TWI548964B - Flipped voltage zero compensation circuit - Google Patents
Flipped voltage zero compensation circuit Download PDFInfo
- Publication number
- TWI548964B TWI548964B TW104127530A TW104127530A TWI548964B TW I548964 B TWI548964 B TW I548964B TW 104127530 A TW104127530 A TW 104127530A TW 104127530 A TW104127530 A TW 104127530A TW I548964 B TWI548964 B TW I548964B
- Authority
- TW
- Taiwan
- Prior art keywords
- nmos transistor
- voltage
- current
- source
- zero point
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 28
- 230000003321 amplification Effects 0.000 claims description 8
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Amplifiers (AREA)
- Control Of Electrical Variables (AREA)
Description
本發明係關於零點/極點(zero pole)補償之技術領域,尤指一種電壓翻轉式零點補償電路。 The invention relates to the technical field of zero pole/zero pole compensation, in particular to a voltage flip type zero point compensation circuit.
圖1係一習知低壓降電壓穩壓器(low-dropout voltage regulator)的電路圖,其係例如為美國第6,710,583號專利公告所示的電路圖。於圖1中,一第一頻率補償電容116係與電壓分壓器中的上部電阻(upper resistor)30平行,其中,該電壓分壓器係由該上部電阻30及一下部電阻(lower resistor)32所組成。第一頻率補償電容106與該電壓分壓器提供一零點/極點(zero/pole)對,以在高電流負載時增加電路的相位餘裕(phase margin)。 1 is a circuit diagram of a conventional low-dropout voltage regulator, which is, for example, a circuit diagram shown in the U.S. Patent No. 6,710,583. In FIG. 1, a first frequency compensation capacitor 116 is parallel to an upper resistor 30 in a voltage divider, wherein the voltage divider is composed of the upper resistor 30 and a lower resistor. 32 components. The first frequency compensation capacitor 106 and the voltage divider provide a zero/pole pair to increase the phase margin of the circuit at high current loads.
雖然圖1的電路可以提供一超前的零點(lead zero),然而,當該上部電阻30與該下部電阻32的比值(R1/R2)小的時候,此時,零點(zero)與極點(pole)則相當接近,此會降低相位補償(phase compensation)的效果。 Although the circuit of FIG. 1 can provide a lead zero, however, when the ratio of the upper resistor 30 to the lower resistor 32 (R1/R2) is small, at this time, zero and pole (pole) ) is quite close, which reduces the effect of phase compensation.
於Chaitanya K.Chava,José Silva-Martínez,et al.等人在IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,VOL.51,NO.6,pp.1041-1050,2004所發表的「A Frequency Compensation Scheme for LDO Voltage Regulators」論文中,其提供一低壓降線性穩壓(low dropout voltage regulator,LDO voltage regulator)技術。圖2係該論文所揭露之一跨導增益增強架構(transconductance gain enhanced structure),其在一迴授中使用一跨導運算放大器(operational transconductance amplifier,OTA),以增強跨導(transconductance)。圖3係圖2的詳細電路圖。如圖3所示,其包含一二極體連接的差動放大器310、一源極追隨器(source follower)320、及一電流鏡330。該二極體連接的差動放大器310係作為一位準轉換緩衝器(level-shifting buffer),以將直流位準下移(down-shift)使輸出電壓應用範圍增加,同時將補償的零點/極點分離。該源極追隨器320產生與一補償電容340相關的電流。該電流鏡330產生一比例的輸出電流。 "A Frequency Compensation" by Chaitanya K. Chava, José Silva-Martínez, et al. et al., IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 51, No. 6, pp. 1041-1050, 2004 In the paper for Scheme for LDO Voltage Regulators, it provides a low dropout voltage regulator (LDO voltage regulator) technology. FIG. 2 is a transconductance gain enhanced structure disclosed in the paper, which uses an operational transconductance amplifier (OTA) in a feedback to enhance transconductance. Figure 3 is a detailed circuit diagram of Figure 2. As shown in FIG. 3, it includes a diode-connected differential amplifier 310, a source follower 320, and a current mirror 330. The diode-connected differential amplifier 310 acts as a level-shifting buffer to down-shift the DC level to increase the output voltage application range while simultaneously compensating the zero point/ Pole separation. The source follower 320 produces a current associated with a compensation capacitor 340. The current mirror 330 produces a proportional output current.
圖3的電路雖可提供多餘的相位餘裕(phase margin),但是輸出電壓的電壓裕量(voltage headroom)卻大幅度縮小,而限制了其應用範圍。 Although the circuit of Figure 3 can provide excessive phase margin, the voltage headroom of the output voltage is greatly reduced, which limits its application range.
圖4係另一習知低壓降電壓穩壓器(low-dropout voltage regulator)的電路圖,其係例如為美國第7,746,047號專利公告所示的電路圖。於圖4中,其使用一電壓控制電流源(voltage controlled current source,VCCS)210以將小訊號電流注入節點B,並以補償電容410來進行零點/極點(zero/pole)補償。然而節點B上的電壓Vfb需大於2×Vov當中Vov為電晶體420、430的驅動電壓(overdrive voltage),此限制了該電壓控制電流源210的應用範圍。另外其所產生之極點與補嘗零點並未夠分離,因此,習知零點/極點(zero pole)補償技術仍有改善的空間。 Figure 4 is a circuit diagram of another conventional low-dropout voltage regulator, which is, for example, a circuit diagram shown in U.S. Patent No. 7,746,047. In FIG. 4, a voltage controlled current source (VCCS) 210 is used to inject a small signal current into the node B, and the compensation capacitor 410 is used for zero/pole compensation. However, the voltage Vfb on the node B needs to be greater than 2×Vov, and Vov is the overdrive voltage of the transistors 420 and 430, which limits the application range of the voltage control current source 210. In addition, the poles generated by it are not separated from the zero point. Therefore, there is still room for improvement in the conventional zero pole compensation technique.
本發明之目的主要係在提供一電壓翻轉式零點補償電路,其可提供較佳的相位補償,以增加電路的穩定性。 The object of the present invention is primarily to provide a voltage flip type zero point compensation circuit that provides better phase compensation to increase circuit stability.
依據本發明之一特色,本發明提出一種電壓翻轉式零點補償電路,其係用於一輸出端以進行零點/極點補償,該電壓翻轉式零點補償電路包括一電容、一放大器、一第一電流鏡、及一第二電流鏡。該電容連接至該輸出端,以接收該輸出端之電壓。該放大器連接至該電容,以將該輸出端之電壓放大。第一電流鏡連接至該放大器(Mn1),以將該放大器的電流放大。該第二電流鏡連接至該第一電流鏡,以將該第一電流鏡的電流放大,其中,該第二電流鏡的一第一端點經由一第一外部電阻耦合至該輸出端。 According to a feature of the present invention, the present invention provides a voltage inversion zero compensation circuit for an output terminal for zero/pole compensation. The voltage inversion zero compensation circuit includes a capacitor, an amplifier, and a first current. a mirror and a second current mirror. The capacitor is coupled to the output to receive the voltage at the output. The amplifier is coupled to the capacitor to amplify the voltage at the output. A first current mirror is coupled to the amplifier (Mn1) to amplify the current of the amplifier. The second current mirror is coupled to the first current mirror to amplify the current of the first current mirror, wherein a first end of the second current mirror is coupled to the output via a first external resistor.
116‧‧‧第一頻率補償電容 116‧‧‧First frequency compensation capacitor
30‧‧‧上部電阻 30‧‧‧ Upper resistance
32‧‧‧下部電阻 32‧‧‧lower resistance
310‧‧‧二極體連接的差動放大器 310‧‧‧Diode connected differential amplifier
320‧‧‧源極追隨器 320‧‧‧Source follower
330‧‧‧電流鏡 330‧‧‧current mirror
340‧‧‧補償電容 340‧‧‧Compensation capacitance
210‧‧‧電壓控制電流源 210‧‧‧Voltage Control Current Source
410‧‧‧補償電容 410‧‧‧Compensation capacitance
B‧‧‧節點 B‧‧‧ node
420、430‧‧‧電晶體 420, 430‧‧‧Optoelectronics
500‧‧‧電壓翻轉式零點補償電路 500‧‧‧Voltage flip zero compensation circuit
C1‧‧‧電容 C1‧‧‧ capacitor
Mn1‧‧‧放大器 Mn1‧‧‧Amplifier
510‧‧‧第一電流鏡 510‧‧‧First current mirror
520‧‧‧第二電流鏡 520‧‧‧second current mirror
IA‧‧‧第一電流源 IA‧‧‧first current source
IB‧‧‧第二電流源 IB‧‧‧second current source
IC‧‧‧第三電流源 IC‧‧‧ third current source
Vbias‧‧‧偏壓電壓 Vbias‧‧‧ bias voltage
Vdd‧‧‧高電位 Vdd‧‧‧High potential
Gnd‧‧‧低電位 Gnd‧‧‧ low potential
Mn1‧‧‧第一NMOS電晶體 Mn1‧‧‧First NMOS transistor
Mn2‧‧‧第二NMOS電晶體 Mn2‧‧‧second NMOS transistor
Mn3‧‧‧第三NMOS電晶體 Mn3‧‧‧ third NMOS transistor
Mp1‧‧‧第一PMOS電晶體 Mp1‧‧‧First PMOS transistor
Mp2‧‧‧第二NMOS電晶體 Mp2‧‧‧Second NMOS transistor
FB‧‧‧第一端點 FB‧‧‧ first endpoint
Rf1‧‧‧第一外部電阻 Rf1‧‧‧ first external resistor
Rf2‧‧‧第二外部電阻 Rf2‧‧‧ second external resistor
710‧‧‧放大器 710‧‧Amplifier
800‧‧‧電壓翻轉式零點補償電路 800‧‧‧Voltage flip zero compensation circuit
Vout‧‧‧電壓 Vout‧‧‧ voltage
圖1係一習知低壓降電壓穩壓器的電路圖。 Figure 1 is a circuit diagram of a conventional low dropout voltage regulator.
圖2係一習知跨導增益增強架構。 Figure 2 is a conventional transconductance gain enhancement architecture.
圖3係圖2的詳細電路圖。 Figure 3 is a detailed circuit diagram of Figure 2.
圖4係另一習知低壓降電壓穩壓器的電路圖。 4 is a circuit diagram of another conventional low dropout voltage regulator.
圖5係本發明一種電壓翻轉式零點補償電路之電路圖。 Figure 5 is a circuit diagram of a voltage flip type zero point compensation circuit of the present invention.
圖6係本發明電壓翻轉式零點補償電路與習知IEEE論文的模擬示意圖。 6 is a schematic diagram of simulation of a voltage flip type zero point compensation circuit of the present invention and a conventional IEEE paper.
圖7係本發明電壓翻轉式零點補償電路的運用示意圖。 FIG. 7 is a schematic diagram of the operation of the voltage flip type zero point compensation circuit of the present invention.
圖8係本發明一種電壓翻轉式零點補償電路之另一電路圖。 FIG. 8 is another circuit diagram of a voltage flip type zero point compensation circuit of the present invention.
圖5係依據本發明一較佳實施例的一種電壓翻轉式零點補償電路500之電路圖,係用於一輸出端(Vout)以進行零點/極點(zero/pole)補償。如圖5所示,該電壓翻轉式零點補償電路500包括一電容C1、一放大器Mn1、一第一電流鏡510、一第二電流鏡520、一第一電流源IA、一第二電流源IB、及一第三電流源IC。 FIG. 5 is a circuit diagram of a voltage flip type zero point compensation circuit 500 for an output (Vout) for zero/pole compensation in accordance with a preferred embodiment of the present invention. As shown in FIG. 5, the voltage inversion zero compensation circuit 500 includes a capacitor C1, an amplifier Mn1, a first current mirror 510, a second current mirror 520, a first current source IA, and a second current source IB. And a third current source IC.
該電容C1連接至該輸出端,以接收該輸出端之電壓Vout。該放大器Mn1連接至該電容C1,以將該輸出端之電壓Vout放大。於本較佳實施例中,該放大器Mn1為一第一NMOS電晶體Mn1,該第一NMOS電晶體Mn1係共閘極(common gate)組態,以放大該輸出端電壓Vout。 The capacitor C1 is connected to the output to receive the voltage Vout of the output. The amplifier Mn1 is connected to the capacitor C1 to amplify the voltage Vout at the output. In the preferred embodiment, the amplifier Mn1 is a first NMOS transistor Mn1, and the first NMOS transistor Mn1 is configured as a common gate to amplify the output voltage Vout.
該第一電流鏡510連接至該放大器Mn1,以將該放大器Mn1的電流放大。該第一電流鏡510為由一第二NMOS電晶體Mn2及一第三NMOS電晶體Mn3所組成。該第一電流鏡510的電流放大比例為1:M。藉由第二NMOS電晶體Mn2的寬長比(W2/L2)及第三NMOS電晶體Mn3的寬長比(W3/L3)即可達成,故該第一電流鏡510的電流放大比例可為1:2.5(=2:5)。於本實施例中,M可為大於0的數值,較佳可為大於1的數值,且M並不限定為整數。該第二電流鏡520連接至該第一電流鏡510,以將該第一電流鏡510的電流放大。該第二電流鏡520為由一第一PMOS電晶體Mp1及一第二NMOS電晶體Mp2所組成。該第二電流鏡520的電流放大比例為1:N,N較佳可為大於1的數值,且N並不限定為整數。其中,該第二電流鏡520的一第一端點FB經由一第一外部電阻Rf1耦合至該輸出端。 The first current mirror 510 is coupled to the amplifier Mn1 to amplify the current of the amplifier Mn1. The first current mirror 510 is composed of a second NMOS transistor Mn2 and a third NMOS transistor Mn3. The current amplification ratio of the first current mirror 510 is 1:M. The width-to-length ratio (W2/L2) of the second NMOS transistor Mn2 and the aspect ratio (W3/L3) of the third NMOS transistor Mn3 can be achieved, so that the current amplification ratio of the first current mirror 510 can be 1:2.5 (= 2: 5). In the present embodiment, M may be a value greater than 0, preferably a value greater than 1, and M is not limited to an integer. The second current mirror 520 is coupled to the first current mirror 510 to amplify the current of the first current mirror 510. The second current mirror 520 is composed of a first PMOS transistor Mp1 and a second NMOS transistor Mp2. The current amplification ratio of the second current mirror 520 is 1:N, N is preferably a value greater than 1, and N is not limited to an integer. The first terminal FB of the second current mirror 520 is coupled to the output terminal via a first external resistor Rf1.
如圖5所示,該第一電流源IA的一端連接至一高電位Vdd,另一端連接至該第一NMOS電晶體Mn1的汲極D、該第二NMOS電晶體Mn2的閘極G、及該第三NMOS電晶體Mn3的閘極G。該第一NMOS電晶體Mn1的源極S連接至該電容C1的一端、及該第二NMOS電晶體Mn2的汲極D,該第一NMOS電晶體Mn1的閘極G連接至一偏壓電壓Vbias,該電容C1的另一端連接至輸出端(Vout)。 As shown in FIG. 5, one end of the first current source IA is connected to a high potential Vdd, and the other end is connected to the drain D of the first NMOS transistor Mn1, the gate G of the second NMOS transistor Mn2, and The gate G of the third NMOS transistor Mn3. The source S of the first NMOS transistor Mn1 is connected to one end of the capacitor C1 and the drain D of the second NMOS transistor Mn2. The gate G of the first NMOS transistor Mn1 is connected to a bias voltage Vbias. The other end of the capacitor C1 is connected to the output terminal (Vout).
該第二NMOS電晶體Mn2的源極S連接至一低電位Gnd,該第三NMOS電晶體Mn3的源極S連接至該低電位Gnd,其汲極D連接至該第二電流源IB的一端、該第一PMOS電晶體Mp1的汲極D、該第一PMOS電晶體Mp1的閘極G、及該第二PMOS電晶體Mp2的閘極G,該第二電流源IB的另一端連接至該高電位Vdd。 The source S of the second NMOS transistor Mn2 is connected to a low potential Gnd, the source S of the third NMOS transistor Mn3 is connected to the low potential Gnd, and the drain D thereof is connected to one end of the second current source IB a drain D of the first PMOS transistor Mp1, a gate G of the first PMOS transistor Mp1, and a gate G of the second PMOS transistor Mp2, and the other end of the second current source IB is connected to the gate High potential Vdd.
該第一PMOS電晶體Mp1的源極S連接至該高電位Vdd。該第二PMOS電晶體Mp2的源極S連接至該高電位Vdd,其汲極D經由該第一端點FB連接至該第三電流源IC的一端、該第一外部電阻Rf1的一端、及一第二外部電阻Rf2的一端。該第三電流源IC的另一端連接至該低電位Gnd。該第一外部電阻Rf1的另一端連接至該輸出端。該第二外部電阻Rf2的另一端連接至該低電位Gnd。 The source S of the first PMOS transistor Mp1 is connected to the high potential Vdd. The source S of the second PMOS transistor Mp2 is connected to the high potential Vdd, and the drain D thereof is connected to one end of the third current source IC, one end of the first external resistor Rf1, and One end of a second external resistor Rf2. The other end of the third current source IC is connected to the low potential Gnd. The other end of the first external resistor Rf1 is connected to the output terminal. The other end of the second external resistor Rf2 is connected to the low potential Gnd.
由圖5可知,流經該第三NMOS電晶體Mn3的電流為M×IA,流經該第一PMOS電晶體Mp1的電流為M×IA-IB,流經該第二NMOS電晶體Mp2的電流為N×[M×IA-IB],因此流經該第三電流源IC的電流為N×[M×IA-IB]。 As can be seen from FIG. 5, the current flowing through the third NMOS transistor Mn3 is M×IA, the current flowing through the first PMOS transistor Mp1 is M×IA-IB, and the current flowing through the second NMOS transistor Mp2. It is N × [M × IA - IB], so the current flowing through the third current source IC is N × [M × IA - IB].
由電路分析可知,該電壓翻轉式零點補償電路500的極點係以下列公式表示:。 It can be seen from the circuit analysis that the pole of the voltage inversion zero compensation circuit 500 is expressed by the following formula:
該電壓翻轉式零點補償電路500的零點係以下列公式表示:
由公式(1)及公式(2)可得知,該電壓翻轉式零點補償電路500的極點與零點的比值為:
由公式(3)可知,該電壓翻轉式零點補償電路500的極點與零點相距很遠,不會有習知技術中零點與極點相當接近的問題,因此本發明技術具有相位補償(phase compensation)的效果。 It can be seen from the formula (3) that the pole of the voltage flip type zero point compensation circuit 500 is far from the zero point, and there is no problem that the zero point and the pole point are quite close in the prior art, so the technology of the present invention has phase compensation. effect.
圖6係本發明電壓翻轉式零點補償電路500與IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,VOL.51,NO.6,pp.1041-1050,2004所發表的「A Frequency Compensation Scheme for LDO Voltage Regulators」論文的模擬示意圖。如圖6所示,在37.96KHz頻率處,本發明電壓翻轉式零點補償電路500的最大補償相位可達79.9°,而習知技術的最大補償相位僅為8.2°,不論由公式(3)或是模擬結 果,本發明電壓翻轉式零點補償電路500確實可將極點與零點分離,而達相位補償的目的,進而增加系統的穩定度。 Figure 6 is a diagram of the "A Frequency Compensation Scheme for LDO Voltage Regulators" published by the voltage flip type zero point compensation circuit 500 of the present invention and IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 51, No. 6, pp. 1041-1050, 2004. Simulation diagram. As shown in FIG. 6, at a frequency of 37.96 KHz, the maximum compensation phase of the voltage inversion zero compensation circuit 500 of the present invention can reach 79.9°, whereas the maximum compensation phase of the prior art is only 8.2°, regardless of formula (3) or Is the analog knot As a result, the voltage inversion zero compensation circuit 500 of the present invention can separate the pole from the zero point and achieve the purpose of phase compensation, thereby increasing the stability of the system.
圖7係本發明電壓翻轉式零點補償電路500的運用示意圖,係將該電壓翻轉式零點補償電路500運用於一放大器710的迴授中,以增加該放大器710的穩定度。 FIG. 7 is a schematic diagram of the operation of the voltage inversion zero compensation circuit 500 of the present invention. The voltage inversion zero compensation circuit 500 is applied to the feedback of an amplifier 710 to increase the stability of the amplifier 710.
圖8係依據本發明另一較佳實施例的一種電壓翻轉式零點補償電路800之電路圖,係用於一輸出端(Vout)以進行零點/極點(zero/pole)補償。如圖8所示,該電壓翻轉式零點補償電路800包括一電容C1、一放大器Mn1、一第一電流鏡510、一第二電流鏡520、一第一電流源IA、一第二電流源IB、及一第三電流源IC。 FIG. 8 is a circuit diagram of a voltage flip type zero point compensation circuit 800 for an output (Vout) for zero/pole compensation in accordance with another preferred embodiment of the present invention. As shown in FIG. 8, the voltage inversion zero compensation circuit 800 includes a capacitor C1, an amplifier Mn1, a first current mirror 510, a second current mirror 520, a first current source IA, and a second current source IB. And a third current source IC.
該電容C1的一端連接至該輸出端,以接收該輸出端之電壓Vout。該第一NMOS電晶體Mn1的源極連接至該電容C1的另一端,以將該輸出端之電壓Vout放大。該第一電流鏡510包含一第二NMOS電晶體Mn2及一第三NMOS電晶體Mn3,該第一電流鏡510連接至該第一NMOS電晶體Mn1,該第二NMOS電晶體Mn2的源極連接至一低電位Gnd,該第三NMOS電晶體Mn3的源極連接至該低電位Gnd,以將該放大器Mn1的電流放大。 One end of the capacitor C1 is connected to the output terminal to receive the voltage Vout of the output terminal. The source of the first NMOS transistor Mn1 is connected to the other end of the capacitor C1 to amplify the voltage Vout of the output terminal. The first current mirror 510 includes a second NMOS transistor Mn2 and a third NMOS transistor Mn3. The first current mirror 510 is connected to the first NMOS transistor Mn1, and the source of the second NMOS transistor Mn2 is connected. Up to a low potential Gnd, the source of the third NMOS transistor Mn3 is connected to the low potential Gnd to amplify the current of the amplifier Mn1.
該第一電流源IA的一端連接至一高電位Vdd,另一端連接至該第一NMOS電晶體Mn1的汲極D、該第一NMOS電晶體Mn1的閘極G、該第二NMOS電晶體Mn2的閘極G、及該第三NMOS電晶體Mn3的閘極G。該第二電流鏡520包含一第一PMOS電晶體Mp1及一第二NMOS電晶體Mp2,該第一PMOS電晶體Mp1的源極S連接至該高電位Vdd,該第二PMOS電晶體Mp2的源極S連接至該高電位Vdd。 One end of the first current source IA is connected to a high potential Vdd, and the other end is connected to the drain D of the first NMOS transistor Mn1, the gate G of the first NMOS transistor Mn1, and the second NMOS transistor Mn2. The gate G and the gate G of the third NMOS transistor Mn3. The second current mirror 520 includes a first PMOS transistor Mp1 and a second NMOS transistor Mp2. The source S of the first PMOS transistor Mp1 is connected to the high potential Vdd, and the source of the second PMOS transistor Mp2. The pole S is connected to the high potential Vdd.
該第二電流源IB的一端連接至該第三NMOS電晶體Mn3的汲極D、該第一PMOS電晶體Mp1的汲極D、該第一PMOS電晶體Mp1的閘極G、及該第二PMOS電晶體Mp2的閘極G,其另一端連接至該高電位Vdd。該第三電流源IC的一端連接至該第二PMOS電晶體Mp2的汲極D、一第一外部電阻Rf1的一端、及一第二外部電阻Rf2的一端。該第一外部電阻Rf1的另一端連接至該輸出端,該第二外部電阻(Rf2)的另一端連接至該低電位Gnd。圖8與圖5主要的區別在於:在圖5中,該第一NMOS電晶體Mn1的閘極G連接至一偏壓電壓Vbias,而圖8中,該第一NMOS電晶體Mn1的閘極G連接至該第一電流源IA的一端,但兩者同樣皆可達到將極點與零點分離之功效。 One end of the second current source IB is connected to the drain D of the third NMOS transistor Mn3, the drain D of the first PMOS transistor Mp1, the gate G of the first PMOS transistor Mp1, and the second The gate G of the PMOS transistor Mp2 is connected to the high potential Vdd at the other end. One end of the third current source IC is connected to the drain D of the second PMOS transistor Mp2, one end of a first external resistor Rf1, and one end of a second external resistor Rf2. The other end of the first external resistor Rf1 is connected to the output terminal, and the other end of the second external resistor (Rf2) is connected to the low potential Gnd. The main difference between FIG. 8 and FIG. 5 is that, in FIG. 5, the gate G of the first NMOS transistor Mn1 is connected to a bias voltage Vbias, and in FIG. 8, the gate G of the first NMOS transistor Mn1 is connected. Connected to one end of the first current source IA, but both can achieve the effect of separating the pole from the zero point.
由前述說明可知,相較於習知技術,本發明之電壓翻轉式零點補償電路500可將極點與零點分離,且分開得很遠,而達相位補償的目的,進而增加系統的穩定度。 It can be seen from the foregoing description that the voltage inversion zero compensation circuit 500 of the present invention can separate the pole from the zero point and separate them far apart, and achieve the purpose of phase compensation, thereby increasing the stability of the system.
上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。 The above-mentioned embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.
500‧‧‧電壓翻轉式零點補償電路 500‧‧‧Voltage flip zero compensation circuit
C1‧‧‧電容 C1‧‧‧ capacitor
Mn1‧‧‧放大器 Mn1‧‧‧Amplifier
510‧‧‧第一電流鏡 510‧‧‧First current mirror
520‧‧‧第二電流鏡 520‧‧‧second current mirror
IA‧‧‧第一電流源 IA‧‧‧first current source
IB‧‧‧第二電流源 IB‧‧‧second current source
IC‧‧‧第三電流源 IC‧‧‧ third current source
Vbias‧‧‧偏壓電壓 Vbias‧‧‧ bias voltage
Vdd‧‧‧高電位 Vdd‧‧‧High potential
Gnd‧‧‧低電位 Gnd‧‧‧ low potential
Mn1‧‧‧第一NMOS電晶體 Mn1‧‧‧First NMOS transistor
Mn2‧‧‧第二NMOS電晶體 Mn2‧‧‧second NMOS transistor
Mn3‧‧‧第三NMOS電晶體 Mn3‧‧‧ third NMOS transistor
Mp1‧‧‧第一PMOS電晶體 Mp1‧‧‧First PMOS transistor
Mp2‧‧‧第二NMOS電晶體 Mp2‧‧‧Second NMOS transistor
FB‧‧‧第一端點 FB‧‧‧ first endpoint
Rf1‧‧‧第一外部電阻 Rf1‧‧‧ first external resistor
Rf2‧‧‧第二外部電阻 Rf2‧‧‧ second external resistor
Vout‧‧‧電壓 Vout‧‧‧ voltage
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104127530A TWI548964B (en) | 2015-08-24 | 2015-08-24 | Flipped voltage zero compensation circuit |
CN201610395525.9A CN106484016B (en) | 2015-08-24 | 2016-06-06 | Voltage turnover type zero compensation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104127530A TWI548964B (en) | 2015-08-24 | 2015-08-24 | Flipped voltage zero compensation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI548964B true TWI548964B (en) | 2016-09-11 |
TW201709004A TW201709004A (en) | 2017-03-01 |
Family
ID=57445012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104127530A TWI548964B (en) | 2015-08-24 | 2015-08-24 | Flipped voltage zero compensation circuit |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106484016B (en) |
TW (1) | TWI548964B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109062306B (en) * | 2018-08-28 | 2020-06-09 | 上海华虹宏力半导体制造有限公司 | Threshold reference current generating circuit |
IT201900006715A1 (en) * | 2019-05-10 | 2020-11-10 | St Microelectronics Srl | FREQUENCY COMPENSATION CIRCUIT AND CORRESPONDING DEVICE |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5563501A (en) * | 1995-01-20 | 1996-10-08 | Linfinity Microelectronics | Low voltage dropout circuit with compensating capacitance circuitry |
US6005378A (en) * | 1998-03-05 | 1999-12-21 | Impala Linear Corporation | Compact low dropout voltage regulator using enhancement and depletion mode MOS transistors |
US6600299B2 (en) * | 2001-12-19 | 2003-07-29 | Texas Instruments Incorporated | Miller compensated NMOS low drop-out voltage regulator using variable gain stage |
US6710583B2 (en) * | 2001-09-28 | 2004-03-23 | Catalyst Semiconductor, Inc. | Low dropout voltage regulator with non-miller frequency compensation |
TW200632615A (en) * | 2005-01-28 | 2006-09-16 | Atmel Corp | Voltage regulator circuit and method of frequency compensating therefor |
US7218082B2 (en) * | 2005-01-21 | 2007-05-15 | Linear Technology Corporation | Compensation technique providing stability over broad range of output capacitor values |
CN102541134A (en) * | 2011-05-11 | 2012-07-04 | 电子科技大学 | LDO (Low DropOut Regulator) based on dynamic zero pole tracking technology |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7821238B1 (en) * | 2008-06-09 | 2010-10-26 | National Semiconductor Corporation | Feedback loop compensation for buck/boost switching converter |
CN102193577A (en) * | 2010-03-05 | 2011-09-21 | 天网电子股份有限公司 | Constant current circuit with voltage compensation and zero potential switching characteristics |
CN103064455B (en) * | 2012-12-07 | 2016-06-08 | 广州慧智微电子有限公司 | A kind of miller-compensated linear voltage regulator circuit of dynamic zero point based on zero-regulator resistor |
KR102076667B1 (en) * | 2013-01-07 | 2020-02-12 | 삼성전자주식회사 | Low drop out regulator |
US9086710B1 (en) * | 2013-02-05 | 2015-07-21 | Maxim Integrated Products, Inc. | Zero-pole compensator circuits with impedance reduction multipliers |
-
2015
- 2015-08-24 TW TW104127530A patent/TWI548964B/en active
-
2016
- 2016-06-06 CN CN201610395525.9A patent/CN106484016B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5563501A (en) * | 1995-01-20 | 1996-10-08 | Linfinity Microelectronics | Low voltage dropout circuit with compensating capacitance circuitry |
US6005378A (en) * | 1998-03-05 | 1999-12-21 | Impala Linear Corporation | Compact low dropout voltage regulator using enhancement and depletion mode MOS transistors |
US6710583B2 (en) * | 2001-09-28 | 2004-03-23 | Catalyst Semiconductor, Inc. | Low dropout voltage regulator with non-miller frequency compensation |
US6600299B2 (en) * | 2001-12-19 | 2003-07-29 | Texas Instruments Incorporated | Miller compensated NMOS low drop-out voltage regulator using variable gain stage |
US7218082B2 (en) * | 2005-01-21 | 2007-05-15 | Linear Technology Corporation | Compensation technique providing stability over broad range of output capacitor values |
TW200632615A (en) * | 2005-01-28 | 2006-09-16 | Atmel Corp | Voltage regulator circuit and method of frequency compensating therefor |
CN102541134A (en) * | 2011-05-11 | 2012-07-04 | 电子科技大学 | LDO (Low DropOut Regulator) based on dynamic zero pole tracking technology |
Also Published As
Publication number | Publication date |
---|---|
TW201709004A (en) | 2017-03-01 |
CN106484016A (en) | 2017-03-08 |
CN106484016B (en) | 2017-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108235744B (en) | Low dropout linear voltage stabilizing circuit | |
TWI447552B (en) | Voltage regulator with adaptive miller compensation | |
KR101939843B1 (en) | Voltage regulator | |
US7893670B2 (en) | Frequency compensation scheme for stabilizing the LDO using external NPN in HV domain | |
US8928296B2 (en) | High power supply rejection ratio (PSRR) and low dropout regulator | |
US8154263B1 (en) | Constant GM circuits and methods for regulating voltage | |
CN106843347B (en) | Semiconductor device with output compensation | |
US9671805B2 (en) | Linear voltage regulator utilizing a large range of bypass-capacitance | |
CN111176358B (en) | Low-power-consumption low-dropout linear voltage regulator | |
KR20140089814A (en) | Low drop out regulator | |
US11016519B2 (en) | Process compensated gain boosting voltage regulator | |
KR101689897B1 (en) | Voltage Regulator | |
KR20150082272A (en) | Two-stage low-dropout linear power supply systems and methods | |
KR102528632B1 (en) | Voltage regulator | |
KR20150111301A (en) | Voltage regulator | |
KR20120090813A (en) | Voltage regulator | |
JP2017091316A (en) | Stabilized power supply circuit | |
TW201602750A (en) | Current source for voltage regulator and voltage regulator thereof | |
CN107305399A (en) | Linear voltage-reducing and voltage-stabilizing circuit of PMOS power transistor | |
JP4344646B2 (en) | Power circuit | |
US11860659B2 (en) | Low drop-out (LDO) linear regulator | |
TWI548964B (en) | Flipped voltage zero compensation circuit | |
JP6291316B2 (en) | Semiconductor circuit and amplifier circuit | |
US9582015B2 (en) | Voltage regulator | |
US20200259463A1 (en) | High-speed high-accuracy amplifier and method thereof |