TWI550524B - Apparatus and method for processing physiological signal - Google Patents
Apparatus and method for processing physiological signal Download PDFInfo
- Publication number
- TWI550524B TWI550524B TW103136134A TW103136134A TWI550524B TW I550524 B TWI550524 B TW I550524B TW 103136134 A TW103136134 A TW 103136134A TW 103136134 A TW103136134 A TW 103136134A TW I550524 B TWI550524 B TW I550524B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- physiological signal
- emitting element
- physiological
- signal
- Prior art date
Links
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
本發明是有關於一種辨識裝置與方法,且特別是有關於辨識生理特徵的裝置與方法。 The present invention relates to an identification device and method, and more particularly to an apparatus and method for identifying physiological features.
一般的複合式生理特徵辨識設備中,通常使用電容式感測器來辨識指紋、使用光電感測器來辨識心跳頻率及血氧濃度,與使用遠紅外線感測器來感測人體體溫,因此,現有的辨識設備需要設置對應的感測器來辨識各種生理特徵。對於製造商或供應商而言,在辨識設備中設置較多的感測器除了會增加設備架構的複雜度,還會增加材料成本。因此,如何開發更好的辨識設備是眾人所關注的問題。 In a general composite physiological characteristic identification device, a capacitive sensor is generally used to recognize a fingerprint, a photo-electrical sensor is used to identify a heartbeat frequency and a blood oxygen concentration, and a far-infrared sensor is used to sense a human body temperature. Existing identification devices require corresponding sensors to be set to identify various physiological features. For manufacturers or suppliers, setting up more sensors in the identification device not only increases the complexity of the device architecture, but also increases the cost of materials. Therefore, how to develop better identification equipment is a concern of everyone.
有鑑於此,本發明揭露一種生理訊號處理裝置及其方法,藉由控制發光元件發射的不同光波,來提升從影像訊號中辨識生理特徵的效果。 In view of the above, the present invention discloses a physiological signal processing device and a method thereof for improving the effect of identifying physiological features from image signals by controlling different light waves emitted by the light-emitting elements.
本發明實施例提供一種生理訊號處理裝置。生理訊號處理裝置包括可發射第一光線的第一發光元件以及可發射第二光線的第二發光元件,此第一發光元件及此第二發光元件投射第一光線及第二光線至提供手指接觸的導光板,其中上述第一發光元件及上述第二發光元件設置在相對於手指接觸上述導光板的另一側。生 理訊號處理裝置還包括光源控制模組、影像感測模組以及分析模組。上述光源控制模組用以控制上述第一發光元件及上述第二發光元件發射第一光線與第二光線。上述影像感測模組用以感測上述導光板所反射的第一光線與第二光線,以取得手指的影像訊號。上述分析模組用以解析經上述第一光線萃取的影像訊號而取得第一生理訊號,並且解析經上述第二光線萃取的影像訊號而取得第二生理訊號,其中上述第一生理訊號是不同於上述第二生理訊號。 Embodiments of the present invention provide a physiological signal processing apparatus. The physiological signal processing device includes a first light emitting element that emits a first light and a second light emitting element that emits a second light, the first light emitting element and the second light emitting element projecting the first light and the second light to provide finger contact The light guide plate, wherein the first light emitting element and the second light emitting element are disposed on the other side of the light guide plate with respect to a finger. Health The signal processing device further includes a light source control module, an image sensing module, and an analysis module. The light source control module is configured to control the first light emitting element and the second light emitting element to emit the first light and the second light. The image sensing module is configured to sense the first light and the second light reflected by the light guide plate to obtain an image signal of the finger. The analysis module is configured to parse the image signal extracted by the first light to obtain a first physiological signal, and parse the image signal extracted by the second light to obtain a second physiological signal, wherein the first physiological signal is different from The second physiological signal mentioned above.
本發明實施例另提出一種生理訊號處理裝置。生理訊號處理裝置包括光源組、光源控制模組、影像感測模組以及分析模組。上述光源組可投射混合光線至供手指接觸的導光板,其中上述光源組設置在相對於手指接觸導光板的另一側,上述混合光線由多個色階光線所組成。上述光源控制模組耦接於上述光源組,用於控制上述光源組投射光線。上述影像感測模組用於感測導光板所反射的混合光線,以取得手指的影像訊號。上述分析模組耦接於上述影像感測模組,用於解析經任一色階光線萃取後的影像訊號以取得多個生理訊號。 Another embodiment of the present invention provides a physiological signal processing apparatus. The physiological signal processing device comprises a light source group, a light source control module, an image sensing module and an analysis module. The light source group can project a mixed light to a light guide plate for contact with a finger, wherein the light source group is disposed on the other side of the light guide plate with respect to the finger, and the mixed light is composed of a plurality of color gradation lights. The light source control module is coupled to the light source group for controlling the light source group to project light. The image sensing module is configured to sense the mixed light reflected by the light guide plate to obtain an image signal of the finger. The analysis module is coupled to the image sensing module for parsing the image signal extracted by any color gradation to obtain a plurality of physiological signals.
本發明實施例提出一種生理訊號處理方法,適用於上述生理訊號處理裝置。上述生理訊號處理裝置包括影像感測模組。生理訊號處理方法包括下述步驟。首先,投射至少一第一光線及一第二光線。接著,影像感測模組感測手指在生理訊號處理裝置的導光板上經第一光線及的第二光線反射後的影像訊號。以及,解析影像訊號以取得相異的至少第一生理訊號及的第二生理訊號。 The embodiment of the invention provides a physiological signal processing method suitable for the above physiological signal processing device. The physiological signal processing device includes an image sensing module. The physiological signal processing method includes the following steps. First, at least one first light and one second light are projected. Then, the image sensing module senses the image signal of the finger reflected by the first light and the second light on the light guide plate of the physiological signal processing device. And parsing the image signal to obtain different at least the first physiological signal and the second physiological signal.
基於上述,本發明實施例的生理訊號處理裝置及其方法可控制發光元件發射不同的光波,並在感測的影像訊號中萃取對應色階的影像來辨識生理特徵,由此本發明實施例可以在相同的影像訊號上辨識手指的一或多個生理特徵,還可藉由使用不同的光波產生影像訊號,提升從影像訊號中辨識生理特徵的精確度及效率。 Based on the above, the physiological signal processing apparatus and the method thereof according to the embodiments of the present invention can control the light-emitting elements to emit different light waves, and extract the images of the corresponding color gradations in the sensed image signals to identify the physiological features, thereby the embodiment of the present invention can Identifying one or more physiological features of the finger on the same image signal can also generate image signals by using different light waves to improve the accuracy and efficiency of identifying physiological features from the image signal.
為了能更進一步瞭解本發明為達成既定目的所採取的技術、方法及功效,請參閱以下有關本發明的詳細說明、圖式,相信本發明的目的、特徵與特點,當可由此得以深入且具體的瞭解,然而所附圖式與附件僅提供參考與說明用,並非用來對本發明加以限制。 In order to further understand the technology, method and function of the present invention in order to achieve the intended purpose, reference should be made to the detailed description and drawings of the invention. The drawings and the annexed drawings are to be considered as illustrative and not restrictive.
10、30、40、50、60、70‧‧‧生理訊號處理裝置 10, 30, 40, 50, 60, 70‧‧‧ physiological signal processing device
101a、301a、401a、701a‧‧‧第一發光元件 101a, 301a, 401a, 701a‧‧‧ first light-emitting elements
101b、301b、401b、701b‧‧‧第二發光元件 101b, 301b, 401b, 701b‧‧‧ second light-emitting element
103、303、403、503、603、703‧‧‧影像感測模組 103, 303, 403, 503, 603, 703‧‧‧ image sensing module
105、305、405、505、605、705‧‧‧光源控制模組 105, 305, 405, 505, 605, 705‧‧‧ light source control module
107、307、407、507、607、707‧‧‧分析模組 107, 307, 407, 507, 607, 707‧‧ analysis modules
109、509‧‧‧手指 109, 509‧‧‧ fingers
109a、509a‧‧‧手指血管 109a, 509a‧‧‧ finger blood vessels
111、511‧‧‧導光板 111, 511‧‧‧Light guide plate
309、409、609、709‧‧‧驗證模組 309, 409, 609, 709‧‧‧ verification module
311、411、611、711‧‧‧遠紅外線感測模組 311, 411, 611, 711‧‧‧ far infrared sensing module
401c、701c‧‧‧第三發光元件 401c, 701c‧‧‧ third light-emitting element
501、601、701‧‧‧光源組 501, 601, 701‧‧ ‧ light source group
713‧‧‧近紅外光發光元件 713‧‧‧Near-infrared light-emitting elements
S801~S805‧‧‧步驟 S801~S805‧‧‧Steps
圖1是本發明根據第一實施例所繪示的生理訊號處理裝置的側視示意圖。 1 is a side elevational view of a physiological signal processing apparatus according to a first embodiment of the present invention.
圖2是本發明根據第二實施例所繪示的影像訊號的示意圖。 FIG. 2 is a schematic diagram of an image signal according to a second embodiment of the present invention.
圖3是本發明根據第三實施例所繪示的生理訊號處理裝置的功能方塊圖。 FIG. 3 is a functional block diagram of a physiological signal processing apparatus according to a third embodiment of the present invention.
圖4是本發明根據第四實施例所繪示的生理訊號處理裝置的配置示意圖。 FIG. 4 is a schematic diagram showing the configuration of a physiological signal processing apparatus according to a fourth embodiment of the present invention.
圖5是本發明根據第五實施例所繪示的生理訊號處理裝置的側視示意圖。 FIG. 5 is a side view of a physiological signal processing apparatus according to a fifth embodiment of the present invention.
圖6是本發明根據第六實施例所繪示的生理訊號處理裝置的功能方塊圖。 FIG. 6 is a functional block diagram of a physiological signal processing apparatus according to a sixth embodiment of the present invention.
圖7是本發明根據第七實施例所繪示的生理訊號處理裝置的配置示意圖。 FIG. 7 is a schematic diagram showing the configuration of a physiological signal processing apparatus according to a seventh embodiment of the present invention.
圖8是本發明根據第八實施例所繪示的生理訊號處理方法的流程圖。 FIG. 8 is a flowchart of a physiological signal processing method according to an eighth embodiment of the present invention.
在下文中,將藉由圖式說明本發明之各種例示實施例來詳細描述本發明。然而,本發明概念可能以許多不同形式來體現,且不應解釋為限於本文中所闡述之例示性實施例。此外,圖式中相 同參考數字可用以表示類似的元件。 In the following, the invention will be described in detail by way of illustration of various exemplary embodiments of the invention. However, the inventive concept may be embodied in many different forms and should not be construed as being limited to the illustrative embodiments set forth herein. In addition, the pattern in the phase The same reference numbers can be used to indicate similar elements.
圖1是本發明根據第一實施例所繪示的生理訊號處理裝置的側視示意圖。請參照圖1,生理訊號處理裝置10包括第一發光元件101a、第二發光元件101b、光源控制模組105、影像感測模組103以及分析模組107。第一發光元件101a與第二發光元件101b分別耦接於光源控制模組105。影像感測模組103耦接於分析模組107。生理訊號處理裝置10具有導光板111,提供使用者的手指109接觸於其上。第一發光元件101a和第二發光元件101b設置在導光板111相對於手指109接觸的另一側。 1 is a side elevational view of a physiological signal processing apparatus according to a first embodiment of the present invention. Referring to FIG. 1 , the physiological signal processing device 10 includes a first light emitting element 101 a , a second light emitting element 101 b , a light source control module 105 , an image sensing module 103 , and an analysis module 107 . The first light-emitting element 101a and the second light-emitting element 101b are respectively coupled to the light source control module 105. The image sensing module 103 is coupled to the analysis module 107. The physiological signal processing device 10 has a light guide plate 111 that provides a user's finger 109 to be in contact therewith. The first light emitting element 101a and the second light emitting element 101b are disposed on the other side of the light guide plate 111 that is in contact with the finger 109.
第一發光元件101a可發射第一光線,第二發光元件101b可發射第二光線。在一範例中,第一發光元件101a與第二發光元件101b發射不同的波長範圍的光線,像是第一波長範圍光線與第二波長範圍光線。光源控制模組105可控制第一發光元件101a與第二發光元件101b是否發光。光源控制模組105控制第一發光元件101a與第二發光元件101b發光時,第一光線與第二光線因同時在空氣介面中發射而產生混合光線。例如,第一發光元件101a是發射綠光(波長約495-570nm)的光源,以及第二發光元件101b是發射藍光(波長約450-475nm)的光源,則產生的混合光線是眼睛所見呈現青色的光線。第一發光元件101a與第二發光元件101b是例如發光二極體(LED,Light-Emitting Diode)。 The first light emitting element 101a may emit a first light, and the second light emitting element 101b may emit a second light. In one example, the first illuminating element 101a and the second illuminating element 101b emit light of different wavelength ranges, such as light of a first wavelength range and light of a second wavelength range. The light source control module 105 can control whether the first light emitting element 101a and the second light emitting element 101b emit light. When the light source control module 105 controls the first light emitting element 101a and the second light emitting element 101b to emit light, the first light and the second light are combined to emit light in the air interface to generate mixed light. For example, the first light-emitting element 101a is a light source that emits green light (having a wavelength of about 495-570 nm), and the second light-emitting element 101b is a light source that emits blue light (having a wavelength of about 450-475 nm), and the mixed light generated is a cyan color seen by the eye. The light. The first light-emitting element 101a and the second light-emitting element 101b are, for example, Light-Emitting Diodes (LEDs).
光源控制模組105也可控制第一發光元件101a與第二發光元件101b依序發光。例如第一發光元件101a發射綠光一小段時間後,關閉第一發光元件101a的狀態下控制第二發光元件101b發射藍光,而依序產生綠光與藍光。又例如,第一發光元件101a發射綠光一小段時間後,不關閉第一發光元件101a的狀態下控制第二發光元件101b發射藍光,而最後產生混合光線。 The light source control module 105 can also control the first light emitting element 101a and the second light emitting element 101b to sequentially emit light. For example, after the first light-emitting element 101a emits green light for a short period of time, the second light-emitting element 101b is controlled to emit blue light in a state where the first light-emitting element 101a is turned off, and green light and blue light are sequentially generated. For another example, after the first light-emitting element 101a emits green light for a short period of time, the second light-emitting element 101b is controlled to emit blue light without turning off the first light-emitting element 101a, and finally the mixed light is generated.
影像感測模組103用於接收經導光板111反射後的第一光線與第二光線。在第一發光元件101a先發射第一光線一段時間的實施例中,手指109放置在導光板111上,第一光線投射於導光板111後,部分第一光線被手指109吸收而部分會反射。影像感測模組103可由反射的第一光線,產生關聯於手指109的影像訊號。 圖2是本發明根據第二實施例所繪示的影像訊號的示意圖。請同時參照圖1及圖2,第一發光元件101a投射例如藍光的光線至導光板111,因指紋具有紋峰與紋谷,使得光線的反射量有所差異,影像感測模組103擷取反射的第一光線而可得到如圖2所示的具明暗相間的條紋影像。接著配合相關的指紋辨識演算法,而可取得手指109的指紋,而完成指紋辨識。 The image sensing module 103 is configured to receive the first light and the second light reflected by the light guide plate 111. In the embodiment in which the first light-emitting element 101a first emits the first light for a period of time, the finger 109 is placed on the light guide plate 111. After the first light is projected on the light guide plate 111, part of the first light is absorbed by the finger 109 and partially reflected. The image sensing module 103 can generate an image signal associated with the finger 109 from the reflected first light. FIG. 2 is a schematic diagram of an image signal according to a second embodiment of the present invention. Referring to FIG. 1 and FIG. 2 simultaneously, the first light-emitting element 101a projects light such as blue light to the light guide plate 111. Since the fingerprint has a peak and a grain, the amount of reflection of the light is different, and the image sensing module 103 captures The first light reflected is obtained as shown in Fig. 2 with a light and dark streak image. Then, with the relevant fingerprint identification algorithm, the fingerprint of the finger 109 can be obtained, and the fingerprint recognition is completed.
在第一發光元件101a先發射第一光線一段時間後再控制第二發光元件101b發射第二光線的實施例中,影像感測模組103可由反射的第一光線與第二光線所產生的混合光線,產生關聯於手指109的影像訊號。 In an embodiment in which the first light-emitting element 101a first emits the first light for a period of time and then controls the second light-emitting element 101b to emit the second light, the image sensing module 103 can be mixed by the reflected first light and the second light. The light produces an image signal associated with the finger 109.
分析模組107用於解析影像訊號,以取得生理訊號。在第一發光元件101a先發射第一光線一段時間的實施例,分析模組107萃取具有第一波長範圍光線的影像訊號,並解析此具有第一波長範圍光線的影像訊號,而取得第一生理訊號。在第一發光元件101a先發射第一光線一段時間後再控制第二發光元件101b發射第二光線的實施例,分析模組107接著萃取具有第二波長範圍光線的影像訊號,並解析此具有第二波長範圍的影像訊號,而取得第二生理訊號。 The analysis module 107 is configured to parse the image signal to obtain a physiological signal. In the embodiment in which the first light-emitting element 101a first emits the first light for a period of time, the analysis module 107 extracts the image signal having the light of the first wavelength range, and analyzes the image signal having the light of the first wavelength range to obtain the first physiological condition. Signal. After the first light-emitting element 101a first emits the first light for a period of time and then controls the second light-emitting element 101b to emit the second light, the analysis module 107 then extracts the image signal having the light of the second wavelength range, and analyzes the The second physiological signal is obtained by the image signal of the two wavelength range.
請同時參照圖1,第一發光元件101a發射藍光的光線,第二發光元件101b發射綠光的光線。影像感測模組103擷取藍光光線投射在手指109後反射的光線,並且同時擷取綠光光線投射在手指血管109a後反射的光線。第一發光元件101a與第二發光元件101b同時投射光線,因此影像感測模組103會取得具有青色色階 的影像訊號而傳送給分析模組107。分析模組107在影像訊號中解析出具有藍色色階的影像訊號,並取得指紋訊號。 Referring to FIG. 1 at the same time, the first light-emitting element 101a emits light of blue light, and the second light-emitting element 101b emits light of green light. The image sensing module 103 captures the light reflected by the blue light rays after the finger 109 is reflected, and simultaneously extracts the light reflected by the green light rays after being projected on the finger blood vessels 109a. The first light-emitting element 101a and the second light-emitting element 101b simultaneously project light, so the image sensing module 103 will obtain a cyan color gradation. The image signal is transmitted to the analysis module 107. The analysis module 107 parses the image signal with the blue color gradation in the image signal, and obtains the fingerprint signal.
人體的心跳頻率與人體血管內的紅血球流動速率有關,綠光的光線入射手指血管109a時,反射的綠光會因光線是否有經過紅血球而有光通量的差異。由於手指血管109a因心臟的舒張與壓縮而影響血管的光通量,以及手指血管109a會吸收部分光線而使反射的光線造成明暗變化,因此此明暗變化即可形成與心跳頻率的對應。藉由解析光通量對時間變化的週期性,分析模組107可計算人體的心跳頻率。因此分析模組107可同時在影像訊號中解析出具有綠色色階的影像訊號,計算光通量對時間變化的週期性後,取得心跳頻率訊號。在估算心跳頻率時,在抽樣時間擷取影像訊號的亮度值與對應的時間,比較前後影像訊號的亮度差異,以得知影像訊號中相鄰兩波峰或兩波谷的時間差。例如本次影像訊號的亮度值小於前次影像訊號的亮度值,則將本次的時間減去前次的時間,而可得到一個心跳在波鋒與波峰之間的時間差。在取得一個波的時間後,即可推算出每分鐘的波數,也就是心跳次數。另一計算心跳頻率的實施例中,可透過繪出影像訊號的亮度值與時間軸的曲線圖,對該曲線作微分計算斜率,而可得知此曲線斜率是向上或向下,並於曲線斜率為零時即代表波鋒或波谷。例如當曲線斜率是先向上變化並直至曲線斜率為零,此時曲線斜率為零即代表波峰;反之當曲線斜率是先向下變化並直至曲線斜率為零,此時曲線斜率為零即代表波谷。藉此透過上述計算方式可以得知影像訊號中相鄰兩波峰或兩波谷的時間差,也就是當取得一個波的時間後,即可計算每分鐘的波數,而可得到心跳數。 The heartbeat frequency of the human body is related to the red blood cell flow rate in the human blood vessels. When the green light rays enter the finger blood vessels 109a, the reflected green light may have a difference in luminous flux due to whether the light passes through the red blood cells. Since the finger blood vessel 109a affects the luminous flux of the blood vessel due to relaxation and compression of the heart, and the finger blood vessel 109a absorbs part of the light to cause the reflected light to change light and dark, the light and dark change can form a correspondence with the heartbeat frequency. By analyzing the periodicity of the luminous flux versus time, the analysis module 107 can calculate the heartbeat frequency of the human body. Therefore, the analysis module 107 can simultaneously parse the image signal with the green color gradation in the image signal, calculate the periodicity of the luminous flux with respect to the time change, and obtain the heartbeat frequency signal. When estimating the heartbeat frequency, the brightness value of the image signal is captured at the sampling time and the corresponding time, and the brightness difference of the image signals before and after is compared to obtain the time difference between two adjacent peaks or two valleys in the image signal. For example, if the brightness value of the image signal is smaller than the brightness value of the previous image signal, the time of the current time is subtracted from the previous time, and the time difference between the wave front and the wave peak can be obtained. After taking a wave time, you can calculate the wave number per minute, which is the number of heartbeats. In another embodiment for calculating the heartbeat frequency, the curve of the brightness value of the image signal and the time axis can be plotted, and the slope of the curve is differentially calculated, and the slope of the curve is up or down, and the curve is A slope of zero represents a wave front or trough. For example, when the slope of the curve changes upwards until the slope of the curve is zero, the slope of the curve is zero, which means the peak; otherwise, when the slope of the curve is downward, and the slope of the curve is zero, the slope of the curve is zero, which means the valley. . Through the above calculation method, the time difference between two adjacent peaks or two valleys in the image signal can be known, that is, when the time of one wave is obtained, the wave number per minute can be calculated, and the heartbeat number can be obtained.
在另一實施例中,第一發光元件101a或第二發光元件101b可以是紅光或近紅外光的光源。由於人體的血氧濃度與血管中的含氧血紅素濃度有關,而去氧血紅素(Hb)與含氧血紅素(HbO2)對紅外或近紅外光的吸收率不同,因此所反射的光通量差異可以 計算出血氧濃度。 In another embodiment, the first light emitting element 101a or the second light emitting element 101b may be a light source of red or near infrared light. Since the blood oxygen concentration of the human body is related to the concentration of oxygenated hemoglobin in the blood vessel, and the absorption rate of deoxyhemoglobin (Hb) and oxygenated hemoglobin (HbO 2 ) to infrared or near-infrared light is different, the reflected light flux The difference can be calculated as the blood oxygen concentration.
本範例中,影像感測模組103取得的影像訊號是例如彩色或灰階的影像。為提升生理訊號的辨識,分析模組107會先擷取影像訊號的特定色階,例如投射的光線是綠光,則分析模組107擷取影像訊號中的綠光來處理,以避免其他顏色干擾生理訊號的辨識。分析模組107在辨識生理訊號時,是藉由影像訊號的平均亮度來計算血液或血管部分吸收與反射光線所造成的亮度變化。影像訊號的平均亮度的計算方法為,將各像素(pixel)的值視為一個亮度值,分析模組107抽取出影像訊號的綠光後,加總各像素值作為影像訊號的總亮度,接著將總亮度除以像素數量即可計算出影像訊號的平均亮度。因此,在比較影像訊號在時間前後的平均亮度後,可進一步估算心跳頻率與血氧濃度。 In this example, the image signal obtained by the image sensing module 103 is, for example, a color or grayscale image. In order to enhance the identification of the physiological signal, the analysis module 107 first captures the specific color gradation of the image signal. For example, if the projected light is green light, the analysis module 107 captures the green light in the image signal to avoid other colors. Interfere with the identification of physiological signals. When analyzing the physiological signal, the analysis module 107 calculates the brightness change caused by the absorption or reflection of the blood or blood vessels by the average brightness of the image signal. The average brightness of the image signal is calculated by considering the value of each pixel as a brightness value. After the analysis module 107 extracts the green light of the image signal, the total pixel value is added as the total brightness of the image signal, and then The average brightness of the image signal is calculated by dividing the total brightness by the number of pixels. Therefore, after comparing the average brightness of the image signal before and after the time, the heartbeat frequency and the blood oxygen concentration can be further estimated.
值得一提的是,本發明實施例的生理訊號處理裝置10設置有兩個發光元件,在實際運用時,可依據需求將發光元件設置為藍光、綠光、紅光與近紅外光的發光元件,本發明實施例不限制發光元件的組合方式。惟各波長可特別針對對應的生理訊號來作運用,以改善對生理訊號辨識的精準度。 It is worth mentioning that the physiological signal processing device 10 of the embodiment of the present invention is provided with two light-emitting elements. In actual use, the light-emitting elements can be set as light-emitting elements of blue, green, red and near-infrared light according to requirements. The embodiment of the invention does not limit the combination of the light-emitting elements. However, each wavelength can be specifically applied to the corresponding physiological signal to improve the accuracy of physiological signal recognition.
此外,影像感測模組103可在一段抽樣時間內持續取得多個影像訊號,由多個影像訊號中取得明暗度的時間曲線圖來辨識生理訊號。因此,本發明實施例提供使用者可依據實際需求依序開啟第一發光元件101a與第二發光元件101b,使生理訊號的處理方式更有彈性。 In addition, the image sensing module 103 can continuously obtain a plurality of image signals for a sampling period, and obtain a time curve of the brightness and darkness of the plurality of image signals to identify the physiological signals. Therefore, the embodiment of the present invention provides that the user can sequentially turn on the first light-emitting element 101a and the second light-emitting element 101b according to actual needs, so that the processing method of the physiological signal is more flexible.
本發明實施例使用不同的光線來取得或辨識生理訊號,主要是不同的光線(像是不同波長範圍的光線)照射後取得的影像訊號,可增進及突顯各生理訊號的判斷效率。例如,當辨識指紋時,使用藍光的光線可帶來較好的判斷效果,讓反射光的明暗度可較其他波長的光線明顯;當判斷心跳頻率時,則是使用綠光的光線可帶來較好的判斷效果,讓光通量差異可較其他波長的光線明 顯;當判斷血氧濃度時,則是使用紅光或近紅外光的光線可帶來較好的判斷效果,讓光通量差異可較其他波長的光線明顯。 In the embodiment of the present invention, different light rays are used to obtain or identify physiological signals, and the image signals obtained by different light rays (such as light of different wavelength ranges) can enhance and highlight the judgment efficiency of each physiological signal. For example, when recognizing a fingerprint, the use of blue light can provide better judgment, so that the brightness of the reflected light can be more obvious than that of other wavelengths; when the heartbeat frequency is judged, the use of green light can bring Better judgment effect, let the difference of luminous flux be lighter than other wavelengths When the blood oxygen concentration is judged, the light using red light or near-infrared light can bring a better judgment effect, so that the difference of the luminous flux can be more obvious than the light of other wavelengths.
圖3是本發明根第三實施例所繪示的生理訊號處理裝置的功能方塊圖。請參照圖3,生理訊號處理裝置30包括第一發光元件301a、第二發光元件301b、光源控制模組305、影像感測模組303、分析模組307、驗證模組309以及遠紅外線感測模組311。第一發光元件301a、第二發光元件301b、光源控制模組305、影像感測模組305與分析模組307的作用相同於圖1的第一發光元件101a、第二發光元件101b、光源控制模組105、影像感測模組103、分析模組107,請參照上述內容,於此不再重述。 3 is a functional block diagram of a physiological signal processing apparatus according to a third embodiment of the present invention. Referring to FIG. 3, the physiological signal processing device 30 includes a first light emitting element 301a, a second light emitting element 301b, a light source control module 305, an image sensing module 303, an analysis module 307, a verification module 309, and far infrared sensing. Module 311. The first light-emitting element 301a, the second light-emitting element 301b, the light source control module 305, the image sensing module 305 and the analysis module 307 have the same function as the first light-emitting element 101a, the second light-emitting element 101b, and the light source control of FIG. For the module 105, the image sensing module 103, and the analysis module 107, please refer to the above content, and will not be repeated here.
驗證模組309耦接於分析模組307與遠紅外線感測模組311。驗證模組309用以判斷第一生理訊號是否符合資料庫中登錄的身份資料。例如,驗證模組309中儲存預先登錄的使用者指紋資料,當第一生理訊號是指紋訊號時,驗證模組309會比對取得的指紋訊號是否符合合法的使用者指紋資料。驗證模組309比對完取得的指紋訊號符合資料庫中的使用者指紋資料後,即通過驗證,而可進一步觸發例如判斷或輸出第二生理訊號的指示。 The verification module 309 is coupled to the analysis module 307 and the far infrared sensing module 311. The verification module 309 is configured to determine whether the first physiological signal conforms to the identity data registered in the database. For example, the verification module 309 stores the pre-registered user fingerprint data. When the first physiological signal is a fingerprint signal, the verification module 309 compares the obtained fingerprint signal with the legal user fingerprint data. After the verification module 309 matches the obtained fingerprint signal to the user fingerprint data in the database, the verification module 309 can further trigger an indication such as determining or outputting the second physiological signal.
此外,本發明實施例的驗證模組309在判斷指紋訊號是合法的資料且取得第二生理訊號後,還可接著依據第二生理訊號判斷第一生理訊號的真偽。例如第二生理訊號是心跳頻率或血氧濃度,雖然健康或正常的心跳頻率或血氧濃度有固定的律動,但各律動之間仍存在小幅度的差異,驗證模組309可透過心跳頻率或血氧濃度是否過於規律或者是否具有合理的生理特徵來判斷第二生理訊號是否為偽造的。在判斷第二生理訊號是偽造的情況下,也同樣可得到第一生理訊號是偽造的判斷結果。或者,分析模組307無法取得第二生理訊號,驗證模組309也可判斷出第一生理訊號是偽造的。 In addition, the verification module 309 of the embodiment of the present invention may determine the authenticity of the first physiological signal according to the second physiological signal after determining that the fingerprint signal is legal data and obtaining the second physiological signal. For example, the second physiological signal is a heartbeat frequency or a blood oxygen concentration. Although there is a fixed rhythm of healthy or normal heart rate or blood oxygen concentration, there is still a small difference between the rhythm, and the verification module 309 can pass the heartbeat frequency or Whether the blood oxygen concentration is too regular or has a reasonable physiological characteristic to determine whether the second physiological signal is forged. In the case where it is judged that the second physiological signal is forged, the judgment result that the first physiological signal is forged is also obtained. Alternatively, the analysis module 307 cannot obtain the second physiological signal, and the verification module 309 can also determine that the first physiological signal is forged.
遠紅外線感測模組311用於擷取手指的溫度。在一範例中, 當驗證模組309判斷第一生理訊號符合資料庫中登錄的身份資料後,遠紅外線感測模組接著啟動溫度的感測。遠紅外線感測模組311是例如遠紅外線感測器(FIR,Far Infrared),可感測人體發處的遠紅外線,針對接收波長的偏移量來測量體溫的變化。 The far infrared ray sensing module 311 is used to capture the temperature of the finger. In an example, After the verification module 309 determines that the first physiological signal meets the identity data registered in the database, the far infrared sensing module then initiates sensing of the temperature. The far-infrared sensing module 311 is, for example, a Far Infrared (FIR) sensor that senses far-infrared rays emitted from the human body and measures changes in body temperature for an offset of the reception wavelength.
本發明實施例的生理訊號處理裝置除了可同時辨識或取得多個生理訊號之外,還可透過心跳頻率或血氧濃度來判斷指紋訊號的真偽。如此,本發明實施例的生理訊號處理裝置除了利用特定的波長光線來提升指紋辨識的精準度之外,還可避免偽造指紋來通過驗證的問題,提升指紋驗證的安全性。 In addition to simultaneously recognizing or acquiring a plurality of physiological signals, the physiological signal processing device of the embodiment of the present invention can determine the authenticity of the fingerprint signal through the heartbeat frequency or the blood oxygen concentration. As described above, the physiological signal processing apparatus of the embodiment of the present invention not only utilizes specific wavelength light to improve the accuracy of fingerprint recognition, but also avoids the problem of forging fingerprints to pass the verification, thereby improving the security of fingerprint verification.
圖4是本發明根據第四實施例所繪示的生理訊號處理裝置配置示意圖。請參照圖4,生理訊號處理裝置40包括至少一個第一發光元件401a、至少一個第二發光元件401b、至少一個第三發光元件401c、影像感測模組403、光源控制模組405、遠紅外線感測模組407以及驗證模組409。各第一發光元件401a、各第二發光元件401b與各第三發光元件401c分別耦接於光源控制模組405。分析模組407耦接於影像感測模組403與驗證模組409。驗證模組409耦接遠紅外線感測模組407。 FIG. 4 is a schematic diagram showing the configuration of a physiological signal processing apparatus according to a fourth embodiment of the present invention. Referring to FIG. 4, the physiological signal processing device 40 includes at least one first light emitting element 401a, at least one second light emitting element 401b, at least one third light emitting element 401c, an image sensing module 403, a light source control module 405, and far infrared rays. The sensing module 407 and the verification module 409. Each of the first light-emitting elements 401a, the second light-emitting elements 401b, and the third light-emitting elements 401c are respectively coupled to the light source control module 405. The analysis module 407 is coupled to the image sensing module 403 and the verification module 409. The verification module 409 is coupled to the far infrared sensing module 407.
生理訊號處理裝置40與生理訊號處理裝置30不同之處在於,生理訊號處理裝置40具有三個可投射不同光線的發光元件,並且各發光元件可設置至少一個。各發光元件設置在生理訊號處理裝置40的兩側。舉例來說,第一發光元件401a是藍光發光元件、第二發光元件401b是綠光發光元件與第三發光元件401c是紅光發光元件。光源控制模組405可控制各發光元件的發光與否而產生混合光線,使得影像感測模組403取得混合光線所反射的影像訊號。分析模組407接著解析影像訊號而獲得三個生理訊號。分析模組407解析經第一光線(例如藍光)萃取的影像訊號而取得第一生理訊號、解析經第二光線(例如綠光)萃取的影像訊號而取得第二生理訊號,與解析經第三光線(例如紅光)萃取的影像訊 號而取得第三生理訊號。以第一光線是藍光為例,分析模組407先從影像訊號中萃取出只具有藍光的影像訊號,接著依據此萃取後的影像訊號作處理,以取得第一生理訊號。 The physiological signal processing device 40 is different from the physiological signal processing device 30 in that the physiological signal processing device 40 has three light-emitting elements that can project different light rays, and each of the light-emitting elements can be provided with at least one. Each of the light-emitting elements is disposed on both sides of the physiological signal processing device 40. For example, the first light-emitting element 401a is a blue light-emitting element, the second light-emitting element 401b is a green light-emitting element, and the third light-emitting element 401c is a red light-emitting element. The light source control module 405 can control the illumination of each of the light-emitting elements to generate mixed light, so that the image sensing module 403 obtains the image signal reflected by the mixed light. The analysis module 407 then parses the image signal to obtain three physiological signals. The analysis module 407 analyzes the image signal extracted by the first light (for example, blue light) to obtain the first physiological signal, analyzes the image signal extracted by the second light (for example, green light), and obtains the second physiological signal, and analyzes the third physiological signal. Video signal extracted by light (such as red light) The number gets the third physiological signal. Taking the first light as the blue light, the analysis module 407 first extracts the image signal having only the blue light from the image signal, and then processes the extracted image signal to obtain the first physiological signal.
生理訊號處理裝置40可同時取得多個生理訊號,還可藉由設置多個發射相同光線(像是發射相同波長範圍光線)的發光元件,來提升辨識生理訊號的準確度,避免不同光線的混合在分析影像訊號時所造成的干擾問題。 The physiological signal processing device 40 can simultaneously acquire a plurality of physiological signals, and can also improve the accuracy of identifying the physiological signals by setting a plurality of light emitting elements that emit the same light (such as emitting light of the same wavelength range), thereby avoiding mixing of different light rays. Interference problems caused by analyzing image signals.
圖5是本發明根據第五實施例所繪示的生理訊號處理裝置的側視示意圖。請參照圖5,生理訊號處理裝置50包括光源組501、光源控制模組505、影像感測模組503以及分析模組507。光源組501耦接於光源控制模組505。影像感測模組503耦接於分析模組507。生理訊號處理裝置50具有導光板511,提供使用者的手指109接觸於其上。光源組501設置在導光板511相對於手指509接觸的另一側。 FIG. 5 is a side view of a physiological signal processing apparatus according to a fifth embodiment of the present invention. Referring to FIG. 5 , the physiological signal processing device 50 includes a light source group 501 , a light source control module 505 , an image sensing module 503 , and an analysis module 507 . The light source group 501 is coupled to the light source control module 505. The image sensing module 503 is coupled to the analysis module 507. The physiological signal processing device 50 has a light guide plate 511 that provides a user's finger 109 to be in contact therewith. The light source group 501 is disposed on the other side of the light guide plate 511 that is in contact with the finger 509.
光源組501可投射多個光線,例如不同波長範圍的光線像是藍光光線、綠光光線與紅光光線。光源控制模組505可控制光源組501發射多個光線。影像感測模組503感測光源組501投射在導光板511後反射的光線,而得到關聯於手指509的影像訊號,例如手指509的表面皮膚或是手指血管509a。分析模組507可分別解析經各光線萃取後的影像訊號(例如,依據不同波長範圍光線來萃取影像訊號),並據以產生多個生理訊號。光源組501是例如三原色發光二極體。相同的元件名稱的詳細作用請參照上述內容,於此不復重述。在實際操作上,生理訊號處理裝置50可依據感測功能的需求,自動搭配適合的光源波長,以提升辨識生理訊號的效能。 The light source group 501 can project a plurality of light rays, for example, light rays of different wavelength ranges are blue light, green light, and red light. The light source control module 505 can control the light source group 501 to emit a plurality of light rays. The image sensing module 503 senses the light reflected by the light source group 501 after being projected on the light guide plate 511 to obtain an image signal associated with the finger 509, such as the surface skin of the finger 509 or the finger blood vessel 509a. The analysis module 507 can separately analyze the image signals extracted by the respective light sources (for example, extracting the image signals according to different wavelength ranges of light), and generate a plurality of physiological signals accordingly. The light source group 501 is, for example, a three primary color light emitting diode. Please refer to the above for the detailed function of the same component name, which will not be repeated here. In actual operation, the physiological signal processing device 50 can automatically match the appropriate wavelength of the light source according to the requirements of the sensing function to improve the performance of identifying the physiological signal.
圖6是本發明根據第六實施例所繪示的生理訊號處理裝置的 功能方塊圖。請參照圖6,生理訊號處理裝置60包括光源組601、光源控制模組605、影像感測模組603、分析模組607、驗證模組609以及遠紅外線感測模組611。生理訊號處理裝置60與生理訊號處理裝置50不同之處為,生理訊號處理裝置60更包括驗證模組609以及遠紅外線感測模組611。光源控制模組605耦接光源組601與影像感測模組603。驗證模組609耦接分析模組607與遠紅外線感測模組611。其餘相同的元件名稱的詳細作用請參照上述內容,於此不復重述。 6 is a physiological signal processing apparatus according to a sixth embodiment of the present invention. Functional block diagram. Referring to FIG. 6 , the physiological signal processing device 60 includes a light source group 601 , a light source control module 605 , an image sensing module 603 , an analysis module 607 , a verification module 609 , and a far infrared sensing module 611 . The physiological signal processing device 60 is different from the physiological signal processing device 50 in that the physiological signal processing device 60 further includes a verification module 609 and a far infrared sensing module 611. The light source control module 605 is coupled to the light source group 601 and the image sensing module 603. The verification module 609 is coupled to the analysis module 607 and the far infrared sensing module 611. For the detailed function of the remaining identical component names, please refer to the above content, which will not be repeated here.
圖7是本發明根據第七實施例所繪示的生理訊號處理裝置的設置示意圖。請參照圖7,生理訊號處理裝置70包括光源組701、光源控制模組705、影像感測模組703、分析模組707、驗證模組709、遠紅外線感測模組711以及近紅外光發光元件713。光源組701包括第一發光元件701a、第二發光元件701b與第三發光元件701c。光源組701與近紅外光發光元件713均耦接光源控制模組705。分析模組707耦接影像感測模組703與驗證模組709。驗證模組709耦接遠紅外線感測模組711。 FIG. 7 is a schematic diagram showing the arrangement of a physiological signal processing apparatus according to a seventh embodiment of the present invention. Referring to FIG. 7 , the physiological signal processing device 70 includes a light source group 701 , a light source control module 705 , an image sensing module 703 , an analysis module 707 , a verification module 709 , a far infrared sensing module 711 , and a near infrared light emitting device . Element 713. The light source group 701 includes a first light emitting element 701a, a second light emitting element 701b, and a third light emitting element 701c. The light source group 701 and the near-infrared light emitting element 713 are both coupled to the light source control module 705. The analysis module 707 is coupled to the image sensing module 703 and the verification module 709. The verification module 709 is coupled to the far infrared sensing module 711.
光源組701是可投射一或多個光線的發光元件組,例如可發射不同波長範圍的光線像是藍光發光元件、綠光發光元件和/或紅光發光元件。光源組701可受控於光源控制模組705而投射藍光、綠光與紅光中的至少一個。在另外的範例中,亦可透過封裝技術,在藍光發光元件加上螢光材料,而可使光源組701作為白光發光元件。在另外一些範例,光源組701具有三個發光元件,各發光元件可投射相同或不同波長範圍光線。例如,第一發光元件701a、第二發光元件701b與第三發光元件701c均是白光發光元件。或者,第一發光元件701a是藍光發光元件、第二發光元件701b是綠光發光元件與第三發光元件701c是紅光發光元件,此時的光源組701可以是三原色發光元件,例如三原色發光二極體(RGB LED)。在實際操作上,第一發光元件701a、第二發光元件701b與第三發 光元件701c是整合在單一封裝中。生理訊號處理裝置70可因實際感測的需求,光源控制模組705配合指示的訊號依序控制第一發光元件701a、第二發光元件701b與第三發光元件701c發光,如此可同時達到提升辨識生理訊號的效果與減少使用發光元件的數量。 The light source group 701 is a light-emitting element group that can project one or more light rays, for example, light rays that can emit different wavelength ranges are blue light-emitting elements, green light-emitting elements, and/or red light-emitting elements. The light source group 701 can be controlled by the light source control module 705 to project at least one of blue light, green light, and red light. In another example, the light source group 701 can be used as a white light emitting element by applying a fluorescent material to the blue light emitting element through a packaging technique. In still other examples, the light source set 701 has three light emitting elements, each of which can project light of the same or different wavelength ranges. For example, each of the first light-emitting element 701a, the second light-emitting element 701b, and the third light-emitting element 701c is a white light-emitting element. Alternatively, the first light-emitting element 701a is a blue light-emitting element, the second light-emitting element 701b is a green light-emitting element, and the third light-emitting element 701c is a red light-emitting element. The light source group 701 at this time may be a three-primary light-emitting element, such as three primary colors. Polar body (RGB LED). In actual operation, the first light emitting element 701a, the second light emitting element 701b, and the third light Light element 701c is integrated into a single package. The physiological signal processing device 70 can control the first light-emitting element 701a, the second light-emitting element 701b, and the third light-emitting element 701c to sequentially emit light according to the actual sensing demand. The effect of physiological signals and the reduction in the number of light-emitting elements used.
光源控制模組705可控制光源組701投射不同的光線,例如不同波長範圍光線或不同色階光線,像是藍光、綠光、紅光或白光等。在光源組701是三原色發光元件的範例中,光源控制模組705控制第一發光元件701a、第二發光元件701b與第三發光元件701c同時分別地發出藍光、綠光與紅光。請同時參照圖5與圖7,影像感測模組703感測三原色混合光線投射在手指509的表面皮膚與手指血管509a的反射光線,而取得原始的影像訊號。此原始的影像訊號是例如白光反射的影像。分析模組707在原始的影像訊號中萃取出不同色階的影像,並在各色階影像中解析出對應的生理訊號。舉例來說,分析模組707在影像訊號中萃取出只具有藍色色階的影像訊號,對此藍色色階的影像訊號解析而取得指紋訊號;同時在原始的影像訊號中萃取出只具有綠色色階的影像訊號,對此綠色色階的影像訊號解析而取得心跳頻率訊號;同時在原使的影像訊號中萃取出只具有紅色色階的影像訊號,對此紅色色階的影像訊號解析而取得血氧訊號。 The light source control module 705 can control the light source group 701 to project different light, such as light of different wavelength ranges or light of different color gradations, such as blue light, green light, red light or white light. In the example in which the light source group 701 is a three primary color light emitting element, the light source control module 705 controls the first light emitting element 701a, the second light emitting element 701b, and the third light emitting element 701c to simultaneously emit blue light, green light, and red light, respectively. Referring to FIG. 5 and FIG. 7 simultaneously, the image sensing module 703 senses the reflected light of the three primary color mixed rays projected on the surface skin of the finger 509 and the finger blood vessel 509a to obtain the original image signal. This original image signal is, for example, an image reflected by white light. The analysis module 707 extracts images of different color gradations in the original image signal, and parses the corresponding physiological signals in the gradation images. For example, the analysis module 707 extracts an image signal having only a blue color gradation in the image signal, and the image signal of the blue gradation is parsed to obtain a fingerprint signal; and the original image signal is extracted to have only a green color. The image signal of the order is analyzed by the image signal of the green level to obtain the heartbeat frequency signal; at the same time, the image signal with only the red level is extracted from the original image signal, and the image signal of the red level is analyzed to obtain blood. Oxygen signal.
近紅外光發光元件713用於投射近紅外光線。影像感測模組703取得具近紅外光的影像訊號後,提供分析模組705解析血氧訊號。其餘相同的元件名稱的詳細作用請參照上述內容,於此不復重述。 The near-infrared light emitting element 713 is for projecting near-infrared light. After the image sensing module 703 obtains the image signal with near-infrared light, the analysis module 705 is provided to analyze the blood oxygen signal. For the detailed function of the remaining identical component names, please refer to the above content, which will not be repeated here.
因此,本發明實施例的生理訊號處理裝置70可由光源控制模組705控制光源組701投射的光線,來增近取得生理訊號的效率。例如,當光源控制模組705控制光源組701發射兩個色階光線而使影像感測模組703取得兩個色階光線所反射的影像訊號時,分 析模組707分別解析此兩個色階光線萃取後的影像訊號,而取得兩個生理訊號。另一範例是,光線控制模組705也可控制光源組701發射三個色階光線而使影像感測模組703取得三個色階光線所反射的影像訊號。分析模組707則分別解析此三個色階光線萃取後的影像訊號,而取得三個生理訊號。 Therefore, the physiological signal processing device 70 of the embodiment of the present invention can control the light projected by the light source group 701 by the light source control module 705 to increase the efficiency of obtaining the physiological signal. For example, when the light source control module 705 controls the light source group 701 to emit two gradation lights and causes the image sensing module 703 to obtain the image signals reflected by the two gradation lights, The analysis module 707 separately analyzes the image signals extracted by the two color gradations to obtain two physiological signals. In another example, the light control module 705 can also control the light source group 701 to emit three gradation lights to cause the image sensing module 703 to obtain the image signals reflected by the three gradation lights. The analysis module 707 separately analyzes the image signals extracted by the three color gradations to obtain three physiological signals.
再次一提的是,本發明實施例使用不同波長範圍或色階的光線來取得與辨識生理訊號,主要是在辨識生理訊號時,分析模組707可透過的不同色階的影像訊號,增進及突顯各生理訊號的判斷效率,例如,當辨識指紋時,使用藍光或綠光的光線可帶來較好的判斷效果,讓反射光的明暗度可較其他波長的光線明顯;當判斷心跳頻率時,則是使用藍光或綠光的光線可帶來較好的判斷效果,讓光通量差異可較其他波長的光線明顯。因此本發明實施例在投射光線至手指時,即作出不同波長範圍光線的區別,以增加分析模組707在辨識生理訊號時的影像處理效率。 It is to be noted that, in the embodiment of the present invention, the light signals of different wavelength ranges or gradations are used to obtain and identify the physiological signals, and the image signals of different color gradations that can be transmitted by the analysis module 707 are enhanced when the physiological signals are recognized. Highlight the judgment efficiency of each physiological signal. For example, when recognizing a fingerprint, using blue or green light can bring better judgment, so that the brightness of reflected light can be more obvious than that of other wavelengths; when judging the heartbeat frequency , the use of blue or green light can bring better judgment, so that the difference in luminous flux can be more obvious than the light of other wavelengths. Therefore, in the embodiment of the present invention, when the light is projected to the finger, the difference of the light in different wavelength ranges is determined, so as to increase the image processing efficiency of the analysis module 707 when identifying the physiological signal.
圖8是本發明根據第八實施例所繪示的生理訊號處理方法的流程圖。請參照圖8,本發明實施例的生理訊號處理方法適用於上述的生理訊號處理裝置60。在步驟S801中,光源組可投射至少兩個不同光線,例如不同波長範圍光線或色階光線,至生理訊號處理裝置的導光板。在步驟S803中,影像感測模組接著取得在導光板上經至少兩個光線(例如兩個波長範圍光線或兩個色階光線)組成的混合光線所反射的影像訊號。在步驟S805中,分析模組解析此影像訊號,取得至少兩個生理訊號。分析模組解析影像訊號時,可先在影像訊號上擷取各波長範圍光線或特定波長範圍光線而取得兩個色階影像,再分別處理兩個色階影像以得到兩個生理訊號。另外,在分析模組取得其兩個生理訊號後,驗證模組可依據其中一個生理訊號來驗證另一個生理訊號的真偽。 FIG. 8 is a flowchart of a physiological signal processing method according to an eighth embodiment of the present invention. Referring to FIG. 8, the physiological signal processing method according to the embodiment of the present invention is applied to the physiological signal processing device 60 described above. In step S801, the light source group can project at least two different light rays, such as light of different wavelength ranges or color gradation light, to the light guide plate of the physiological signal processing device. In step S803, the image sensing module then obtains an image signal reflected by the mixed light composed of at least two rays (for example, two wavelength range rays or two color gradation rays) on the light guide plate. In step S805, the analysis module parses the image signal to obtain at least two physiological signals. When the analysis module parses the image signal, it can first capture the light of each wavelength range or the light of a specific wavelength range on the image signal to obtain two color gradation images, and then process the two gradation images separately to obtain two physiological signals. In addition, after the analysis module obtains two physiological signals, the verification module can verify the authenticity of another physiological signal according to one of the physiological signals.
綜上所述,本發明實施例提出的生理訊號處理裝置及生理訊號處理方法藉由控制投射至導光板的不同光線,使分析模組於影像訊號中解析生理訊號時,因光線的不同色階可突顯生理訊號在影像訊號上的特徵,而增進生理訊號的辨識效果。並且,本發明實施例的生理訊號處理裝置可辨識至少兩個生理訊號,可達到更好的辨識及防偽功能。此外,本發明實施例的生理訊號處理裝置將多個發光元件、影像感測模組、分析模組等元件作封裝,相較於現有的生理辨識裝置體積更小,更簡化模組架構與減少材料成本。 In summary, the physiological signal processing device and the physiological signal processing method according to the embodiments of the present invention control the different light rays projected onto the light guide plate, so that the analysis module analyzes the physiological signals in the image signal, because of different color gradations of the light. It can highlight the characteristics of physiological signals on the image signal and enhance the recognition of physiological signals. Moreover, the physiological signal processing apparatus of the embodiment of the present invention can recognize at least two physiological signals, thereby achieving better identification and anti-counterfeiting functions. In addition, the physiological signal processing device of the embodiment of the present invention encapsulates a plurality of components such as a light-emitting component, an image sensing module, and an analysis module, and has a smaller volume than the existing physiological recognition device, thereby simplifying the module structure and reducing the module structure. Material costs.
以上所述僅為本發明的可行實施例,凡依本發明申請專利範圍所做的均等變化與修飾,均應屬本發明以下的申請專利範圍。 The above description is only a possible embodiment of the present invention, and all the equivalent changes and modifications made by the scope of the present invention should be within the scope of the following patent application.
30‧‧‧生理訊號處理裝置 30‧‧‧physical signal processing device
301a‧‧‧第一發光元件 301a‧‧‧First light-emitting element
301b‧‧‧第二發光元件 301b‧‧‧second light-emitting element
303‧‧‧影像感測模組 303‧‧‧Image Sensing Module
305‧‧‧光源控制模組 305‧‧‧Light source control module
307‧‧‧分析模組 307‧‧‧Analysis module
309‧‧‧驗證模組 309‧‧‧ verification module
311‧‧‧遠紅外線感測模組 311‧‧‧ far infrared sensing module
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103136134A TWI550524B (en) | 2014-10-20 | 2014-10-20 | Apparatus and method for processing physiological signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103136134A TWI550524B (en) | 2014-10-20 | 2014-10-20 | Apparatus and method for processing physiological signal |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201616392A TW201616392A (en) | 2016-05-01 |
TWI550524B true TWI550524B (en) | 2016-09-21 |
Family
ID=56508591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103136134A TWI550524B (en) | 2014-10-20 | 2014-10-20 | Apparatus and method for processing physiological signal |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI550524B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI606811B (en) * | 2016-10-11 | 2017-12-01 | 國立高雄應用科技大學 | Method for operating a device of blood analysis |
TWI623766B (en) * | 2015-07-29 | 2018-05-11 | 財團法人工業技術研究院 | Biometric device and method and wearable carrier |
TWI651660B (en) * | 2017-12-12 | 2019-02-21 | 財團法人工業技術研究院 | Fingerprint identification device |
TWI670043B (en) * | 2017-09-11 | 2019-09-01 | 敦捷光電股份有限公司 | Optical fingerprint sensing device with bio-sensing functions |
US10679081B2 (en) | 2015-07-29 | 2020-06-09 | Industrial Technology Research Institute | Biometric device and wearable carrier |
TWI836581B (en) * | 2021-09-08 | 2024-03-21 | 美商豪威科技股份有限公司 | Method for an electronic device to perform for detecting spoof fingerprints using an optical fingerprint sensor with a controlled light source and the optical fingerprint sensor of the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI587836B (en) * | 2016-07-04 | 2017-06-21 | 國立清華大學 | Physiological signal sensing chip and the physiological signal sensing method thereof |
CN108241827A (en) * | 2016-12-23 | 2018-07-03 | 创智能科技股份有限公司 | Biometric identification device |
TWI757053B (en) * | 2020-08-17 | 2022-03-01 | 友達光電股份有限公司 | Biological feature identification system and method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201322143A (en) * | 2011-11-21 | 2013-06-01 | Pixart Imaging Inc | Optical input device, input detection method and method applied to the optical input device |
TW201322147A (en) * | 2011-11-21 | 2013-06-01 | Pixart Imaging Inc | System and method of using mixture of multiple physiological information for identity recognition |
TW201409014A (en) * | 2012-08-20 | 2014-03-01 | Ind Tech Res Inst | Detecting device |
TW201426563A (en) * | 2012-12-19 | 2014-07-01 | Bruce Zheng-San Chou | Stray-light-coupled biometrics sensing module and electronic apparatus using the same |
TW201424681A (en) * | 2012-08-17 | 2014-07-01 | Rare Light Inc | Obtaining physiological measurements using a portable device |
US20140187880A1 (en) * | 2012-12-28 | 2014-07-03 | Industrial Technology Research Institute | Apparatus and method for measuring physiological signal |
TW201430331A (en) * | 2013-01-18 | 2014-08-01 | Univ Nat Cheng Kung | Optical system for evaluating concentration and distribution of skin parameter and method thereof |
TW201437978A (en) * | 2013-03-27 | 2014-10-01 | Pixart Imaging Inc | Safety monitoring device and safety monitoring method for manned mobile vehicle |
-
2014
- 2014-10-20 TW TW103136134A patent/TWI550524B/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201322143A (en) * | 2011-11-21 | 2013-06-01 | Pixart Imaging Inc | Optical input device, input detection method and method applied to the optical input device |
TW201322147A (en) * | 2011-11-21 | 2013-06-01 | Pixart Imaging Inc | System and method of using mixture of multiple physiological information for identity recognition |
TW201424681A (en) * | 2012-08-17 | 2014-07-01 | Rare Light Inc | Obtaining physiological measurements using a portable device |
TW201409014A (en) * | 2012-08-20 | 2014-03-01 | Ind Tech Res Inst | Detecting device |
TW201426563A (en) * | 2012-12-19 | 2014-07-01 | Bruce Zheng-San Chou | Stray-light-coupled biometrics sensing module and electronic apparatus using the same |
US20140187880A1 (en) * | 2012-12-28 | 2014-07-03 | Industrial Technology Research Institute | Apparatus and method for measuring physiological signal |
TW201430331A (en) * | 2013-01-18 | 2014-08-01 | Univ Nat Cheng Kung | Optical system for evaluating concentration and distribution of skin parameter and method thereof |
TW201437978A (en) * | 2013-03-27 | 2014-10-01 | Pixart Imaging Inc | Safety monitoring device and safety monitoring method for manned mobile vehicle |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI623766B (en) * | 2015-07-29 | 2018-05-11 | 財團法人工業技術研究院 | Biometric device and method and wearable carrier |
US10679081B2 (en) | 2015-07-29 | 2020-06-09 | Industrial Technology Research Institute | Biometric device and wearable carrier |
TWI606811B (en) * | 2016-10-11 | 2017-12-01 | 國立高雄應用科技大學 | Method for operating a device of blood analysis |
TWI670043B (en) * | 2017-09-11 | 2019-09-01 | 敦捷光電股份有限公司 | Optical fingerprint sensing device with bio-sensing functions |
TWI651660B (en) * | 2017-12-12 | 2019-02-21 | 財團法人工業技術研究院 | Fingerprint identification device |
CN109918978A (en) * | 2017-12-12 | 2019-06-21 | 财团法人工业技术研究院 | Fingerprint Identification Device |
CN109918978B (en) * | 2017-12-12 | 2021-09-14 | 财团法人工业技术研究院 | Fingerprint identification device |
US11354929B2 (en) | 2017-12-12 | 2022-06-07 | Industrial Technology Research Institute | Fingerprint recognition device |
TWI836581B (en) * | 2021-09-08 | 2024-03-21 | 美商豪威科技股份有限公司 | Method for an electronic device to perform for detecting spoof fingerprints using an optical fingerprint sensor with a controlled light source and the optical fingerprint sensor of the same |
Also Published As
Publication number | Publication date |
---|---|
TW201616392A (en) | 2016-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI550524B (en) | Apparatus and method for processing physiological signal | |
US11348360B2 (en) | Method for biometric identification, fingerprint identification apparatus and electronic device | |
US8768015B2 (en) | Determination device, fingerprint input device, determination method, and determination program | |
EP2936432B1 (en) | System and method for extracting physiological information from remotely detected electromagnetic radiation | |
US9940710B2 (en) | Biological information detection device equipped with light source projecting at least one dot onto living body | |
TWI501163B (en) | Identification method and identification device for authentic fingerprint | |
US9218522B2 (en) | Method for determining fingerprint authenticity and device for the same | |
CN104463074B (en) | Method and device for identifying authenticity of fingerprint | |
TWI605356B (en) | Individualized control system utilizing biometric characteristic and operating method thereof | |
EP2615567A2 (en) | Web site providing cosmetic and nutrition regimen from colour images | |
US10216978B2 (en) | Fingerprint identification device and fingerprint identification method | |
US9241674B2 (en) | Distortion reduced signal detection | |
KR102009000B1 (en) | Anti-spoofing method and system of a device having a fingerprint sensor | |
US9898646B2 (en) | Method of validation intended to validate that an element is covered by a true skin | |
US20210219884A1 (en) | System and method for determining at least one vital sign of a subject | |
US9936907B2 (en) | Apparatus and method for processing physiological signal | |
CN103425852A (en) | User identification method, physiological detection device and physiological detection method | |
CN103126686A (en) | Optical distance measuring system and method of operation thereof | |
CN109791694B (en) | Method and device for determining a physiological parameter of a subject and computer program product therefor | |
US20240389864A1 (en) | A sensing arrangement for obtaining data from a body part using accurate reference values | |
JP2007133656A (en) | Fingerprint matching device | |
CN103136919A (en) | Remote control and display system |