TWI549753B - Tetraalkylammonium salt solution - Google Patents
Tetraalkylammonium salt solution Download PDFInfo
- Publication number
- TWI549753B TWI549753B TW101139636A TW101139636A TWI549753B TW I549753 B TWI549753 B TW I549753B TW 101139636 A TW101139636 A TW 101139636A TW 101139636 A TW101139636 A TW 101139636A TW I549753 B TWI549753 B TW I549753B
- Authority
- TW
- Taiwan
- Prior art keywords
- tetraalkylammonium
- solution
- salt
- ion
- exchange resin
- Prior art date
Links
- 239000012266 salt solution Substances 0.000 title claims description 36
- 150000005621 tetraalkylammonium salts Chemical class 0.000 title claims description 24
- 239000007788 liquid Substances 0.000 claims description 96
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 77
- 239000003729 cation exchange resin Substances 0.000 claims description 71
- 229910021645 metal ion Inorganic materials 0.000 claims description 63
- 239000000243 solution Substances 0.000 claims description 58
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 claims description 57
- 238000001179 sorption measurement Methods 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 47
- -1 tetraalkylammonium ion Chemical class 0.000 claims description 45
- 150000003839 salts Chemical class 0.000 claims description 39
- 238000004519 manufacturing process Methods 0.000 claims description 29
- 229910052783 alkali metal Inorganic materials 0.000 claims description 28
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 26
- 238000011084 recovery Methods 0.000 claims description 23
- 239000011347 resin Substances 0.000 claims description 17
- 229920005989 resin Polymers 0.000 claims description 17
- 238000003860 storage Methods 0.000 claims description 17
- 239000012535 impurity Substances 0.000 claims description 14
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 10
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 10
- 229920001429 chelating resin Polymers 0.000 claims description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 5
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 3
- 235000011181 potassium carbonates Nutrition 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 2
- 239000011736 potassium bicarbonate Substances 0.000 claims description 2
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 2
- 235000015497 potassium bicarbonate Nutrition 0.000 claims description 2
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 2
- 229940086066 potassium hydrogencarbonate Drugs 0.000 claims description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 2
- 235000017550 sodium carbonate Nutrition 0.000 claims description 2
- 125000005207 tetraalkylammonium group Chemical group 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 150000002500 ions Chemical class 0.000 description 51
- 239000002699 waste material Substances 0.000 description 46
- 229920002120 photoresistant polymer Polymers 0.000 description 33
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 22
- 238000005868 electrolysis reaction Methods 0.000 description 17
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 15
- 150000001340 alkali metals Chemical class 0.000 description 15
- 239000002253 acid Substances 0.000 description 12
- 238000011161 development Methods 0.000 description 12
- 230000018109 developmental process Effects 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- 230000002378 acidificating effect Effects 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 239000003456 ion exchange resin Substances 0.000 description 7
- 229920003303 ion-exchange polymer Polymers 0.000 description 7
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 7
- 238000000909 electrodialysis Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 229920002125 Sokalan® Polymers 0.000 description 5
- 238000005341 cation exchange Methods 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910001415 sodium ion Inorganic materials 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- 150000001450 anions Chemical class 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000003957 anion exchange resin Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229960003975 potassium Drugs 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- KGWYICAEPBCRBL-UHFFFAOYSA-N 1h-indene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)C=CC2=C1 KGWYICAEPBCRBL-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- KIZQNNOULOCVDM-UHFFFAOYSA-M 2-hydroxyethyl(trimethyl)azanium;hydroxide Chemical compound [OH-].C[N+](C)(C)CCO KIZQNNOULOCVDM-UHFFFAOYSA-M 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 102100024452 DNA-directed RNA polymerase III subunit RPC1 Human genes 0.000 description 1
- 101000689002 Homo sapiens DNA-directed RNA polymerase III subunit RPC1 Proteins 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 230000003113 alkalizing effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- JQDCIBMGKCMHQV-UHFFFAOYSA-M diethyl(dimethyl)azanium;hydroxide Chemical compound [OH-].CC[N+](C)(C)CC JQDCIBMGKCMHQV-UHFFFAOYSA-M 0.000 description 1
- MYRLVAHFNOAIAI-UHFFFAOYSA-M diethyl-bis(2-hydroxyethyl)azanium;hydroxide Chemical compound [OH-].OCC[N+](CC)(CC)CCO MYRLVAHFNOAIAI-UHFFFAOYSA-M 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- YOMFVLRTMZWACQ-UHFFFAOYSA-N ethyltrimethylammonium Chemical compound CC[N+](C)(C)C YOMFVLRTMZWACQ-UHFFFAOYSA-N 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 238000000918 plasma mass spectrometry Methods 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- VHLDQAOFSQCOFS-UHFFFAOYSA-M tetrakis(2-hydroxyethyl)azanium;hydroxide Chemical compound [OH-].OCC[N+](CCO)(CCO)CCO VHLDQAOFSQCOFS-UHFFFAOYSA-M 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical class C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- GRNRCQKEBXQLAA-UHFFFAOYSA-M triethyl(2-hydroxyethyl)azanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CCO GRNRCQKEBXQLAA-UHFFFAOYSA-M 0.000 description 1
- JAJRRCSBKZOLPA-UHFFFAOYSA-M triethyl(methyl)azanium;hydroxide Chemical compound [OH-].CC[N+](C)(CC)CC JAJRRCSBKZOLPA-UHFFFAOYSA-M 0.000 description 1
- IJGSGCGKAAXRSC-UHFFFAOYSA-M tris(2-hydroxyethyl)-methylazanium;hydroxide Chemical compound [OH-].OCC[N+](C)(CCO)CCO IJGSGCGKAAXRSC-UHFFFAOYSA-M 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/04—Processes using organic exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J49/00—Regeneration or reactivation of ion-exchangers; Apparatus therefor
- B01J49/05—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
- B01J49/06—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic exchangers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/82—Purification; Separation; Stabilisation; Use of additives
- C07C209/84—Purification
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
- C02F2001/425—Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/40—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture or use of photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
- G03F7/32—Liquid compositions therefor, e.g. developers
- G03F7/322—Aqueous alkaline compositions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/422—Stripping or agents therefor using liquids only
- G03F7/425—Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Description
本發明關於使用陽離子交換樹脂製造含有四烷基銨鹽之溶液的新穎製造方法,及以其作為原料的氫氧化四烷基銨的製造方法。 The present invention relates to a novel production method for producing a solution containing a tetraalkylammonium salt using a cation exchange resin, and a process for producing tetraalkylammonium hydroxide using the same as a raw material.
氫氧化四烷基銨(以下簡稱TAAH)一般以相間轉移觸媒為首,作為非水溶液滴定中鹼基的標記液或者有機合成中有機系鹼化劑,為有效的化合物。又作為積體電路或大規模積體電路的製造中半導體基板的洗淨、蝕刻、光阻顯影等的處理劑使用。特別是,在半導體的用途上,因為半導體基板會被污染,所以要求儘量不含有雜質的高純度TAAH。 Tetraalkylammonium hydroxide (hereinafter abbreviated as TAAH) is generally an effective compound as a labeling solution for a base in a nonaqueous solution titration or an organic alkalizing agent in an organic synthesis, mainly including an interphase transfer catalyst. Further, it is used as a treatment agent for cleaning, etching, or photoresist development of a semiconductor substrate in the production of an integrated circuit or a large-scale integrated circuit. In particular, in the use of semiconductors, since the semiconductor substrate is contaminated, high-purity TAAH which does not contain impurities as much as possible is required.
另一方面,上述光阻顯影所使用的廢液,除包含光阻劑外,還包含金屬離子雜質及TAAH,因為要降低環境負荷,從該廢液中回收、再利用TAAH的技術變得重要(以下含有光阻劑及TAAH的廢液亦稱為「光阻顯影廢液」)。習知以來,處理光阻顯影廢液的方法,以經蒸發法或逆浸透膜法濃縮而廢棄處理(焚燒或由業者取走)的方法、經活性污泥的生物分解處理而放流的方法為主流。然而,如上所述,從對環境的擔憂來看,多提出從該廢液中回收、再利用TAAH的嘗試。 On the other hand, the waste liquid used in the above-mentioned photoresist development includes metal ion impurities and TAAH in addition to the photoresist, and the technology for recovering and reusing TAAH from the waste liquid becomes important because environmental load is to be reduced. (The following waste liquid containing photoresist and TAAH is also called "photoresist developing waste liquid"). Conventionally, a method for treating a photoresist development waste liquid is a method in which it is concentrated by an evaporation method or a reverse osmosis membrane method, and is disposed of (incinerated or removed by a manufacturer), and discharged by a biological decomposition treatment of activated sludge. Mainstream. However, as described above, from the viewpoint of environmental concerns, attempts have been made to recover and reuse TAAH from the waste liquid.
具體地說,已知對於濃縮的廢液或者原本TAAH 濃度高的顯影廢液經中和處理去除光阻成份後,進行電透析或電解,回收TAAH的方法(例如參照專利文獻1至3)。但是,在處理TAAH濃度低的廢液時,為了達到電透析或電解所需的濃度條件,必須濃縮TAAH廢液,因此對這些方法,提出不進行電透析或電解而從光阻顯影廢液中回收TAAH的方法(參考專利文獻4)。具體的方法為,首先使光阻顯影廢液與陽離子交換樹脂接觸,使四烷基銨離子(TAA離子)吸附於陽離子交換樹脂。之後,於該陽離子交換樹脂通入鹽酸,回收TAA鹽,所得的溶液中加入過氯酸,形成四烷基銨過氯酸鹽(TAA過氯酸鹽)。之後將TAA過氯酸鹽晶析純化後,將所得的過氯酸鹽與陰離子交換樹脂接觸,回收TAAH的方法。然而,此種情形步驟變得繁雜,使用有爆發危險的過氯酸鹽,工業上製造有困難。 Specifically, it is known for concentrated waste liquid or original TAAH A method in which the developing waste liquid having a high concentration is subjected to neutralization treatment to remove the photoresist component, and then subjected to electrodialysis or electrolysis to recover TAAH (for example, refer to Patent Documents 1 to 3). However, when treating a waste liquid having a low TAAH concentration, it is necessary to concentrate the TAAH waste liquid in order to achieve the concentration conditions required for electrodialysis or electrolysis. Therefore, it is proposed that these methods are not subjected to electrodialysis or electrolysis from the photoresist development waste liquid. A method of recovering TAAH (refer to Patent Document 4). Specifically, the photoresist developing waste liquid is first contacted with the cation exchange resin to adsorb tetraalkylammonium ions (TAA ions) to the cation exchange resin. Thereafter, hydrochloric acid was introduced into the cation exchange resin to recover a TAA salt, and perchloric acid was added to the resulting solution to form a tetraalkylammonium perchlorate (TAA perchlorate). Thereafter, after the TAA perchlorate is crystallized and purified, the obtained perchlorate is brought into contact with an anion exchange resin to recover TAAH. However, the steps in this case become complicated, and the use of perchlorate which is in danger of explosion is difficult to manufacture in the industry.
又TAA離子吸附離子交換樹脂,從稀薄的顯影廢液中回收TAA鹽,使其電解以製造TAAH的技術已被揭示(專利文獻5及6)。但是,不能控制從離子交換樹脂溶離TAA鹽時的條件,因此成為所得的TAA鹽溶液混入金屬離子雜質,結果有電解後的TAAH溶液中混入較高濃度的金屬離子雜質的課題。又專利文獻5揭示從離子交換樹脂溶離時使用弱酸的技術,但會有溶離的TAA鹽溶液變得稀薄的傾向,特別是使用碳酸的情形時,這種傾向顯著。又使用碳酸的情形,液體中會發生氣泡,恐造成連續運轉的障礙。 Further, a TAA ion-adsorbing ion exchange resin, a technique of recovering TAA salt from a thin developing waste liquid, and electrolyzing it to produce TAAH has been disclosed (Patent Documents 5 and 6). However, since the conditions for dissolving the TAA salt from the ion exchange resin cannot be controlled, the obtained TAA salt solution is mixed with metal ion impurities, and as a result, a high concentration of metal ion impurities is mixed in the TAAH solution after electrolysis. Further, Patent Document 5 discloses a technique in which a weak acid is used in the case of dissolving from an ion exchange resin, but the eluted TAA salt solution tends to be thin, and particularly when carbonic acid is used, this tendency is remarkable. In the case of using carbonic acid, bubbles may occur in the liquid, which may cause an obstacle to continuous operation.
又專利文獻7揭示從吸附TAA離子的離子交換樹脂溶離TAA離子之時,使用金屬氫氧化物製造TAAH的技術。但是,此方法有顯影廢液中所含的阻劑(resist)等的有機物混入 TAAH中的問題。 Further, Patent Document 7 discloses a technique for producing TAAH using a metal hydroxide when an ion exchange resin that adsorbs TAA ions dissolves TAA ions. However, this method has an organic substance such as a resist contained in the developing waste liquid. The problem in TAAH.
【先前技術文獻】 [Previous Technical Literature]
【專利文獻】 [Patent Literature]
專利文獻1:特開平04-228587號公報 Patent Document 1: Japanese Patent Publication No. 04-228587
專利文獻2:特開平05-106074號公報 Patent Document 2: Japanese Patent Publication No. 05-106074
專利文獻3:特許第3216998號公報 Patent Document 3: Patent No. 3216998
專利文獻4:特開2004-66102號公報 Patent Document 4: JP-A-2004-66102
專利文獻5:特許2688009號公報 Patent Document 5: Patent No. 2688009
專利文獻6:特表2002-509029號公報 Patent Document 6: Japanese Patent Publication No. 2002-509029
專利文獻7:特表2004-512315號公報 Patent Document 7: Japanese Patent Publication No. 2004-512315
如上所述,使用陽離子交換樹脂可從顯影廢液中以高收率回收TAA離子,但是此方法中有阻劑成分的去除不充分、只能得到混入金屬離子雜質的稀薄TAA鹽溶液的問題。 As described above, TAA ions can be recovered from the developing waste liquid in a high yield by using the cation exchange resin, but in this method, the removal of the resist component is insufficient, and only a problem of a rare TAA salt solution in which metal ion impurities are mixed can be obtained.
本發明人等為了解決上述課題進行檢討。結果發現,藉由光阻顯影廢液與陽離子交換樹脂接觸而使TAA離子吸附於該陽離子交換樹脂,之後於該陽離子交換樹脂中通入鹽溶液,回收TAA鹽之時,在所得的TAA鹽溶液中的金屬離子濃度成為特定濃度之前停止回收,可得到金屬離子雜質濃度低的TAA鹽,此以電解處理,可有效地分解去除阻劑成份,因而可製造不含阻劑成分的TAAH,至完成本發明。 The present inventors reviewed the above problems in order to solve the above problems. As a result, it was found that TAA ions were adsorbed to the cation exchange resin by contact of the photoresist developing waste liquid with the cation exchange resin, and then a salt solution was introduced into the cation exchange resin to recover the TAA salt, and the obtained TAA salt solution was obtained. The metal ion concentration in the medium is stopped before the specific concentration is reached, and the TAA salt having a low metal ion impurity concentration can be obtained. This is electrolytically treated to effectively decompose and remove the resist component, thereby producing TAAH containing no resist component, to completion. this invention.
亦即,本發明為從含有金屬離子及氫氧化四烷基銨的溶液獲得含有金屬離子含量比例降低的四烷基銨鹽的溶液之四烷基銨鹽溶液的製造方法,其特徵在於,包含下述(1)、(2)之步驟所形成:(1)於填充氫離子型陽離子交換樹脂的吸附塔中,通入含有金屬離子及氫氧化四烷基銨的溶液,使溶液中的四烷基銨離子吸附於陽離子交換樹脂的吸附步驟;(2)上述吸附步驟中,填充吸附四烷基銨離子的陽離子交換樹脂的吸附塔,通入鹼金屬鹽的溶液,使吸附於該樹脂的四烷基銨離子形成上述的鹽而溶離,將該吸附塔所流出的流出液回收至貯留槽的回收步驟;且回收步驟中,測定吸附塔所流出的流出液中上述鹼金屬離子濃度,在該鹼金屬離子濃度急遽上升前,停止該貯留槽的流出液的回收之四烷基銨鹽溶液的製造方法。 That is, the present invention is a method for producing a tetraalkylammonium salt solution containing a solution of a tetraalkylammonium salt having a reduced metal ion content ratio from a solution containing a metal ion and a tetraalkylammonium hydroxide, characterized in that it comprises The following steps (1) and (2) are formed: (1) in a adsorption tower filled with a hydrogen ion type cation exchange resin, a solution containing a metal ion and a tetraalkylammonium hydroxide is introduced to make a solution in the solution The adsorption step of adsorbing the alkylammonium ion on the cation exchange resin; (2) in the adsorption step, filling the adsorption tower of the cation exchange resin adsorbing the tetraalkylammonium ion, and introducing a solution of the alkali metal salt to adsorb the resin a tetraalkylammonium ion is formed by dissolving the salt described above, and recovering the effluent from the adsorption tower to a recovery step of the storage tank; and in the recovering step, measuring the concentration of the alkali metal ion in the effluent flowing out of the adsorption tower, A method for producing a tetraalkylammonium salt solution for recovering the effluent of the storage tank before the alkali metal ion concentration is rapidly increased.
另一發明為,包含上述(1)吸附步驟及(2)回收步驟相同之步驟,且在回收步驟中,測定吸附塔的流出液中的上述鹼金屬離子濃度,在達到該鹼金屬離子濃度設定為0.5~10mg/L之間的特定濃度的時點,停止該貯留槽的流出液的回收之四烷基銨鹽溶液的製造方法。 Another invention includes the steps of (1) the adsorption step and (2) the recovery step, and in the recovery step, measuring the alkali metal ion concentration in the effluent of the adsorption tower, and setting the alkali metal ion concentration A method for producing a tetraalkylammonium salt solution for recovering the effluent of the storage tank at a specific concentration of between 0.5 and 10 mg/L.
再者,根據本發明,如此所得的TAA鹽經電解,可得純度高的TAAH溶液。 Further, according to the present invention, the thus obtained TAA salt is subjected to electrolysis to obtain a TAAH solution having a high purity.
根據本發明之方法,可減少回收的TAA鹽溶液中的金屬離子量,因此可有效率地從光阻廢液中獲得金屬離子雜 質少的TAA鹽。因此,可減少前及/或後步驟藉由螯合樹脂等的金屬去除步驟的負荷,而降低成本。 According to the method of the present invention, the amount of metal ions in the recovered TAA salt solution can be reduced, so that metal ion impurities can be efficiently obtained from the photoresist waste liquid. Low quality TAA salt. Therefore, it is possible to reduce the load of the metal removal step by the chelating resin or the like before and/or after the step, thereby reducing the cost.
而且,藉由進行該TAA鹽的電解,可獲得不含金屬成分及阻劑成分的高純度的TAAH溶液。 Further, by performing electrolysis of the TAA salt, a highly pure TAAH solution containing no metal component and a resist component can be obtained.
第1圖為顯示關於本發明之四烷基銨鹽之製造方法的製造設備之一實施態樣的示意圖。 Fig. 1 is a schematic view showing an embodiment of a manufacturing apparatus relating to a method for producing a tetraalkylammonium salt of the present invention.
第2圖為顯示從光阻顯影廢液回收四烷基銨鹽(TAA鹽),從該TAA鹽製造氫氧化四烷基銨(TAAH)時的較佳態樣之流程圖。 Fig. 2 is a flow chart showing a preferred aspect of the recovery of a tetraalkylammonium salt (TAA salt) from a photoresist developing waste liquid and the production of tetraalkylammonium hydroxide (TAAH) from the TAA salt.
本發明為從含有金屬離子及氫氧化四烷基銨(TAAH)的溶液中製造金屬離子含量比例降低之四烷基銨鹽(TAA鹽)溶液的方法,使該TAAH溶液與陽離子交換樹脂接觸,使TAA離子吸附於該陽離子交換樹脂後,將鹽溶液通入該吸附塔,測定從吸附塔流出的回收液中金屬離子濃度,決定停止回收回收液的時點,獲得TAA鹽。所述「金屬離子含量比例降低」表示對TAA離子的相對量減少。 The present invention is a method for producing a tetraalkylammonium salt (TAA salt) solution having a reduced metal ion content ratio from a solution containing a metal ion and a tetraalkylammonium hydroxide (TAAH), and contacting the TAAH solution with a cation exchange resin. After the TAA ions were adsorbed to the cation exchange resin, a salt solution was passed through the adsorption column, and the concentration of metal ions in the recovered liquid flowing out of the adsorption tower was measured, and the time at which the recovery of the recovered liquid was stopped was determined to obtain a TAA salt. The "reduced metal element content ratio" indicates a decrease in the relative amount of TAA ions.
(含有金屬離子雜質及氫氧化四烷基銨的溶液) (solution containing metal ion impurities and tetraalkylammonium hydroxide)
本發明中,含有金屬離子及氫氧化四烷基銨的溶液沒有特別限制,但是較佳為半導體製造工程、液晶顯示器製造工程等中所產生的光阻顯影廢液。這些廢液為曝光後的光阻以鹼性顯影液顯影時所排出的廢液,主要包含光阻劑、TAAH 及金屬離子。這些廢液通常為水溶液。 In the present invention, the solution containing a metal ion and a tetraalkylammonium hydroxide is not particularly limited, but is preferably a photoresist development waste liquid which is produced in a semiconductor manufacturing process, a liquid crystal display manufacturing process, or the like. These waste liquids are the waste liquid discharged when the exposed photoresist is developed with an alkaline developing solution, mainly containing a photoresist, TAAH. And metal ions. These waste liquids are usually aqueous solutions.
光阻顯影廢液通常呈現pH 10~14的鹼性,光阻劑在鹼性顯影廢液中,其羧基、酚性羥基等的酸基會酸解離而溶解。主要的光阻劑例如感光劑鄰重氮萘醌(o-diazonaphthoquinone)經光分解所生成的茚羧酸(indene carboxylic acid)或來自清漆樹脂(novolac resin)的酚類。 The photoresist developing waste liquid usually exhibits an alkalinity of pH 10 to 14, and the photoresist in the alkaline developing waste liquid is decomposed and dissolved by an acid group such as a carboxyl group or a phenolic hydroxyl group. The main photoresist, such as the sensitizer o-diazonaphthoquinone, is formed by photodegradation of indene carboxylic acid or phenol from novolac resin.
此處對半導體製造及液晶顯示器製造中的顯影步驟所排出的代表性廢液進行詳細說明。顯影步驟通常多使用單一晶圓製程的自動顯影裝置,此裝置中使用含TAAH的顯影液的步驟以及之後以純水濕潤(基板洗淨)的步驟在同一槽內進行,此時在濕潤步驟中使用顯影液的5~10倍的量的純水。因此,顯影步驟中使用的顯影液通常為稀釋5~10倍的廢液。結果此顯影步驟所排出的廢液組成,TAAH為約0.001~1質量%,阻劑為約10~100ppm,界面活性劑為零至約數十ppm。也有在其他步驟混入廢液的情形,TAAH濃度也會變得較上述範圍低。具體也有成為0.05質量%以下(約0.001~0.05質量%)的情形。特別是液晶顯示器製造步驟所排出的光阻顯影廢液,TAAH濃度多形成0.001~0.5質量%的情形,本發明之方法可特別適用於從此種光阻顯影廢液製造TAA鹽者。 Here, a representative waste liquid discharged from a developing step in semiconductor manufacturing and liquid crystal display manufacturing will be described in detail. The development step usually uses an automatic developing device of a single wafer process, in which the step of using a developer containing TAAH and then the step of moistening with pure water (substrate cleaning) are performed in the same tank, at this time in the wetting step. Use 5 to 10 times the amount of pure water of the developer. Therefore, the developer used in the development step is usually a waste liquid which is diluted 5 to 10 times. As a result, the composition of the waste liquid discharged in this developing step has a TAAH of about 0.001 to 1% by mass, a resist of about 10 to 100 ppm, and a surfactant of from zero to about several tens of ppm. There are also cases where waste liquid is mixed in other steps, and the TAAH concentration also becomes lower than the above range. Specifically, it may be 0.05% by mass or less (about 0.001 to 0.05% by mass). In particular, in the case of the photoresist development waste liquid discharged from the liquid crystal display manufacturing step, the TAAH concentration is often 0.001 to 0.5% by mass, and the method of the present invention is particularly suitable for the production of TAA salt from such photoresist development waste liquid.
光阻顯影廢液中包含複數金屬離子。例如一價離子有鈉、鉀等,二價離子有鈣、鋅等,其他多價離子有鋁、鎳銅、鉻、鐵等,為光阻顯影廢液中代表性富含的金屬。這些金屬通常在光阻顯影廢液中含有約0.1~100ppb。 The photoresist developing waste liquid contains a plurality of metal ions. For example, monovalent ions are sodium, potassium, etc., divalent ions are calcium, zinc, etc., and other multivalent ions are aluminum, nickel copper, chromium, iron, etc., which are representatively rich metals in photoresist development waste liquid. These metals usually contain about 0.1 to 100 ppb in the photoresist development waste liquid.
光阻顯影廢液中的TAAH為用於各種電子元件之 製造等時的光阻顯影液中所使用的鹼。TAAH的具體例可例如氫氧化四甲基銨(以下簡稱TMAH)、氫氧化四乙基銨、氫氧化四丙基銨、氫氧化四丁基銨、氫氧化甲基三乙基銨、氫氧化三甲基乙基銨、氫氧化二甲基二乙基銨、氫氧化三甲基(2-羥乙基)銨、氫氧化三乙基(2-羥乙基)銨、氫氧化二甲基二(2-羥乙基)銨、氫氧化二乙基二(2-羥乙基)銨、氫氧化甲基三(2-羥乙基)銨、氫氧化乙基三(2-羥乙基)銨、氫氧化四(2-羥乙基)銨等。這些之中,TMAH最廣泛被使用。 TAAH in photoresist development waste liquid is used for various electronic components. A base used in a photoresist developing solution for isochronous production. Specific examples of TAAH may, for example, tetramethylammonium hydroxide (hereinafter abbreviated as TMAH), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, and hydroxide. Trimethylethylammonium, dimethyldiethylammonium hydroxide, trimethyl(2-hydroxyethyl)ammonium hydroxide, triethyl(2-hydroxyethyl)ammonium hydroxide, dimethyl hydroxide Bis(2-hydroxyethyl)ammonium, diethylbis(2-hydroxyethyl)ammonium hydroxide, methyltris(2-hydroxyethyl)ammonium hydroxide, ethyltris(2-hydroxyethyl) hydroxide Ammonium, tetrakis(2-hydroxyethyl)ammonium hydroxide, and the like. Among these, TMAH is the most widely used.
(使四烷基銨離子吸附於陽離子交換樹脂的步驟) (Step of adsorbing tetraalkylammonium ions to a cation exchange resin)
本發明中,於填充氫離子型(以下簡稱「H型」)的陽離子交換樹脂之吸附塔,通入如上述含有金屬離子及氫氧化四烷基銨的溶液,使TAA離子吸附於該陽離子交換樹脂。 In the present invention, a solution containing a metal ion and a tetraalkylammonium hydroxide as described above is introduced into an adsorption column of a cation exchange resin filled with a hydrogen ion type (hereinafter referred to as "H type") to adsorb TAA ions to the cation exchange. Resin.
亦即,TAA離子為陽離子,藉由與H型的陽離子交換樹脂接觸,與該陽離子交換樹脂所具有的氫離子發生離子交換,而吸附於該樹脂。因此可更有效率地從廢液中回收TAA離子。特別是在TAAH濃度低的廢液中也可以低成本回收TAA離子。 That is, the TAA ion is a cation, and is ion-exchanged with the hydrogen ion of the cation exchange resin by contact with the H-type cation exchange resin to be adsorbed to the resin. Therefore, TAA ions can be recovered from the waste liquid more efficiently. In particular, TAA ions can be recovered at low cost in a waste liquid having a low TAAH concentration.
此處,通常金屬離子雜質也是陽離子,藉由此述通入液體而吸附於陽離子交換樹脂。本發明藉由採用後述方法,使吸附於這樣的陽離子交換樹脂的金屬離子雜質與TAA離子更有效率地分離。又即使有金屬離子雜質,經由該顯影廢液中形成複合物等的化學平衡反應,金屬所含的離子種本身為陰離子的情形時,難以吸附於陽離子交換樹脂,而自吸附塔被排出。 Here, in general, the metal ion impurity is also a cation, and is adsorbed to the cation exchange resin by passing through the liquid as described above. In the present invention, the metal ion impurities adsorbed to such a cation exchange resin are more efficiently separated from the TAA ions by the method described later. Further, even if there is a metal ion impurity, a chemical equilibrium reaction such as formation of a complex in the developing waste liquid, when the ion species contained in the metal itself is an anion, is difficult to adsorb to the cation exchange resin and is discharged from the adsorption tower.
另一方面,上述溶解的來自光阻劑的有機物成分通常為陰離子形態,因此難以吸附於陽離子交換樹脂而大部分被去除,只有一部分吸附於離子交換樹脂,因此在續行的TAA鹽的回收步驟中混入於TAA鹽溶液(此述有機成分的去除將於後述說明)。 On the other hand, the organic component from the photoresist which is dissolved as described above is usually in an anionic form, so that it is difficult to adsorb to the cation exchange resin and most of it is removed, and only a part of it is adsorbed to the ion exchange resin, so the recovery step of the TAA salt is continued. The TAA salt solution is mixed in (the removal of the organic component described herein will be described later).
(陽離子交換樹脂) (cation exchange resin)
本發明中,吸附上述TAA離子的陽離子交換樹脂沒有特別限定,可使用公知者。具體地說,可使用離子交換基為磺酸基的強酸性陽離子交換樹脂、離子交換基為羧酸的弱酸性陽離子交換樹脂任一者。這些之中,從離子交換容量大者多、可降低使用的樹脂量的觀點,使用弱酸性陽離子交換樹脂為佳。再者,為弱酸性陽離子交換樹脂的情形,在後述的TAA離子的溶離也容易。 In the present invention, the cation exchange resin that adsorbs the above TAA ions is not particularly limited, and a known one can be used. Specifically, any of the strongly acidic cation exchange resins in which the ion exchange group is a sulfonic acid group and the weakly acidic cation exchange resin in which the ion exchange group is a carboxylic acid can be used. Among these, a weakly acidic cation exchange resin is preferably used from the viewpoint that the ion exchange capacity is large and the amount of the resin to be used is lowered. Further, in the case of a weakly acidic cation exchange resin, elution of TAA ions to be described later is also easy.
又樹脂的結構可為膠型或MR型(microporous型)。樹脂的形狀可為粉狀、粒狀、膜狀、纖維狀等任一者。從處理效率、操作性、經濟性等觀點,使用粒狀等的苯乙烯系或丙烯系等的陽離子交換樹脂為佳。 Further, the structure of the resin may be a gel type or a MR type (microporous type). The shape of the resin may be any of powder, granule, film, and fiber. From the viewpoints of processing efficiency, workability, economy, and the like, it is preferred to use a cation exchange resin such as styrene or propylene.
陽離子交換樹脂的反離子(counter ion)通常以氫離子(H型)或鈉離子(Na型)販售,但是為了防止最終獲得的TAAH溶液混入鈉離子以及提升TAA離子的吸附效率,反離子為氫離子型的H型。使用Na型市售的陽離子交換樹脂的情形,使用時事先於陽離子交換樹脂通入鹽酸或硫酸等酸,以超純水充分洗淨等,使反離子成為氫離子使用。又根據後述方法,使TAA離子溶離後,因為形成Na等的鹼金屬型,可經上述相同 操作,再生成H型而使用。 The counter ion of the cation exchange resin is usually sold as hydrogen ion (H type) or sodium ion (Na type), but in order to prevent the finally obtained TAAH solution from mixing sodium ions and increasing the adsorption efficiency of the TAA ion, the counter ion is Hydrogen ion type H type. In the case of using a commercially available cation exchange resin of the Na type, an acid such as hydrochloric acid or sulfuric acid is introduced into the cation exchange resin in advance, and the mixture is sufficiently washed with ultrapure water to use the counter ion as a hydrogen ion. Further, according to the method described later, after the TAA ions are dissolved, the same alkali metal type such as Na can be formed. Operation, and then generate H type and use.
強酸性陽離子交換樹脂的具體例可例如羅門哈斯(Rohm and Haas)公司製的Amberlite IR120B、Amberlite IR124;三菱化學公司製的DIAION SK1B、DIAION PK228;住化Chemtex公司製的Duolite C255LFH;LANXESS公司製的LEWATIT Monoplus S100、Purolite公司製的Purolite C160等。弱酸性陽離子交換樹脂的具體例可例如羅門哈斯(Rohm and Haas)公司製的Amberlite IRC76、三菱化學公司製的DIAION WK40L、住化Chemtex公司製的Duolite C433LF、Duolite C476、LANXESS公司製的LEWATIT CNP80WS、Purolite公司製的Purolite C104等。 Specific examples of the strongly acidic cation exchange resin are, for example, Amberlite IR120B manufactured by Rohm and Haas Co., Ltd., Amberlite IR124; DIAION SK1B manufactured by Mitsubishi Chemical Corporation, DIAION PK228; Duolite C255LFH manufactured by Chem Chemex; manufactured by LANXESS LEWATIT Monoplus S100, Purolite C160 manufactured by Purolite. Specific examples of the weakly acidic cation exchange resin are, for example, Amberlite IRC76 manufactured by Rohm and Haas Co., Ltd., DIAION WK40L manufactured by Mitsubishi Chemical Corporation, Duolite C433LF manufactured by Sumitomo Chemtex Co., Ltd., Duolite C476, and LEWATIT CNP80WS manufactured by LANXESS Co., Ltd. , Purolite C104 manufactured by Purolite Co., Ltd., and the like.
(填充陽離子交換樹脂的吸附塔通入溶液的方法) (Method of introducing a cation exchange resin adsorption column into a solution)
本發明中,對填充上述H型的陽離子交換樹脂的吸附塔,通入含有金屬離子及TAAH的溶液,藉由與陽離子交換樹脂接觸,使TAA離子吸附於陽離子交換樹脂。 In the present invention, a solution containing a metal ion and TAAH is introduced into an adsorption column packed with the above-mentioned H-type cation exchange resin, and TAA ions are adsorbed to the cation exchange resin by contact with a cation exchange resin.
對於將該溶液通入填充陽離子交換樹脂的吸附塔之方法,可根據陽離子交換樹脂的種類或形狀,適當採用習知的方法。具體例如,將陽離子交換樹脂填充於柱,使該溶液連續性通過的柱方式為佳。採用此述柱方式的情形,可視陽離子交換樹脂的性能等適宜決定,但是為了更有效率地吸附TAA離子,假如是TAAH的含量為0.001~1質量%的溶液,柱的高度(L)與柱直徑(D)的比(L/D)為0.5以上,該廢液的空間速度(SV)為1(1/小時)以上、200(1/小時)以下者為佳。 For the method of passing the solution into an adsorption column packed with a cation exchange resin, a conventional method can be suitably employed depending on the type or shape of the cation exchange resin. Specifically, for example, a column in which a cation exchange resin is packed in a column and the solution is continuously passed is preferred. In the case of the column method, the performance of the cation exchange resin may be appropriately determined, but in order to adsorb TAA ions more efficiently, if the content of TAAH is 0.001 to 1% by mass, the height (L) of the column and the column The ratio (L/D) of the diameter (D) is 0.5 or more, and the space velocity (SV) of the waste liquid is preferably 1 (1/hour) or more and 200 (1/hour) or less.
通液的溶液量為不超過填充於吸附塔的陽離子交 換樹脂的量,但以更有效率製造TAA鹽的觀點為佳。 The amount of solution passing through the solution is not more than the cation exchange filled in the adsorption tower It is preferable to change the amount of the resin, but to manufacture the TAA salt more efficiently.
又通入含有陽離子交換樹脂的交換容量以上的量的陽離子的溶液,是否未吸附而流出(漏過)TAA離子,可經由離子層析法(ion chromatography)分析通過吸附塔中流出的液體中TAA離子濃度而確認。更簡便地,可測定吸附塔中陽離子交換樹脂所佔的高度。陽離子交換樹脂的反離子從氫離子變為TAA離子時,雖根據陽離子交換樹脂的種類而定,但體積膨潤至約2倍。藉由測定陽離子交換樹脂的體積,可確認TAA離子的吸附。 Further, a solution containing a cation or more of a cation exchange resin having a cation exchange amount or more is allowed to flow out (leakage) of TAA ions without adsorption, and TAA in the liquid flowing out through the adsorption tower can be analyzed by ion chromatography. Confirmed by ion concentration. More simply, the height of the cation exchange resin in the adsorption column can be determined. When the counter ion of the cation exchange resin is changed from a hydrogen ion to a TAA ion, the volume is swollen to about 2 times depending on the type of the cation exchange resin. The adsorption of TAA ions can be confirmed by measuring the volume of the cation exchange resin.
又在該溶液的pH為10以上的鹼性的情形,TAA離子未吸附而通過吸附塔中時,因為通過的液體的pH成為鹼性,也可透過pH酸鹼度計來確認。又通常通過吸附塔的液體中含有TAA離子的情形,因為液體的導電度上升,因此也可透過導電度來確認。 Further, in the case where the pH of the solution is 10 or more, when the TAA ions pass through the adsorption tower without being adsorbed, the pH of the liquid to be passed becomes alkaline, and it can be confirmed by a pH pH meter. Further, in the case where the liquid in the adsorption tower contains TAA ions, since the conductivity of the liquid rises, it can also be confirmed by the conductivity.
(從吸附四烷基銨離子的陽離子交換樹脂回收四烷基銨鹽的步驟) (Step of recovering tetraalkylammonium salt from a cation exchange resin adsorbing tetraalkylammonium ions)
本發明中,經上述方法使TAA離子吸附於陽離子交換樹脂後,於填充該陽離子交換樹脂的吸附塔通入鹼金屬鹽的溶液,回收從吸附塔流出的回收液,製造四烷基銨鹽。 In the present invention, after the TAA ions are adsorbed to the cation exchange resin by the above method, a solution of an alkali metal salt is introduced into the adsorption column filled with the cation exchange resin, and the recovered liquid flowing out from the adsorption column is recovered to produce a tetraalkylammonium salt.
亦即,將鹼金屬鹽的溶液從吸附塔的一端導入吸附塔,另一端流出液體,進行液體通入,將該鹽溶液所含的過剩的鹼金屬離子與TAA離子進行交換,作為TAA離子用的鹽的酸鹽,從吸附塔流出。 That is, the solution of the alkali metal salt is introduced into the adsorption tower from one end of the adsorption tower, and the liquid flows out at the other end to carry out liquid introduction, and the excess alkali metal ions contained in the salt solution are exchanged with TAA ions, and used as TAA ions. The salt of the salt flows out of the adsorption column.
鹼金屬,從溶解度或容易取得等的觀點,較佳為 鈉或鉀,特別以鈉為佳。 The alkali metal is preferably from the viewpoint of solubility or easy availability. Sodium or potassium, especially sodium.
本發明中,上述鹼金屬鹽可為無機酸鹽或有機酸鹽。又可為弱酸的鹽或強酸的鹽。此述弱酸為25℃的解離常數K為10-3以下的酸。 In the present invention, the above alkali metal salt may be a mineral acid salt or an organic acid salt. It may also be a salt of a weak acid or a salt of a strong acid. The weak acid is an acid having a dissociation constant K of 10 to 3 or less at 25 °C.
以本發明之方法製造的TAA鹽提供後述電解步驟,從變換為TAAH時難以產生混入有機成分等的負面影響的觀點,鹼金屬鹽較佳為無機酸鹽。該無機酸例如碳酸、亞硝酸、氫氟酸、次氯酸等。有機酸例如乙酸、草酸、甲酸、苯甲酸等的羧酸類、或酚類、甲酚類。 The TAA salt produced by the method of the present invention provides an electrolysis step to be described later, and the alkali metal salt is preferably a mineral acid salt from the viewpoint that it is difficult to cause adverse effects such as the incorporation of an organic component when converted to TAAH. The inorganic acid is, for example, carbonic acid, nitrous acid, hydrofluoric acid, hypochlorous acid or the like. The organic acid is a carboxylic acid such as acetic acid, oxalic acid, formic acid or benzoic acid, or a phenol or a cresol.
無機酸鹽中,從毒性或安定性、形成TAAH時的電解步驟容易度等的觀點,較佳為碳酸鹽。二鹼基酸的碳酸鹼金屬鹽為碳酸鹽(M2CO3:M表鹼金屬)及碳酸氫鹽(MHCO3),但是從可更提高回收液中TAA離子濃度的觀點,較佳為碳酸鹽。本發明中特別合適的鹼金屬鹽,例如碳酸鈉、碳酸氫鈉、碳酸鉀及碳酸氫鉀,這些之中以碳酸鈉為最佳。 Among the inorganic acid salts, carbonates are preferred from the viewpoints of toxicity, stability, ease of electrolysis in the formation of TAAH, and the like. The alkali metal carbonate of the dibasic acid is a carbonate (M 2 CO 3 : M alkali metal) and a hydrogencarbonate (MHCO 3 ), but from the viewpoint of further increasing the concentration of TAA ions in the recovered liquid, carbonic acid is preferred. salt. Particularly suitable alkali metal salts in the present invention are, for example, sodium carbonate, sodium hydrogencarbonate, potassium carbonate and potassium hydrogencarbonate, among which sodium carbonate is most preferred.
構成本發明中所使用的上述鹼金屬的弱酸鹽溶液的溶劑為可溶解該鹼金屬鹽的液體,沒有特別限定,但是從鹼金屬鹽的溶解容易度、成本及TAAH製造用的電解時不產生負影響等觀點,較佳為水。該水可使用離子交換水、純水、超純水等。 The solvent constituting the weak acid salt solution of the alkali metal used in the present invention is a liquid capable of dissolving the alkali metal salt, and is not particularly limited. However, the ease of dissolution of the alkali metal salt, the cost, and the electrolysis for the production of TAAH are not The viewpoint of generating a negative influence is preferably water. As the water, ion-exchanged water, pure water, ultrapure water or the like can be used.
本發明中,上述鹼金屬鹽溶液的濃度可在0.1N至10N的範圍適當選定,但從流出高濃度的TAA鹽及容易防止金屬離子的混入的觀點,特別以0.5N~4N的範圍為佳。 In the present invention, the concentration of the alkali metal salt solution can be appropriately selected in the range of 0.1 N to 10 N, but it is preferably in the range of 0.5 N to 4 N from the viewpoint of flowing out a high concentration of TAA salt and easily preventing the incorporation of metal ions. .
又鹼金屬鹽溶液的通液速度視吸附塔的體積、陽 離子交換樹脂的種類或使用量、鹽溶液的濃度等,可適當設定,但較佳為鹼金屬鹽溶液的空間速度(SV)為1(1/小時)以上、50(1/小時)以下。比此範圍小時,會延長處理的時間。 The flow rate of the alkali metal salt solution depends on the volume and yang of the adsorption tower. The type and amount of the ion exchange resin, the concentration of the salt solution, and the like can be appropriately set. However, the space velocity (SV) of the alkali metal salt solution is preferably 1 (1/hour) or more and 50 (1/hour) or less. When it is smaller than this range, the processing time will be prolonged.
鹼金屬鹽溶液與TAA離子與具有反離子的陽離子交換樹脂接觸的方法,較佳為將該陽離子交換樹脂填充於柱中,使鹼金屬鹽溶液連續性通過的柱方式。採用柱方式的情形,從可有效實施操作的觀點,以使用同一柱,填充於該柱內的陽離子交換樹脂吸附TAA離子後,之後使鹼金屬鹽溶液通過者為佳。 The method of contacting the alkali metal salt solution with the TAA ion and the cation exchange resin having a counter ion is preferably a column method in which the cation exchange resin is filled in a column to continuously pass the alkali metal salt solution. In the case of the column method, from the viewpoint of effective operation, it is preferred to use the same column, and the cation exchange resin filled in the column adsorbs TAA ions, and then the alkali metal salt solution is preferably passed.
(流出液的回收) (recycling of effluent)
經由通入上述鹼金屬鹽溶液,吸附塔一端的TAA離子,視使用的鹽的陰離子(例如若為碳酸鹽則為CO3 2-等)為反離子,形成TAA鹽流出(溶離),該流出液回收於貯留槽。 The TAA ion at one end of the adsorption column is passed through the alkali metal salt solution, and the anion of the salt to be used (for example, CO 3 2- if carbonate is used) is a counter ion, and a TAA salt is eluted (dissolved), and the effluent is formed. The liquid is recovered in the storage tank.
本發明之特徵之一為,測定該流出液中的鹼金屬離子濃度,在該鹼金屬離子濃度急遽升高之前的時點,為停止上述貯留槽的回收的點。 One of the features of the present invention is that the concentration of the alkali metal ions in the effluent is measured, and the point at which the recovery of the storage tank is stopped before the increase in the concentration of the alkali metal ions is rapidly increased.
亦即,吸附塔中的陽離子交換樹脂,如前述除了TAA離子外,還吸附金屬離子,但藉由將鹼金屬鹽溶液通入該吸附塔,TAA離子與鹼金屬離子交換,優先流出(溶離)。另一方面,其他金屬離子處於維持於離子交換樹脂的原狀態。進一步持續通入鹼金屬鹽溶液時,原本共存於TAA溶液中的金屬離子與構成通入吸附塔的鹼金屬鹽溶液的鹼金屬離子開始溶離。因為原本共存於TAA溶液中的金屬離子本來的濃度就比較稀,所以難以直接檢測其開始流出。此處,根據本發明人等 的檢討,這些金屬離子的溶離舉動顯示與高濃度導入吸附塔的鹼金屬離子的溶離舉動有相同的傾向,前後開始溶離,因此測定該鹼金屬離子的溶離舉動,使該鹼金屬離子的高濃度流出液不與之前幾乎不含金屬離子的含有TAA離子的回收液混合,可獲得含有高濃度TAA離子,且各金屬離子濃度大幅減少的回收液。 That is, the cation exchange resin in the adsorption tower adsorbs metal ions in addition to the TAA ions as described above, but by passing the alkali metal salt solution into the adsorption tower, the TAA ions are exchanged with the alkali metal ions, preferentially flowing out (dissolution). . On the other hand, other metal ions are maintained in the original state of the ion exchange resin. Further, when the alkali metal salt solution is continuously supplied, the metal ions originally coexisting in the TAA solution start to dissolve with the alkali metal ions constituting the alkali metal salt solution introduced into the adsorption column. Since the original concentration of the metal ion originally coexisting in the TAA solution is relatively thin, it is difficult to directly detect the start of the outflow. Here, according to the present inventors, etc. In the review, the elution behavior of these metal ions shows the same tendency as the elution behavior of the alkali metal ions introduced into the adsorption column at a high concentration, and the elution is started before and after, so that the dissolution behavior of the alkali metal ions is measured to make the alkali metal ions have a high concentration. The effluent is not mixed with the recovery liquid containing TAA ions which hardly contain metal ions, and a recovery liquid containing a high concentration of TAA ions and having a large concentration of each metal ion can be obtained.
更具體地說,在填充吸附TAA離子的陽離子交換樹脂的吸附塔,即使開始通入鹼金屬鹽溶液,最初的流出液中的鹼金屬離子濃度為極低濃度(通常未滿0.1ppm)而安定,但是當TAA離子與鹼金屬離子進行交換時,該鹼金屬離子濃度開始急遽上升,遠遠超過1ppm,達到數十至數百ppm。此時,僅將該上升即將開始之前的部分回收於貯留槽,之後的流出液另外分出,可獲得高回收率且高純度的TAA鹽。 More specifically, in the adsorption tower filled with the cation exchange resin adsorbing TAA ions, even if the alkali metal salt solution is introduced, the concentration of the alkali metal ions in the initial effluent is extremely low (usually less than 0.1 ppm) and stabilized. However, when the TAA ion exchanges with the alkali metal ion, the alkali metal ion concentration starts to rise sharply, far exceeding 1 ppm, reaching tens to hundreds of ppm. At this time, only the portion immediately before the rise is recovered in the storage tank, and the subsequent effluent is separately separated, whereby a TAA salt having high recovery and high purity can be obtained.
此述鹼金屬離子濃度是否開始急遽上升的判斷基準為,當該鹼金屬離子濃度的測定單元為極高靈敏度的情形時,在達到設定為安定值的10至10000倍,較佳為10至5000倍的點的任意濃度(特定值)之前,較佳在即將達到任意濃度之前,停止於貯留槽的回收。 The criterion for determining whether or not the alkali metal ion concentration starts to rise sharply is that when the measurement unit of the alkali metal ion concentration is extremely sensitive, it is 10 to 10,000 times, preferably 10 to 5,000, which is set to a stable value. Before any concentration (specific value) of the double point, it is preferred to stop the recovery of the storage tank just before reaching any concentration.
另一方面,採用離子電極等的靈敏度較低的測定單元時,初期安定值可為未滿測定下限值的情形。此種情形可以在達到鹼金屬離子濃度設定為0.5~10mg/L之間的任意濃度(特定值)前停止貯留槽的回收來代替。例如一般的鹼金屬離子電極的測定限制多為1mg/L的情形,因此在低於測定的下限值回收於貯留槽,顯示1mg/L值以後的流出液就停止回收於貯留 槽。 On the other hand, when a measurement unit having a low sensitivity such as an ion electrode is used, the initial stability value may be less than the measurement lower limit value. In this case, the recovery of the storage tank can be stopped before the alkali metal ion concentration is set to any concentration (specific value) between 0.5 and 10 mg/L. For example, when the measurement limit of a general alkali metal ion electrode is usually 1 mg/L, it is recovered in the storage tank below the lower limit of the measurement, and the effluent after the value of 1 mg/L is stopped and stored. groove.
在達到上述特定值的鹼金屬離子濃度之前停止流出液回收於貯留槽的方法,沒有特別限定,可以舉出例如第1圖所示,在測定鹼金屬離子濃度的裝置(金屬離子電極)的下方設置流路切換閥,在該金屬離子電極感應流出液中鹼金屬離子濃度上升至特定值的同時,切換閥的流路的方法等。 The method of stopping the recovery of the effluent from the storage tank before reaching the concentration of the alkali metal ions of the above specific value is not particularly limited, and for example, as shown in Fig. 1, below the apparatus (metal ion electrode) for measuring the concentration of the alkali metal ions The flow path switching valve is provided, and the method of switching the flow path of the valve and the like while the alkali metal ion concentration rises to a specific value in the metal ion electrode induced effluent.
在該流出液的金屬離子濃度達到特定值的時點以後的時點,可自行停止液體從吸附塔流出,但為了使陽離子交換樹脂再生、可被再次利用,較佳以上述切換閥等的流路變換單元,於上述貯留槽回收流向別的貯留槽等的流出液。 When the metal ion concentration of the effluent reaches a specific value, the liquid can be stopped from flowing out of the adsorption tower by itself. However, in order to regenerate the cation exchange resin and reuse it, it is preferable to change the flow path of the switching valve or the like. The unit recovers the effluent flowing to another storage tank or the like in the storage tank.
金屬離子濃度的測定方法可適當採用習知方法。具體例如,採集一定量從吸附塔流出的流出液,使用金屬離子電極等測定金屬離子的方法或者在將流出液導入貯留槽的管路中設置內嵌(inline)型的金屬離子電極而測定的方法等。如果使用內嵌(inline)型的金屬離子電極,液體在途中不被取出而可在金屬離子濃度到達特定值的瞬間停止回收,可抑制回收液的損失而為佳。 A method of measuring the metal ion concentration can be suitably carried out by a conventional method. Specifically, for example, a method of measuring a certain amount of the effluent flowing out of the adsorption tower, measuring a metal ion using a metal ion electrode or the like, or measuring an inline type metal ion electrode in a line for introducing the effluent into the storage tank is used. Method, etc. If an inline type metal ion electrode is used, the liquid can be stopped at the moment when the metal ion concentration reaches a specific value without being taken out in the middle, and the loss of the recovered liquid can be suppressed.
又以測定的時間間隔為主,必須根據流出液的流量(流速)來改變。以高流速流動溶液的情形,流出液的金屬離子濃度的變化急遽發生,因此為了獲得所欲性質(金屬離子雜質的濃度)的液體,必須縮短測定的間隔。 It is mainly based on the measured time interval and must be changed according to the flow rate (flow rate) of the effluent. In the case where the solution is flowed at a high flow rate, the change in the concentration of the metal ions of the effluent occurs rapidly, and therefore, in order to obtain a liquid of a desired property (concentration of metal ion impurities), the interval of measurement must be shortened.
(從四烷基銨鹽製造氫氧化四烷基銨的方法) (Method for producing tetraalkylammonium hydroxide from tetraalkylammonium salt)
本發明中,於上述方法從廢液回收的溶液中所含的TAA鹽進行電透析、電解等,可製造TAAH。 In the present invention, TAAH can be produced by subjecting the TAA salt contained in the solution recovered from the waste liquid to electrodialysis, electrolysis or the like in the above method.
而且,在進行電透析或電解之前,可進行所得TAA鹽的純化或濃縮之事。該TAA鹽溶液的純化方法例如使該TAA鹽溶液與陽離子交換樹脂(但事先使反離子置換為TAA離子)及/或螯合樹脂接觸,去除TAA鹽中金屬離子成分的方法,或者使TAA鹽與活性碳等的吸附劑或陰離子交換樹脂接觸,去除光阻劑等的有機物的方法等。 Moreover, the purification or concentration of the resulting TAA salt can be carried out prior to electrodialysis or electrolysis. The method for purifying the TAA salt solution, for example, a method in which the TAA salt solution is contacted with a cation exchange resin (but a counter ion is replaced with a TAA ion in advance) and/or a chelate resin, and a metal ion component in the TAA salt is removed, or a TAA salt is used. A method of removing an organic substance such as a photoresist by contact with an adsorbent such as activated carbon or an anion exchange resin.
TAA鹽的濃縮方法具體例如透過電透析、蒸發罐、逆浸透膜的濃縮方法等。 The method of concentrating the TAA salt is specifically, for example, a method of concentrating by electrodialysis, an evaporation can, a reverse osmosis membrane, or the like.
(TAAH的製造:TAA鹽的電解步驟) (Manufacture of TAAH: Electrolysis step of TAA salt)
對於使所得TAA鹽電解而形成TAAH的電解步驟,沒有特別限制,可視回收的TAA鹽的種類(相當於構成所使用的鹼金屬鹽的酸成分),使用公知的方法。例如回收的TAA鹽為碳酸鹽的情形,如特許3109525號公報(二室電解:原料供給於陽極室)所記載使用陽極、陰極、陽離子交換膜之電解,使TAA鹽形成TAAH者為佳。 The electrolysis step of electrolyzing the obtained TAA salt to form TAAH is not particularly limited, and a known method can be used depending on the type of the TAA salt to be recovered (corresponding to the acid component constituting the alkali metal salt to be used). For example, in the case where the recovered TAA salt is a carbonate, it is preferred to use an anode, a cathode, or a cation exchange membrane as described in Japanese Patent No. 3109525 (dielectric chamber: raw material supplied to the anode chamber), and it is preferred that the TAA salt form TAAH.
實施例 Example
為了更具體說明本發明,列舉以下之實施例及比較例說明之,但是本發明不限定於此。 In order to explain the present invention more specifically, the following examples and comparative examples are described, but the present invention is not limited thereto.
(陽離子交換樹脂的再生處理(H型陽離子交換樹脂)) (Regeneration treatment of cation exchange resin (H-type cation exchange resin))
使用的陽離子交換樹脂在使用時填充於玻璃塔,依序通入超純水、1N HCl(鹽酸)及超純水,反離子為氫離子。各液以空間速度SV=5(1/小時)通入,各液的使用液量為10L/L-樹脂。 The cation exchange resin used is filled in a glass column at the time of use, and ultrapure water, 1N HCl (hydrochloric acid) and ultrapure water are sequentially introduced, and the counter ion is a hydrogen ion. Each liquid was passed at a space velocity SV = 5 (1/hour), and the liquid amount of each liquid was 10 L/L-resin.
(濃度測定) (concentration determination)
以離子層析法分析氫氧化四甲基銨(TMAH)、四甲基銨鹽(TMA鹽)濃度。 The concentration of tetramethylammonium hydroxide (TMAH) and tetramethylammonium salt (TMA salt) was analyzed by ion chromatography.
具體為,使用DIONEX公司製的ICS2000,於陽離子分析中,柱使用ION-pac CS12A,於陰離子分析中,柱使用ION-pac AS15,陽離子分析中溶離液使用甲烷磺酸分析,陰離子分析中溶離液使用氫氧化鉀,進行分析。 Specifically, using ICS2000 manufactured by DIONEX, in the cation analysis, the column uses ION-pac CS12A, in the anion analysis, the column uses ION-pac AS15, the cation analysis uses the methane sulfonic acid in the solution, and the anion analysis in the solution Analysis was carried out using potassium hydroxide.
溶液中所含的金屬離子濃度以離子電極(可攜式水質計)法(型號:IM-32P(東亞DKK公司製))、高周波誘導結合電漿質量分析(ICP-MS)法(測定裝置:HP-4500(Agilent公司製))、及高周波誘導結合電漿發光分析(ICP-OES)法(測定裝置:iCAP 6500 DUO(THERMO ELECTRON公司製))測定。如未有限定,各濃度為質量基準。 The concentration of the metal ions contained in the solution is determined by an ion electrode (portable water quality) method (model: IM-32P (manufactured by East Asia DKK)), high frequency induced combined plasma mass spectrometry (ICP-MS) method (measurement device: HP-4500 (manufactured by Agilent Co., Ltd.) and high-cycle induced plasma-infrared spectroscopy (ICP-OES) method (measurement apparatus: iCAP 6500 DUO (manufactured by THERMO ELECTRON)). If not limited, each concentration is a quality basis.
實施例1 Example 1
(TMA離子廢液吸附步驟) (TMA ion waste liquid adsorption step)
將弱酸性陽離子交換樹脂DIAION WK40L(三菱化學公司製)1000ml填充於直徑50mm的柱,樹脂高度510mm。 1000 ml of a weakly acidic cation exchange resin DIAION WK40L (manufactured by Mitsubishi Chemical Corporation) was packed in a column having a diameter of 50 mm, and the resin height was 510 mm.
於上述柱中以SV(空間速度)=100(1/小時)通入0.045質量%的TMAH廢液(光阻顯影廢液,光阻劑含量以COD換算為10ppm,金屬離子濃度:Na:2.5ppb、K:5.4ppb、Ca:4.1ppb、Al:3.2ppb、Ni:2.0ppb、Cu:2.0ppb、Cr:2.5ppb、Fe:5.3ppb)1000L,進行TMA離子的吸附。 In the above column, 0.045 mass% of TMAH waste liquid (photoresist developing waste liquid was introduced at SV (space velocity) = 100 (1/hour), the photoresist content was 10 ppm in terms of COD, and the metal ion concentration: Na: 2.5 Ppb, K: 5.4 ppb, Ca: 4.1 ppb, Al: 3.2 ppb, Ni: 2.0 ppb, Cu: 2.0 ppb, Cr: 2.5 ppb, Fe: 5.3 ppb) 1000 L, for adsorption of TMA ions.
(TMA離子的溶離步驟) (Solution step of TMA ions)
之後以SV=4(1/小時)通入作為溶離液的5000ml的2N碳酸鈉,使吸附的TMA離子形成TMA碳酸鹽而溶離。流 出液以每次500ml依次分取,分別取出10個液體(分別液A~J)。測定這些分別液的TMA碳酸鹽濃度、金屬離子濃度。結果如表1所示。 Thereafter, 5000 ml of 2N sodium carbonate as a solution was introduced at SV = 4 (1/hour), and the adsorbed TMA ions were dissolved to form TMA carbonate. flow The liquid was separated by 500 ml each time, and 10 liquids were respectively taken out (liquids A to J, respectively). The TMA carbonate concentration and the metal ion concentration of these respective liquids were measured. The results are shown in Table 1.
從表1結果可知,鈉離子濃度為下限值以上的I,金屬離子濃度增加。分別液C至H回收時的回收量總計為3000ml,TMA碳酸鹽的濃度為9.7質量%(0.46mol/l)。 As is clear from the results in Table 1, the sodium ion concentration is equal to or higher than the lower limit value, and the metal ion concentration is increased. The recovery amount in the respective liquids C to H recovery was 3000 ml, and the concentration of TMA carbonate was 9.7% by mass (0.46 mol/l).
實施例2 Example 2
(TMA離子吸附步驟) (TMA ion adsorption step)
將弱酸性陽離子交換樹脂LEWATIT CNP80WS(LANXESS公司製)1000ml填充於直徑50mm的柱,樹脂高度510mm。 1000 ml of a weakly acidic cation exchange resin LEWATIT CNP80WS (manufactured by LANXESS Co., Ltd.) was packed in a column having a diameter of 50 mm, and the resin height was 510 mm.
於上述柱中以SV(空間速度)=100(1/小時)通入0.045質量%的TMAH廢液(光阻顯影廢液,光阻劑含量以COD換算為10ppm,金屬離子濃度:Na:2.5ppb、K:5.4ppb、Ca:4.1ppb、Al:3.2ppb、Ni:2.0ppb、Cu:2.0ppb、Cr:2.5ppb、Fe:5.3ppb)1000L,進行TMA離子的吸附。 In the above column, 0.045 mass% of TMAH waste liquid (photoresist developing waste liquid was introduced at SV (space velocity) = 100 (1/hour), the photoresist content was 10 ppm in terms of COD, and the metal ion concentration: Na: 2.5 Ppb, K: 5.4 ppb, Ca: 4.1 ppb, Al: 3.2 ppb, Ni: 2.0 ppb, Cu: 2.0 ppb, Cr: 2.5 ppb, Fe: 5.3 ppb) 1000 L, for adsorption of TMA ions.
(TMA離子的溶離步驟) (Solution step of TMA ions)
之後以SV=5(1/小時)通入作為TMA離子溶離步驟的溶離液之5000ml的2N碳酸鉀,使吸附的TMA離子形成TMA碳酸鹽而溶離。流出液以每次500ml依次分取,分別取出10個液體(分別液A~J)。測定這些分別液的TMA碳酸鹽濃度、金屬離子濃度。結果如表2所示。 Thereafter, 5000 ml of 2N potassium carbonate as a solution of the TMA ion dissolving step was introduced at SV = 5 (1/hour), and the adsorbed TMA ions were formed into TMA carbonate to be dissolved. The effluent was sequentially dispensed in 500 ml each time, and 10 liquids (separate liquids A to J) were taken out respectively. The TMA carbonate concentration and the metal ion concentration of these respective liquids were measured. The results are shown in Table 2.
從表2結果可知,鉀離子濃度為下限值以上的I,金屬離子濃度增加。分別液C至H回收時的回收量總計為3000ml,TMA碳酸鹽的濃度為9.1質量%(0.44mol/l)。 As is clear from the results in Table 2, the potassium ion concentration is equal to or higher than the lower limit value, and the metal ion concentration is increased. The recovery amount in the liquid C to H recovery was 3,000 ml in total, and the concentration of TMA carbonate was 9.1% by mass (0.44 mol/l).
實施例3 Example 3
(TMA離子吸附步驟) (TMA ion adsorption step)
將弱酸性陽離子交換樹脂Duolite C476(住化Chemtex公司製)1000ml填充於直徑50mm的柱,樹脂高度510mm。 1000 ml of a weakly acidic cation exchange resin Duolite C476 (manufactured by Sumitomo Chemtex Co., Ltd.) was packed in a column having a diameter of 50 mm, and the resin height was 510 mm.
於上述柱中以SV(空間速度)=100(1/小時)通入0.045質量%的TMAH廢液(光阻顯影廢液,光阻劑含量以COD 換算為10ppm,金屬離子濃度:Na:2.5ppb、K:5.4ppb、Ca:4.1ppb、Al:3.2ppb、Ni:2.0ppb、Cu:2.0ppb、Cr:2.5ppb、Fe:5.3ppb)1000L,進行TMA離子的吸附。 0.045 mass% of TMAH waste liquid (photoresist developing waste liquid, photoresist content in COD) was introduced into the above column at SV (space velocity) = 100 (1/hour) Conversion to 10 ppm, metal ion concentration: Na: 2.5 ppb, K: 5.4 ppb, Ca: 4.1 ppb, Al: 3.2 ppb, Ni: 2.0 ppb, Cu: 2.0 ppb, Cr: 2.5 ppb, Fe: 5.3 ppb) 1000 L, Adsorption of TMA ions.
(TMA離子的溶離步驟) (Solution step of TMA ions)
之後以SV=3(1/小時)通入作為TMA離子溶離步驟的溶離液之8000ml的1N碳酸鈉,使吸附的TMA離子形成TMA碳酸鹽而溶離。流出液以每次500ml依次分取,分別取出16個液體(分別液A~P)。測定這些分別液的TMA碳酸鹽濃度、金屬離子濃度。結果如表3所示。 Thereafter, 8000 ml of 1 N sodium carbonate as a solution of the TMA ion dissolving step was introduced at SV = 3 (1/hour), and the adsorbed TMA ions were dissolved to form TMA carbonate. The effluent was sequentially dispensed in 500 ml each time, and 16 liquids (liquids A to P, respectively) were taken out. The TMA carbonate concentration and the metal ion concentration of these respective liquids were measured. The results are shown in Table 3.
從表3結果可知,鈉離子濃度為下限值以上的N,金屬離子濃度增加。分別液C至M回收時的回收量總計為5500ml,TMA碳酸鹽的濃度為6.2質量%(0.30mol/l) As is clear from the results in Table 3, the concentration of the metal ion is increased by the N concentration of the sodium ion or more. The recovery amount of the respective liquids C to M was 5,500 ml, and the concentration of TMA carbonate was 6.2% by mass (0.30 mol/l).
實施例4 Example 4
(純化步驟) (purification step)
分別準備事先與鹽酸、超純水接觸、已進行再生處理的螯合樹脂(Rohme and Haas公司製的Duolite C747)1000ml所填充的直徑50mm柱(樹脂高度510mm),以及填充陽離子交換樹脂(Rohme and Haas公司製的Amberlist 15J)1000ml的直徑50mm柱(樹脂高度510mm)。 A 50 mm diameter column (resin height 510 mm) filled with a chelating resin (Duolite C747 manufactured by Rohme and Haas Co., Ltd.) which had been previously contacted with hydrochloric acid or ultrapure water and subjected to regeneration treatment, and a cation exchange resin (Rohme and filled) were prepared. Amberlist 15J manufactured by Haas Co., Ltd. 1000 ml diameter 50 mm column (resin height 510 mm).
將實施例1的分別液C~H通入上述螯合樹脂柱,獲得處理液A。之後,將處理液A通入陽離子交換樹脂柱,獲得處理液B。對處理液A、B進行液體分析,結果如表4所示。 The respective liquids C to H of Example 1 were introduced into the above-mentioned chelate resin column to obtain a treatment liquid A. Thereafter, the treatment liquid A is introduced into a cation exchange resin column to obtain a treatment liquid B. Liquid analysis was performed on the treatment liquids A and B, and the results are shown in Table 4.
實施例5 Example 5
從實施例4所得到的處理液B經蒸發濃縮裝置濃縮至TMA碳酸鹽濃度達到26.1質量%。將所得的TMA碳酸鹽進行電解步驟,進行TMAH的製造。 The treatment liquid B obtained in Example 4 was concentrated by an evaporation concentration device to a TMA carbonate concentration of 26.1% by mass. The obtained TMA carbonate was subjected to an electrolysis step to produce TMAH.
電解步驟使用配置陽極、陽離子交換膜(Nafion 90209(DuPont公司製))、陰極的二室型電解槽。上述離子交換膜的有效膜面積為2dm2,Nafion膜具有羧酸基的一面向陰極側設置。陽極使用有白金電鍍的鈦板,陰極使用SUS 316。上述電解槽的陽極室以TMA碳酸鹽循環,陰極室以純水循環, 電流密度18A/dm2,溫度維持在40℃,並同時連續實施電解。連續運轉中,陰極室的TMAH濃度成為18質量%。相同地,各室循環的液體的濃度維持一定,濃度變濃時添加純水,變稀時添加其成分。 For the electrolysis step, a two-chamber type electrolytic cell equipped with an anode, a cation exchange membrane (Nafion 90209 (manufactured by DuPont)), and a cathode was used. The ion exchange membrane has an effective membrane area of 2 dm 2 and the Nafion membrane has a carboxylic acid group facing the cathode side. The anode was made of a platinum plated platinum plate and the cathode was made of SUS 316. The anode chamber of the above electrolytic cell was circulated with TMA carbonate, the cathode chamber was circulated with pure water, the current density was 18 A/dm 2 , the temperature was maintained at 40 ° C, and electrolysis was continuously performed at the same time. In the continuous operation, the TMAH concentration of the cathode chamber was 18% by mass. Similarly, the concentration of the liquid circulating in each chamber is maintained constant, and pure water is added when the concentration becomes rich, and the components are added when it is diluted.
電解開始後,使運轉狀態安定,進行12小時後(安定時)及3個月的連續運轉,所得的TMAH的分析結果如表5所示。 After the start of electrolysis, the operation state was stabilized, and after 12 hours (safety) and continuous operation for 3 months, the analysis results of the obtained TMAH are shown in Table 5.
比較例1 Comparative example 1
除了實施例1中的流出液不進行金屬離子電極的測定,而進行導電率及pH的測定以外,其餘同實施例1進行。TMA離子溶離步驟中,每次500ml依次分取流出液,分別取出10個液體(分別液A~J)。測定這些分別液的TMA碳酸鹽濃度、金屬離子濃度、導電率及pH。結果如表6所示。 The same procedure as in Example 1 was carried out except that the effluent in Example 1 was measured without measuring the metal ion electrode and the conductivity and pH were measured. In the TMA ion dissolving step, the effluent was sequentially dispensed in 500 ml each time, and 10 liquids (respectively liquids A to J) were taken out. The TMA carbonate concentration, metal ion concentration, conductivity, and pH of these respective liquids were measured. The results are shown in Table 6.
從表6結果可知,混入鈉離子的分別液H、I中導電率或pH值的變化率沒有差異。這些在鹼金屬鹽為溶離液的情形時,顯示以導電率或pH值難以控制回收液中金屬離子雜質的混入。 From the results of Table 6, it is understood that there is no difference in the rate of change in conductivity or pH between the respective liquids H and I in which sodium ions are mixed. In the case where the alkali metal salt is an eluent, it is difficult to control the incorporation of metal ion impurities in the recovered liquid at the conductivity or the pH.
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011237128A JP5808221B2 (en) | 2011-10-28 | 2011-10-28 | Method for producing tetraalkylammonium salt solution |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201323089A TW201323089A (en) | 2013-06-16 |
TWI549753B true TWI549753B (en) | 2016-09-21 |
Family
ID=48167924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101139636A TWI549753B (en) | 2011-10-28 | 2012-10-26 | Tetraalkylammonium salt solution |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5808221B2 (en) |
KR (1) | KR101987409B1 (en) |
CN (1) | CN103732573B (en) |
TW (1) | TWI549753B (en) |
WO (1) | WO2013062100A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108623052A (en) * | 2017-03-22 | 2018-10-09 | 三福化工股份有限公司 | Method for recovering tetramethyl ammonium hydroxide in secondary waste liquid of developing waste liquid |
WO2020067365A1 (en) * | 2018-09-28 | 2020-04-02 | 株式会社トクヤマ | Method for producing organic solvent solution of quaternary ammonium hydroxide |
CN112999694A (en) * | 2021-03-24 | 2021-06-22 | 沧州信联化工有限公司 | Raw material refining device for processing tetramethylammonium hydroxide and use method thereof |
CN114920658B (en) * | 2022-06-28 | 2024-05-03 | 大连理工大学盘锦产业技术研究院 | A method for purifying choline hydroxide using ion exchange resin |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011074495A1 (en) * | 2009-12-15 | 2011-06-23 | 株式会社トクヤマ | Method for reusing waste liquid from which tetraalkylammonium ions have been removed |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3109525B2 (en) | 1990-12-27 | 2000-11-20 | クロリンエンジニアズ株式会社 | Method for regenerating tetraalkylammonium hydroxide |
JP3110513B2 (en) | 1991-10-16 | 2000-11-20 | クロリンエンジニアズ株式会社 | Method for regenerating tetraalkylammonium hydroxide |
EP0597460B1 (en) * | 1992-11-10 | 1997-01-22 | Tama Chemicals Co., Ltd. | Method of processing organic quaternary ammonium hydroxide-containing waste liquid |
JP2688009B2 (en) | 1992-11-26 | 1997-12-08 | 多摩化学工業株式会社 | Method for recovering organic quaternary ammonium hydroxide from waste liquid |
JP3216998B2 (en) | 1996-08-12 | 2001-10-09 | 昭和電工株式会社 | Purification and recovery of tetraalkylammonium hydroxide from waste developer |
US5968338A (en) | 1998-01-20 | 1999-10-19 | Sachem, Inc. | Process for recovering onium hydroxides from solutions containing onium compounds |
US6508940B1 (en) * | 2000-10-20 | 2003-01-21 | Sachem, Inc. | Process for recovering onium hydroxides from solutions containing onium compounds |
JP2003340449A (en) * | 2002-05-27 | 2003-12-02 | Babcock Hitachi Kk | Method for treating waste water containing tetraalkylammonium hydroxide |
JP2004066102A (en) | 2002-08-06 | 2004-03-04 | Babcock Hitachi Kk | Waste liquid treatment method and equipment therefor |
JP4385407B2 (en) | 2007-04-05 | 2009-12-16 | オルガノ株式会社 | Method for treating tetraalkylammonium ion-containing liquid |
JP5483958B2 (en) * | 2009-06-03 | 2014-05-07 | 株式会社トクヤマ | Method for producing tetraalkylammonium hydroxide |
CN103080070B (en) * | 2010-12-28 | 2015-02-25 | 德山株式会社 | Process for producing tetraalkylammonium salt, and process for producing tetraalkylammonium hydroxide using same as raw material |
-
2011
- 2011-10-28 JP JP2011237128A patent/JP5808221B2/en active Active
-
2012
- 2012-10-26 CN CN201280038087.0A patent/CN103732573B/en active Active
- 2012-10-26 TW TW101139636A patent/TWI549753B/en active
- 2012-10-26 KR KR1020147005045A patent/KR101987409B1/en active IP Right Grant
- 2012-10-26 WO PCT/JP2012/077779 patent/WO2013062100A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011074495A1 (en) * | 2009-12-15 | 2011-06-23 | 株式会社トクヤマ | Method for reusing waste liquid from which tetraalkylammonium ions have been removed |
Also Published As
Publication number | Publication date |
---|---|
CN103732573A (en) | 2014-04-16 |
KR20140079762A (en) | 2014-06-27 |
CN103732573B (en) | 2016-05-18 |
WO2013062100A1 (en) | 2013-05-02 |
TW201323089A (en) | 2013-06-16 |
KR101987409B1 (en) | 2019-06-10 |
JP2013095673A (en) | 2013-05-20 |
JP5808221B2 (en) | 2015-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI495509B (en) | Method for preparing tetraalkylammonium salts and preparing tetraalkylammonium hydroxide using the same | |
JP5189255B2 (en) | Iodine recovery from polarizing film manufacturing wastewater | |
TWI485003B (en) | Method for producing tetraalkylammonium salt aqueous solution | |
TWI549753B (en) | Tetraalkylammonium salt solution | |
EP1337470B1 (en) | Process for recovering onium hydroxides from solutions containing onium compounds | |
CN102510853A (en) | Process for production of tetraalkylammonium hydroxide | |
JP2007181833A (en) | Method for treating tetraalkylammonium ion-containing solution | |
TWI399342B (en) | Process for the preparation of waste liquid containing tetraalkylammonium ion | |
JP5483958B2 (en) | Method for producing tetraalkylammonium hydroxide | |
TWI583658B (en) | Method for producing high concentration tetraalkylammonium salt aqueous solution | |
CN102686520A (en) | Method for reusing waste liquid from which tetraalkylammonium ions have been removed | |
WO2015016230A1 (en) | Preparation method of aqueous tetraalkyl ammonium salt solution | |
US20240018020A1 (en) | Purification method and purification apparatus for liquid to be processed containing tetraalkylammonium ions |