TWI555169B - Driving circuit structure and manufacturing method thereof - Google Patents
Driving circuit structure and manufacturing method thereof Download PDFInfo
- Publication number
- TWI555169B TWI555169B TW103141427A TW103141427A TWI555169B TW I555169 B TWI555169 B TW I555169B TW 103141427 A TW103141427 A TW 103141427A TW 103141427 A TW103141427 A TW 103141427A TW I555169 B TWI555169 B TW I555169B
- Authority
- TW
- Taiwan
- Prior art keywords
- thin film
- insulating layer
- film transistor
- semiconductor channel
- gate
- Prior art date
Links
Landscapes
- Thin Film Transistor (AREA)
- Electroluminescent Light Sources (AREA)
Description
本發明是有關於一種電路結構及其製作方法,且特別是有關於一種驅動電路結構及其製作方法。 The present invention relates to a circuit structure and a method of fabricating the same, and more particularly to a driver circuit structure and a method of fabricating the same.
在驅動電路結構中,往往使用多個電晶體來實現所需要的訊號傳遞模式。因此,電晶體的操作信賴性往往是驅動電路結構的重要考量。一般來說,為了達到特定的訊號傳遞模式,驅動電路結構中具有許多個電晶體,且不同電晶體可能採用不同或是相同的模式來驅動。舉例而言,有些電晶體採用長期施加正偏壓的模式驅動而有些電晶體採用長期施加負偏壓的模式驅動。因此,將所有電晶體採用統一規格與條件的製作可能導致某些驅動模式下電晶體的表現良好但另一種驅動模式下的電晶體表現不佳。因此,驅動電路結構仍有改良的空間。 In the driver circuit structure, multiple transistors are often used to achieve the desired signal transfer mode. Therefore, the operational reliability of the transistor is often an important consideration in the structure of the driver circuit. In general, in order to achieve a particular signal transfer mode, there are many transistors in the driver circuit structure, and different transistors may be driven in different or identical modes. For example, some transistors are driven in a mode that applies a positive bias for a long time and some transistors are driven in a mode that applies a negative bias for a long time. Therefore, the fabrication of all transistors using uniform specifications and conditions may result in good performance of the transistor in some drive modes but poor performance in the other drive mode. Therefore, there is still room for improvement in the structure of the drive circuit.
本發明提供一種驅動電路結構,具有良好操作信賴性。 The invention provides a driving circuit structure with good operational reliability.
本發明提供一種驅動電路結構的製作方法,製作出具有良好操作信賴性的驅動電路結構而不需增加過多成本。 The invention provides a manufacturing method of a driving circuit structure, and produces a driving circuit structure with good operation reliability without increasing excessive cost.
本發明的驅動電路結構,配置於一基板上,並包括一第一薄膜電晶體、一第二薄膜電晶體、一第一絕緣層及一第二絕緣層。第一薄膜電晶體具有一第一半導體通道區。第二薄膜電晶體具有一第二半導體通道區。第一絕緣層覆蓋第一薄膜電晶體,並具有一開口。開口的面積暴露出第二薄膜電晶體的第二半導體通道區的面積。第二絕緣層配置於第一絕緣層上,覆蓋第二薄膜電晶體,並填充開口的面積而覆蓋第二半導體通道區的面積。 The driving circuit structure of the present invention is disposed on a substrate and includes a first thin film transistor, a second thin film transistor, a first insulating layer and a second insulating layer. The first thin film transistor has a first semiconductor channel region. The second thin film transistor has a second semiconductor channel region. The first insulating layer covers the first thin film transistor and has an opening. The area of the opening exposes the area of the second semiconductor channel region of the second thin film transistor. The second insulating layer is disposed on the first insulating layer, covers the second thin film transistor, and fills an area of the opening to cover an area of the second semiconductor channel region.
本發明的一種驅動電路結構的製作方法,包括:製作一第一薄膜電晶體以及一第二薄膜電晶體於一基板上,其中第一薄膜電晶體具有一第一半導體通道區,而第二薄膜電晶體具有一第二半導體通道區;以及依序形成一第一絕緣層與一第二絕緣層於基板上。第一絕緣層覆蓋第一薄膜電晶體,第一絕緣層具有一開口,開口的面積暴露出第二薄膜電晶體的第二半導體通道區的面積,並且第二絕緣層配置於第一絕緣層上,覆蓋第二薄膜電晶體,並填充開口的面積而覆蓋第二半導體通道區的面積。 A method for fabricating a driving circuit structure includes: fabricating a first thin film transistor and a second thin film transistor on a substrate, wherein the first thin film transistor has a first semiconductor channel region and the second film The transistor has a second semiconductor channel region; and a first insulating layer and a second insulating layer are sequentially formed on the substrate. The first insulating layer covers the first thin film transistor, the first insulating layer has an opening, the area of the opening exposes an area of the second semiconductor channel region of the second thin film transistor, and the second insulating layer is disposed on the first insulating layer Covering the second thin film transistor and filling the area of the opening to cover the area of the second semiconductor channel region.
基於上述,本發明實施例的驅動電路結構以不同模式進行操作的薄膜電晶體可同樣地具有良好驅動信賴性。 Based on the above, the thin film transistor in which the driving circuit structure of the embodiment of the present invention operates in different modes can similarly have good driving reliability.
為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.
1、2、3‧‧‧發光元件 1, 2, 3‧‧‧Lighting elements
10‧‧‧基板 10‧‧‧Substrate
100、200、300、400、500‧‧‧驅動電路結構 100, 200, 300, 400, 500‧‧‧ drive circuit structure
110、410、510、310‧‧‧第一薄膜電晶體 110, 410, 510, 310‧‧‧ first film transistor
110C、120C、310C、320C、410C、420C、510C、520C‧‧‧半導體通道層 110C, 120C, 310C, 320C, 410C, 420C, 510C, 520C‧‧‧ semiconductor channel layer
110CH、120CH、310CH、320CH‧‧‧導體通道區 110CH, 120CH, 310CH, 320CH‧‧‧ conductor channel area
110D、120D、410D、420D、510D、520D‧‧‧汲極 110D, 120D, 410D, 420D, 510D, 520D‧‧‧汲
110G、120G、410G、420G、510G1、510G2、520G1、520G2‧‧‧閘極 110G, 120G, 410G, 420G, 510G1, 510G2, 520G1, 520G2‧‧ ‧ gate
110S、120S、410S、420S、510S、520S‧‧‧源極 110S, 120S, 410S, 420S, 510S, 520S‧‧‧ source
120、320、420、520‧‧‧第二薄膜電晶體 120, 320, 420, 520‧‧‧ second thin film transistor
130、430、530‧‧‧第一絕緣層 130, 430, 530‧‧‧ first insulation
130A、430A、530A‧‧‧開口 130A, 430A, 530A‧‧‧ openings
140、440、540‧‧‧第二絕緣層 140, 440, 540‧‧‧Second insulation
150、450、550‧‧‧掃描線 150, 450, 550‧‧‧ scan lines
160、460、560‧‧‧資料線 160, 460, 560‧‧‧ data lines
170、470、570‧‧‧電源線 170, 470, 570‧‧‧ power cord
180、480、580‧‧‧電容結構 180, 480, 580‧‧‧ capacitor structure
182、184‧‧‧端 182, 184‧‧‧
190、490、590‧‧‧有機發光元件 190, 490, 590‧ ‧ organic light-emitting elements
192‧‧‧電極 192‧‧‧electrode
GI、GI1、GI2‧‧‧閘絕緣層 GI, GI1, GI2‧‧‧ gate insulation
IL‧‧‧層間絕緣層 IL‧‧‧ interlayer insulation
IS1、IS2‧‧‧蝕刻阻擋圖案 IS1, IS2‧‧‧ etching barrier pattern
S1‧‧‧第一側 S1‧‧‧ first side
S2‧‧‧第二側 S2‧‧‧ second side
TH1、TH2、V1、V2、V3‧‧‧接觸窗 TH1, TH2, V1, V2, V3‧‧‧ contact window
圖1A至圖1C說明本發明一實施例的驅動電路結構的製作方法。 1A to 1C illustrate a method of fabricating a driving circuit structure in accordance with an embodiment of the present invention.
圖2為本發明一實施例的驅動電路結構所應用的發光元件的上視示意圖。 2 is a top plan view of a light emitting device to which a driving circuit structure is applied according to an embodiment of the present invention.
圖3為本發明另一實施例的驅動電路結構的剖面示意圖。 3 is a cross-sectional view showing the structure of a driving circuit according to another embodiment of the present invention.
圖4為本發明又一實施例的驅動電路結構的剖面示意圖。 4 is a cross-sectional view showing the structure of a driving circuit according to still another embodiment of the present invention.
圖5A至圖5C說明本發明一實施例的驅動電路結構的製作方法。 5A to 5C illustrate a method of fabricating a driving circuit structure according to an embodiment of the present invention.
圖6為本發明一實施例的驅動電路結構所應用的發光元件的上視示意圖。 Fig. 6 is a top plan view showing a light-emitting element applied to a structure of a driving circuit according to an embodiment of the present invention.
圖7為本發明另一實施例的驅動電路結構的剖面示意圖。 FIG. 7 is a cross-sectional view showing the structure of a driving circuit according to another embodiment of the present invention.
圖8為本發明一實施例的驅動電路結構所應用的發光元件的上視示意圖。 Fig. 8 is a top plan view showing a light-emitting element applied to a structure of a driving circuit according to an embodiment of the present invention.
圖1A至圖1C說明本發明一實施例的驅動電路結構的製作方法。在圖1A至圖1C中,各個膜層的厚度與寬度僅是示意說明之用,並非以此為限。請先參照圖1A,製作一第一薄膜電晶體110與一第二薄膜電晶體120於一基板10上,其中第一薄膜電晶體110包括閘極110G、半導體通道層110C、源極110S與汲極 110D,且第二薄膜電晶體120包括閘極120G、半導體通道層120C、源極120S與汲極120D。 1A to 1C illustrate a method of fabricating a driving circuit structure in accordance with an embodiment of the present invention. In FIGS. 1A to 1C, the thickness and width of each film layer are for illustrative purposes only, and are not limited thereto. Referring to FIG. 1A, a first thin film transistor 110 and a second thin film transistor 120 are formed on a substrate 10. The first thin film transistor 110 includes a gate 110G, a semiconductor channel layer 110C, a source 110S and a gate. pole 110D, and the second thin film transistor 120 includes a gate 120G, a semiconductor channel layer 120C, a source 120S, and a drain 120D.
以本實施例而言,閘極110G與閘極120G皆配置於基板10的同一平面上,而且採用相同的導電層製作而成,但不以此為限。閘極110G與閘極120G上方配置有閘絕緣層GI,使得閘極110G與閘極120G位於基板10與閘絕緣層GI之間。半導體通道層110C與半導體通道層120C配置於閘絕緣層GO上。因此,閘絕緣層GI位於閘極110G與半導體通道層110C之間並且位於閘極120G與半導體通道層120C之間。換言之,閘極110G與閘極120G位於閘絕緣層GI的一第一側S1,而半導體通道層110C與半導體通道層120C位於閘絕緣層GI的一第二側S2,且第一側S1與第二側S2相對。 In this embodiment, the gate 110G and the gate 120G are disposed on the same plane of the substrate 10, and are made of the same conductive layer, but are not limited thereto. A gate insulating layer GI is disposed above the gate 110G and the gate 120G such that the gate 110G and the gate 120G are located between the substrate 10 and the gate insulating layer GI. The semiconductor channel layer 110C and the semiconductor channel layer 120C are disposed on the gate insulating layer GO. Therefore, the gate insulating layer GI is located between the gate 110G and the semiconductor channel layer 110C and between the gate 120G and the semiconductor channel layer 120C. In other words, the gate 110G and the gate 120G are located on a first side S1 of the gate insulating layer GI, and the semiconductor channel layer 110C and the semiconductor channel layer 120C are located on a second side S2 of the gate insulating layer GI, and the first side S1 and the first side The two sides S2 are opposite.
源極110S與汲極110D配置於半導體通道層110C上,而源極120S與汲極120D配置於半導體通道層120C上。以本實施例而言,源極110S與汲極110D覆蓋並接觸部分的半導體通道層110C,並且暴露出半導體通道區110CH。也就是說,半導體通道層110C的部分面積為半導體通道區110CH。第一薄膜電晶體110的第一閘極110G用以控制半導體通道區110CH的致能與否,源極110S與汲極110D藉由致能的半導體通道區110CH而彼此導通。源極120S與汲極120D覆蓋並接觸部分的半導體通道層120C,並且暴露出半導體通道區120CH。也就是說,半導體通道層120C的部分面積為半導體通道區120CH。第二薄膜電晶體120 的第一閘極120G用以控制半導體通道區120CH的致能與否,源極120S與汲極120D藉由致能的半導體通道區120CH而彼此導通。 The source 110S and the drain 110D are disposed on the semiconductor channel layer 110C, and the source 120S and the drain 120D are disposed on the semiconductor channel layer 120C. In the present embodiment, the source 110S and the drain 110D cover and contact a portion of the semiconductor channel layer 110C and expose the semiconductor channel region 110CH. That is, a portion of the area of the semiconductor channel layer 110C is the semiconductor channel region 110CH. The first gate 110G of the first thin film transistor 110 is used to control the enable or disable of the semiconductor channel region 110CH, and the source 110S and the drain 110D are electrically connected to each other through the enabled semiconductor channel region 110CH. The source 120S and the drain 120D cover and contact a portion of the semiconductor channel layer 120C and expose the semiconductor channel region 120CH. That is, a portion of the area of the semiconductor channel layer 120C is the semiconductor channel region 120CH. Second thin film transistor 120 The first gate 120G is used to control the enable or disable of the semiconductor channel region 120CH, and the source 120S and the drain electrode 120D are electrically connected to each other through the enabled semiconductor channel region 120CH.
就材質而言,閘極110G、閘極120G、源極110S、源極120S、汲極110D與汲極120D可以由導體材料製作而成,例如金屬、金屬氧化物、金屬氮化物或是其他非金屬導電材料。製作閘極110G、閘極120G、源極110S、源極120S、汲極110D與汲極120D所用的導電材料層可以是單一材質也可以是複合材質,並且這些構件可以採用多層導電材料堆疊而成。半導體通道層110C與半導體通道層120C可以由氧化物半導體材料製作而成。具體而言,氧化物半導體材料例如為銦鎵鋅氧化物、氧化鋅、氧化銦等。 In terms of materials, the gate 110G, the gate 120G, the source 110S, the source 120S, the drain 110D, and the drain 120D may be made of a conductive material such as a metal, a metal oxide, a metal nitride, or other non- Metal conductive material. The conductive material layer used for the gate 110G, the gate 120G, the source 110S, the source 120S, the drain 110D and the drain 120D may be a single material or a composite material, and these members may be stacked with a plurality of layers of conductive materials. . The semiconductor channel layer 110C and the semiconductor channel layer 120C may be made of an oxide semiconductor material. Specifically, the oxide semiconductor material is, for example, indium gallium zinc oxide, zinc oxide, indium oxide or the like.
接著,請參照圖1B,在已經形成有第一薄膜電晶體110與第二薄膜電晶體120的基板10上製作一第一絕緣層130。第一絕緣層130覆蓋第一薄膜電晶體,並且具有一開口130A,其中開口130A的面積至少暴露出第二薄膜電晶體120的半導體通道區120CH的面積。 Next, referring to FIG. 1B, a first insulating layer 130 is formed on the substrate 10 on which the first thin film transistor 110 and the second thin film transistor 120 have been formed. The first insulating layer 130 covers the first thin film transistor and has an opening 130A, wherein the area of the opening 130A exposes at least the area of the semiconductor channel region 120CH of the second thin film transistor 120.
此時,第一絕緣層130可以做為第一薄膜電晶體110的保護層。不過,第二薄膜電晶體120的半導體通道區120CH仍暴露出來。因此,請參照圖1C,於第一絕緣層130上形成一第二絕緣層140,其中第二絕緣層140覆蓋第二薄膜電晶體120而作為第二薄膜電晶體120的保護層。也就是說,第二絕緣層140覆蓋第二薄膜電晶體120,並填充了開口130A的面積而覆蓋住第一半導體通道區110CH的面積。另外,由圖1C可知,第一薄膜電晶體 110上除了覆蓋有第一絕緣層130,更覆蓋有第二絕緣層140,而第二薄膜電晶體120上僅覆蓋著第二絕緣層140,以構成驅動電路結構100。 At this time, the first insulating layer 130 can serve as a protective layer of the first thin film transistor 110. However, the semiconductor channel region 120CH of the second thin film transistor 120 is still exposed. Therefore, referring to FIG. 1C , a second insulating layer 140 is formed on the first insulating layer 130 , wherein the second insulating layer 140 covers the second thin film transistor 120 as a protective layer of the second thin film transistor 120 . That is, the second insulating layer 140 covers the second thin film transistor 120 and fills the area of the opening 130A to cover the area of the first semiconductor channel region 110CH. In addition, as can be seen from FIG. 1C, the first thin film transistor The first insulating layer 130 is covered with a second insulating layer 140, and the second thin film transistor 120 is covered with only the second insulating layer 140 to form the driving circuit structure 100.
在本實施例中,第一絕緣層130與第二絕緣層140的材質可以依據薄膜電晶體110與120預定要被操作的模式來決定。舉例來說,第一薄膜電晶體110在操作過程中預計被長期施加負偏壓,而第二薄膜電晶體120在操作過程中預計被長期施加正偏壓,則第一絕緣層130為非含鋁絕緣層,且第二絕緣層140為含鋁絕緣層。另外,第一薄膜電晶體110在操作過程中預計被長期施加正偏壓,而第二薄膜電晶體120在操作過程中預計被長期施加負偏壓,則第一絕緣層130為含鋁絕緣層,且第二絕緣層130為非含鋁絕緣層。一般來說,非含鋁絕緣層可以由氧化矽層、氮化矽層、氮氧化矽層或其堆疊來構成,而含鋁絕緣層例如是由氧化鋁層、矽鋁氧化物層或其堆疊來構成。 In this embodiment, the materials of the first insulating layer 130 and the second insulating layer 140 may be determined according to the mode in which the thin film transistors 110 and 120 are to be operated. For example, the first thin film transistor 110 is expected to be negatively biased for a long period of time during operation, and the second thin film transistor 120 is expected to be positively biased for a long period of time during operation, and the first insulating layer 130 is not included. An aluminum insulating layer, and the second insulating layer 140 is an aluminum-containing insulating layer. In addition, the first thin film transistor 110 is expected to be positively biased for a long period of time during operation, and the second thin film transistor 120 is expected to be negatively biased for a long period of time during operation, and the first insulating layer 130 is an aluminum-containing insulating layer. And the second insulating layer 130 is a non-aluminum insulating layer. In general, the non-aluminum-containing insulating layer may be composed of a hafnium oxide layer, a tantalum nitride layer, a hafnium oxynitride layer or a stack thereof, and the aluminum-containing insulating layer is, for example, an aluminum oxide layer, a hafnium aluminum oxide layer or a stack thereof. Come to form.
本實施例因應第一薄膜電晶體110與第二薄膜電晶體120預定被操作的方式不同,而在第一絕緣層130中設置開口130A以讓第一薄膜電晶體110與第二薄膜電晶體120的保護層由不同絕緣材料製作。如此一來,第一薄膜電晶體110與第二薄膜電晶體120兩者都可以具有理想的操作信賴性。舉例來說,在一實驗例中,以含鋁絕緣層作為薄膜電晶體的保護層。若以長期施加正偏壓的方式操作此薄膜電晶體長達8.5小時,此薄膜電晶體的饋通電壓偏移約為0.29福特,而若以長期施加負偏壓的方式操作此薄膜 電晶體長達8.5小時,此薄膜電晶體的饋通電壓偏移約為1.41福特。因此,含鋁絕緣層作為薄膜電晶體的保護層,則薄膜電晶體在正偏壓下操作較為穩定。在另一實驗例中,以非含鋁絕緣層作為薄膜電晶體的保護層。若以長期施加正偏壓的方式操作此薄膜電晶體長達8.5小時,此薄膜電晶體的饋通電壓偏移約為0.9福特,而若以長期施加負偏壓的方式操作此薄膜電晶體長達8.5小時,此薄膜電晶體的饋通電壓偏移約為0.22福特。因此,非含鋁絕緣層作為薄膜電晶體的保護層,則薄膜電晶體在負偏壓下操作較為穩定。因此,本實施例藉由第一絕緣層130與第二絕緣層140的結構設計使得第一薄膜電晶體110與第二薄膜電晶體120都可以具有良好的操作信賴性。 In this embodiment, in response to the manner in which the first thin film transistor 110 and the second thin film transistor 120 are to be operated, an opening 130A is disposed in the first insulating layer 130 to allow the first thin film transistor 110 and the second thin film transistor 120 to be disposed. The protective layer is made of different insulating materials. As a result, both the first thin film transistor 110 and the second thin film transistor 120 can have ideal operational reliability. For example, in an experimental example, an aluminum-containing insulating layer was used as a protective layer of a thin film transistor. If the thin film transistor is operated for a long time by applying a positive bias for 8.5 hours, the feedthrough voltage of the thin film transistor is shifted by about 0.29 Ford, and the film is operated by applying a negative bias for a long period of time. The transistor has a feed-through voltage offset of approximately 1.41 Ford for up to 8.5 hours. Therefore, when the aluminum-containing insulating layer is used as a protective layer of the thin film transistor, the thin film transistor is relatively stable under a positive bias. In another experimental example, a non-aluminum-containing insulating layer was used as a protective layer of the thin film transistor. If the thin film transistor is operated for a long period of time by applying a positive bias for 8.5 hours, the feedthrough voltage of the thin film transistor is shifted by about 0.9 Ford, and the thin film transistor is operated if a negative bias is applied for a long period of time. For 8.5 hours, the feedthrough voltage of this thin film transistor was shifted by approximately 0.22 Ford. Therefore, the non-aluminum-containing insulating layer acts as a protective layer for the thin film transistor, and the thin film transistor operates stably under a negative bias voltage. Therefore, the structural design of the first insulating layer 130 and the second insulating layer 140 in the present embodiment enables both the first thin film transistor 110 and the second thin film transistor 120 to have good operational reliability.
驅動電路結構100可以應用於多種領域中。以下將以驅動電路結構100應用於有機發光元件的驅動電路為例進行說明,但不以此為限。圖2為本發明一實施例的驅動電路結構所應用的發光元件的上視示意圖。請參照圖2,發光元件1包括第一薄膜電晶體110、第二薄膜電晶體120、第一絕緣層130、第二絕緣層140、一掃描線150、一資料線160、一電源線170以及一電容結構180以驅動一有機發光元件190。第一薄膜電晶體110連接於掃描線150與資料線160,第二薄膜電晶體120連接於電源線170與有機發光元件190,其中掃描線150用以致能第一薄膜電晶體110使資料線160傳遞的一開關訊號藉由致能的第一薄膜電晶體110傳遞至第二薄膜電晶體120;並且第二薄膜電晶體120藉由資料線160 的開關訊號而致能,使電源線170的一電源訊號藉由致能的第二薄膜電晶體120傳遞至有機發光元件190。電容結構180的一端182連接於第一薄膜電晶體110與第二薄膜電晶體120之間,而電容結構180的另一端184連接於第二薄膜電晶體120與有機發光元件190之間。發光元件1在此為雙電晶體一電容(2T1C)的架構,但有機發光元件190的驅動電路並不以此為限。 The drive circuit structure 100 can be applied in various fields. Hereinafter, the driving circuit structure 100 is applied to a driving circuit of an organic light emitting element as an example, but is not limited thereto. 2 is a top plan view of a light emitting device to which a driving circuit structure is applied according to an embodiment of the present invention. Referring to FIG. 2 , the light-emitting element 1 includes a first thin film transistor 110 , a second thin film transistor 120 , a first insulating layer 130 , a second insulating layer 140 , a scan line 150 , a data line 160 , a power line 170 , and A capacitor structure 180 drives an organic light emitting element 190. The first thin film transistor 110 is connected to the scan line 150 and the data line 160. The second thin film transistor 120 is connected to the power line 170 and the organic light emitting element 190. The scan line 150 is used to enable the first thin film transistor 110 to enable the data line 160. The transmitted one switching signal is transmitted to the second thin film transistor 120 by the enabled first thin film transistor 110; and the second thin film transistor 120 is passed through the data line 160 The switching signal is enabled to cause a power signal of the power line 170 to be transmitted to the organic light emitting element 190 via the enabled second thin film transistor 120. One end 182 of the capacitor structure 180 is connected between the first thin film transistor 110 and the second thin film transistor 120, and the other end 184 of the capacitor structure 180 is connected between the second thin film transistor 120 and the organic light emitting element 190. The light-emitting element 1 is here a double-crystal-capacitor (2T1C) structure, but the driving circuit of the organic light-emitting element 190 is not limited thereto.
具體來說,第一薄膜電晶體110中,閘極110G連接至掃描線150,源極110S連接至資料線160,而汲極110D連接至第二薄膜電晶體120的閘極120G與電容結構180的一端182,其中由第一薄膜電晶體110的汲極110D可以藉由接觸窗V1連接至第二薄膜電晶體120的閘極120G。第二薄膜電晶體120的源極120S連接於電源線170,而汲極120D則連接於有機發光元件190的電極192以及電容結構180的另一端184,其中有機發光元件190為有機發光二極體時,電極192可以是陰極或是陽極。 Specifically, in the first thin film transistor 110, the gate 110G is connected to the scan line 150, the source 110S is connected to the data line 160, and the drain 110D is connected to the gate 120G of the second thin film transistor 120 and the capacitor structure 180. One end 182, wherein the drain 110D of the first thin film transistor 110 can be connected to the gate 120G of the second thin film transistor 120 through the contact window V1. The source 120S of the second thin film transistor 120 is connected to the power line 170, and the drain 120D is connected to the electrode 192 of the organic light emitting element 190 and the other end 184 of the capacitor structure 180. The organic light emitting element 190 is an organic light emitting diode. In time, the electrode 192 can be a cathode or an anode.
在本實施例中,有機發光元件190的電極192由閘極110G、閘極120G、源極110S、源極120S、汲極110D與汲極120D之外的另一導體層所構成,其中電極192可以製作於圖1C的第二絕緣層140之上。因此,電極1920藉由接觸窗V2連接至汲極120D。另外,電容結構180的一端182可與源極110S、120S與汲極110D、120D由相同膜層製作而成,而電容結構180的另一端184可與閘極110G、120G由相同膜層製作而成,因此端182與端184可以藉由圖1C中的閘絕緣層GI分隔。同時,端184可以藉 由接觸窗V3連接於汲極110D。 In the present embodiment, the electrode 192 of the organic light emitting device 190 is composed of a gate 110G, a gate 120G, a source 110S, a source 120S, a drain 110D and another conductor layer other than the drain 120D, wherein the electrode 192 It can be fabricated on the second insulating layer 140 of FIG. 1C. Therefore, the electrode 1920 is connected to the drain 120D through the contact window V2. In addition, one end 182 of the capacitor structure 180 can be made of the same film layer as the source 110S, 120S and the drain electrodes 110D, 120D, and the other end 184 of the capacitor structure 180 can be made of the same film layer as the gate electrodes 110G, 120G. Thus, the ends 182 and 184 can be separated by the gate insulating layer GI in FIG. 1C. At the same time, terminal 184 can borrow It is connected to the drain 110D by the contact window V3.
由圖1C與圖2可知,開口130A暴露出半導體通道區120CH的結構使得第一薄膜電晶體110與第二薄膜電晶體120由不同材質的第一絕緣層130與第二絕緣層140所覆蓋。因此,第一薄膜電晶體110與第二薄膜電晶體120在驅動有機發光元件190時,雖採用不同模式操作,都可以具有理想的操作信賴性。不過,在其他實施例中,第一絕緣層130的開口130A所暴露的薄膜電晶體也可以選擇為連接於掃描線與資料線的電晶體,而本發明不以此為限。 As shown in FIG. 1C and FIG. 2, the opening 130A exposes the structure of the semiconductor channel region 120CH such that the first thin film transistor 110 and the second thin film transistor 120 are covered by the first insulating layer 130 and the second insulating layer 140 of different materials. Therefore, when the first thin film transistor 110 and the second thin film transistor 120 drive the organic light emitting element 190, the operation reliability can be achieved by using different modes of operation. However, in other embodiments, the thin film transistor exposed by the opening 130A of the first insulating layer 130 may also be selected as a transistor connected to the scan line and the data line, but the invention is not limited thereto.
圖3為本發明另一實施例的驅動電路結構的剖面示意圖。請參照圖3,驅動電路結構200大致相似於圖1C的驅動電路100,其中兩實施例中以相同的標號來表示相同的構件,且相同的構件將不再贅述。具體來說,驅動電路結構200除了驅動電路結構100的所有構件外更包括蝕刻阻擋圖案IS1與IS2,其中蝕刻阻擋圖案IS1位於半導體通道區110C與第一絕緣層130之間,而蝕刻阻擋圖案IS2位於半導體通道區120CH與第二絕緣層140之間。蝕刻阻擋圖案IS1與IS2的材質包括氧化矽、氮化矽、氮氧化矽或其組合。 3 is a cross-sectional view showing the structure of a driving circuit according to another embodiment of the present invention. Referring to FIG. 3, the driving circuit structure 200 is substantially similar to the driving circuit 100 of FIG. 1C, wherein the same components are denoted by the same reference numerals in the two embodiments, and the same components will not be described again. Specifically, the driving circuit structure 200 includes etch barrier patterns IS1 and IS2 in addition to all the components of the driving circuit structure 100, wherein the etch barrier pattern IS1 is located between the semiconductor channel region 110C and the first insulating layer 130, and the etch barrier pattern IS2 Located between the semiconductor channel region 120CH and the second insulating layer 140. Materials for etching the barrier patterns IS1 and IS2 include hafnium oxide, tantalum nitride, hafnium oxynitride or a combination thereof.
在本實施例中,製作源極110S、120S、汲極110D、120D、第一絕緣層130與第二絕緣層140的過程當中,半導體通道區110CH與120CH都可以受到良好的保護。以第一絕緣層130的製作而言,形成第一絕緣層130的的方法包括先形成一絕緣材料層 (未繪示)於基板10上以覆蓋第一薄膜電晶體110、第二薄膜電晶體120、蝕刻阻擋圖案IS1與蝕刻阻擋圖案IS2。接著,圖案化絕緣材料層(未繪示)以形成具有開口130A的第一絕緣層130。由於蝕刻阻擋圖案IS2覆蓋住半導體通道區120CH,絕緣材料層與圖案化絕緣材料層所用的蝕刻劑都不會接觸或是影響到半導體通道區110CH與120CH。因此,半導體通道區110CH與120CH可以維持原本的品質,不受損壞。 In the present embodiment, during the process of fabricating the source electrodes 110S, 120S, the drain electrodes 110D, 120D, the first insulating layer 130 and the second insulating layer 140, the semiconductor channel regions 110CH and 120CH can be well protected. In the fabrication of the first insulating layer 130, the method of forming the first insulating layer 130 includes first forming an insulating material layer. (not shown) on the substrate 10 to cover the first thin film transistor 110, the second thin film transistor 120, the etching stopper pattern IS1 and the etching stopper pattern IS2. Next, a layer of insulating material (not shown) is patterned to form a first insulating layer 130 having openings 130A. Since the etch barrier pattern IS2 covers the semiconductor via region 120CH, neither the insulating material layer nor the etchant used for the patterned insulating material layer contact or affect the semiconductor channel regions 110CH and 120CH. Therefore, the semiconductor channel regions 110CH and 120CH can maintain the original quality without being damaged.
圖4為本發明又一實施例的驅動電路結構的剖面示意圖。請參照圖4,驅動電路結構300大致相似於圖1C的驅動電路100,其中兩實施例中以相同的標號來表示相同的構件,且相同的構件將不再贅述。具體來說,驅動電路結構300具有的構件相同於驅動電路結構100的所有構件,但是驅動電路結構300的第一薄膜電晶體310與第二薄膜電晶體320中,半導體通道層310C配置於源極110S與汲極110D上方,且半導體通道層320C配置於源極120S與汲極120D上方。半導體通道層310C的上表面定義出半導體通道區310CH且半導體通道層320C的上表面定義出半導體通道區320CH。也就是說,在本實施例中,源極110S的一部份與汲極110D的一部份位於閘絕緣層GI與半導體通道層310C之間,且源極120S的一部份與汲極120D的一部份位於閘絕緣層GI與半導體通道層320C之間。另外,開口130A暴露出半導體通道層320C的整個上表面,即半導體通道區320CH。 4 is a cross-sectional view showing the structure of a driving circuit according to still another embodiment of the present invention. Referring to FIG. 4, the driving circuit structure 300 is substantially similar to the driving circuit 100 of FIG. 1C, wherein the same components are denoted by the same reference numerals in the two embodiments, and the same components will not be described again. Specifically, the driving circuit structure 300 has the same components as the driving circuit structure 100, but in the first thin film transistor 310 and the second thin film transistor 320 of the driving circuit structure 300, the semiconductor channel layer 310C is disposed at the source Above the 110S and the drain 110D, and the semiconductor channel layer 320C is disposed above the source 120S and the drain 120D. The upper surface of the semiconductor channel layer 310C defines a semiconductor channel region 310CH and the upper surface of the semiconductor channel layer 320C defines a semiconductor channel region 320CH. That is, in this embodiment, a portion of the source 110S and a portion of the drain 110D are located between the gate insulating layer GI and the semiconductor channel layer 310C, and a portion of the source 120S and the drain 120D A portion of it is located between the gate insulating layer GI and the semiconductor channel layer 320C. In addition, the opening 130A exposes the entire upper surface of the semiconductor channel layer 320C, that is, the semiconductor channel region 320CH.
上述實施例中,各個電晶體都是底閘型架構,即閘極位 於半導體通島層與基板之間,但不須以此為限。舉例來說,圖5A至圖5C說明本發明一實施例的驅動電路結構的製作方法。在圖5A至圖5C中,各個膜層的厚度與寬度僅是示意說明之用,並非以此為限。請先參照圖5A,基板10上依序製作半導體通道層410C、420C、閘絕緣層GI1、GI2以及閘極410G、420G。半導體通道層410C、閘絕緣層GI1以及閘極410G依序堆疊於基板10上,且閘絕緣層GI1位於閘極410G與半導體通道層410C之間。同樣地,半導體通道層420C、閘絕緣層GI2以及閘極420G依序堆疊於基板10上,且閘絕緣層GI2位於閘極420G與半導體通道層420C之間。閘極410G、420G是由導電材料製作而成,閘絕緣層GI1、GI2由絕緣材料製作而成,而半導體通道層410C、420C由氧化物半導體材料製作而成。 In the above embodiments, each of the transistors is a bottom gate type structure, that is, a gate position. Between the semiconductor island layer and the substrate, but not limited thereto. For example, FIG. 5A to FIG. 5C illustrate a method of fabricating a driving circuit structure according to an embodiment of the present invention. In FIGS. 5A to 5C, the thickness and width of each film layer are for illustrative purposes only, and are not limited thereto. Referring to FIG. 5A first, the semiconductor channel layers 410C and 420C, the gate insulating layers GI1 and GI2, and the gate electrodes 410G and 420G are sequentially formed on the substrate 10. The semiconductor channel layer 410C, the gate insulating layer GI1, and the gate 410G are sequentially stacked on the substrate 10, and the gate insulating layer GI1 is located between the gate 410G and the semiconductor channel layer 410C. Similarly, the semiconductor channel layer 420C, the gate insulating layer GI2, and the gate 420G are sequentially stacked on the substrate 10, and the gate insulating layer GI2 is located between the gate 420G and the semiconductor channel layer 420C. The gate electrodes 410G and 420G are made of a conductive material, the gate insulating layers GI1 and GI2 are made of an insulating material, and the semiconductor channel layers 410C and 420C are made of an oxide semiconductor material.
接著,請參照圖5B,於基板10上形成第一絕緣層430,且第一絕緣層430具有一開口430A以暴露出半導體通道層420C。此時,閘極420G也被開口430A暴露出來。然後,請參照圖5C,在第一絕緣層430上形成第二絕緣層440、源極410S、420S與汲極410D、420D以構成驅動電路結構400。在此,閘極420G接觸第二絕緣層440並被第二絕緣層440完全覆蓋住。閘極410G與第二絕緣層440之間則夾有第一絕緣層430。源極410S與汲極410D皆貫穿第一絕緣層430與第二絕緣層440以連接至半導體通道層410C。源極420S與汲極420D則貫穿第二絕緣層440以連接至半導體通道層420C。 Next, referring to FIG. 5B, a first insulating layer 430 is formed on the substrate 10, and the first insulating layer 430 has an opening 430A to expose the semiconductor channel layer 420C. At this time, the gate 420G is also exposed by the opening 430A. Then, referring to FIG. 5C, a second insulating layer 440, source 410S, 420S and drains 410D, 420D are formed on the first insulating layer 430 to constitute the driving circuit structure 400. Here, the gate 420G contacts the second insulating layer 440 and is completely covered by the second insulating layer 440. A first insulating layer 430 is sandwiched between the gate 410G and the second insulating layer 440. The source 410S and the drain 410D both penetrate the first insulating layer 430 and the second insulating layer 440 to be connected to the semiconductor channel layer 410C. The source 420S and the drain 420D extend through the second insulating layer 440 to be connected to the semiconductor channel layer 420C.
在本實施例中,閘極410G、半導體通道層410C、源極410S與汲極410D構成第一薄膜電晶體410,而閘極420G、半導體通道層420C、源極420S與汲極420D構成第二薄膜電晶體420。第一絕緣層430在此作為第一薄膜電晶體410的保護層而第二絕緣層440作為第二薄膜電晶體420的保護層,其中第一絕緣層410與第二絕緣層420的材質可以依據第一薄膜電晶體410與第二薄膜電晶體420的操作模式而決定。 In this embodiment, the gate 410G, the semiconductor channel layer 410C, the source 410S and the drain 410D constitute a first thin film transistor 410, and the gate 420G, the semiconductor channel layer 420C, the source 420S and the drain 420D constitute a second Thin film transistor 420. The first insulating layer 430 serves as a protective layer of the first thin film transistor 410 and the second insulating layer 440 serves as a protective layer of the second thin film transistor 420. The materials of the first insulating layer 410 and the second insulating layer 420 may be The mode of operation of the first thin film transistor 410 and the second thin film transistor 420 is determined.
具體來說,第一薄膜電晶體410在操作過程中預計被長期施加負偏壓,而第二薄膜電晶體420在操作過程中預計被長期施加正偏壓,則第一絕緣層430為非含鋁絕緣層,且第二絕緣層430為含鋁絕緣層。另外,第一薄膜電晶體410在操作過程中預計被長期施加正偏壓,而第二薄膜電晶體420在操作過程中預計被長期施加負偏壓,則第一絕緣層430為含鋁絕緣層,且第二絕緣層430為非含鋁絕緣層。一般來說,非含鋁絕緣層可以由氧化矽層、氮化矽層、氮氧化矽層或其堆疊來構成,而含鋁絕緣層例如是由氧化鋁層、矽鋁氧化物層或其堆疊來構成。如此一來,第一薄膜電晶體410與第二薄膜電晶體420兩者都可以具有理想的操作信賴性。 Specifically, the first thin film transistor 410 is expected to be negatively biased for a long period of time during operation, and the second thin film transistor 420 is expected to be positively biased for a long period of time during operation, and the first insulating layer 430 is not included. An aluminum insulating layer, and the second insulating layer 430 is an aluminum-containing insulating layer. In addition, the first thin film transistor 410 is expected to be positively biased for a long period of time during operation, and the second thin film transistor 420 is expected to be negatively biased for a long period of time during operation, and the first insulating layer 430 is an aluminum-containing insulating layer. And the second insulating layer 430 is a non-aluminum insulating layer. In general, the non-aluminum-containing insulating layer may be composed of a hafnium oxide layer, a tantalum nitride layer, a hafnium oxynitride layer or a stack thereof, and the aluminum-containing insulating layer is, for example, an aluminum oxide layer, a hafnium aluminum oxide layer or a stack thereof. Come to form. As a result, both the first thin film transistor 410 and the second thin film transistor 420 can have ideal operational reliability.
驅動電路結構400可以應用於多種領域中。以下將以驅動電路結構400應用於有機發光元件的驅動電路為例進行說明,但不以此為限。圖6為本發明一實施例的驅動電路結構所應用的發光元件的上視示意圖。請參照圖5C與圖6,發光元件2包括第 一薄膜電晶體410、第二薄膜電晶體420、第一絕緣層430、第二絕緣層440、一掃描線450、一資料線460、一電源線470以及一電容結構480以驅動一有機發光元件490。第一薄膜電晶體410連接於掃描線450與資料線460,第二薄膜電晶體420連接於電源線470與有機發光元件490,其中掃描線450用以致能第一薄膜電晶體410使資料線460傳遞的一開關訊號藉由致能的第一薄膜電晶體410傳遞至第二薄膜電晶體420;並且第二薄膜電晶體420藉由資料線460的開關訊號而致能,使電源線470的一電源訊號藉由致能的第二薄膜電晶體420傳遞至有機發光元件490。發光元件2在此為雙電晶體一電容(2T1C)的架構,但有機發光元件490的驅動電路並不以此為限。在其他實施例中,第一絕緣層430的開口430A所暴露的薄膜電晶體也可以選擇為連接於掃描線與資料線的電晶體,而本發明不以此為限。 The drive circuit structure 400 can be applied in various fields. Hereinafter, the driving circuit structure 400 is applied to the driving circuit of the organic light emitting element as an example, but is not limited thereto. Fig. 6 is a top plan view showing a light-emitting element applied to a structure of a driving circuit according to an embodiment of the present invention. 5C and FIG. 6, the light-emitting element 2 includes the first a thin film transistor 410, a second thin film transistor 420, a first insulating layer 430, a second insulating layer 440, a scan line 450, a data line 460, a power line 470, and a capacitor structure 480 to drive an organic light emitting element. 490. The first thin film transistor 410 is connected to the scan line 450 and the data line 460. The second thin film transistor 420 is connected to the power line 470 and the organic light emitting element 490. The scan line 450 is used to enable the first thin film transistor 410 to enable the data line 460. The transmitted switching signal is transmitted to the second thin film transistor 420 by the enabled first thin film transistor 410; and the second thin film transistor 420 is enabled by the switching signal of the data line 460 to enable the power supply line 470 The power signal is transmitted to the organic light emitting element 490 through the enabled second thin film transistor 420. The light-emitting element 2 is here a double-crystal-capacitor (2T1C) structure, but the driving circuit of the organic light-emitting element 490 is not limited thereto. In other embodiments, the thin film transistor exposed by the opening 430A of the first insulating layer 430 may also be selected as a transistor connected to the scan line and the data line, but the invention is not limited thereto.
以上實施例皆以單閘極的薄膜電晶體進行說明,但本發明不以此為限。圖7為本發明另一實施例的驅動電路結構的剖面示意圖。請參照圖7,驅動電路500包括第一薄膜電晶體510、第二薄膜電晶體520、層間絕緣層IL、蝕刻阻擋圖案IS1、蝕刻阻擋圖案IS2、第一絕緣層530以及第二絕緣層540,其中第一薄膜電晶體510與第二薄膜電晶體520都是雙閘極薄膜電晶體。 The above embodiments are all described by a single-gate thin film transistor, but the invention is not limited thereto. FIG. 7 is a cross-sectional view showing the structure of a driving circuit according to another embodiment of the present invention. Referring to FIG. 7 , the driving circuit 500 includes a first thin film transistor 510 , a second thin film transistor 520 , an interlayer insulating layer IL , an etch barrier pattern IS1 , an etch barrier pattern IS2 , a first insulating layer 530 , and a second insulating layer 540 . The first thin film transistor 510 and the second thin film transistor 520 are both double gate thin film transistors.
具體而言,第一薄膜電晶體510包括閘極510G1、閘極510G2、半導體通道層510C、源極510S與汲極510D。閘極510G1配置於基板10上並且閘極510G1被閘絕緣層GI覆蓋。半導體通 道層510C配置於閘絕緣層GI上,使閘極510G與半導體通道層510C位於閘絕緣層GI的相對兩側。蝕刻阻擋圖案IS1配置於半導體通道層510C上,而源極510S與汲極510D配置於半導體通道層510C上,其中蝕刻阻擋圖案IS1的一部份位於源極510S與半導體通道層510C之間,另一部分位於汲極510D與半導體通道層510C之間,以保護半導體通道層510C不在源極510S與汲極510D的圖案化過程受到損傷。層間絕緣層IL覆蓋半導體通道層510C、源極510S與汲極510D,而閘極510G2配置於層間絕緣層IL上。在此,閘極510G2藉由接觸窗TH1連接至閘極510G1,且接觸窗TH1貫穿層間絕緣層IL與閘絕緣層GI。 Specifically, the first thin film transistor 510 includes a gate 510G1, a gate 510G2, a semiconductor channel layer 510C, a source 510S, and a drain 510D. The gate 510G1 is disposed on the substrate 10 and the gate 510G1 is covered by the gate insulating layer GI. Semiconductor communication The via layer 510C is disposed on the gate insulating layer GI such that the gate electrode 510G and the semiconductor channel layer 510C are located on opposite sides of the gate insulating layer GI. The etch barrier pattern IS1 is disposed on the semiconductor channel layer 510C, and the source 510S and the drain 510D are disposed on the semiconductor channel layer 510C, wherein a portion of the etch barrier pattern IS1 is located between the source 510S and the semiconductor channel layer 510C. A portion is located between the drain 510D and the semiconductor channel layer 510C to protect the semiconductor channel layer 510C from damage during the patterning process of the source 510S and the drain 510D. The interlayer insulating layer IL covers the semiconductor channel layer 510C, the source 510S and the drain 510D, and the gate 510G2 is disposed on the interlayer insulating layer IL. Here, the gate 510G2 is connected to the gate 510G1 through the contact window TH1, and the contact window TH1 penetrates the interlayer insulating layer IL and the gate insulating layer GI.
相似地,第二薄膜電晶體520包括閘極520G1、閘極520G2、半導體通道層520C、源極520S與汲極520D。閘極520G1配置於基板10上並且閘極520G1被閘絕緣層GI覆蓋。半導體通道層520C配置於閘絕緣層GI上,使閘極520G與半導體通道層520C位於閘絕緣層GI的相對兩側。蝕刻阻擋圖案IS2配置於半導體通道層520C上,而源極520S與汲極520D配置於半導體通道層520C上,其中蝕刻阻擋圖案IS2的一部份位於源極520S與半導體通道層520C之間,另一部分位於汲極520D與半導體通道層520C之間,以保護半導體通道層520C不在源極520S與汲極520D的圖案化過程受到損傷。層間絕緣層IL覆蓋半導體通道層520C、源極520S與汲極520D,而閘極520G2配置於層間絕緣層IL上。在此,閘極520G2藉由接觸窗TH2連接至閘極520G1,且 接觸窗TH2貫穿層間絕緣層IL與閘絕緣層GI。 Similarly, the second thin film transistor 520 includes a gate 520G1, a gate 520G2, a semiconductor channel layer 520C, a source 520S, and a drain 520D. The gate 520G1 is disposed on the substrate 10 and the gate 520G1 is covered by the gate insulating layer GI. The semiconductor channel layer 520C is disposed on the gate insulating layer GI such that the gate 520G and the semiconductor channel layer 520C are located on opposite sides of the gate insulating layer GI. The etch barrier pattern IS2 is disposed on the semiconductor channel layer 520C, and the source 520S and the drain 520D are disposed on the semiconductor channel layer 520C, wherein a portion of the etch barrier pattern IS2 is located between the source 520S and the semiconductor channel layer 520C. A portion is located between the drain 520D and the semiconductor channel layer 520C to protect the semiconductor channel layer 520C from damage during the patterning process of the source 520S and the drain 520D. The interlayer insulating layer IL covers the semiconductor channel layer 520C, the source 520S and the drain 520D, and the gate 520G2 is disposed on the interlayer insulating layer IL. Here, the gate 520G2 is connected to the gate 520G1 through the contact window TH2, and The contact window TH2 penetrates the interlayer insulating layer IL and the gate insulating layer GI.
另外,第一絕緣層530覆蓋第一薄膜電晶體510以作為第一薄膜電晶體510的保護層並且具有一開口530A,其中開口530A至少暴露出第二薄膜電晶體520中半導體通道層520C的面積。第二絕緣層540則配置於第一絕於層530上,填充開口530A的面積,因此第二絕緣層540在此作為第二薄膜電晶體520的保護層。 In addition, the first insulating layer 530 covers the first thin film transistor 510 as a protective layer of the first thin film transistor 510 and has an opening 530A, wherein the opening 530A exposes at least the area of the semiconductor channel layer 520C in the second thin film transistor 520. . The second insulating layer 540 is disposed on the first insulating layer 530 to fill the area of the opening 530A. Therefore, the second insulating layer 540 serves as a protective layer of the second thin film transistor 520.
在第一絕緣層530具有開口530A使第一薄膜電晶體510與第二薄膜電晶體520受到不同材質的保護層保護,則驅動電路結構500中第一薄膜電晶體510與第二薄膜電晶體520可以採用不同模式操作而保有理想的操作信賴性。第一薄膜電晶體510在操作過程中預計被長期施加負偏壓,而第二薄膜電晶體520在操作過程中預計被長期施加正偏壓,則第一絕緣層530為非含鋁絕緣層,且第二絕緣層530為含鋁絕緣層。另外,第一薄膜電晶體510在操作過程中預計被長期施加正偏壓,而第二薄膜電晶體520在操作過程中預計被長期施加負偏壓,則第一絕緣層530為含鋁絕緣層,且第二絕緣層430為非含鋁絕緣層。一般來說,非含鋁絕緣層可以由氧化矽層、氮化矽層、氮氧化矽層或其堆疊來構成,而含鋁絕緣層例如是由氧化鋁層、矽鋁氧化物層或其堆疊來構成。 The first thin film transistor 510 and the second thin film transistor 520 are protected by the first thin film transistor 510 and the second thin film transistor 520 in the driving circuit structure 500. It can be operated in different modes to maintain the ideal operational reliability. The first thin film transistor 510 is expected to be negatively biased for a long period of time during operation, and the second thin film transistor 520 is expected to be positively biased for a long period of time during operation, and the first insulating layer 530 is a non-aluminum insulating layer. And the second insulating layer 530 is an aluminum-containing insulating layer. In addition, the first thin film transistor 510 is expected to be positively biased for a long period of time during operation, and the second thin film transistor 520 is expected to be negatively biased for a long period of time during operation, and the first insulating layer 530 is an aluminum-containing insulating layer. And the second insulating layer 430 is a non-aluminum insulating layer. In general, the non-aluminum-containing insulating layer may be composed of a hafnium oxide layer, a tantalum nitride layer, a hafnium oxynitride layer or a stack thereof, and the aluminum-containing insulating layer is, for example, an aluminum oxide layer, a hafnium aluminum oxide layer or a stack thereof. Come to form.
驅動電路結構500可以應用於多種領域中。以下將以驅動電路結構500應用於有機發光元件的驅動電路為例進行說明,但不以此為限。圖8為本發明一實施例的驅動電路結構所應用的 發光元件的上視示意圖。請參照圖7與圖8,發光元件3包括第一薄膜電晶體510、第二薄膜電晶體520、第一絕緣層530、第二絕緣層540、一掃描線550、一資料線560、一電源線570以及一電容結構580以驅動一有機發光元件590。第一薄膜電晶體510連接於掃描線550與資料線560,第二薄膜電晶體520連接於電源線570與有機發光元件590,其中掃描線550用以致能第一薄膜電晶體510使資料線560傳遞的一開關訊號藉由致能的第一薄膜電晶體510傳遞至第二薄膜電晶體520;並且第二薄膜電晶體520藉由資料線560的開關訊號而致能,使電源線570的一電源訊號藉由致能的第二薄膜電晶體520傳遞至有機發光元件590。發光元件3在此為雙電晶體一電容(2T1C)的架構,但有機發光元件590的驅動電路並不以此為限。由圖7與圖8可知,第一絕緣層530的開口530A將第二薄膜電晶體520的面積都暴露出來以讓第二絕緣層540作為第二薄膜電晶體520的保護層。如此一來,第一薄膜電晶體510與第二薄膜電晶體520要以不同模式操作時,可以選用不同材料製作第一絕緣層530與第二絕緣層540,以讓第一薄膜電晶體510與第二薄膜電晶體520都具有良好的操作信賴性。不過,在其他實施例中,第一絕緣層530的開口530A所暴露的薄膜電晶體也可以選擇為連接於掃描線與資料線的電晶體,而本發明不以此為限。 The drive circuit structure 500 can be applied in various fields. Hereinafter, the driving circuit structure 500 is applied to the driving circuit of the organic light emitting element as an example, but is not limited thereto. FIG. 8 is a schematic diagram of a driving circuit structure according to an embodiment of the present invention; A schematic top view of a light emitting element. Referring to FIG. 7 and FIG. 8 , the light-emitting element 3 includes a first thin film transistor 510 , a second thin film transistor 520 , a first insulating layer 530 , a second insulating layer 540 , a scan line 550 , a data line 560 , and a power source . Line 570 and a capacitor structure 580 drive an organic light emitting element 590. The first thin film transistor 510 is connected to the scan line 550 and the data line 560. The second thin film transistor 520 is connected to the power line 570 and the organic light emitting element 590. The scan line 550 is used to enable the first thin film transistor 510 to enable the data line 560. The transmitted switching signal is transmitted to the second thin film transistor 520 via the enabled first thin film transistor 510; and the second thin film transistor 520 is enabled by the switching signal of the data line 560 to enable the power supply line 570 The power signal is transmitted to the organic light emitting element 590 via the enabled second thin film transistor 520. The light-emitting element 3 is here a double-crystal-capacitor (2T1C) structure, but the driving circuit of the organic light-emitting element 590 is not limited thereto. As can be seen from FIG. 7 and FIG. 8 , the opening 530A of the first insulating layer 530 exposes the area of the second thin film transistor 520 to make the second insulating layer 540 serve as a protective layer of the second thin film transistor 520. In this way, when the first thin film transistor 510 and the second thin film transistor 520 are to be operated in different modes, the first insulating layer 530 and the second insulating layer 540 may be made of different materials to allow the first thin film transistor 510 to The second thin film transistor 520 has good operational reliability. However, in other embodiments, the thin film transistor exposed by the opening 530A of the first insulating layer 530 may also be selected as a transistor connected to the scan line and the data line, but the invention is not limited thereto.
綜上所述,本發明實施例的驅動電路結構中,不同操作模式的薄膜電晶體採用不同材質的保護層加以保護。因此,驅動 電路結構可以具有理想的操作信賴性。 In summary, in the driving circuit structure of the embodiment of the invention, the thin film transistors of different operation modes are protected by a protective layer of different materials. Therefore, drive The circuit structure can have ideal operational reliability.
10‧‧‧基板 10‧‧‧Substrate
100‧‧‧驅動電路結構 100‧‧‧Drive circuit structure
110‧‧‧第一薄膜電晶體 110‧‧‧First film transistor
110C、120C‧‧‧半導體通道層 110C, 120C‧‧‧ semiconductor channel layer
110CH、120CH‧‧‧半導體通道區 110CH, 120CH‧‧‧Semiconductor channel area
110D、120D‧‧‧汲極 110D, 120D‧‧‧汲
110G、120G‧‧‧閘極 110G, 120G‧‧‧ gate
110S、120S‧‧‧源極 110S, 120S‧‧‧ source
120‧‧‧第二薄膜電晶體 120‧‧‧Second thin film transistor
130‧‧‧第一絕緣層 130‧‧‧First insulation
130A‧‧‧開口 130A‧‧‧ openings
140‧‧‧第二絕緣層 140‧‧‧Second insulation
GI‧‧‧閘絕緣層 GI‧‧‧ brake insulation
S1‧‧‧第一側 S1‧‧‧ first side
S2‧‧‧第二側 S2‧‧‧ second side
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103141427A TWI555169B (en) | 2014-11-28 | 2014-11-28 | Driving circuit structure and manufacturing method thereof |
CN201510011210.5A CN104538406B (en) | 2014-11-28 | 2015-01-09 | driving circuit structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103141427A TWI555169B (en) | 2014-11-28 | 2014-11-28 | Driving circuit structure and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201620114A TW201620114A (en) | 2016-06-01 |
TWI555169B true TWI555169B (en) | 2016-10-21 |
Family
ID=52853909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103141427A TWI555169B (en) | 2014-11-28 | 2014-11-28 | Driving circuit structure and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104538406B (en) |
TW (1) | TWI555169B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10475869B2 (en) * | 2016-08-23 | 2019-11-12 | Semiconductor Energy Laboratory Co., Ltd. | Display device including display element and transistor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200616231A (en) * | 2004-07-27 | 2006-05-16 | Samsung Electronics Co Ltd | Thin film transistor array panel and manufacturing method thereof |
TW200709431A (en) * | 2005-08-17 | 2007-03-01 | Au Optronics Corp | Thin film transistor and manufacturing method thereof |
WO2011033936A1 (en) * | 2009-09-16 | 2011-03-24 | Semiconductor Energy Laboratory Co., Ltd. | Transistor and display device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101692327A (en) * | 2009-11-02 | 2010-04-07 | 友达光电股份有限公司 | Flat display device with control circuit protection function |
TWI500161B (en) * | 2011-06-02 | 2015-09-11 | Au Optronics Corp | Hybrid thin film transistor, manufacturing method thereof and display panel |
-
2014
- 2014-11-28 TW TW103141427A patent/TWI555169B/en not_active IP Right Cessation
-
2015
- 2015-01-09 CN CN201510011210.5A patent/CN104538406B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200616231A (en) * | 2004-07-27 | 2006-05-16 | Samsung Electronics Co Ltd | Thin film transistor array panel and manufacturing method thereof |
TW200709431A (en) * | 2005-08-17 | 2007-03-01 | Au Optronics Corp | Thin film transistor and manufacturing method thereof |
WO2011033936A1 (en) * | 2009-09-16 | 2011-03-24 | Semiconductor Energy Laboratory Co., Ltd. | Transistor and display device |
Also Published As
Publication number | Publication date |
---|---|
CN104538406B (en) | 2017-10-13 |
TW201620114A (en) | 2016-06-01 |
CN104538406A (en) | 2015-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107579076B (en) | Organic light emitting display device and method of manufacturing the same | |
US10797124B2 (en) | Organic light emitting display substrate and manufacturing method thereof | |
CN111146229B (en) | Display device | |
CN104659057B (en) | Array substrate for display device | |
US9818969B2 (en) | Organic light emitting diode display device and method of manufacturing the same | |
KR102151235B1 (en) | Display substrates, methods of manufacturing the same and display devices including the same | |
US20240431166A1 (en) | Display Apparatus Having a Connecting Electrode which Crosses a Bending Area | |
CN106935654A (en) | For the thin film transistor (TFT) of display device | |
KR102517127B1 (en) | Thin film transistor array panel and organic light emitting diode display including the same | |
TWI569421B (en) | Pixel structure and method of making the same | |
CN112310117B (en) | Display device having substrate hole | |
CN110233168B (en) | organic light emitting display | |
US9281322B2 (en) | Thin film transistor array panel and method for manufacturing the same | |
JP2017220632A (en) | Semiconductor device and semiconductor device manufacturing method | |
KR20160053383A (en) | Thin Film Transistor Array Substrate and Organic Light Emitting Diode Display Device Having The Same | |
CN113130579B (en) | Display device with substrate hole and method of forming the same | |
TWI555169B (en) | Driving circuit structure and manufacturing method thereof | |
KR102567323B1 (en) | Display device having a light shielding pattern | |
KR20140109153A (en) | Organic electroluminescent display and method of manufacturing the same | |
KR102735348B1 (en) | Display device having an insulating layer between stacked conductivity layers | |
KR20210086472A (en) | Display apparatus having a connecting electrode which crosses a bending area | |
WO2016106897A1 (en) | Thin film transistor and method for preparing same | |
KR101960390B1 (en) | Display device having a thin film transistor | |
KR20220092097A (en) | Display apparatus having a substrate hole | |
US20200243793A1 (en) | Display panel and method for manufacturing thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |