車速303將無法即時反應出塞車資訊,故本發明在行動網路信令車速估計方法模組108開發一塞車判斷門檻值v congestion (例如:高速公路30公里/小時),在交遞信令估計車速302或多元迴歸模型估計車速307小於v congestion 即判斷為塞車狀況。此時將判斷是否存在交遞信令估計車速302,若有的話,則採用交遞信令估計車速302;反之,則採用多元迴歸模型估計車速307。而當整個大路段(如圖2之路段1)路況順暢時,一般位置更新信令估計車速303即可提供準確的車速資訊,因此行動網路信令車速估計演算法308將訂定一個車速門檻值v free (例如:高速公路為120公里/小時)作為順暢狀況的判斷,若以一般位置更新信令估計車速303時速大於v free (即整個NLUIN到NLUOUT之全路段皆順暢)時直接採用一般位置更新信令估計車速303。但當一般位置更新信令估計車速303不是順暢時,可能是部分路段塞車,但部分路段順暢,因此將運用交遞信令估計車速302或多元迴歸模型估計車速307資訊作為參考。將先判斷是否存在交遞信令估計車速302,如果是則以交遞信令估計車速302為主要依據;反之,則以多元迴歸模型估計車速307為主要依據。另外,網路訊號干擾雖然會造成交遞信令估計車速302上的誤差,但本發明發現若交遞信令估計車速302高於車速上限門檻v higher (例如:高速公路為90公里/小時)時則反應出該路段是較為順暢的狀況,將可以參考交遞信令估計車速302;反之,則參考多元迴歸模型估計車速307。在交遞信令估計車速302的部分,本發明針對網路訊號干擾造成的過度高估設計一門檻值v free ,若超過此門檻值則回報v free ;反之,則直接採用交遞信令估計車速302。 Finally, the present invention utilizes the mobile network signaling vehicle speed estimation method module to use the mobile network signaling vehicle speed estimation algorithm 308, and the mobile network signaling vehicle speed estimation method module 108 integrates the handover signaling to estimate the vehicle speed 302 and the general location. The information of the updated signaling estimation vehicle speed 303 and the multiple regression model estimated vehicle speed 307 generates the instantaneous vehicle speed information 309 for use by the passerby decision reference. Among them, according to the past research results, the general location update signaling estimated vehicle speed 303 will not be able to immediately reflect the traffic jam information when smoothly entering the traffic jam state, so the present invention is developed in the mobile network signaling vehicle speed estimation method module 108. A traffic jam judges the threshold value v congestion (for example, a highway of 30 km/h), and determines the traffic jam condition when the handover signal estimation vehicle speed 302 or the multiple regression model estimates that the vehicle speed 307 is less than v congestion . At this time, it is judged whether there is a handover signaling estimated vehicle speed 302, and if any, the vehicle speed 302 is estimated using handover signaling; otherwise, the vehicle speed 307 is estimated using a multiple regression model. When the whole road section (such as the road section 1 in Fig. 2) has smooth road conditions, the general position update signaling estimated vehicle speed 303 can provide accurate vehicle speed information, so the mobile network signaling speed estimation algorithm 308 will set a speed threshold. The value v free (for example: 120 km/h for the expressway) is judged as a smooth condition. If the general position update signaling is used to estimate that the vehicle speed 303 is faster than v free (that is, the entire NLU IN to NLU OUT is smooth) The vehicle speed 303 is estimated using general location update signaling. However, when the general position update signaling estimates that the vehicle speed 303 is not smooth, it may be that some road sections are jammed, but some of the road sections are smooth, so the vehicle speed 302 or the multiple regression model estimated vehicle speed 307 information will be used as a reference by using the handover signaling. It will first determine whether there is a handover signaling estimated vehicle speed 302, and if so, the delivery speed is estimated based on the handover signal estimation 302; otherwise, the vehicle speed 307 is estimated based on the multiple regression model. Further, although the network signal interference can cause error in the handover signaling on the estimated vehicle speed 302, but the present inventors have found that when the handover signaling 302 is higher than the estimated vehicle speed threshold limit vehicle speed v higher (eg: motorway is 90 km / h) When it is reflected that the road section is a relatively smooth condition, the vehicle speed 302 can be estimated by referring to the handover signaling; otherwise, the vehicle speed 307 is estimated with reference to the multiple regression model. In the part of the handover signaling estimated vehicle speed 302, the present invention designs a threshold value v free for excessive overestimation caused by network signal interference, and if it exceeds the threshold value, returns v free ; otherwise, directly uses handover signaling estimation. Speed 302.

綜上所述,本揭露實施例提供一種運用行動網路信令的多元迴歸模型交通資訊估計方法。其技術透過事先建立的行動網路信令車速估計系統, 進行行動網路信令擷取,蒐集指定道路上多個行動用戶之交遞信令、一般位置更新信令、通話到達信令、通訊結束信令等通訊事件的樣本資料。藉由行動網路信令車速估計演算法根據行動網路信令樣本資料,推估交遞信令估計車速、一般位置更新信令估計車速、多元迴歸車速,並將各種車速資訊進行融合產生即時車速資訊予用路人決策參考。 In summary, the disclosed embodiments provide a multiple regression model traffic information estimation method using mobile network signaling. The technology uses a pre-established mobile network signaling speed estimation system. Perform mobile network signaling acquisition, and collect sample data of communication events such as handover signaling, general location update signaling, call arrival signaling, and communication end signaling of multiple mobile users on a specified road. The mobile network signaling speed estimation algorithm estimates the handover signal estimation vehicle speed, the general position update signaling estimated vehicle speed, the multiple regression vehicle speed, and combines various vehicle speed information to generate an instant according to the mobile network signaling sample data. The speed information is used for reference by passers-by.

本發明所提供之基於分析行動網路信令之交通資訊估計方法,與其他習用技術相互比較時,更具備下列優點: The traffic information estimation method based on the analysis mobile network signaling provided by the invention has the following advantages when compared with other conventional technologies:

1.本發明可擷取行動網路信令,可在不影響原行動用戶使用服務情況下分析提供交通資訊資料,資料來源為所有用路人,同時不需更改任何設備,提高交通資訊獲取即時度與普及度。 1. The present invention can extract mobile network signaling, and can analyze and provide traffic information without affecting the use of services by the original mobile users. The data source is all the passers-by, and no need to change any equipment, and improve the traffic information to obtain instantness. And popularity.

2.本發明利用多元迴歸車速,綜合分析通話到達和通話結束信令數量、一般位置更新信令數量、以及道路上的手機數量以分析即時車速資訊。此方法將可即時提供小路段的車速資訊,並可以避免交遞信令估計車速樣本數不足的問題。 2. The present invention utilizes multiple regression vehicle speeds to comprehensively analyze the number of call arrival and call end signaling, the number of general location update signaling, and the number of handsets on the road to analyze the instantaneous vehicle speed information. This method will provide instant information on the speed of small sections and avoid the problem of insufficient number of samples for the estimated speed of handover signaling.

3.本發明建立行動網路信令車速估計演算法,融合交遞信令估計車速、一般位置更新信令估計車速、多元迴歸車速,來提供更準確的即時車速資訊。 3. The invention establishes a mobile network signaling vehicle speed estimation algorithm, and combines handover signaling to estimate vehicle speed, general position update signaling, estimated vehicle speed, and multiple regression vehicle speed to provide more accurate real-time vehicle speed information.

上列詳細說明乃針對本發明之一可行實施例進行具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 The detailed description of the present invention is intended to be illustrative of a preferred embodiment of the invention, and is not intended to limit the scope of the invention. The patent scope of this case.

綜上所述,本案不僅於技術思想上確屬創新,並具備習用之傳統方法所不及之上述多項功效,已充分符合新穎性及進步性之法定發明專利要 件,爰依法提出申請,懇請 貴局核准本件發明專利申請案,以勵發明,至感德便。 In summary, this case is not only innovative in terms of technical thinking, but also has many of the above-mentioned functions that are not in the traditional methods of the past. It has fully complied with the statutory invention patents of novelty and progressiveness. If you apply in accordance with the law, you are requested to approve the application for the invention patent in order to invent the invention.

101‧‧‧行動網路信令監測模組 101‧‧‧Mobile Network Signaling Monitoring Module

102‧‧‧基地台和位置區域資料模組 102‧‧‧Base station and location area data module

103‧‧‧地理資訊系統 103‧‧‧Geographic Information System

104‧‧‧道路路段資料和過濾模組 104‧‧‧Road section data and filter module

105‧‧‧行動網路信令車速估計資料模組 105‧‧‧Mobile network signaling speed estimation data module

106‧‧‧車速資訊收集模組 106‧‧‧Speed Information Collection Module

107‧‧‧路段車速歷史資料機器學習模組 107‧‧‧Segment speed history data machine learning module

108‧‧‧行動網路信令車速估計方法模組 108‧‧‧Mobile network signaling speed estimation method module

Claims (6)

一種運用行動網路信令的多元迴歸模型交通資訊估計方法,其步驟包括:A.學習階段:a.透過基地台和位置區域資料模組向資料庫取得複數基地台的位置資訊;b.將基地台的位置資訊與地理資訊系統項資料取得之地圖資訊進行結合並輸入道路路段資料和過濾模組;c.利用道路路段資料和過濾模組依據該等基地台的位置資訊估算該等基地台間,道路上移動手機之行動網路信令中交遞信令和一般位置更新信令發生的位置以劃分道路路段,以過濾出有發生一般位置更新信令的道路路段中每一個道路上移動手機之行動網路信令;d.接著,利用行動網路信令車速估計資料模組依據道路上移動手機之行動網路信令取得交遞信令估計車速、一般位置更新信令估計車速、通話到達和通話結束信令數量、一般位置更新信令數量及道路上的手機數,並搭配車速資料收集模組所收集之歷史車速輸入至路段車速歷史資料機器學習模組以迴歸模型進行資料訓練及學習,以取得迴歸模型參數;B.應用階段:a.當手機在道路路段上發生一般位置更新信令後,將被道路路段資料和過濾模組過濾出發生一般位置更新信令的手機的道路上移動手機之行動網路信令,並追蹤此道路上移動手機之行動網路信令的後續狀況,再由行動網路信令車速估計之資料模型統計道路路段上即時收集到的交遞信令估計車速、一般位置更新信令估計車速、通話到達和通話結束信令數量、一般位置更新信 令數量及道路上的手機數,並結合路段車速歷史資料機器學習模組訓練及學習後得到的迴歸模型參數,進行多元迴歸車速估計,以產出多元迴歸模型估計車速;b.將多元迴歸模型估計車速結果輸入至行動網路信令車速估計方法模組中,進行車速資訊的估計。 A multi-regression model traffic information estimation method using mobile network signaling, the steps comprising: A. learning phase: a. obtaining location information of a plurality of base stations through a base station and a location area data module; b. The location information of the base station is combined with the map information obtained by the GIS item data and input into the road section data and the filtering module; c. the road section data and the filtering module are used to estimate the base stations based on the location information of the base stations The location of handover signaling and general location update signaling in the mobile network signaling of the mobile phone on the road to divide the road segment to filter out the movement on each road in the road segment where the general location update signaling occurs. Mobile mobile network signaling; d. Next, using the mobile network signaling speed estimation data module to obtain handover signaling estimated vehicle speed, general location update signaling, estimated vehicle speed according to mobile network signaling of mobile mobile phones on the road, The number of call arrival and call end signaling, the number of general location update signaling, and the number of mobile phones on the road, combined with the speed data collection module The collected historical speed is input to the section speed history data machine learning module to carry out data training and learning with regression model to obtain regression model parameters; B. Application stage: a. When the mobile phone has general position update signaling on the road section The road segment data and filtering module will be used to filter the mobile network signaling of the mobile phone on the road of the mobile phone where the general location update signaling occurs, and track the follow-up status of the mobile network signaling of the mobile mobile phone on the road, and then The data model of the mobile network signaling speed estimation is used to collect the handover signal estimated on the road segment, the estimated vehicle speed, the general location update signaling, the estimated vehicle speed, the call arrival and the end of the call signaling, and the general location update signal. The number and the number of mobile phones on the road, combined with the regression model parameters obtained after the training and learning of the machine learning module of the road speed history data, the multivariate regression vehicle speed estimation, the multiple regression model to estimate the vehicle speed; b. the multiple regression model The estimated vehicle speed result is input into the mobile network signaling vehicle speed estimation method module, and the vehicle speed information is estimated. 如請求項1所述之運用行動網路信令的多元迴歸模型交通資訊估計方法,其中行動網路信令車速估計方法模組係以交遞信令估計車速、一般位置更新信令估計車速、通話到達和通話結束信令數量、一般位置更新信令數量及道路上的手機數進行車速資訊的估計。 The multiple regression model traffic information estimation method using the mobile network signaling according to claim 1, wherein the mobile network signaling speed estimation method module estimates the vehicle speed by using the handover signaling, the general location update signaling, and the estimated vehicle speed, Estimate the speed information by the number of call arrival and call end signaling, the number of general location update signaling, and the number of mobile phones on the road. 如請求項1所述之運用行動網路信令的多元迴歸模型交通資訊估計方法,其中車速資料收集模組為全球定位系統探偵車或車輛偵測器。 The multiple regression model traffic information estimation method using the mobile network signaling as claimed in claim 1, wherein the vehicle speed data collection module is a global positioning system probe vehicle or a vehicle detector. 如請求項1所述之運用行動網路信令的多元迴歸模型交通資訊估計方法,其中取得迴歸模型參數進行多元迴歸車速估計之步驟包含:(1)利用車速資料收集模組收集歷史車速,並輸入至路段車速歷史資料機器學習模組以迴歸模型進行資料訓練,並產出迴歸模型參數值;以及(2)分別將通話到達和通話結束信令數量、一般位置更新信令數量、以及道路上的手機數結合迴歸模型參數值取得各個因子估計之車速資訊,並進行加權平均,產生多元迴歸模型估計車速。 The multiple regression model traffic information estimation method using the mobile network signaling according to claim 1, wherein the step of obtaining the regression model parameters for the multiple regression vehicle speed estimation comprises: (1) collecting the historical vehicle speed by using the vehicle speed data collection module, and Input to the section speed history data machine learning module to use the regression model for data training and output regression model parameter values; and (2) the number of call arrival and call end signaling, the number of general location update signaling, and the road The number of mobile phones is combined with the regression model parameter values to obtain the vehicle speed information estimated by each factor, and weighted average is generated to generate a multiple regression model to estimate the vehicle speed. 如請求項1所述之運用行動網路信令的多元迴歸模型交通資訊估計方法,其中行動網路信令車速估計方法模組進行車速資訊的估計,係利用交遞信令估計車速、一般位置更新信令估計車速、多元迴歸模型估計車速,融合出最後的車速資訊,其步驟包含: (1)分析是否存在交遞信令估計車速;(2)分析交遞信令估計車速或多元迴歸模型估計車速是否低於塞車判斷門檻值v congestion ,以作為塞車判斷;(3)分析一般位置更新信令估計車速是否高於車速門檻值v free ,以作為順暢判斷;(4)分析交遞信令估計車速是否高於車速上限門檻v higher ,以作為採用交遞信令估計車速或多元迴歸模型估計車速之決策判斷;以及(5)分析交遞信令估計車速是否超出車速門檻值v free ,以作為合理車速之判斷。 The multiple regression model traffic information estimation method using the mobile network signaling according to claim 1, wherein the mobile network signaling speed estimation method module estimates the vehicle speed information, and uses the handover signaling to estimate the vehicle speed and the general position. The update signaling estimates the vehicle speed, the multiple regression model estimates the vehicle speed, and combines the final vehicle speed information. The steps include: (1) analyzing whether there is handover signaling to estimate the vehicle speed; and (2) analyzing the handover signaling to estimate the vehicle speed or multiple regression model. It is estimated whether the vehicle speed is lower than the traffic congestion threshold value v congestion , as a traffic jam judgment; (3) analyzing the general position update signaling to estimate whether the vehicle speed is higher than the vehicle speed threshold value v free as a smooth judgment; (4) analyzing the handover signaling Estimating whether the vehicle speed is higher than the vehicle speed upper threshold v higher as the decision judgment for estimating the vehicle speed by using the handover signaling estimation vehicle speed or the multiple regression model; and (5) analyzing the handover signaling to estimate whether the vehicle speed exceeds the vehicle speed threshold v free , As a judgment of reasonable speed. 如請求項1所述之運用行動網路信令的多元迴歸模型交通資訊估計方法,其中道路上移動手機之行動網路信令包括交遞信令、一般位置更新信令、通話到達信令及通訊結束信令。 The multiple regression model traffic information estimation method using mobile network signaling as claimed in claim 1, wherein the mobile network signaling of the mobile phone on the road includes handover signaling, general location update signaling, call arrival signaling, and Communication end signaling.
TW104140682A 2015-12-04 2015-12-04 A Method of Estimating Traffic Information Based on Multiple Regression Model of Mobile Network Signaling TWI569225B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104140682A TWI569225B (en) 2015-12-04 2015-12-04 A Method of Estimating Traffic Information Based on Multiple Regression Model of Mobile Network Signaling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104140682A TWI569225B (en) 2015-12-04 2015-12-04 A Method of Estimating Traffic Information Based on Multiple Regression Model of Mobile Network Signaling

Publications (2)

Publication Number Publication Date
TWI569225B true TWI569225B (en) 2017-02-01
TW201721574A TW201721574A (en) 2017-06-16

Family

ID=58608151

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104140682A TWI569225B (en) 2015-12-04 2015-12-04 A Method of Estimating Traffic Information Based on Multiple Regression Model of Mobile Network Signaling

Country Status (1)

Country Link
TW (1) TWI569225B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116959241A (en) * 2023-05-28 2023-10-27 重庆理工大学 A method for estimating traffic information

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108682148B (en) * 2018-05-11 2021-05-11 重庆邮电大学 State estimation method of non-connected vehicles based on machine learning in mixed traffic conditions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418843A (en) * 1992-08-18 1995-05-23 Televerket Method for estimating traffic density in mobile telephone networks
TWI446302B (en) * 2011-12-12 2014-07-21 Univ Nat Pingtung Sci & Tech Method for traffic density estimation
TWI490453B (en) * 2013-10-14 2015-07-01 Chunghwa Telecom Co Ltd Method and system of traffic information estimation using action user signaling
TWI509580B (en) * 2013-07-31 2015-11-21 Chunghwa Telecom Co Ltd Road traffic information estimation system and its method using action internet signaling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418843A (en) * 1992-08-18 1995-05-23 Televerket Method for estimating traffic density in mobile telephone networks
TWI446302B (en) * 2011-12-12 2014-07-21 Univ Nat Pingtung Sci & Tech Method for traffic density estimation
TWI509580B (en) * 2013-07-31 2015-11-21 Chunghwa Telecom Co Ltd Road traffic information estimation system and its method using action internet signaling
TWI490453B (en) * 2013-10-14 2015-07-01 Chunghwa Telecom Co Ltd Method and system of traffic information estimation using action user signaling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116959241A (en) * 2023-05-28 2023-10-27 重庆理工大学 A method for estimating traffic information

Also Published As

Publication number Publication date
TW201721574A (en) 2017-06-16

Similar Documents

Publication Publication Date Title
CN103325247B (en) Method and system for processing traffic information
US8788185B2 (en) Method and system for estimating traffic information by using integration of location update events and call events
CN106530716B (en) The method for calculating express highway section average speed based on mobile phone signaling data
CN108282860B (en) Data processing method and device
Calabrese et al. Real-time urban monitoring using cell phones: A case study in Rome
CN101547506B (en) GSM network consumer positioning method based on signal receiving strength information fingerprint
CN106912015B (en) Personnel trip chain identification method based on mobile network data
CN103841576B (en) High-speed railway user separation method, system and signaling data processing method and system
CN108322891B (en) Traffic area congestion identification method based on user mobile phone signaling
CN106600960A (en) Traffic travel origin and destination identification method based on space-time clustering analysis algorithm
EP2608181B1 (en) Method for detecting traffic
CN105513351A (en) Traffic travel characteristic data extraction method based on big data
CN104217593B (en) A kind of method for obtaining road condition information in real time towards mobile phone travelling speed
CN106156528A (en) A kind of track data stops recognition methods and system
CN108462966A (en) One kind being based on 2G networks high-speed rail cell RRU positioning identifying methods and system
CN105303831A (en) Method for determining congestion state of highway based on communication data
CN109714712A (en) A kind of method and device of the data drop point based on attributes match to grid
TWI569225B (en) A Method of Estimating Traffic Information Based on Multiple Regression Model of Mobile Network Signaling
Derrmann et al. Estimating urban road traffic states using mobile network signaling data
KR102821694B1 (en) Method and Apparatus for Providing Population Guidance Service
CN113569978B (en) Travel track identification method and device, computer equipment and storage medium
Chiang et al. Estimating instant traffic information by identifying handover patterns of UMTS signals
EP4324263A1 (en) Method for characterization of paths travelled by mobile user terminals
Chang et al. Traffic information estimation using periodic location update events
CN113766430A (en) Urban rail congestion analysis method and device based on 5G network

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees