[go: up one dir, main page]

TWI541810B - Data writing method, and memory controller and memory storage apparatus using the same - Google Patents

Data writing method, and memory controller and memory storage apparatus using the same Download PDF

Info

Publication number
TWI541810B
TWI541810B TW103119007A TW103119007A TWI541810B TW I541810 B TWI541810 B TW I541810B TW 103119007 A TW103119007 A TW 103119007A TW 103119007 A TW103119007 A TW 103119007A TW I541810 B TWI541810 B TW I541810B
Authority
TW
Taiwan
Prior art keywords
memory cell
memory
write voltage
pulse time
voltage pulse
Prior art date
Application number
TW103119007A
Other languages
Chinese (zh)
Other versions
TW201541459A (en
Inventor
葉志剛
林緯
Original Assignee
群聯電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/257,010 external-priority patent/US9286986B2/en
Application filed by 群聯電子股份有限公司 filed Critical 群聯電子股份有限公司
Publication of TW201541459A publication Critical patent/TW201541459A/en
Application granted granted Critical
Publication of TWI541810B publication Critical patent/TWI541810B/en

Links

Landscapes

  • Read Only Memory (AREA)

Description

資料寫入方法、記憶體控制電路單元與記憶體儲存裝置 Data writing method, memory control circuit unit and memory storage device

本發明是有關於一種用於可複寫式非揮發性記憶體模組的資料寫入方法及使用此方法的記憶體控制電路單元與記憶體儲存裝置。 The present invention relates to a data writing method for a rewritable non-volatile memory module and a memory control circuit unit and a memory storage device using the same.

數位相機、手機與MP3在這幾年來的成長十分迅速,使得消費者對儲存媒體的需求也急速增加。由於可複寫式非揮發性記憶體(rewritable non-volatile memory)具有資料非揮發性、省電、體積小、無機械結構、讀寫速度快等特性,最適於可攜式電子產品,例如筆記型電腦。固態硬碟就是一種以快閃記憶體作為儲存媒體的儲存裝置。因此,近年快閃記憶體產業成為電子產業中相當熱門的一環。 Digital cameras, mobile phones and MP3s have grown very rapidly in recent years, and the demand for storage media has increased rapidly. Because rewritable non-volatile memory has the characteristics of non-volatile data, power saving, small size, no mechanical structure, fast reading and writing speed, etc., it is most suitable for portable electronic products, such as notebook type. computer. A solid state hard disk is a storage device that uses flash memory as a storage medium. Therefore, in recent years, the flash memory industry has become a very popular part of the electronics industry.

圖1是根據習知技術所繪示之快閃記憶體元件的示意圖。 1 is a schematic illustration of a flash memory component as depicted in the prior art.

請參照圖1,快閃記憶體元件1包含用於儲存電子的電荷捕捉層(charge traping layer)2、用於施加偏壓的控制閘極(Control Gate)3、穿遂氧化層(Tunnel Oxide)4與多晶矽間介電層(Interpoly Dielectric)5。當欲寫入資料至快閃記憶體元件1時,可藉由將電子注入電荷補捉層2以改變快閃記憶體元件1的臨界電壓,由此定義快閃記憶體元件1的數位高低態,而實現儲存資料的功能。在此,注入電子至電荷補捉層2的過程稱為程式化。反之,當欲將所儲存之資料移除時,藉由將所注入之電子從電荷補捉層2中移除,則可使快閃記憶體元件1回復為未被程式化前的狀態。 Referring to FIG. 1, the flash memory component 1 includes a charge traping layer for storing electrons, and a control gate for applying a bias voltage (Control). Gate) 3, through the oxide layer (Tunnel Oxide) 4 and polycrystalline dielectric layer (Interpoly Dielectric) 5. When data is to be written to the flash memory device 1, the threshold voltage of the flash memory device 1 can be changed by injecting electrons into the charge trapping layer 2, thereby defining the digital high and low states of the flash memory device 1. And realize the function of storing data. Here, the process of injecting electrons into the charge trapping layer 2 is called stylization. On the other hand, when the stored data is to be removed, the flashed memory element 1 can be returned to the state before being unprogrammed by removing the injected electrons from the charge trapping layer 2.

在寫入與抹除過程中,快閃記憶體元件1會隨著電子的多次的注入與移除而造成磨損,導致電子寫入速度增加並造成臨界電壓分佈變寬。因此,在快閃記憶體元件1被程式化後無法被正確地識別其儲存狀態,而產生錯誤位元。特別是,在快閃記憶體元件1處於高溫下,快閃記憶體元件1的資料保存力會下降,並且由此會發生更多的錯誤位元。 During the writing and erasing process, the flash memory element 1 is abraded with multiple injections and removals of electrons, resulting in an increase in the electronic writing speed and a broadening of the threshold voltage distribution. Therefore, after the flash memory element 1 is programmed, its storage state cannot be correctly recognized, and an erroneous bit is generated. In particular, when the flash memory element 1 is at a high temperature, the data preserving power of the flash memory element 1 is lowered, and thus more erroneous bits are generated.

本發明提供一種資料寫入方法、記憶體控制電路單元與記憶體儲存裝置,其能夠有效地防止過度程式化並減少錯誤位元的發生。 The invention provides a data writing method, a memory control circuit unit and a memory storage device, which can effectively prevent over-stylization and reduce the occurrence of erroneous bits.

本發明範例實施例提出一種資料寫入方法,用於將資料寫入至記憶體儲存裝置的可複寫式非揮發性記憶體模組的記憶胞中。此資料寫入方法包括:偵測記憶體儲存裝置的運作溫度;並且判斷記憶體儲存裝置的運作溫度是否大於預先定義溫度。此資 料寫入方法更包括,倘若記憶體儲存裝置的運作溫度大於預先定義溫度時,調整對應此可複寫式非揮發性記憶體模組的至少一預先定義運作參數以產生對應此可複寫式非揮發性記憶體模組的至少一個已調整運作參數並且根據此至少一個已調整運作參數寫入資料至此記憶胞中。 An exemplary embodiment of the present invention provides a data writing method for writing data into a memory cell of a rewritable non-volatile memory module of a memory storage device. The method for writing data includes: detecting an operating temperature of the memory storage device; and determining whether the operating temperature of the memory storage device is greater than a predefined temperature. This capital The material writing method further includes adjusting at least one predefined operational parameter corresponding to the rewritable non-volatile memory module to generate a corresponding rewritable non-volatile if the operating temperature of the memory storage device is greater than a predefined temperature At least one adjusted operational parameter of the memory module and the data is written into the memory cell based on the at least one adjusted operational parameter.

在本發明之一範例實施例中,上述整對應可複寫式非揮發性記憶體模組的至少一預先定義運作參數以產生對應可複寫式非揮發性記憶體模組的至少一個已調整運作參數並且根據此至少一個已調整運作參數寫入資料至記憶胞中的步驟包括:記錄此記憶胞的磨損程度值;根據此記憶胞的磨損程度值,調整對應此記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值的至少其中之一;以及使用對應此記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值來程式化所述記憶胞,以將資料寫入至此記憶胞。 In an exemplary embodiment of the present invention, the at least one predefined operational parameter of the responsive upper rewritable non-volatile memory module is configured to generate at least one adjusted operational parameter of the corresponding rewritable non-volatile memory module. And the step of writing the data into the memory cell according to the at least one adjusted operating parameter comprises: recording a wear level value of the memory cell; adjusting an initial write voltage corresponding to the memory cell according to the wear level value of the memory cell, and writing Entering at least one of a voltage pulse time and a compensation value; and programming the memory cell to write data to the memory cell using an initial write voltage, a write voltage pulse time, and a compensation value corresponding to the memory cell.

在本發明之一範例實施例中,上述根據記憶胞的磨損程度值調整對應記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值的至少其中之一的步驟包括:隨著記憶胞的磨損程度值增加,降低對應記憶胞的初始寫入電壓。 In an exemplary embodiment of the present invention, the step of adjusting at least one of an initial write voltage, a write voltage pulse time, and a compensation value corresponding to the memory cell according to the wear level value of the memory cell includes: along with the memory cell The wear level value is increased to lower the initial write voltage of the corresponding memory cell.

在本發明之一範例實施例中,上述根據記憶胞的磨損程度值調整對應記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值的至少其中之一的步驟包括:隨著記憶胞的磨損程度值增加,減少對應此記憶胞的寫入電壓脈衝時間。 In an exemplary embodiment of the present invention, the step of adjusting at least one of an initial write voltage, a write voltage pulse time, and a compensation value corresponding to the memory cell according to the wear level value of the memory cell includes: along with the memory cell The wear level value is increased to reduce the write voltage pulse time corresponding to the memory cell.

在本發明之一範例實施例中,上述使用對應記憶胞的初 始寫入電壓、寫入電壓脈衝時間與補償值來程式化記憶胞,以將資料寫入至此記憶胞的步驟包括:使用上述初始寫入電壓、所減少的寫入電壓脈衝時間與上述補償值來進行此記憶胞的至少一個重複程式化;以及使用上述初始寫入電壓、上述寫入電壓脈衝時間與上述補償值來進行該記憶胞的其他重複程式化。 In an exemplary embodiment of the present invention, the use of the corresponding memory cell is The step of writing the write voltage, the write voltage pulse time and the compensation value to program the memory cell to write the data to the memory cell includes: using the initial write voltage, the reduced write voltage pulse time, and the above compensation value Performing at least one repetitive stylization of the memory cell; and performing other repetitive stylization of the memory cell using the initial write voltage, the write voltage pulse time, and the compensation value.

在本發明之一範例實施例中,上述記憶胞的磨損程度值是依據此記憶胞的抹除次數、寫入次數、錯誤位元數、錯誤位元比例及讀取次數的至少其中之一來決定。 In an exemplary embodiment of the present invention, the wear level value of the memory cell is based on at least one of the number of erasures, the number of writes, the number of error bits, the proportion of error bits, and the number of readings of the memory cell. Decide.

在本發明之一範例實施例中,上述根據此記憶胞的磨損程度值調整對應此記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值的至少其中之一的步驟包括:隨著記憶胞的磨損程度值增加,減少對應此記憶胞的補償值。 In an exemplary embodiment of the present invention, the step of adjusting at least one of an initial write voltage, a write voltage pulse time, and a compensation value corresponding to the memory cell according to the wear level value of the memory cell includes: following the memory The value of the degree of wear of the cell is increased, and the compensation value corresponding to the memory cell is reduced.

在本發明之一範例實施例中,上述使用對應記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值來程式化記憶胞,以將資料寫入至此記憶胞的步驟包括:使用上述初始寫入電壓、所減少的寫入電壓脈衝時間與所減少的補償值來進行該記憶胞的至少一個重複程式化;以及使用所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來進行該記憶胞的其他重複程式化。 In an exemplary embodiment of the present invention, the step of using the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell to program the memory cell to write data to the memory cell includes: using the initial Writing a voltage, a reduced write voltage pulse time, and a reduced compensation value to perform at least one reprogramming of the memory cell; and using the initial write voltage, the write voltage pulse time, and the compensation The value is used to perform other repetitive stylizations of the memory cell.

本發明一範例實施例提出一種記憶體控制電路單元,用於將資料寫入至可複寫式非揮發性記憶體模組的記憶胞。本記憶體控制電路單元包括主機介面、記憶體介面、記憶體管理電路與溫度感測器。主機介面用以耦接至主機系統。記憶體介面用以耦 接至可複寫式非揮發性記憶體模組。記憶體管理電路耦接至主機介面與記憶體介面。溫度感測器用以偵測記憶體儲存裝置的運作溫度。記憶體管理電路用以判斷記憶體儲存裝置的運作溫度是否大於預先定義溫度。倘若記憶體儲存裝置的運作溫度大於預先定義溫度時,記憶體管理電路更用以調整對應此可複寫式非揮發性記憶體模組的至少一預先定義運作參數以產生對應此可複寫式非揮發性記憶體模組的至少一個已調整運作參數並且根據此至少一個已調整運作參數下達指令序列給可複寫式非揮發性記憶體模組以寫入資料至此記憶胞中。 An exemplary embodiment of the present invention provides a memory control circuit unit for writing data to a memory cell of a rewritable non-volatile memory module. The memory control circuit unit includes a host interface, a memory interface, a memory management circuit, and a temperature sensor. The host interface is coupled to the host system. Memory interface for coupling Connect to a rewritable non-volatile memory module. The memory management circuit is coupled to the host interface and the memory interface. The temperature sensor is used to detect the operating temperature of the memory storage device. The memory management circuit is configured to determine whether the operating temperature of the memory storage device is greater than a predefined temperature. If the operating temperature of the memory storage device is greater than a predefined temperature, the memory management circuit is further configured to adjust at least one predefined operational parameter corresponding to the rewritable non-volatile memory module to generate a corresponding rewritable non-volatile At least one adjusted operational parameter of the memory module and the instruction sequence is issued to the rewritable non-volatile memory module according to the at least one adjusted operational parameter to write data into the memory cell.

在本發明之一範例實施例中,在上述調整對應可複寫式非揮發性記憶體模組的至少一預先定義運作參數以產生對應可複寫式非揮發性記憶體模組的至少一個已調整運作參數並且根據此至少一個已調整運作參數下達指令序列給可複寫式非揮發性記憶體模組以寫入資料至此記憶胞中的運作中,上述記憶體管理電路記錄此記憶胞的磨損程度值,根據此記憶胞的磨損程度值調整對應此記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值的至少其中之一,並且使用對應此記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值來程式化此記憶胞,以將資料寫入至記憶胞。 In an exemplary embodiment of the present invention, at least one predefined operational parameter corresponding to the rewritable non-volatile memory module is adjusted to generate at least one adjusted operation of the corresponding rewritable non-volatile memory module. And the memory management circuit records the wear level value of the memory cell according to the parameter and the instruction sequence of the at least one adjusted operation parameter is sent to the rewritable non-volatile memory module to write data into the memory cell. Adjusting at least one of an initial write voltage, a write voltage pulse time, and a compensation value corresponding to the memory cell according to the wear level value of the memory cell, and using an initial write voltage, a write voltage pulse time corresponding to the memory cell The memory cell is programmed with a compensation value to write data to the memory cell.

在本發明之一範例實施例中,在上述根據記憶胞的磨損程度值調整對應記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值的至少其中之一的運作中,記憶體管理電路用以隨著所述記憶胞的磨損程度值增加,降低對應記憶胞的初始寫入電壓。 In an exemplary embodiment of the present invention, in the operation of adjusting at least one of an initial write voltage, a write voltage pulse time, and a compensation value of the corresponding memory cell according to the wear level value of the memory cell, the memory management circuit The initial write voltage corresponding to the memory cell is decreased as the value of the wear level of the memory cell increases.

在本發明之一範例實施例中,在上述根據記憶胞的磨損程度值調整對應此記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值的至少其中之一的運作中,記憶體管理電路用以隨著記憶胞的磨損程度值增加,減少對應此記憶胞的寫入電壓脈衝時間。 In an exemplary embodiment of the present invention, in the operation of adjusting at least one of an initial write voltage, a write voltage pulse time, and a compensation value corresponding to the memory cell according to the wear level value of the memory cell, the memory management The circuit is configured to reduce the write voltage pulse time corresponding to the memory cell as the value of the wear level of the memory cell increases.

在本發明之一範例實施例中,在所述使用對應所述記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值來程式化記憶胞,以將資料寫入至此記憶胞的運作中,所述記憶體管理電路使用上述初始寫入電壓、所減少的寫入電壓脈衝時間與上述補償值來進行記憶胞的至少一個重複程式化,並且使用上述初始寫入電壓、上述寫入電壓脈衝時間與上述補償值來進行記憶胞的其他重複程式化。 In an exemplary embodiment of the present invention, the memory cell is programmed to use the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell to write data into the operation of the memory cell. The memory management circuit performs at least one repetitive programming of the memory cell using the initial write voltage, the reduced write voltage pulse time, and the compensation value, and uses the initial write voltage and the write voltage pulse The time and the above compensation value are used to perform other repetitive stylization of the memory cell.

在本發明之一範例實施例中,在上述根據記憶胞的磨損程度值調整對應記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值的至少其中之一的運作中,記憶體管理電路用以隨著記憶胞的磨損程度值增加,減少對應記憶胞的補償值。 In an exemplary embodiment of the present invention, in the operation of adjusting at least one of an initial write voltage, a write voltage pulse time, and a compensation value of the corresponding memory cell according to the wear level value of the memory cell, the memory management circuit It is used to reduce the compensation value of the corresponding memory cell as the value of the wear level of the memory cell increases.

在本發明之一範例實施例中,在所述使用對應所述記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值來程式化記憶胞,以將資料寫入至此記憶胞的運作中,記憶體管理電路使用上述初始寫入電壓、上述寫入電壓脈衝時間與所減少的補償值來進行此記憶胞的至少一個重複程式化,並且使用上述初始寫入電壓、上述寫入電壓脈衝時間與上述補償值來進行記憶胞的其他重複程式化。 In an exemplary embodiment of the present invention, the memory cell is programmed to use the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell to write data into the operation of the memory cell. The memory management circuit performs at least one repetitive programming of the memory cell using the initial write voltage, the write voltage pulse time, and the reduced compensation value, and uses the initial write voltage and the write voltage pulse time Other repetitive stylization of the memory cells is performed with the above compensation values.

本發明一範例實施例提出一種記憶體儲存裝置,其包括連接介面單元、可複寫式非揮發性記憶體模組與記憶體控制電路單元。連接介面單元用以耦接至主機系統。記憶體控制電路單元耦接至連接介面單元與可複寫式非揮發性記憶體模組。記憶體控制電路單元用以偵測記憶體儲存裝置的運作溫度,並且判斷記憶體儲存裝置的運作溫度是否大於預先定義溫度。倘若記憶體儲存裝置的運作溫度大於預先定義溫度時,記憶體控制電路單元更用以調整對應此可複寫式非揮發性記憶體模組的至少一預先定義運作參數以產生對應可複寫式非揮發性記憶體模組的至少一個已調整運作參數並且根據此至少一個已調整運作參數下達指令序列給可複寫式非揮發性記憶體模組以寫入資料至記憶胞中。 An exemplary embodiment of the present invention provides a memory storage device including a connection interface unit, a rewritable non-volatile memory module, and a memory control circuit unit. The connection interface unit is coupled to the host system. The memory control circuit unit is coupled to the connection interface unit and the rewritable non-volatile memory module. The memory control circuit unit is configured to detect an operating temperature of the memory storage device and determine whether the operating temperature of the memory storage device is greater than a predefined temperature. If the operating temperature of the memory storage device is greater than a predefined temperature, the memory control circuit unit is further configured to adjust at least one predefined operational parameter corresponding to the rewritable non-volatile memory module to generate a corresponding rewritable non-volatile At least one adjusted operational parameter of the memory module and the instruction sequence is issued to the rewritable non-volatile memory module to write data into the memory cell according to the at least one adjusted operational parameter.

在本發明之一範例實施例中,在上述調整對應可複寫式非揮發性記憶體模組的至少一預先定義運作參數以產生對應此可複寫式非揮發性記憶體模組的至少一個已調整運作參數並且根據此至少一個已調整運作參數下達指令序列給可複寫式非揮發性記憶體模組以寫入資料至該記憶胞中的運作中,記憶體控制電路單元記錄記憶胞的磨損程度值,根據記憶胞的磨損程度值調整對應記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值的至少其中之一,並且藉由使用對應記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值來程式化記憶胞,以將資料寫入至記憶胞。 In an exemplary embodiment of the present invention, the at least one predefined operational parameter corresponding to the rewritable non-volatile memory module is adjusted to generate at least one adjusted corresponding to the rewritable non-volatile memory module. Operating parameters and recording the memory state of the memory cell by the memory control circuit unit according to the at least one adjusted operating parameter issuing instruction sequence to the rewritable non-volatile memory module for writing data into the memory cell And adjusting at least one of an initial write voltage, a write voltage pulse time, and a compensation value of the corresponding memory cell according to a wear level value of the memory cell, and by using an initial write voltage, a write voltage pulse time of the corresponding memory cell The memory cells are programmed with compensation values to write data to the memory cells.

在本發明之一範例實施例中,在上述根據記憶胞的磨損程度值調整對應記憶胞的初始寫入電壓、寫入電壓脈衝時間與補 償值的至少其中之一的運作中,記憶體控制電路單元用以隨著記憶胞的磨損程度值增加,降低對應記憶胞的初始寫入電壓。 In an exemplary embodiment of the present invention, the initial write voltage, the write voltage pulse time, and the complement of the corresponding memory cell are adjusted according to the wear level value of the memory cell. In operation of at least one of the compensation values, the memory control circuit unit is configured to decrease the initial write voltage of the corresponding memory cell as the value of the wear level of the memory cell increases.

在本發明之一範例實施例中,在上述根據記憶胞的磨損程度值調整對應記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值的至少其中之一的運作中,記憶體控制電路單元用以隨著記憶胞的磨損程度值增加,減少對應記憶胞的寫入電壓脈衝時間。 In an exemplary embodiment of the present invention, in the operation of adjusting at least one of an initial write voltage, a write voltage pulse time, and a compensation value of the corresponding memory cell according to the wear level value of the memory cell, the memory control circuit The unit is configured to reduce the write voltage pulse time of the corresponding memory cell as the value of the wear level of the memory cell increases.

在本發明之一範例實施例中,在使用對應所述記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值來程式化記憶胞,以將資料寫入至記憶胞的運作中,記憶體控制電路單元使用上述初始寫入電壓、所減少的寫入電壓脈衝時間與上述補償值來進行記憶胞的至少一個重複程式化,並且使用上述初始寫入電壓、上述寫入電壓脈衝時間與上述補償值來進行該記憶胞的其他重複程式化。 In an exemplary embodiment of the present invention, the memory cell is programmed to use the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell to write data into the memory cell, and the memory The body control circuit unit performs at least one repetitive programming of the memory cell using the initial write voltage, the reduced write voltage pulse time, and the compensation value, and uses the initial write voltage, the write voltage pulse time, and the above The compensation value is used to perform other repetitive stylization of the memory cell.

在本發明之一範例實施例中,在上述根據記憶胞的磨損程度值調整對應記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值的至少其中之一的運作中,記憶體控制電路單元用以隨著記憶胞的磨損程度值增加,減少對應記憶胞的補償值。 In an exemplary embodiment of the present invention, in the operation of adjusting at least one of an initial write voltage, a write voltage pulse time, and a compensation value of the corresponding memory cell according to the wear level value of the memory cell, the memory control circuit The unit is used to reduce the compensation value of the corresponding memory cell as the value of the wear level of the memory cell increases.

在本發明之一範例實施例中,在使用對應所述記憶胞的初始寫入電壓、寫入電壓脈衝時間與補償值來程式化記憶胞,以將資料寫入至記憶胞的運作中,記憶體控制電路單元使用上述初始寫入電壓、上述寫入電壓脈衝時間與所減少的補償值來進行記憶胞的至少一個重複程式化,並且使用上述初始寫入電壓、上述 寫入電壓脈衝時間與上述補償值來進行記憶胞的其他重複程式化。 In an exemplary embodiment of the present invention, the memory cell is programmed to use the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell to write data into the memory cell, and the memory The body control circuit unit performs at least one repetitive programming of the memory cell using the initial write voltage, the write voltage pulse time, and the reduced compensation value, and uses the initial write voltage, The write voltage pulse time and the above compensation value are used to perform other repetitive stylization of the memory cell.

基於上述,本發明範例實施例的資料寫入方法、記憶體控制電路單元與記憶體儲存裝置能夠根據記憶胞的磨損,調整注入至記憶胞的電子,由此正確地將資料寫入至記憶胞中。 Based on the above, the data writing method, the memory control circuit unit, and the memory storage device according to the exemplary embodiments of the present invention can adjust the electrons injected into the memory cells according to the wear of the memory cells, thereby correctly writing the data to the memory cells. in.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

1‧‧‧快閃記憶體元件 1‧‧‧Flash memory components

2‧‧‧電荷補捉層 2‧‧‧Charging layer

3‧‧‧控制閘極 3‧‧‧Control gate

4‧‧‧穿遂氧化層 4‧‧‧through oxide layer

5‧‧‧多晶矽間介電層 5‧‧‧Polysilicon dielectric layer

S1001、S1003、S1005、S1007‧‧‧資料寫入方法的步驟 S1001, S1003, S1005, S1007‧‧‧ steps of data writing method

1000‧‧‧主機系統 1000‧‧‧Host system

1100‧‧‧電腦 1100‧‧‧ computer

1102‧‧‧微處理器 1102‧‧‧Microprocessor

1104‧‧‧隨機存取記憶體 1104‧‧‧ Random access memory

1106‧‧‧輸入/輸出裝置 1106‧‧‧Input/output devices

1108‧‧‧系統匯流排 1108‧‧‧System Bus

1110‧‧‧資料傳輸介面 1110‧‧‧Data transmission interface

1202‧‧‧滑鼠 1202‧‧‧ Mouse

1204‧‧‧鍵盤 1204‧‧‧ keyboard

1206‧‧‧顯示器 1206‧‧‧ display

1208‧‧‧印表機 1208‧‧‧Printer

1212‧‧‧隨身碟 1212‧‧‧USB flash drive

1214‧‧‧記憶卡 1214‧‧‧ memory card

1216‧‧‧固態硬碟 1216‧‧‧ Solid State Drive

1310‧‧‧數位相機 1310‧‧‧ digital camera

1312‧‧‧SD卡 1312‧‧‧SD card

1314‧‧‧MMC卡 1314‧‧‧MMC card

1316‧‧‧記憶棒 1316‧‧‧ Memory Stick

1318‧‧‧CF卡 1318‧‧‧CF card

1320‧‧‧嵌入式儲存裝置 1320‧‧‧Embedded storage device

100‧‧‧記憶體儲存裝置 100‧‧‧ memory storage device

102‧‧‧連接介面單元 102‧‧‧Connecting interface unit

104‧‧‧記憶體控制電路單元 104‧‧‧Memory Control Circuit Unit

106‧‧‧可複寫式非揮發性記憶體模組 106‧‧‧Reusable non-volatile memory module

2202‧‧‧記憶胞陣列 2202‧‧‧ memory cell array

2204‧‧‧字元線控制電路 2204‧‧‧Word line control circuit

2206‧‧‧位元線控制電路 2206‧‧‧ bit line control circuit

2208‧‧‧行解碼器 2208‧‧‧ row decoder

2210‧‧‧資料輸入/輸出緩衝器 2210‧‧‧Data input/output buffer

2212‧‧‧控制電路 2212‧‧‧Control circuit

VA‧‧‧第一門檻電壓 VA‧‧‧first threshold voltage

VB‧‧‧第二門檻電壓 VB‧‧‧second threshold voltage

VC‧‧‧第三門檻電壓 VC‧‧‧ third threshold voltage

VD‧‧‧第四門檻電壓 VD‧‧‧fourth threshold voltage

VE‧‧‧第五門檻電壓 VE‧‧‧ fifth threshold voltage

VF‧‧‧第六門檻電壓 VF‧‧‧ sixth threshold voltage

VG‧‧‧第七門檻電壓 VG‧‧‧ seventh threshold voltage

202‧‧‧記憶體管理電路 202‧‧‧Memory Management Circuit

204‧‧‧主機介面 204‧‧‧Host interface

206‧‧‧記憶體介面 206‧‧‧ memory interface

208‧‧‧溫度感測器 208‧‧‧temperature sensor

252‧‧‧緩衝記憶體 252‧‧‧ Buffer memory

254‧‧‧電源管理電路 254‧‧‧Power Management Circuit

256‧‧‧錯誤檢查與校正電路 256‧‧‧Error checking and correction circuit

S1201、S1203、S1205、S1207、S1209、S1211‧‧‧資料寫入方法的步驟 S1201, S1203, S1205, S1207, S1209, S1211‧‧‧ steps of data writing method

S1301、S1303、S1305、S1307、S1309‧‧‧調整初始寫入電壓的步驟 S1301, S1303, S1305, S1307, S1309‧‧‧ steps to adjust the initial write voltage

S1701、S1703、S1705、S1707、S1709、S1711‧‧‧資料寫入方法的步驟 Steps of S1701, S1703, S1705, S1707, S1709, S1711‧‧‧ data writing method

S1801、S1803、S1805、S1807、S1809‧‧‧調整寫入電壓脈衝 時間的步驟 S1801, S1803, S1805, S1807, S1809‧‧‧ Adjust the write voltage pulse Time step

S1901、S1903、S1905、S1907、S1909、S1911‧‧‧資料寫入方法的步驟 Steps of S1901, S1903, S1905, S1907, S1909, S1911‧‧‧ data writing method

S2101、S2103、S2105、S2107、S2109、S2111‧‧‧資料寫入方法的步驟 S2101, S2103, S2105, S2107, S2109, S2111‧‧‧ steps of data writing method

S2201、S2203、S2205、S2207、S2209‧‧‧調整補償值的步驟 S2201, S2203, S2205, S2207, S2209‧‧‧ steps to adjust the compensation value

圖1是根據習知技術所繪示之快閃記憶體元件的示意圖。 1 is a schematic illustration of a flash memory component as depicted in the prior art.

圖2是根據本發明範例實施例所繪示之資料寫入方法的流程圖。 2 is a flow chart of a method for writing data according to an exemplary embodiment of the present invention.

圖3是根據第一範例實施例所繪示的主機系統與記憶體儲存裝置。 FIG. 3 is a diagram of a host system and a memory storage device according to a first exemplary embodiment.

圖4是根據一範例實施例所繪示的電腦、輸入/輸出裝置與記憶體儲存裝置的示意圖。 4 is a schematic diagram of a computer, an input/output device, and a memory storage device according to an exemplary embodiment.

圖5是根據一範例實施例所繪示的主機系統與記憶體儲存裝置的示意圖。 FIG. 5 is a schematic diagram of a host system and a memory storage device according to an exemplary embodiment.

圖6是繪示根據第一範例實施例所繪示之記憶體儲存裝置的概要方塊圖。 FIG. 6 is a schematic block diagram of a memory storage device according to a first exemplary embodiment.

圖7是根據第一範例實施例所繪示的可複寫式非揮發性記憶 體模組的概要方塊圖。 FIG. 7 is a rewritable non-volatile memory according to a first exemplary embodiment. A schematic block diagram of the body module.

圖8是根據第一範例實施例所繪示儲存於記憶胞陣列中的寫入資料所對應的閘極電壓的統計分配圖。 FIG. 8 is a statistical distribution diagram of gate voltages corresponding to write data stored in a memory cell array according to a first exemplary embodiment.

圖9是根據第一範例實施例所繪示之程式化記憶胞的示意圖。 FIG. 9 is a schematic diagram of a stylized memory cell according to a first exemplary embodiment.

圖10是根據第一範例實施例所繪示的驗證記憶胞之儲存狀態的示意圖。 FIG. 10 is a schematic diagram of verifying a storage state of a memory cell according to the first exemplary embodiment.

圖11是根據另一範例實施例所繪示的驗證記憶胞之儲存狀態的示意圖。 FIG. 11 is a schematic diagram of verifying a storage state of a memory cell according to another exemplary embodiment.

圖12是根據第一範例實施例所繪示之記憶體控制電路單元的概要方塊圖。 FIG. 12 is a schematic block diagram of a memory control circuit unit according to a first exemplary embodiment.

圖13是根據本發明第一範例實施例所繪示之資料寫入方法的流程圖。 FIG. 13 is a flowchart of a data writing method according to a first exemplary embodiment of the present invention.

圖14是根據第一範例實施例所繪示之調整對應記憶胞之初始寫入電壓的流程圖。 FIG. 14 is a flow chart of adjusting an initial write voltage of a corresponding memory cell according to the first exemplary embodiment.

圖15-圖17是根據第二範例實施例所繪示之程式化記憶胞的示意圖。 15-17 are schematic diagrams of stylized memory cells according to a second exemplary embodiment.

圖18是根據另一範例實施例所繪示之程式化記憶胞的示意圖。 FIG. 18 is a schematic diagram of a stylized memory cell according to another exemplary embodiment.

圖19是根據本發明第二範例實施例所繪示之資料寫入方法的流程圖。 FIG. 19 is a flowchart of a data writing method according to a second exemplary embodiment of the present invention.

圖20是根據第二範例實施例所繪示之調整對應記憶胞之寫 入電壓脈衝時間的流程圖。 FIG. 20 is a diagram of adjusting the corresponding memory cell according to the second exemplary embodiment. Flow chart of the incoming voltage pulse time.

圖21是根據本發明第三範例實施例所繪示之資料寫入方法的流程圖。 FIG. 21 is a flowchart of a data writing method according to a third exemplary embodiment of the present invention.

圖22是根據第四範例實施例所繪示之程式化記憶胞的示意圖。 FIG. 22 is a schematic diagram of a stylized memory cell according to a fourth exemplary embodiment.

圖23是根據另一範例實施例所繪示之程式化記憶胞的示意圖。 FIG. 23 is a schematic diagram of a stylized memory cell according to another exemplary embodiment.

圖24是根據本發明第四範例實施例所繪示之資料寫入方法的流程圖。 FIG. 24 is a flowchart of a data writing method according to a fourth exemplary embodiment of the present invention.

圖25是根據第四範例實施例所繪示之調整對應記憶胞之補償值的流程圖。 FIG. 25 is a flowchart of adjusting a compensation value of a corresponding memory cell according to the fourth exemplary embodiment.

為了正確地寫入資料至可複寫式非揮發性記憶體模組並且降低記憶體儲存裝置的溫度,如圖2所示,在一範例實施例中,記憶體儲存裝置的溫度會被偵測(S1001);記憶體儲存裝置的溫度是否大於預先定義溫度會被判斷(S1003);倘若記憶體儲存裝置的溫度大於預先定義溫度時,對應可複寫式非揮發性記憶體模組的至少一個預先定義操作參數會被調整以產生對應可複寫式非揮發性記憶體模組的至少一個已調整操作參數並且資料會根據此至少一個已調整操作參數被寫入至記憶胞中(S1005);並且倘若記憶體儲存裝置的溫度非大於預先定義溫度時,資料會根據此至少一個 預先定義操作參數被寫入至記憶胞中(S1007)。例如,此預先定義溫度會被設定為40oC、45oC、50oC、55oC、60oC、65oC、70oC等。必須了解的是,本發明不限於此,預先定義溫度可根據可複寫式非揮發性記憶體模組的類型來設定。為了能夠使本發明能夠更清楚地被理解,以下將以數個範例實施例來作詳細說明。 In order to correctly write data to the rewritable non-volatile memory module and reduce the temperature of the memory storage device, as shown in FIG. 2, in an exemplary embodiment, the temperature of the memory storage device is detected ( S1001); whether the temperature of the memory storage device is greater than a predefined temperature is determined (S1003); if the temperature of the memory storage device is greater than a predefined temperature, at least one predefined corresponding to the rewritable non-volatile memory module The operating parameters are adjusted to generate at least one adjusted operating parameter of the corresponding rewritable non-volatile memory module and the data is written to the memory cell according to the at least one adjusted operating parameter (S1005); and if memory When the temperature of the body storage device is not greater than a predefined temperature, the data will be based on at least one of the The predefined operational parameters are written into the memory cells (S1007). For example, this predefined temperature will be set to 40oC, 45oC, 50oC, 55oC, 60oC, 65oC, 70oC, and so on. It must be understood that the present invention is not limited thereto, and the predefined temperature may be set according to the type of the rewritable non-volatile memory module. In order that the present invention can be more clearly understood, the following detailed description will be described by way of example embodiments.

[第一範例實施例] [First Exemplary Embodiment]

一般而言,記憶體儲存裝置(亦稱,記憶體儲存系統)包括可複寫式非揮發性記憶體模組與控制器(亦稱,控制電路)。通常記憶體儲存裝置是與主機系統一起使用,以使主機系統可將資料寫入至記憶體儲存裝置或從記憶體儲存裝置中讀取資料。 In general, a memory storage device (also referred to as a memory storage system) includes a rewritable non-volatile memory module and controller (also referred to as a control circuit). Typically, the memory storage device is used with a host system to enable the host system to write data to or read data from the memory storage device.

圖3是根據第一範例實施例所繪示的主機系統與記憶體儲存裝置。 FIG. 3 is a diagram of a host system and a memory storage device according to a first exemplary embodiment.

請參照圖3,主機系統1000一般包括電腦1100與輸入/輸出(input/output,I/O)裝置1106。電腦1100包括微處理器1102、隨機存取記憶體(random access memory,RAM)1104、系統匯流排1108與資料傳輸介面1110。輸入/輸出裝置1106包括如圖4的滑鼠1202、鍵盤1204、顯示器1206與印表機1208。必須瞭解的是,圖4所示的裝置非限制輸入/輸出裝置1106,輸入/輸出裝置1106可更包括其他裝置。 Referring to FIG. 3, the host system 1000 generally includes a computer 1100 and an input/output (I/O) device 1106. The computer 1100 includes a microprocessor 1102, a random access memory (RAM) 1104, a system bus 1108, and a data transmission interface 1110. The input/output device 1106 includes a mouse 1202, a keyboard 1204, a display 1206, and a printer 1208 as shown in FIG. It must be understood that the device shown in FIG. 4 is not limited to the input/output device 1106, and the input/output device 1106 may further include other devices.

在本發明實施例中,記憶體儲存裝置100是透過資料傳輸介面1110與主機系統1000的其他元件耦接。藉由微處理器1102、隨機存取記憶體1104與輸入/輸出裝置1106的運作可將資 料寫入至記憶體儲存裝置100或從記憶體儲存裝置100中讀取資料。例如,記憶體儲存裝置100可以是如圖4所示的隨身碟1212、記憶卡1214或固態硬碟(Solid State Drive,SSD)1216等的可複寫式非揮發性記憶體儲存裝置。 In the embodiment of the present invention, the memory storage device 100 is coupled to other components of the host system 1000 through the data transmission interface 1110. The operation can be performed by the microprocessor 1102, the random access memory 1104, and the input/output device 1106. The material is written to or read from the memory storage device 100. For example, the memory storage device 100 may be a rewritable non-volatile memory storage device such as a flash drive 1212, a memory card 1214, or a solid state drive (SSD) 1216 as shown in FIG.

一般而言,主機系統1000為可實質地與記憶體儲存裝置100配合以儲存資料的任意系統。雖然在本範例實施例中,主機系統1000是以電腦系統來作說明,然而,在本發明另一範例實施例中主機系統1000可以是數位相機、攝影機、通信裝置、音訊播放器或視訊播放器等系統。例如,在主機系統為數位相機(攝影機)1310時,可複寫式非揮發性記憶體儲存裝置則為其所使用的SD卡1312、MMC卡1314、記憶棒(memory stick)1316、CF卡1318或嵌入式儲存裝置1320(如圖5所示)。嵌入式儲存裝置1320包括嵌入式多媒體卡(Embedded MMC,eMMC)。值得一提的是,嵌入式多媒體卡是直接耦接於主機系統的基板上。 In general, host system 1000 is any system that can substantially cooperate with memory storage device 100 to store data. Although in the present exemplary embodiment, the host system 1000 is illustrated by a computer system, in another exemplary embodiment of the present invention, the host system 1000 may be a digital camera, a video camera, a communication device, an audio player, or a video player. And other systems. For example, when the host system is a digital camera (camera) 1310, the rewritable non-volatile memory storage device uses the SD card 1312, the MMC card 1314, the memory stick 1316, the CF card 1318 or Embedded storage device 1320 (shown in Figure 5). The embedded storage device 1320 includes an embedded multimedia card (Embedded MMC, eMMC). It is worth mentioning that the embedded multimedia card is directly coupled to the substrate of the host system.

圖6是繪示根據第一範例實施例所繪示之記憶體儲存裝置的概要方塊圖。 FIG. 6 is a schematic block diagram of a memory storage device according to a first exemplary embodiment.

請參照圖6,記憶體儲存裝置100包括連接介面單元102、記憶體控制電路單元104與可複寫式非揮發性記憶體模組106。 Referring to FIG. 6 , the memory storage device 100 includes a connection interface unit 102 , a memory control circuit unit 104 , and a rewritable non-volatile memory module 106 .

在本範例實施例中,連接介面單元102是相容於通用序列匯流排(Universal Serial Bus,USB)標準。然而,必須瞭解的是,本發明不限於此,連接介面單元102亦可以是符合並列先進附件 (Parallel Advanced Technology Attachment,PATA)標準、電氣和電子工程師協會(Institute of Electrical and Electronic Engineers,IEEE)1394標準、高速周邊零件連接介面(Peripheral Component Interconnect Express,PCI Express)標準、安全數位(Secure Digital,SD)介面標準、序列先進附件(Serial Advanced Technology Attachment,SATA)標準、超高速一代(Ultra High Speed-I,UHS-I)介面標準、超高速二代(Ultra High Speed-II,UHS-II)介面標準、記憶棒(Memory Stick,MS)介面標準、多媒體儲存卡(Multi Media Card,MMC)介面標準、崁入式多媒體儲存卡(Embedded Multimedia Card,eMMC)介面標準、通用快閃記憶體(Universal Flash Storage,UFS)介面標準、小型快閃(Compact Flash,CF)介面標準、整合式驅動電子介面(Integrated Device Electronics,IDE)標準或其他適合的標準。 In the present exemplary embodiment, the connection interface unit 102 is compatible with the Universal Serial Bus (USB) standard. However, it must be understood that the present invention is not limited thereto, and the connection interface unit 102 may also be a parallel advanced accessory. (Parallel Advanced Technology Attachment, PATA) Standard, Institute of Electrical and Electronic Engineers (IEEE) 1394 standard, Peripheral Component Interconnect Express (PCI Express) standard, Secure Digital (Secure Digital, SD) interface standard, Serial Advanced Technology Attachment (SATA) standard, Ultra High Speed-I (UHS-I) interface standard, Ultra High Speed-II (UHS-II) Interface standard, Memory Stick (MS) interface standard, Multi Media Card (MMC) interface standard, Embedded Multimedia Card (eMMC) interface standard, Universal flash memory (Universal) Flash Storage, UFS) interface standard, Compact Flash (CF) interface standard, Integrated Device Electronics (IDE) standard or other suitable standards.

記憶體控制電路單元104用以執行以硬體型式或韌體型式實作的多個邏輯閘或控制指令,並且根據主機系統1000的指令在可複寫式非揮發性記憶體模組106中進行資料的寫入、讀取與抹除等運作。 The memory control circuit unit 104 is configured to execute a plurality of logic gates or control commands implemented in a hard type or a firmware type, and perform data in the rewritable non-volatile memory module 106 according to an instruction of the host system 1000. Write, read, and erase operations.

可複寫式非揮發性記憶體模組106是耦接至記憶體控制電路單元104,並且用以儲存主機系統1000所寫入之資料。在本範例實施例中,可複寫式非揮發性記憶體模組106為多階記憶胞(Multi Level Cell,MLC)NAND型快閃記憶體模組(即,一個記憶胞中可儲存2個位元資料的快閃記憶體模組)。然而,本發明不限於 此,可複寫式非揮發性記憶體模組106亦可是單階記憶胞(Single Level Cell,SLC)NAND型快閃記憶體模組(即,一個記憶胞中可儲存1個位元資料的快閃記憶體模組)、複數階記憶胞(Trinary Level Cell,TLC)NAND型快閃記憶體模組(即,一個記憶胞中可儲存3個位元資料的快閃記憶體模組)、其他快閃記憶體模組或其他具有相同特性的記憶體模組。 The rewritable non-volatile memory module 106 is coupled to the memory control circuit unit 104 and is used to store data written by the host system 1000. In the present exemplary embodiment, the rewritable non-volatile memory module 106 is a multi-level cell (MLC) NAND-type flash memory module (ie, two bits can be stored in one memory cell). Metadata flash memory module). However, the invention is not limited to The rewritable non-volatile memory module 106 can also be a single-level memory cell (SLC) NAND flash memory module (ie, one memory cell can store one bit of data). Flash memory module), Trinary Level Cell (TLC) NAND flash memory module (ie, a flash memory module that can store 3 bits of data in a memory cell), other A flash memory module or other memory module with the same characteristics.

圖7是根據第一範例實施例所繪示的可複寫式非揮發性記憶體模組的概要方塊圖。 FIG. 7 is a schematic block diagram of a rewritable non-volatile memory module according to a first exemplary embodiment.

請參照圖7,可複寫式非揮發性記憶體模組106包括記憶胞陣列2202、字元線控制電路2204、位元線控制電路2206、行解碼器(column decoder)2208、資料輸入/輸出緩衝器2210與控制電路2212。 Referring to FIG. 7, the rewritable non-volatile memory module 106 includes a memory cell array 2202, a word line control circuit 2204, a bit line control circuit 2206, a column decoder 2208, and a data input/output buffer. The device 2210 and the control circuit 2212.

記憶胞陣列2202包括用以儲存資料的多個記憶胞(如圖1所示)、連接此些記憶胞的多條位元線(圖未示)、多條字元線與共用源極線(圖未示)。記憶胞是以陣列方式配置在位元線與字元線的交叉點上。當從記憶體控制電路單元130接收到寫入指令或讀取資料時,控制電路2212會控制字元線控制電路2204、位元線控制電路2206、行解碼器2208、資料輸入/輸出緩衝器2210來寫入資料至記憶體陣列202或從記憶體陣列202中讀取資料,其中字元線控制電路2204用以控制施予至字元線的字元線電壓,位元線控制電路2206用以控制位元線,行解碼器2208依據指令中的解碼列位址以選擇對應的位元線,並且資料輸入/輸出緩衝器2210用以 暫存資料。 The memory cell array 2202 includes a plurality of memory cells for storing data (as shown in FIG. 1), a plurality of bit lines (not shown) connecting the memory cells, a plurality of word lines and a common source line ( The figure is not shown). The memory cells are arranged in an array at the intersection of the bit line and the word line. When receiving a write command or reading data from the memory control circuit unit 130, the control circuit 2212 controls the word line control circuit 2204, the bit line control circuit 2206, the row decoder 2208, and the data input/output buffer 2210. To write data to or read from the memory array 202, wherein the word line control circuit 2204 is used to control the word line voltage applied to the word line, and the bit line control circuit 2206 is used to Controlling the bit line, the row decoder 2208 selects the corresponding bit line according to the decoded column address in the instruction, and the data input/output buffer 2210 is used. Temporary data.

在本範例實施例中,可複寫式非揮發性記憶體模組106為MLC NAND型快閃記憶體模組,其使用多種閘極電壓來代表多位元(bits)的資料。具體來說,記憶胞陣列2202的每一記憶胞具有多個儲存狀態,並且此些儲存狀態是以多個門檻電壓來區分。 In the present exemplary embodiment, the rewritable non-volatile memory module 106 is an MLC NAND type flash memory module that uses a plurality of gate voltages to represent multi-bit data. Specifically, each memory cell of the memory cell array 2202 has a plurality of storage states, and the storage states are distinguished by a plurality of threshold voltages.

圖8是根據第一範例實施例所繪示儲存於記憶胞陣列中的寫入資料所對應的閘極電壓的統計分配圖。 FIG. 8 is a statistical distribution diagram of gate voltages corresponding to write data stored in a memory cell array according to a first exemplary embodiment.

請參照圖8,以MLC NAND型快閃記憶體為例,每一記憶胞中的閘極電壓可依據第一門檻電壓VA、第二門檻電壓VB與第三門檻電壓VC而區分為4種儲存狀態,並且此些儲存狀態分別地代表"11"、"10"、"00"與"01"。換言之,每一個儲存狀態包括最低有效位元(Least Significant Bit,LSB)以及最高有效位元(Most Significant Bit,MSB)。在本範例實施例中,儲存狀態(即,"11"、"10"、"00"與"01")中從左側算起之第1個位元的值為LSB,而從左側算起之第2個位元的值為MSB。因此,在第一範例實施例中,每一記憶胞可儲存2個位元資料。必須瞭解的是,圖8所繪示的閘極電壓及其儲存狀態的對應僅為一個範例。在本發明另一範例實施例中,閘極電壓與儲存狀態的對應亦可是隨著閘極電壓越大而以"11"、"10"、"01"與"00"排列。或者,閘極電壓所對應之儲存狀態亦可為對實際儲存值進行映射或反相後之值,此外,在另一範例時實例中,亦可定義從左側算起之第1個位元的值為MSB,而從左側算起之第2個位元的值為LSB。 Referring to FIG. 8 , taking the MLC NAND type flash memory as an example, the gate voltage in each memory cell can be divided into four types according to the first threshold voltage VA, the second threshold voltage VB and the third threshold voltage VC. Status, and these storage states represent "11", "10", "00", and "01", respectively. In other words, each storage state includes a Least Significant Bit (LSB) and a Most Significant Bit (MSB). In the present exemplary embodiment, the value of the first bit from the left side in the storage state (ie, "11", "10", "00", and "01") is the LSB, and is counted from the left side. The value of the second bit is the MSB. Therefore, in the first exemplary embodiment, each memory cell can store 2 bit data. It must be understood that the correspondence between the gate voltage and its storage state illustrated in FIG. 8 is only an example. In another exemplary embodiment of the present invention, the correspondence between the gate voltage and the storage state may also be arranged in "11", "10", "01", and "00" as the gate voltage is larger. Alternatively, the storage state corresponding to the gate voltage may be a value that maps or reverses the actual stored value. In addition, in another example, the first bit from the left side may also be defined. The value is MSB, and the value of the second bit from the left is the LSB.

在本範例實施例中,每一記憶胞可儲存2個位元資料,因此同一條字元線上的記憶胞會構成2個實體頁面(即,下實體頁面與上實體頁面)的儲存空間。也就是說,每一記憶胞的LSB是對應下實體頁面,並且每一記憶胞的MSB是對應上實體頁面。此外,在記憶胞陣列2202中數個實體頁面會構成一個實體區塊,並且實體區塊為執行抹除運作的最小單位。亦即,每一實體區塊含有最小數目之一併被抹除之記憶胞。 In this exemplary embodiment, each memory cell can store 2 bit data, so the memory cells on the same word line constitute a storage space of two physical pages (ie, the lower physical page and the upper physical page). That is to say, the LSB of each memory cell corresponds to the lower physical page, and the MSB of each memory cell corresponds to the upper physical page. In addition, several physical pages in the memory cell array 2202 form a physical block, and the physical block is the smallest unit that performs the erase operation. That is, each physical block contains one of the smallest number of erased memory cells.

記憶胞陣列2202之記憶胞的資料寫入(或稱為程式化)是利用施予一特定端點之電壓,例如是控制閘極電壓來改變閘極中之一電荷補捉層的電子量,因而改變了記憶胞的閘極電壓,以呈現不同的儲存狀態。例如,當下頁面資料為1且上頁面資料為1時,控制電路2212會控制字元線控制電路2204不改變記憶胞中的閘極電壓,而將記憶胞的儲存狀態保持為"11"。當下頁面資料為1且上頁面資料為0時,字元線控制電路2204會在控制電路2212的控制下改變記憶胞中的閘極電壓,而將記憶胞的儲存狀態改變為"10"。當下頁面資料為0且上頁面資料為0時,字元線控制電路2204會在控制電路2212的控制下改變記憶胞中的閘極電壓,而將記憶胞的儲存狀態改變為"00"。並且,當下頁面資料為0且上頁面資料為1時,字元線控制電路2204會在控制電路2212的控制下改變記憶胞中的閘極電壓,而將記憶胞的儲存狀態改變為"01"。 The data writing (or programming) of the memory cell of the memory cell array 2202 utilizes a voltage applied to a specific terminal, such as controlling the gate voltage to change the amount of electrons in one of the gates of the charge trapping layer. Thus, the gate voltage of the memory cell is changed to present different storage states. For example, when the current page data is 1 and the upper page data is 1, the control circuit 2212 controls the word line control circuit 2204 to change the storage state of the memory cell to "11" without changing the gate voltage in the memory cell. When the current page data is 1 and the upper page data is 0, the word line control circuit 2204 changes the gate voltage in the memory cell under the control of the control circuit 2212, and changes the storage state of the memory cell to "10". When the current page data is 0 and the upper page data is 0, the word line control circuit 2204 changes the gate voltage in the memory cell under the control of the control circuit 2212, and changes the storage state of the memory cell to "00". Moreover, when the current page data is 0 and the upper page data is 1, the word line control circuit 2204 changes the gate voltage in the memory cell under the control of the control circuit 2212, and changes the storage state of the memory cell to "01". .

圖9是根據第一範例實施例所繪示之程式化記憶胞的示意圖。 FIG. 9 is a schematic diagram of a stylized memory cell according to a first exemplary embodiment.

請參照圖9,在本範例時實施例中,記憶胞的程式化是透過脈衝寫入/驗證臨界電壓方法來完成。具體來說,欲將資料寫入至記憶胞時,記憶體控制電路單元102會設定初始寫入電壓以及寫入電壓脈衝時間,並且指示可複寫式非揮發性記憶體模組106的控制電路2212使用所設定的初始寫入電壓以及寫入電壓脈衝時間來程式化記憶胞,以進行資料的寫入。之後,記憶體控制電路單元102會使用驗證電壓來對記憶胞進行驗證,以判斷記憶胞是否已處於正確的儲存狀態。倘若記憶胞未被程式化至正確的儲存狀態時,記憶體控制電路單元102指示控制電路2212以目前施予的寫入電壓加上一預設補償值作為新的寫入電壓(亦稱為重複寫入電壓)並且依據新的寫入電壓與寫入電壓脈衝時間再次來程式化記憶胞。反之,倘若記憶胞以被程式化至正確的儲存狀態時,則表示資料已被正確地寫入至記憶胞。例如,初始寫入電壓會被設定為16伏特(Voltage,V),寫入電壓脈衝時間會被設定為18微秒(microseconds,μs)並且預設補償值被設定為0.6V,但本發明不限於此。在另一範例實施例中,預設補償值亦可漸增或漸減。 Referring to FIG. 9, in the embodiment of the present example, the stylization of the memory cell is performed by a pulse write/verify threshold voltage method. Specifically, when data is to be written to the memory cell, the memory control circuit unit 102 sets the initial write voltage and the write voltage pulse time, and indicates the control circuit 2212 of the rewritable non-volatile memory module 106. The memory cells are programmed using the set initial write voltage and write voltage pulse time for data writing. Thereafter, the memory control circuit unit 102 uses the verification voltage to verify the memory cell to determine whether the memory cell is in the correct storage state. If the memory cell is not programmed to the correct storage state, the memory control circuit unit 102 instructs the control circuit 2212 to apply the currently applied write voltage plus a preset compensation value as a new write voltage (also referred to as repetition). Write voltage) and program the memory cells again according to the new write voltage and write voltage pulse time. On the other hand, if the memory cell is programmed to the correct storage state, it means that the data has been correctly written to the memory cell. For example, the initial write voltage will be set to 16 volts (Voltage, V), the write voltage pulse time will be set to 18 microseconds (μs) and the preset compensation value is set to 0.6V, but the present invention does not Limited to this. In another exemplary embodiment, the preset compensation value may also be gradually increased or decreased.

圖10是根據第一範例實施例所繪示的驗證記憶胞之儲存狀態的示意圖。 FIG. 10 is a schematic diagram of verifying a storage state of a memory cell according to the first exemplary embodiment.

請參照圖10,記憶胞陣列2202之記憶胞的資料讀取是使用門檻電壓來區分記憶胞的閘極電壓。在讀取下頁資料的運作中,字元線控制電路2204會施予第二門檻電壓VB至記憶胞並且藉由記憶胞的控制閘(control gate)是否導通和對應的運算式(1) 來判斷下頁資料的值:LSB=(VB)Lower_pre1 (1) Referring to FIG. 10, the data reading of the memory cell of the memory cell array 2202 uses the threshold voltage to distinguish the gate voltage of the memory cell. In the operation of reading the next page of data, the word line control circuit 2204 applies the second threshold voltage VB to the memory cell and controls whether the control gate of the memory cell is turned on and the corresponding arithmetic expression (1) To determine the value of the next page: LSB = (VB) Lower_pre1 (1)

其中(VB)Lower_pre1表示透過施予第二門檻電壓VB而獲得的第1下頁驗證值。 Wherein (VB) Lower_pre1 represents the first next page verification value obtained by applying the second threshold voltage VB.

例如,當第二門檻電壓VB小於記憶胞的閘極電壓時,記憶胞的控制閘(control gate)不會導通並輸出值'0'的第1下頁驗證值,由此LSB會被識別為0。例如,當第二門檻電壓VB大於記憶胞的閘極電壓時,記憶胞的控制閘會導通並輸出值'1'的第1下頁驗證值,由此此LSB會被識別為1。也就是說,用以呈現LSB為1的閘極電壓與用以呈現LSB為0的閘極電壓可透過第二門檻電壓VB而被區分。 For example, when the second threshold voltage VB is smaller than the gate voltage of the memory cell, the control gate of the memory cell does not turn on and outputs the first page verification value of the value '0', whereby the LSB is recognized as 0. For example, when the second threshold voltage VB is greater than the gate voltage of the memory cell, the control gate of the memory cell is turned on and outputs the first page verification value of the value '1', whereby the LSB is recognized as 1. That is to say, the gate voltage for presenting LSB to 1 and the gate voltage for presenting LSB to 0 can be distinguished by the second threshold voltage VB.

在讀取上頁資料的運作中,字元線控制電路2204會分別地施予第三門檻電壓VC與第一門檻電壓VA至記憶胞並且藉由記憶胞的控制閘是否導通和對應的運算式(2)來判斷上頁資料的值:MSB=((VA)Upper_pre2)xor(~(VC)Upper_pre1) (2) In the operation of reading the previous page data, the word line control circuit 2204 separately applies the third threshold voltage VC and the first threshold voltage VA to the memory cell and whether the control gate of the memory cell is turned on and the corresponding arithmetic expression. (2) to judge the value of the previous page data: MSB = ((VA) Upper_pre2) xor (~ (VC) Upper_pre1) (2)

其中(VC)Upper_pre1表示透過施予第三門檻電壓VC而獲得的第1上頁驗證值,並且(VA)Upper_pre2表示透過施予第一門檻電壓VA而獲得的第2上頁驗證值,其中符號”~”代表反相。此外,在本範例實施例中,當第三門檻電壓VC小於記憶胞的閘極電壓時,記憶胞的控制閘不會導通並輸出值'0'的第1上頁驗證值((VC)Upper_pre1),當第一門檻電壓VA小於記憶胞的閘極電壓時,記憶胞的控制閘不會導通並輸出值'0'的第2上頁驗證值 ((VA)Upper_pre2)。 Wherein (VC) Upper_pre1 represents the first upper page verification value obtained by applying the third threshold voltage VC, and (VA) Upper_pre2 represents the second upper page verification value obtained by applying the first threshold voltage VA, wherein the symbol "~" stands for inversion. In addition, in the present exemplary embodiment, when the third threshold voltage VC is less than the gate voltage of the memory cell, the control gate of the memory cell is not turned on and outputs the first upper page verification value of the value '0' ((VC) Upper_pre1 When the first threshold voltage VA is less than the gate voltage of the memory cell, the control gate of the memory cell is not turned on and outputs the second upper page verification value of the value '0'. ((VA) Upper_pre2).

因此,在本範例實施例中,依照運算式(2),當第三門檻電壓VC與第一門檻電壓VA皆小於記憶胞的閘極電壓時,在施予第三門檻電壓VC下記憶胞的控制閘不會導通並輸出值'0'的第1上頁驗證值並且在施予第一門檻電壓VA下記憶胞的控制閘不會導通並輸出值'0'的第2上頁驗證值。此時,MSB會被識別為1。 Therefore, in the present exemplary embodiment, according to the operation formula (2), when the third threshold voltage VC and the first threshold voltage VA are both smaller than the gate voltage of the memory cell, the memory cell is subjected to the third threshold voltage VC. The control gate does not conduct and outputs the first upper page verification value of the value '0' and the control gate of the memory cell is not turned on and the second upper page verification value of the value '0' is outputted when the first threshold voltage VA is applied. At this point, the MSB will be recognized as 1.

例如,當第三門檻電壓VC大於記憶胞的閘極電壓且第一門檻電壓VA小於記憶胞的閘極電壓小於記憶胞的閘極電壓時,在施予第三門檻電壓VC下記憶胞的控制閘會導通並輸出值'1'的第1上頁驗證值,並且在施予第一門檻電壓VA下記憶胞的控制閘不會導通並輸出值'0'的第2上頁驗證值。此時,MSB會被識別為0。 For example, when the third threshold voltage VC is greater than the gate voltage of the memory cell and the first threshold voltage VA is less than the gate voltage of the memory cell is less than the gate voltage of the memory cell, the control of the memory cell under the application of the third threshold voltage VC The gate is turned on and outputs the first upper page verification value of the value '1', and the control gate of the memory cell is not turned on and the second upper page verification value of the value '0' is outputted when the first threshold voltage VA is applied. At this point, the MSB will be recognized as 0.

例如,當第三門檻電壓VC與第一門檻電壓VA皆大於記憶胞的閘極電壓時,在施予第三門檻電壓VC下,記憶胞的控制閘會導通並輸出值'1'的第1上頁驗證值,並且在施予第一門檻電壓VA下記憶胞的控制閘會導通並輸出值'1'的第2上頁驗證值。此時,MSB會被識別為1。 For example, when the third threshold voltage VC and the first threshold voltage VA are both greater than the gate voltage of the memory cell, under the application of the third threshold voltage VC, the control gate of the memory cell is turned on and outputs the first value of the value '1'. The previous page verifies the value, and the control gate of the memory cell is turned on under the first threshold voltage VA and outputs the second upper page verification value of the value '1'. At this point, the MSB will be recognized as 1.

必須瞭解的是,儘管本發明是以MLC NAND型快閃記憶體來作說明。然而,本發明不限於此,其他多層記憶胞NAND型快閃記憶體亦可依據上述原理進行資料的讀取。 It must be understood that although the invention has been described in terms of MLC NAND type flash memory. However, the present invention is not limited thereto, and other multi-layer memory cell NAND type flash memories can also read data according to the above principle.

例如,以TLC NAND型快閃記憶體為例(如圖11所示),每一個儲存狀態包括左側算起之第1個位元的最低有效位元LSB、從左側算起之第2個位元的中間有效位元(Center Significant Bit,CSB)以及從左側算起之第3個位元的最高有效位元MSB,其中LSB對應下頁面,CSB對應中頁面,MSB對應上頁面。在此範例中,每一記憶胞中的閘極電壓可依據第一門檻電壓VA、第二門檻電壓VB、第三門檻電壓VC、第四門檻電壓VD、第五門檻電壓VE、第六門檻電壓VF與第七門檻電壓VG而區分為8種儲存狀態(即,"111"、"110"、"100"、"101"、"001"、"000"、"010"與"011")。再例如,以SLC NAND型快閃記憶體為例(未繪示),每一個儲存狀態僅能儲存一個位元資料,因此,每一記憶胞中的閘極電壓可依據一個門檻電壓來識別記憶胞的儲存狀態(即,"1"、"0")。 For example, taking the TLC NAND type flash memory as an example (as shown in FIG. 11), each storage state includes the least significant bit LSB of the first bit from the left side and the second bit from the left side. Intermediate Significant Bit, CSB) and the most significant bit MSB of the third bit from the left side, where the LSB corresponds to the next page, the CSB corresponds to the middle page, and the MSB corresponds to the upper page. In this example, the gate voltage in each memory cell may be based on the first threshold voltage VA, the second threshold voltage VB, the third threshold voltage VC, the fourth threshold voltage VD, the fifth threshold voltage VE, and the sixth threshold voltage. The VF and the seventh threshold voltage VG are divided into eight storage states (ie, "111", "110", "100", "101", "001", "000", "010", and "011"). For example, taking SLC NAND type flash memory as an example (not shown), each storage state can only store one bit of data. Therefore, the gate voltage in each memory cell can recognize the memory according to a threshold voltage. The storage state of the cells (ie, "1", "0").

圖12是根據第一範例實施例所繪示之記憶體控制電路單元的概要方塊圖。必須瞭解的是,圖12所示之記憶體控制電路單元的結構僅為一範例,本發明不以此為限。 FIG. 12 is a schematic block diagram of a memory control circuit unit according to a first exemplary embodiment. It should be understood that the structure of the memory control circuit unit shown in FIG. 12 is only an example, and the present invention is not limited thereto.

請參照圖12,記憶體控制電路單元104包括記憶體管理電路202、主機介面204、記憶體介面206與溫度感測器208。 Referring to FIG. 12 , the memory control circuit unit 104 includes a memory management circuit 202 , a host interface 204 , a memory interface 206 , and a temperature sensor 208 .

記憶體管理電路202用以控制記憶體控制電路單元104的整體運作。具體來說,記憶體管理電路202具有多個控制指令,並且在記憶體儲存裝置100運作時,此些控制指令會被執行以下達指令序列給可複寫式非揮發性記憶體模組106來進行資料的寫入、讀取與抹除等運作。 The memory management circuit 202 is used to control the overall operation of the memory control circuit unit 104. Specifically, the memory management circuit 202 has a plurality of control commands, and when the memory storage device 100 is in operation, the control commands are executed by the following sequence of instructions to the rewritable non-volatile memory module 106. Data writing, reading and erasing operations.

在本範例實施例中,記憶體管理電路202的控制指令是以韌體型式來實作。例如,記憶體管理電路202具有微處理器單元(未繪示)與唯讀記憶體(未繪示),並且此些控制指令是被燒錄至 此唯讀記憶體中。當記憶體儲存裝置100運作時,此些控制指令會由微處理器單元來執行以進行資料的寫入、讀取與抹除等運作。 In the present exemplary embodiment, the control instructions of the memory management circuit 202 are implemented in a firmware version. For example, the memory management circuit 202 has a microprocessor unit (not shown) and a read-only memory (not shown), and the control commands are burned to This read-only memory. When the memory storage device 100 is in operation, such control commands are executed by the microprocessor unit to perform operations such as writing, reading, and erasing data.

在本發明另一範例實施例中,記憶體管理電路202的控制指令亦可以程式碼型式儲存於可複寫式非揮發性記憶體模組106的特定區域(例如,記憶體模組中專用於存放系統資料的系統區)中。此外,記憶體管理電路202具有微處理器單元(未繪示)、唯讀記憶體(未繪示)及隨機存取記憶體(未繪示)。特別是,此唯讀記憶體具有驅動碼,並且當記憶體控制電路單元104被致能時,微處理器單元會先執行此驅動碼段來將儲存於可複寫式非揮發性記憶體模組106中之控制指令載入至記憶體管理電路202的隨機存取記憶體中。之後,微處理器單元會運轉此些控制指令以進行資料的寫入、讀取與抹除等運作。 In another exemplary embodiment of the present invention, the control command of the memory management circuit 202 can also be stored in a specific area of the rewritable non-volatile memory module 106 (for example, the memory module is dedicated to storage). In the system area of the system data). In addition, the memory management circuit 202 has a microprocessor unit (not shown), a read-only memory (not shown), and a random access memory (not shown). In particular, the read-only memory has a drive code, and when the memory control circuit unit 104 is enabled, the microprocessor unit first executes the drive code segment to be stored in the rewritable non-volatile memory module. The control command in 106 is loaded into the random access memory of the memory management circuit 202. After that, the microprocessor unit will run these control commands to perform data writing, reading and erasing operations.

此外,在本發明另一範例實施例中,記憶體管理電路202的控制指令亦可以一硬體型式來實作。例如,記憶體管理電路202包括微控制器、記憶胞管理電路、記憶體寫入電路、記憶體讀取電路、記憶體抹除電路與資料處理電路。記憶胞管理電路、記憶體寫入電路、記憶體讀取電路、記憶體抹除電路與資料處理電路是耦接至微控制器。其中,記憶胞管理電路用以管理可複寫式非揮發性記憶體模組106的實體抹除單元;記憶體寫入電路用以對可複寫式非揮發性記憶體模組106下達寫入指令以將資料寫入至可複寫式非揮發性記憶體模組106中;記憶體讀取電路用以對可複寫式非揮發性記憶體模組106下達讀取指令以從可複寫式非揮 發性記憶體模組106中讀取資料;記憶體抹除電路用以對可複寫式非揮發性記憶體模組106下達抹除指令以將資料從可複寫式非揮發性記憶體模組106中抹除;而資料處理電路用以處理欲寫入至可複寫式非揮發性記憶體模組106的資料以及從可複寫式非揮發性記憶體模組106中讀取的資料。 In addition, in another exemplary embodiment of the present invention, the control command of the memory management circuit 202 can also be implemented in a hardware format. For example, the memory management circuit 202 includes a microcontroller, a memory cell management circuit, a memory write circuit, a memory read circuit, a memory erase circuit, and a data processing circuit. The memory cell management circuit, the memory write circuit, the memory read circuit, the memory erase circuit and the data processing circuit are coupled to the microcontroller. The memory cell management circuit is configured to manage the physical erasing unit of the rewritable non-volatile memory module 106; the memory writing circuit is configured to issue a write command to the rewritable non-volatile memory module 106. The data is written into the rewritable non-volatile memory module 106; the memory read circuit is used to issue a read command to the rewritable non-volatile memory module 106 to rewritable non-swing The memory module 106 reads data; the memory erasing circuit is used to issue an erase command to the rewritable non-volatile memory module 106 to transfer data from the rewritable non-volatile memory module 106. The data processing circuit processes the data to be written to the rewritable non-volatile memory module 106 and the data read from the rewritable non-volatile memory module 106.

主機介面204是耦接至記憶體管理電路202並且用以接收與識別主機系統1000所傳送的指令與資料。也就是說,主機系統1000所傳送的指令與資料會透過主機介面204來傳送至記憶體管理電路202。在本範例實施例中,主機介面204是相容於USB標準。然而,必須瞭解的是本發明不限於此,主機介面204亦可以是相容於PATA標準、IEEE 1394標準、PCI Express標準、SD標準、SATA標準、UHS-I介面標準、UHS-II介面標準、MS標準、MMC標準、eMMC介面標準、UFS介面標準、CF標準、IDE標準或其他適合的資料傳輸標準。 The host interface 204 is coupled to the memory management circuit 202 and is configured to receive and identify instructions and data transmitted by the host system 1000. That is to say, the instructions and data transmitted by the host system 1000 are transmitted to the memory management circuit 202 through the host interface 204. In the present exemplary embodiment, host interface 204 is compatible with the USB standard. However, it must be understood that the present invention is not limited thereto, and the host interface 204 may be compatible with the PATA standard, the IEEE 1394 standard, the PCI Express standard, the SD standard, the SATA standard, the UHS-I interface standard, and the UHS-II interface standard. MS standard, MMC standard, eMMC interface standard, UFS interface standard, CF standard, IDE standard or other suitable data transmission standard.

記憶體介面206是耦接至記憶體管理電路202並且用以存取可複寫式非揮發性記憶體模組106。也就是說,欲寫入至可複寫式非揮發性記憶體模組106的資料會經由記憶體介面206轉換為可複寫式非揮發性記憶體模組106所能接受的格式。 The memory interface 206 is coupled to the memory management circuit 202 and is used to access the rewritable non-volatile memory module 106. That is, the data to be written to the rewritable non-volatile memory module 106 is converted to a format acceptable to the rewritable non-volatile memory module 106 via the memory interface 206.

溫度感測器208是耦接至感測記憶體管理電路202並且用以偵測記憶體存裝置100的運作溫度。 The temperature sensor 208 is coupled to the sensing memory management circuit 202 and configured to detect the operating temperature of the memory storage device 100.

在本發明一範例實施例中,記憶體控制電路單元104還包括緩衝記憶體252、電源管理電路254以及錯誤檢查與校正電路 256。 In an exemplary embodiment of the present invention, the memory control circuit unit 104 further includes a buffer memory 252, a power management circuit 254, and an error check and correction circuit. 256.

緩衝記憶體252是耦接至記憶體管理電路202並且用以暫存來自於主機系統1000的資料與指令或來自於可複寫式非揮發性記憶體模組106的資料。 The buffer memory 252 is coupled to the memory management circuit 202 and is used to temporarily store data and instructions from the host system 1000 or data from the rewritable non-volatile memory module 106.

電源管理電路254是耦接至記憶體管理電路202並且用以控制記憶體儲存裝置100的電源。 The power management circuit 254 is coupled to the memory management circuit 202 and is used to control the power of the memory storage device 100.

錯誤檢查與校正電路256是耦接至記憶體管理電路202並且用以執行錯誤檢查與校正程序以確保資料的正確性。在本範例實施例中,當記憶體管理電路202從主機系統1000中接收到寫入指令時,錯誤檢查與校正電路256會為對應此寫入指令的資料產生對應的錯誤檢查與校正碼(Error Checking and Correcting Code,ECC Code),並且記憶體管理電路202會將對應此寫入指令的資料與對應的錯誤檢查與校正碼寫入至可複寫式非揮發性記憶體模組106中。之後,當記憶體管理電路202從可複寫式非揮發性記憶體模組106中讀取資料時會同時讀取此資料對應的錯誤檢查與校正碼,並且錯誤檢查與校正電路256會依據此錯誤檢查與校正碼對所讀取的資料執行錯誤檢查與校正程序。具體來說,錯誤檢查與校正電路256會被設計能夠校正一數目的錯誤位元(以下稱為最大可校正錯誤位元數)。例如,最大可校正錯誤位元數為24。倘若發生在所讀取之資料的錯誤位元的數目非大於24個時,錯誤檢查與校正電路256就能夠依據錯誤校正碼將錯誤位元校正回正確的值。反之,錯誤檢查與校正電路256就會回報錯誤校正失敗且記 憶體管理電路202會將指示資料已遺失的訊息傳送給主機系統1000。 The error checking and correction circuit 256 is coupled to the memory management circuit 202 and is used to perform error checking and correction procedures to ensure the correctness of the data. In the present exemplary embodiment, when the memory management circuit 202 receives a write command from the host system 1000, the error check and correction circuit 256 generates a corresponding error check and correction code (Error) for the data corresponding to the write command. Checking and Correcting Code (ECC Code), and the memory management circuit 202 writes the data corresponding to the write command and the corresponding error check and correction code into the rewritable non-volatile memory module 106. Thereafter, when the memory management circuit 202 reads the data from the rewritable non-volatile memory module 106, the error check and correction code corresponding to the data is simultaneously read, and the error check and correction circuit 256 is based on the error. Check and calibration code Perform error checking and calibration procedures on the data read. In particular, error checking and correction circuit 256 will be designed to correct a number of error bits (hereinafter referred to as the maximum number of correctable error bits). For example, the maximum number of correctable error bits is 24. If the number of error bits occurring in the read data is not greater than 24, the error checking and correction circuit 256 can correct the error bit back to the correct value based on the error correction code. Conversely, the error checking and correction circuit 256 will report the error correction failure and record The memory management circuit 202 transmits a message indicating that the data has been lost to the host system 1000.

在本範例實施例中,記憶體控制電路單元104(或記憶體管理電路202)會記錄可複寫式非揮發性記憶體模組106中記憶胞的磨損程度值。例如,對於可複寫式非揮發性記憶體模組106的抹除是以實體區塊為單位來進行,因此,例如,記憶體控制電路單元104(或記憶體管理電路202)會記錄可複寫式非揮發性記憶體模組106中每個實體區塊的抹除次數,由此監控每個記憶胞的磨損程度。然而,必須瞭解的是,除了以抹除次數來作為磨損程度值之外,在本發明另一範例實施例中,記憶胞的寫入次數、錯誤位元數、錯誤位元比例或讀取次數,或依據上述部份或全部之參數組合而成亦可被作為衡量記憶胞的磨損程度。 In the present exemplary embodiment, the memory control circuit unit 104 (or the memory management circuit 202) records the wear level value of the memory cells in the rewritable non-volatile memory module 106. For example, erasing of the rewritable non-volatile memory module 106 is performed in units of physical blocks, and thus, for example, the memory control circuit unit 104 (or the memory management circuit 202) records rewritable The number of erasures of each physical block in the non-volatile memory module 106, thereby monitoring the degree of wear of each memory cell. However, it must be understood that, in addition to the number of erasures as the value of the wear level, in another exemplary embodiment of the present invention, the number of writes of the memory cells, the number of error bits, the proportion of error bits, or the number of readings Or combined according to some or all of the above parameters can also be used to measure the degree of wear of memory cells.

特別是,在本範例實施例中,記憶體控制電路單元104(或記憶體管理電路202)判斷記憶體儲存裝置100的運作溫度是否大於預先定義溫度,並且倘若記憶體儲存裝置100的運作溫度大於預先定義溫度時,記憶體控制電路單元104(或記憶體管理電路202)會藉由根據每個記憶胞的穿遂氧化層的磨損程度來調整程式化時所使用的初始寫入電壓,以調整對應可複寫式非揮發性記憶體模組106的至少一個預先定義運作參數以產生對應可複寫式非揮發性記憶體模組106的已調整運作參數,由此避免過度寫入而產生錯誤位元。具體來說,倘若記憶體儲存裝置100的運作溫度大於預先定義溫度時,記憶體控制電路單元104(或記憶體管理電路202) 會隨著記憶胞的磨損程度值增加,而降低對應此記憶胞的初始寫入電壓。 In particular, in the present exemplary embodiment, the memory control circuit unit 104 (or the memory management circuit 202) determines whether the operating temperature of the memory storage device 100 is greater than a predefined temperature, and if the operating temperature of the memory storage device 100 is greater than When the temperature is predefined, the memory control circuit unit 104 (or the memory management circuit 202) adjusts the initial write voltage used in the stylization according to the degree of wear of the passivation oxide layer of each memory cell. Corresponding at least one predefined operational parameter of the rewritable non-volatile memory module 106 to generate adjusted operational parameters of the corresponding rewritable non-volatile memory module 106, thereby avoiding overwriting and generating erroneous bits . Specifically, if the operating temperature of the memory storage device 100 is greater than a predefined temperature, the memory control circuit unit 104 (or the memory management circuit 202) As the value of the wear level of the memory cell increases, the initial write voltage corresponding to the memory cell is lowered.

例如,當欲對一個記憶胞進行程式化並且記憶體儲存裝置100的運作溫度大於預先定義溫度時,記憶體控制電路單元104(或記憶體管理電路202)會判斷此記憶胞的磨損程度值是否小於第一門檻值。倘若此記憶胞的磨損程度值是否小於此第一門檻值時,記憶體控制電路單元104(或記憶體管理電路202)會使用第一寫入電壓作為初始寫入電壓。倘若此記憶胞的磨損程度值非小於第一門檻值時,記憶體控制電路單元104(或記憶體管理電路202)會判斷此記憶胞的磨損程度值是否小於第二門檻值。並且,倘若此記憶胞的磨損程度值小於第二門檻值時,記憶體控制電路單元104(或記憶體管理電路202)會使用第二寫入電壓作為初始寫入電壓。倘若此記憶胞的磨損程度值非小於第二門檻值時,記憶體控制電路單元104(或記憶體管理電路202)會使用第三寫入電壓作為初始寫入電壓。在此,第二門檻值是大於第一門檻值,第一寫入電壓大於第二寫入電壓且第二寫入電壓大於第三寫入電壓。例如,第一門檻值為500;第二門檻值為1000;第一寫入電壓為16V;第二寫入電壓為14V,並且第三寫入電壓為12V。也就是說,如表1所示,在本範例實施例中,記憶體控制電路單元104(或記憶體管理電路202)使用脈衝寫入/驗證臨界電壓方法來程式化記憶胞時,所使用的寫入電壓(即,初始寫入電壓(Vpro_0)、第一重複寫入電壓(Vpro_1)、第二重複寫入電壓(Vpro_2)…)會根據記憶胞的 磨損程度值(WD)而有所不同。 For example, when a memory cell is to be programmed and the operating temperature of the memory storage device 100 is greater than a predefined temperature, the memory control circuit unit 104 (or the memory management circuit 202) determines whether the value of the wear level of the memory cell is Less than the first threshold. If the value of the wear level of the memory cell is less than the first threshold value, the memory control circuit unit 104 (or the memory management circuit 202) uses the first write voltage as the initial write voltage. If the value of the wear level of the memory cell is not less than the first threshold value, the memory control circuit unit 104 (or the memory management circuit 202) determines whether the value of the wear level of the memory cell is less than the second threshold value. Moreover, if the wear level value of the memory cell is less than the second threshold value, the memory control circuit unit 104 (or the memory management circuit 202) uses the second write voltage as the initial write voltage. If the value of the wear level of the memory cell is not less than the second threshold value, the memory control circuit unit 104 (or the memory management circuit 202) uses the third write voltage as the initial write voltage. Here, the second threshold value is greater than the first threshold value, the first write voltage is greater than the second write voltage and the second write voltage is greater than the third write voltage. For example, the first threshold is 500; the second threshold is 1000; the first write voltage is 16V; the second write voltage is 14V, and the third write voltage is 12V. That is, as shown in Table 1, in the present exemplary embodiment, the memory control circuit unit 104 (or the memory management circuit 202) uses the pulse write/verify threshold voltage method to program the memory cells, which is used. The write voltage (ie, the initial write voltage (Vpro_0), the first repeated write voltage (Vpro_1), the second repeated write voltage (Vpro_2)...) will be based on the memory cell The degree of wear (WD) varies.

必須瞭解的是,儘管在上述範例中,是以兩個門檻值(第一門檻值與第二門檻值)來區分記憶胞的磨損程度並且以第一寫入電壓、第二寫入電壓與第三寫入電壓來設定對應不同磨損程度之記憶胞的初始寫入電壓,但本發明不限於此。在本發明範例另一範例實施例中,記憶胞的磨損程度可被分為更多個等級,並且每個記憶胞的寫入電壓可根據下述公式來計算:Vpgm(i,n)=IVpgm-i×A+(n)×C It must be understood that although in the above example, the threshold value of the memory cell is distinguished by the two threshold values (the first threshold value and the second threshold value) and the first write voltage, the second write voltage and the first The three write voltages are used to set the initial write voltages of the memory cells corresponding to different degrees of wear, but the invention is not limited thereto. In another exemplary embodiment of the present exemplary embodiment, the degree of wear of the memory cell can be divided into more levels, and the write voltage of each memory cell can be calculated according to the following formula: Vpgm(i, n)=IVpgm -i×A+(n)×C

其中i表示記憶胞的磨損程度,n為重複寫入次數,IVpgm預設初始寫入電壓,C為預設補償值且A為預設調整值。在此,Vpgm(0,0)表示在記憶胞的磨損為最小程度(例如,WD<500)時的初始寫入電壓,Vpgm(0,1)表示在記憶胞的磨損為最小程度(例如,WD<500)時的第一重複寫入電壓,以此類推。在另一範例實施例中,預設補償值可因磨損程度的不同而進行相對應的改變,其中,此改變可是線性或非線性的增加或減少。在另一範例實施例中,預設調整值可因重複寫入次數的變化而進行相對應的改變,其中,此改變可是線性或非線性的減少或增加。 Where i represents the degree of wear of the memory cell, n is the number of repeated writes, IVpgm presets the initial write voltage, C is the preset offset value and A is the preset adjustment value. Here, Vpgm (0, 0) indicates an initial write voltage when the wear of the memory cell is minimal (for example, WD < 500), and Vpgm (0, 1) indicates that the wear of the memory cell is minimal (for example, The first repeated write voltage at WD<500), and so on. In another exemplary embodiment, the preset compensation value may be correspondingly changed due to the degree of wear, wherein the change may be a linear or non-linear increase or decrease. In another exemplary embodiment, the preset adjustment value may be correspondingly changed due to a change in the number of repeated writes, wherein the change may be a linear or non-linear decrease or increase.

圖13是根據本發明第一範例實施例所繪示之資料寫入方 法的流程圖。 FIG. 13 is a data writer according to a first exemplary embodiment of the present invention. Flow chart of the law.

請參照圖13,在步驟S1201中,記憶胞的磨損程度值會被記錄。 Referring to FIG. 13, in step S1201, the wear level value of the memory cell is recorded.

在步驟S1203中,記憶體儲存裝置100的運作溫度會被偵測,並且在步驟S1205中,記憶體儲存裝置100的運作溫度是否大於預先定義溫度會被判斷。 In step S1203, the operating temperature of the memory storage device 100 is detected, and in step S1205, whether the operating temperature of the memory storage device 100 is greater than a predefined temperature is judged.

倘若記憶體儲存裝置100的運作溫度大於預先定義溫度時,在步驟S1207中,對應記憶胞的初始寫入電壓會根據記憶胞的磨損程度值被調整。 If the operating temperature of the memory storage device 100 is greater than a predefined temperature, in step S1207, the initial write voltage of the corresponding memory cell is adjusted according to the wear level value of the memory cell.

之後,在步驟S1209中,對應記憶胞的已調整初始寫入電壓與寫入電壓脈衝時間會被用來程式化記憶胞,以將資料寫入至記憶胞中。 Thereafter, in step S1209, the adjusted initial write voltage and the write voltage pulse time of the corresponding memory cell are used to program the memory cell to write the data into the memory cell.

倘若記憶體儲存裝置100的運作溫度非大於預先定義溫度時,在步驟S1211中,對應記憶胞的預設初始寫入電壓與寫入電壓脈衝時間會被用來程式化記憶胞,以將資料寫入至記憶胞中。 If the operating temperature of the memory storage device 100 is not greater than a predefined temperature, in step S1211, the preset initial write voltage and the write voltage pulse time of the corresponding memory cell are used to program the memory cell to write the data. Into the memory cell.

圖14是根據第一範例實施例所繪示之調整對應記憶胞之初始寫入電壓的流程圖。 FIG. 14 is a flow chart of adjusting an initial write voltage of a corresponding memory cell according to the first exemplary embodiment.

請參照圖14,在步驟S1301中此記憶胞的磨損程度值是否小於第一門檻值會被判斷。 Referring to FIG. 14, whether the value of the wear level of the memory cell is less than the first threshold value is determined in step S1301.

倘若此記憶胞的磨損程度值小於第一門檻值,在步驟S1303中,第一寫入電壓會被用作為初始寫入電壓。 If the value of the wear level of the memory cell is less than the first threshold value, the first write voltage is used as the initial write voltage in step S1303.

倘若此記憶胞的磨損程度值非小於第一門檻值時,則在 步驟S1305中,記憶胞的磨損程度值是否小於第二門檻值會被判斷。 If the value of the wear level of the memory cell is not less than the first threshold value, then In step S1305, whether the value of the wear level of the memory cell is less than the second threshold value is judged.

倘若此記憶胞的磨損程度值小於第二門檻值時,在步驟S1307中,第二寫入電壓會被用作為初始寫入電壓。 If the value of the wear level of the memory cell is less than the second threshold value, the second write voltage is used as the initial write voltage in step S1307.

倘若記憶胞的磨損程度值非小於第二門檻值時,在步驟S1309中第三寫入電壓會被用作為初始寫入電壓。 If the value of the wear level of the memory cell is not less than the second threshold value, the third write voltage is used as the initial write voltage in step S1309.

[第二範例實施例] [Second exemplary embodiment]

第二範例實施例的記憶體儲存裝置的結構與第一範例實施例的記憶體儲存裝置是類似,其不同之處在於第二範例實施例的記憶體控制電路單元(或記憶體管理電路)會藉由根據每個記憶胞的磨損程度來調整程式化時所使用的寫入電壓脈衝時間,以調整對應可複寫式非揮發性記憶體模組106的至少一個預先定義運作參數以產生對應可複寫式非揮發性記憶體模組106的已調整運作參數,由此避免過度寫入而產生錯誤位元。以下將使用第一範例實施例的元件標號來說明第二範例實施例與第一範例實施例的差異之處。 The structure of the memory storage device of the second exemplary embodiment is similar to that of the memory storage device of the first exemplary embodiment, except that the memory control circuit unit (or memory management circuit) of the second exemplary embodiment will Adjusting at least one predefined operational parameter of the corresponding rewritable non-volatile memory module 106 to generate a corresponding rewritable by adjusting the write voltage pulse time used in the stylization according to the degree of wear of each memory cell The operational parameters of the non-volatile memory module 106 are adjusted to thereby avoid overwriting and generating erroneous bits. The differences between the second exemplary embodiment and the first exemplary embodiment will be described below using the component numbers of the first exemplary embodiment.

一般來說,記憶體控制電路單元104(或記憶體管理電路202)會將一預設時間(亦稱為預設寫入電壓脈衝時間,例如,16微秒)作為快閃記憶體儲存模組106之記憶胞的寫入電壓脈衝時間。並且,在進行記憶胞程式化時,記憶體控制電路單元104(或記憶體管理電路202)會使用此寫入電壓脈衝時間來配合初始寫入電壓將電子注入至記憶胞中。在本範例實施例中,記憶體控制電路單 元104(或記憶體管理電路202)會判斷記憶體儲存裝置100的運作溫度是否大於預先定義溫度,並且倘若記憶體儲存裝置100的運作溫度大於預先定義溫度時,記憶體控制電路單元104(或記憶體管理電路202)會隨著記憶胞的磨損程度值增加,而減少對應此記憶胞的寫入電壓脈衝時間。 Generally, the memory control circuit unit 104 (or the memory management circuit 202) will use a predetermined time (also referred to as a preset write voltage pulse time, for example, 16 microseconds) as a flash memory storage module. The write voltage pulse time of the memory cell of 106. Moreover, when the memory cell is programmed, the memory control circuit unit 104 (or the memory management circuit 202) uses the write voltage pulse time to match the initial write voltage to inject electrons into the memory cell. In the present exemplary embodiment, the memory control circuit is single The element 104 (or the memory management circuit 202) determines whether the operating temperature of the memory storage device 100 is greater than a predefined temperature, and if the operating temperature of the memory storage device 100 is greater than a predefined temperature, the memory control circuit unit 104 (or The memory management circuit 202) decreases the write voltage pulse time corresponding to the memory cell as the value of the wear level of the memory cell increases.

圖15-17是根據第二範例實施例所繪示之程式化記憶胞的示意圖。 15-17 are schematic diagrams of stylized memory cells according to a second exemplary embodiment.

請參照圖15-17,例如,當欲對一個記憶胞進行程式化時,記憶體控制電路單元104(或記憶體管理電路202)會判斷此記憶胞的磨損程度值是否小於第一門檻值。倘若此記憶胞的磨損程度值是否小於此第一門檻值時,記憶體控制電路單元104(或記憶體管理電路202)會使用第一時間作為寫入電壓脈衝時間(如圖15所示)。倘若此記憶胞的磨損程度值非小於第一門檻值時,記憶體控制電路單元104(或記憶體管理電路202)會判斷此記憶胞的磨損程度值小於第二門檻值。並且,倘若此記憶胞的磨損程度值小於第二門檻值時,記憶體控制電路單元104(或記憶體管理電路202)會使用第二時間作為寫入電壓脈衝時間(如圖16所示)。倘若此記憶胞的磨損程度值非小於第二門檻值時,記憶體控制電路單元104(或記憶體管理電路202)會使用第三時間作為寫入電壓脈衝時間(如圖17所示)。例如,第一時間為18微秒,第二時間為14.4微秒且第三時間為11.7微秒。也就是說,如表1所示,在本範例實施例中,記憶體控制電路單元104(或記憶體管理電路202)使用 脈衝寫入/驗證臨界電壓方法來程式化記憶胞時,所使用的寫入電壓脈衝時間會根據記憶胞的磨損程度值(WD)而有所不同。 Referring to FIG. 15-17, for example, when a memory cell is to be programmed, the memory control circuit unit 104 (or the memory management circuit 202) determines whether the value of the wear level of the memory cell is less than the first threshold. If the value of the wear level of the memory cell is less than the first threshold value, the memory control circuit unit 104 (or the memory management circuit 202) uses the first time as the write voltage pulse time (as shown in FIG. 15). If the value of the wear level of the memory cell is not less than the first threshold value, the memory control circuit unit 104 (or the memory management circuit 202) determines that the wear level value of the memory cell is less than the second threshold value. Moreover, if the wear level value of the memory cell is less than the second threshold value, the memory control circuit unit 104 (or the memory management circuit 202) uses the second time as the write voltage pulse time (as shown in FIG. 16). If the value of the wear level of the memory cell is not less than the second threshold value, the memory control circuit unit 104 (or the memory management circuit 202) uses the third time as the write voltage pulse time (as shown in FIG. 17). For example, the first time is 18 microseconds, the second time is 14.4 microseconds, and the third time is 11.7 microseconds. That is, as shown in Table 1, in the present exemplary embodiment, the memory control circuit unit 104 (or the memory management circuit 202) is used. When the pulse write/verify threshold voltage method is used to program the memory cell, the write voltage pulse time used will vary depending on the memory cell wear level value (WD).

在另一範例實施例中,初始的寫入電壓脈衝時間可因磨損程度的不同而進行相對應的改變,其中,此改變可是線性或非線性的增加或減少。在另一範例實施例中,寫入電壓脈衝時間之預設調整值可因重複寫入次數的變化而進行相對應的改變,其中,此改變可是線性或非線性的減少或增加。 In another exemplary embodiment, the initial write voltage pulse time may be correspondingly changed due to the degree of wear, wherein the change may be a linear or non-linear increase or decrease. In another exemplary embodiment, the preset adjustment value of the write voltage pulse time may be correspondingly changed due to a change in the number of repeated writes, wherein the change may be a linear or non-linear decrease or increase.

例如,已調整寫入電壓脈衝時間根據記憶胞的磨損程度依據預設寫入電壓脈衝時間來決定時,在使用脈衝寫入/驗證臨界電壓方法來程式化記憶胞期間,已調整寫入電壓脈衝時間會被用於第一次重複程式化與第二次重複程式化,並且預設寫入電壓脈衝時間會被於第三次重複程式化、第四次重複程式化…等。也就是說,在使用脈衝寫入/驗證臨界電壓方法來程式化記憶胞期間,已調整寫入電壓脈衝時間會被用於一部份的重複程式化,而預設寫入電壓脈衝時間會被用於另一部份的重複程式化(如圖18所示)。 For example, when the adjusted write voltage pulse time is determined according to the wear level of the memory cell according to the preset write voltage pulse time, the write voltage pulse is adjusted during the use of the pulse write/verify threshold voltage method to program the memory cell. The time will be used for the first repetitive stylization and the second repetitive stylization, and the preset write voltage pulse time will be the third repetitive stylization, the fourth repetitive stylization...etc. That is, during the use of the pulse write/verify threshold voltage method to program the memory cells, the adjusted write voltage pulse time is used for a portion of the reprogramming, and the preset write voltage pulse time is Used for repeated stylization of another part (as shown in Figure 18).

此外,值得一提的是,在本範例實施例中,在透過驗證電壓確認記憶胞未被程式化至正確的儲存狀態時,記憶體控制電 路單元102指示控制電路2212以目前施予的寫入電壓加上預設補償值作為新的寫入電壓(亦稱為重複寫入電壓)並且依據新的寫入電壓與相同的寫入電壓脈衝時間再次來程式化記憶胞。然而,本發明不限於此,在本發明另一範例實施例中,寫入電壓脈衝時間亦可隨著重複程式化的次數增加而增加。 In addition, it is worth mentioning that, in the exemplary embodiment, when the verification voltage is used to confirm that the memory cell is not programmed to the correct storage state, the memory control power The circuit unit 102 instructs the control circuit 2212 to use the currently applied write voltage plus the preset compensation value as the new write voltage (also referred to as the repeated write voltage) and according to the new write voltage and the same write voltage pulse. Time to program the memory cells again. However, the present invention is not limited thereto, and in another exemplary embodiment of the present invention, the write voltage pulse time may also increase as the number of repetitions of the program is increased.

圖19是根據本發明第二範例實施例所繪示之資料寫入方法的流程圖。 FIG. 19 is a flowchart of a data writing method according to a second exemplary embodiment of the present invention.

請參照圖19,在步驟S1701中,記憶胞的磨損程度值會被記錄。 Referring to FIG. 19, in step S1701, the wear level value of the memory cell is recorded.

在步驟S1703中,記憶體儲存裝置100的運作溫度會被偵測,並且在步驟S1705中,記憶體儲存裝置100的運作溫度是否大於預先定義溫度會被判斷。 In step S1703, the operating temperature of the memory storage device 100 is detected, and in step S1705, whether the operating temperature of the memory storage device 100 is greater than a predefined temperature is judged.

倘若記憶體儲存裝置100的運作溫度大於預先定義溫度,在步驟S1707中,對應記憶胞的寫入電壓脈衝時間會根據記憶胞的磨損程度值被調整。 If the operating temperature of the memory storage device 100 is greater than a predefined temperature, in step S1707, the write voltage pulse time of the corresponding memory cell is adjusted according to the wear level value of the memory cell.

在步驟S1709中,對應記憶胞的初始寫入電壓與已調整的寫入電壓脈衝時間會被用來程式化記憶胞,以將資料寫入至記憶胞中。 In step S1709, the initial write voltage of the corresponding memory cell and the adjusted write voltage pulse time are used to program the memory cell to write the data into the memory cell.

倘若記憶體儲存裝置100的運作溫度非大於預先定義溫度時,在步驟S1711中,對應記憶胞的初始寫入電壓與預設寫入電壓脈衝時間會被用來程式化記憶胞,以將資料寫入至記憶胞中。 If the operating temperature of the memory storage device 100 is not greater than a predefined temperature, in step S1711, the initial write voltage of the corresponding memory cell and the preset write voltage pulse time are used to program the memory cell to write the data. Into the memory cell.

圖20是根據第二範例實施例所繪示之調整對應記憶胞之 寫入電壓脈衝時間的流程圖。 FIG. 20 is a diagram of adjusting corresponding memory cells according to a second exemplary embodiment Flowchart for writing voltage pulse time.

請參照圖20,在步驟S1801中此記憶胞的磨損程度值是否小於第一門檻值會被判斷。 Referring to FIG. 20, whether the value of the wear level of the memory cell is less than the first threshold value is determined in step S1801.

倘若此記憶胞的磨損程度值小於第一門檻值,在步驟S1803中,第一時間會被用作為寫入電壓脈衝時間。 If the value of the wear level of the memory cell is less than the first threshold value, the first time is used as the write voltage pulse time in step S1803.

倘若此記憶胞的磨損程度值非小於第一門檻值時,則在步驟S1805中,記憶胞的磨損程度值是否小於第二門檻值會被判斷。 If the value of the wear level of the memory cell is not less than the first threshold value, then in step S1805, whether the value of the wear level of the memory cell is less than the second threshold value is determined.

倘若此記憶胞的磨損程度值小於第二門檻值時,在步驟S1807中,第二時間會被用作為寫入電壓脈衝時間。 If the value of the wear level of the memory cell is less than the second threshold value, the second time is used as the write voltage pulse time in step S1807.

倘若記憶胞的磨損程度值非小於第二門檻值時,在步驟S1809中第三時間會被用作為寫入電壓脈衝時間。 If the value of the wear level of the memory cell is not less than the second threshold value, the third time is used as the write voltage pulse time in step S1809.

[第三範例實施例] [Third exemplary embodiment]

當判斷記憶體儲存裝置100的運作溫度大於預先定義溫度時,藉由根據每個記憶胞的磨損程度來調整程式化時所使用的初始寫入電壓來減少注入記憶胞的電子量以及根據每個記憶胞的磨損程度來調整程式化時所使用的寫入電壓脈衝時間來減少注入記憶胞的電子量分別地描述於第一範例實施例與第二範例實施例中。然而,在本發明另一範例實施例中,記憶體控制電路單元(或記憶體管理電路)亦可根據每個記憶胞的磨損程度來同時調整程式化時所使用的初始寫入電壓與寫入電壓脈衝時間,由此避免過度寫入而產生錯誤位元。例如,當記憶胞的磨損程度值非小於第 一門檻值且小於第二門檻值時,初始寫入電壓調整為原始初始寫入電壓的90%並且寫入電壓脈衝時間會被調整為原寫入電壓脈衝時間的90%;當記憶胞的磨損程度值非小於第二門檻值且小於第三門檻值時,初始寫入電壓調整為原始初始寫入電壓的85%並且寫入電壓脈衝時間會被調整為原寫入電壓脈衝時間的80%;以及當記憶胞的磨損程度值非小於第三門檻值時,初始寫入電壓調整為原始初始寫入電壓的80%並且寫入電壓脈衝時間會被調整為原寫入電壓脈衝時間的70%。 When it is determined that the operating temperature of the memory storage device 100 is greater than a predefined temperature, the amount of electrons injected into the memory cell is reduced and the amount of electrons injected into the memory cell is reduced by adjusting the initial write voltage used in the staging according to the degree of wear of each memory cell. The degree of wear of the memory cells to adjust the write voltage pulse time used in the stylization to reduce the amount of electrons injected into the memory cells are separately described in the first exemplary embodiment and the second exemplary embodiment. However, in another exemplary embodiment of the present invention, the memory control circuit unit (or the memory management circuit) can also simultaneously adjust the initial write voltage and write used in the stylization according to the degree of wear of each memory cell. The voltage is pulsed, thereby avoiding overwriting and generating erroneous bits. For example, when the memory cell wear level value is not less than the first When a threshold is less than the second threshold, the initial write voltage is adjusted to 90% of the original initial write voltage and the write voltage pulse time is adjusted to 90% of the original write voltage pulse time; when the memory cell is worn When the degree value is not less than the second threshold value and less than the third threshold value, the initial write voltage is adjusted to 85% of the original initial write voltage and the write voltage pulse time is adjusted to 80% of the original write voltage pulse time; And when the wear level value of the memory cell is not less than the third threshold value, the initial write voltage is adjusted to 80% of the original initial write voltage and the write voltage pulse time is adjusted to 70% of the original write voltage pulse time.

圖21是根據本發明第三範例實施例所繪示之資料寫入方法的流程圖。 FIG. 21 is a flowchart of a data writing method according to a third exemplary embodiment of the present invention.

請參照圖21,在步驟S1901中,記憶胞的磨損程度值會被記錄。 Referring to FIG. 21, in step S1901, the wear level value of the memory cell is recorded.

在步驟S1903中,記憶體儲存裝置100的運作溫度會被偵測,並且在步驟S1905中,記憶體儲存裝置100的運作溫度是否大於預先定義溫度會被判斷。 In step S1903, the operating temperature of the memory storage device 100 is detected, and in step S1905, whether the operating temperature of the memory storage device 100 is greater than a predefined temperature is judged.

倘若記憶體儲存裝置100的運作溫度大於預先定義溫度,在步驟S1907中,對應記憶胞的初始寫入電壓與寫入電壓脈衝時間會根據記憶胞的磨損程度值被調整。 If the operating temperature of the memory storage device 100 is greater than a predefined temperature, in step S1907, the initial write voltage and the write voltage pulse time of the corresponding memory cell are adjusted according to the wear level value of the memory cell.

在步驟S1909中,對應記憶胞的已調整初始寫入電壓與已調整寫入電壓脈衝時間會被用來程式化記憶胞,以將資料寫入至記憶胞中。 In step S1909, the adjusted initial write voltage and the adjusted write voltage pulse time of the corresponding memory cell are used to program the memory cell to write data into the memory cell.

倘若記憶體儲存裝置100的運作溫度非大於預先定義溫 度,在步驟S1911中,對應記憶胞的預設初始寫入電壓與預設寫入電壓脈衝時間會被用來程式化記憶胞,以將資料寫入至記憶胞中。 If the operating temperature of the memory storage device 100 is not greater than a predefined temperature In step S1911, the preset initial write voltage and the preset write voltage pulse time corresponding to the memory cell are used to program the memory cell to write data into the memory cell.

[第四範例實施例] [Fourth exemplary embodiment]

第四範例實施例的記憶體儲存裝置的結構與第一範例實施例的記憶體儲存裝置是類似,其不同之處在於第四範例實施例的記憶體控制電路單元(或記憶體管理電路)會藉由根據每個記憶胞的磨損程度來調整程式化時所使用的預設補償值,以調整對應可複寫式非揮發性記憶體模組106的至少一個預先定義運作參數以產生對應可複寫式非揮發性記憶體模組106的已調整運作參數,由此避免過度寫入而產生錯誤位元。以下將使用第一範例實施例的元件標號來說明第四範例實施例與第一範例實施例的差異之處。 The structure of the memory storage device of the fourth exemplary embodiment is similar to that of the memory storage device of the first exemplary embodiment, except that the memory control circuit unit (or memory management circuit) of the fourth exemplary embodiment will Adjusting at least one predefined operational parameter of the corresponding rewritable non-volatile memory module 106 to generate a corresponding rewritable by adjusting a preset compensation value used in the stylization according to the degree of wear of each memory cell The operational parameters of the non-volatile memory module 106 have been adjusted, thereby avoiding overwriting and generating erroneous bits. The differences between the fourth exemplary embodiment and the first exemplary embodiment will be described below using the component numbers of the first exemplary embodiment.

在第四範例實施例中,記憶體控制電路單元104(或記憶體管理電路202)判斷記憶體儲存裝置100的運作溫度是否大於預先定義溫度,並且倘若記憶體儲存裝置100的運作溫度大於預先定義溫度時,記憶體控制電路單元104(或記憶體管理電路202)會藉由根據每個記憶胞的穿遂氧化層的磨損程度來調整程式化時所使用的預設補償值,以調整對應可複寫式非揮發性記憶體模組106的至少一個預先定義運作參數以產生對應可複寫式非揮發性記憶體模組106的已調整運作參數,由此避免過度寫入而產生錯誤位元。具體來說,倘若記憶體儲存裝置100的運作溫度大於預先定 義溫度時,記憶體控制電路單元104(或記憶體管理電路202)會隨著記憶胞的磨損程度值增加,而降低對應此記憶胞的預設補償值(即,已降低補償值△V’)。 In the fourth exemplary embodiment, the memory control circuit unit 104 (or the memory management circuit 202) determines whether the operating temperature of the memory storage device 100 is greater than a predefined temperature, and if the operating temperature of the memory storage device 100 is greater than a predefined At the temperature, the memory control circuit unit 104 (or the memory management circuit 202) adjusts the corresponding compensation value used in the stylization according to the degree of wear of the through oxide layer of each memory cell to adjust the corresponding value. At least one predefined operational parameter of the rewritable non-volatile memory module 106 to generate adjusted operational parameters of the rewritable non-volatile memory module 106, thereby avoiding overwriting and generating erroneous bits. Specifically, if the operating temperature of the memory storage device 100 is greater than a predetermined At the sense of temperature, the memory control circuit unit 104 (or the memory management circuit 202) decreases the preset compensation value corresponding to the memory cell as the value of the wear level of the memory cell increases (ie, the compensation value ΔV' has been lowered). ).

例如,當欲對一個記憶胞進行程式化並且記憶體儲存裝置100的運作溫度大於預先定義溫度時,記憶體控制電路單元104(或記憶體管理電路202)會判斷此記憶胞的磨損程度值是否小於第一門檻值。倘若此記憶胞的磨損程度值是否小於此第一門檻值時,記憶體控制電路單元104(或記憶體管理電路202)會使用第一補償值作為預設補償值。倘若此記憶胞的磨損程度值非小於第一門檻值時,記憶體控制電路單元104(或記憶體管理電路202)會判斷此記憶胞的磨損程度值是否小於第二門檻值。並且,倘若此記憶胞的磨損程度值小於第二門檻值時,記憶體控制電路單元104(或記憶體管理電路202)會使用第二補償值作為預設補償值。倘若此記憶胞的磨損程度值非小於第二門檻值時,記憶體控制電路單元104(或記憶體管理電路202)會使用第三補償值作為預設補償值。在此,第二門檻值是大於第一門檻值,第一補償值大於第二補償值且第二補償值大於第三補償值。例如,第一門檻值為500;第二門檻值為1000;第一補償值為0.06V;第二補償值為0.05V,並且第三補償值為0.04V。也就是說,如表3所示,在本範例實施例中,記憶體控制電路單元104(或記憶體管理電路202)使用脈衝寫入/驗證臨界電壓方法來程式化記憶胞時,所使用的寫入電壓(即,初始寫入電壓(Vpro_0)、第一重複寫入電壓(Vpro_1)、 第二重複寫入電壓(Vpro_2)…)會根據記憶胞的磨損程度值(WD)而有所不同。 For example, when a memory cell is to be programmed and the operating temperature of the memory storage device 100 is greater than a predefined temperature, the memory control circuit unit 104 (or the memory management circuit 202) determines whether the value of the wear level of the memory cell is Less than the first threshold. If the value of the wear level of the memory cell is less than the first threshold value, the memory control circuit unit 104 (or the memory management circuit 202) uses the first compensation value as the preset compensation value. If the value of the wear level of the memory cell is not less than the first threshold value, the memory control circuit unit 104 (or the memory management circuit 202) determines whether the value of the wear level of the memory cell is less than the second threshold value. Moreover, if the wear level value of the memory cell is less than the second threshold value, the memory control circuit unit 104 (or the memory management circuit 202) uses the second compensation value as the preset compensation value. If the value of the wear level of the memory cell is not less than the second threshold value, the memory control circuit unit 104 (or the memory management circuit 202) uses the third compensation value as the preset compensation value. Here, the second threshold value is greater than the first threshold value, the first compensation value is greater than the second compensation value and the second compensation value is greater than the third compensation value. For example, the first threshold is 500; the second threshold is 1000; the first compensation value is 0.06V; the second compensation value is 0.05V, and the third compensation value is 0.04V. That is, as shown in Table 3, in the present exemplary embodiment, the memory control circuit unit 104 (or the memory management circuit 202) uses the pulse write/verify threshold voltage method to program the memory cells, which is used. Write voltage (ie, initial write voltage (Vpro_0), first repeated write voltage (Vpro_1), The second repeated write voltage (Vpro_2)...) will vary depending on the wear level value (WD) of the memory cell.

必須瞭解的是,儘管在上述範例中,是以兩個門檻值(第一門檻值與第二門檻值)來區分記憶胞的磨損程度並且以第一補償值、第二補償值與第三補償值來設定對應不同磨損程度之記憶胞的預設補償值,但本發明不限於此。在本發明範例另一範例實施例中,記憶胞的磨損程度可被分為更多個等級,並且每個記憶胞的寫入電壓可根據下述公式來計算:Vpgm(i,n)=IVpgm+n×(C-i×A) It must be understood that although in the above example, the threshold value of the memory cell is distinguished by two threshold values (the first threshold value and the second threshold value) and the first compensation value, the second compensation value and the third compensation are used. The value is used to set a preset compensation value of the memory cell corresponding to different degrees of wear, but the present invention is not limited thereto. In another exemplary embodiment of the present exemplary embodiment, the degree of wear of the memory cell can be divided into more levels, and the write voltage of each memory cell can be calculated according to the following formula: Vpgm(i, n)=IVpgm +n×(Ci×A)

其中i表示記憶胞的磨損程度,n為重複寫入次數,IVpgm預設初始寫入電壓,C為預設補償值且A為預設調整值。在此,Vpgm(0,0)表示在記憶胞的磨損為最小程度(例如,WD<500)時的初始寫入電壓,Vpgm(0,1)表示在記憶胞的磨損為最小程度(例如,WD<500)時的第一重複寫入電壓,以此類推。在另一範例實施例中,預設調整值可因磨損程度的不同而進行相對應的改變,其中,此改變可是線性或非線性的增加或減少。 Where i represents the degree of wear of the memory cell, n is the number of repeated writes, IVpgm presets the initial write voltage, C is the preset offset value and A is the preset adjustment value. Here, Vpgm (0, 0) indicates an initial write voltage when the wear of the memory cell is minimal (for example, WD < 500), and Vpgm (0, 1) indicates that the wear of the memory cell is minimal (for example, The first repeated write voltage at WD<500), and so on. In another exemplary embodiment, the preset adjustment value may be correspondingly changed depending on the degree of wear, wherein the change may be a linear or non-linear increase or decrease.

必須了的是,儘管在第四範例實施例中,在根據記憶胞的磨損程度對應地決定後,預設補償值是固定的,然而,本發明 不限於此。在另一範例實施例中,在使用脈衝寫入/驗證臨界電壓方法來程式化記憶胞期間,對應記憶胞的預設補償值可已被改變。例如,倘若已調整補償值根據記憶胞的磨損程度依據預設補償值而被決定時,在使用脈衝寫入/驗證臨界電壓方法來程式化記憶胞期間,已調整補償值會被用來計算第一重複寫入電壓與第二重複寫入電壓,並且預設補償值會被用來計算第三重複寫入電壓、第四重複寫入電壓…等。也就是說,在使用脈衝寫入/驗證臨界電壓方法來程式化記憶胞期間,一部份的寫入電壓是根據已調整補償值(已降低補償值△V’)來計算,另一部份的寫入電壓是根據預設補償值△V來計算(如圖23所示)。 It is necessary that although in the fourth exemplary embodiment, the preset compensation value is fixed after being correspondingly determined according to the degree of wear of the memory cell, the present invention Not limited to this. In another exemplary embodiment, the preset compensation value of the corresponding memory cell may have been changed during the programming of the memory cell using the pulse write/verify threshold voltage method. For example, if the adjusted compensation value is determined according to the degree of wear of the memory cell according to the preset compensation value, the adjusted compensation value is used to calculate the value during the use of the pulse writing/verification threshold voltage method to program the memory cell. The write voltage and the second repeated write voltage are repeated, and the preset compensation value is used to calculate the third repeated write voltage, the fourth repeated write voltage, and the like. That is, during the use of the pulse write/verify threshold voltage method to program the memory cell, a portion of the write voltage is calculated based on the adjusted compensation value (the reduced compensation value ΔV'), and the other portion The write voltage is calculated based on the preset compensation value ΔV (as shown in Figure 23).

圖24是根據本發明第四範例實施例所繪示之資料寫入方法的流程圖。 FIG. 24 is a flowchart of a data writing method according to a fourth exemplary embodiment of the present invention.

請參照圖24,在步驟S2101中,記憶胞的磨損程度值會被記錄。 Referring to FIG. 24, in step S2101, the wear level value of the memory cell is recorded.

在步驟S2103中,記憶體儲存裝置100的運作溫度會被偵測,並且在步驟S2105中,記憶體儲存裝置100的運作溫度是否大於預先定義溫度會被判斷。 In step S2103, the operating temperature of the memory storage device 100 is detected, and in step S2105, whether the operating temperature of the memory storage device 100 is greater than a predefined temperature is judged.

倘若記憶體儲存裝置100的運作溫度大於預先定義溫度時,在步驟S2107中,對應記憶胞的預設補償值會根據記憶胞的磨損程度值被調整。 If the operating temperature of the memory storage device 100 is greater than a predefined temperature, in step S2107, the preset compensation value of the corresponding memory cell is adjusted according to the wear level value of the memory cell.

之後,在步驟S2109中,對應記憶胞的預設初始寫入電壓、預設寫入電壓脈衝時間與已調整補償值會被用來程式化記憶 胞,以將資料寫入至記憶胞中。 Thereafter, in step S2109, the preset initial write voltage, the preset write voltage pulse time, and the adjusted compensation value corresponding to the memory cell are used to program the memory. Cell to write data into memory cells.

倘若記憶體儲存裝置100的運作溫度非大於預先定義溫度時,在步驟S2111中,對應記憶胞的預設初始寫入電壓、預設寫入電壓脈衝時間與預設補償值會被用來程式化記憶胞,以將資料寫入至記憶胞中。 If the operating temperature of the memory storage device 100 is not greater than a predefined temperature, the preset initial write voltage, the preset write voltage pulse time, and the preset compensation value corresponding to the memory cell are used to be programmed in step S2111. Memory cells to write data into memory cells.

圖25是根據第四範例實施例所繪示之調整對應記憶胞之補償值的流程圖。 FIG. 25 is a flowchart of adjusting a compensation value of a corresponding memory cell according to the fourth exemplary embodiment.

請參照圖25,在步驟S2201中此記憶胞的磨損程度值是否小於第一門檻值會被判斷。 Referring to FIG. 25, whether the value of the wear level of the memory cell is less than the first threshold value in step S2201 is judged.

倘若此記憶胞的磨損程度值小於第一門檻值,在步驟S2203中,第一補償值會被用作為預設補償值。 If the wear level value of the memory cell is less than the first threshold value, the first compensation value is used as the preset compensation value in step S2203.

倘若此記憶胞的磨損程度值非小於第一門檻值時,則在步驟S2205中,記憶胞的磨損程度值是否小於第二門檻值會被判斷。 If the value of the wear level of the memory cell is not less than the first threshold value, then in step S2205, whether the value of the wear level of the memory cell is less than the second threshold value is judged.

倘若此記憶胞的磨損程度值小於第二門檻值時,在步驟S2207中,第二補償值會被用作為預設補償值。 If the value of the wear level of the memory cell is less than the second threshold value, the second compensation value is used as the preset compensation value in step S2207.

倘若記憶胞的磨損程度值非小於第二門檻值時,在步驟S2209中第三補償值會被用作為預設補償值。 If the value of the wear level of the memory cell is not less than the second threshold value, the third compensation value is used as the preset compensation value in step S2209.

綜上所述,在本發明範例實施例的資料寫入方法、記憶體控制電路單元與記憶體儲存裝置中,倘若記憶體儲存裝置的運作溫度大於預先定義溫度,對應可複寫式非揮發性記憶體模組的至少一個預先定義運作參數會根據記憶胞的磨損程度來被調整。 基此,每次程式化所注入至記憶胞的電子會根據記憶胞的磨損狀態而被調整,由此可有效地防止過度寫入並減少錯誤位元的發生。 In summary, in the data writing method, the memory control circuit unit and the memory storage device of the exemplary embodiment of the present invention, if the operating temperature of the memory storage device is greater than a predefined temperature, corresponding to the rewritable non-volatile memory At least one predefined operational parameter of the body module is adjusted based on the degree of wear of the memory cell. Accordingly, the electrons injected into the memory cell each time the program is converted are adjusted according to the wear state of the memory cell, thereby effectively preventing overwriting and reducing the occurrence of erroneous bits.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

S1001、S1003、S1005、S1007‧‧‧資料寫入方法的步驟 S1001, S1003, S1005, S1007‧‧‧ steps of data writing method

Claims (18)

一種資料寫入方法,用於將資料寫入至一記憶體儲存裝置的一可複寫式非揮發性記憶體模組的一記憶胞中,該資料寫入方法包括:偵測該記憶體儲存裝置的一運作溫度;判斷該記憶體儲存裝置的該運作溫度是否大於一預先定義溫度;以及倘若該記憶體儲存裝置的該運作溫度大於該預先定義溫度時,調整對應該可複寫式非揮發性記憶體模組的至少一預先定義運作參數以產生對應該可複寫式非揮發性記憶體模組的至少一個已調整運作參數並且根據該至少一個已調整運作參數寫入該資料至該記憶胞中,其中,調整對應該可複寫式非揮發性記憶體模組的該至少一預先定義運作參數以產生對應該可複寫式非揮發性記憶體模組的該至少一個已調整運作參數並且根據該至少一個已調整運作參數寫入該資料至該記憶胞中的步驟包括:記錄所述記憶胞的磨損程度值;根據所述記憶胞的磨損程度值,調整對應所述記憶胞的一初始寫入電壓、一寫入電壓脈衝時間與一補償值的至少其中之一;以及使用對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來程式化所述記憶胞,以將所述資料寫入至 所述記憶胞,其中上述根據所述記憶胞的磨損程度值調整對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值的至少其中之一的步驟包括:隨著所述記憶胞的磨損程度值增加,減少對應所述記憶胞的所述補償值。 A data writing method for writing data to a memory cell of a rewritable non-volatile memory module of a memory storage device, the data writing method comprising: detecting the memory storage device An operating temperature; determining whether the operating temperature of the memory storage device is greater than a predefined temperature; and adjusting the corresponding rewritable non-volatile memory if the operating temperature of the memory storage device is greater than the predefined temperature At least one predefined operational parameter of the body module to generate at least one adjusted operational parameter corresponding to the rewritable non-volatile memory module and to write the data to the memory cell based on the at least one adjusted operational parameter, And adjusting the at least one predefined operational parameter corresponding to the rewritable non-volatile memory module to generate the at least one adjusted operational parameter corresponding to the rewritable non-volatile memory module and according to the at least one The step of writing the data to the memory cell by adjusting the operating parameter comprises: recording a wear level value of the memory cell; Adjusting, according to the wear level value of the memory cell, at least one of an initial write voltage, a write voltage pulse time, and a compensation value corresponding to the memory cell; and using the initial corresponding to the memory cell Writing a voltage, the write voltage pulse time, and the compensation value to program the memory cell to write the data to The memory cell, wherein the step of adjusting at least one of the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell according to the wear level value of the memory cell includes : as the value of the degree of wear of the memory cell increases, the compensation value corresponding to the memory cell is reduced. 如申請專利範圍第1項所述之資料寫入方法,其中上述根據所述記憶胞的磨損程度值調整對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值的至少其中之一的步驟包括:隨著所述記憶胞的磨損程度值增加,降低對應所述記憶胞的所述初始寫入電壓。 The data writing method of claim 1, wherein the initial writing voltage, the writing voltage pulse time corresponding to the memory cell are adjusted according to a value of a wear level of the memory cell The step of at least one of the compensation values includes decreasing the initial write voltage corresponding to the memory cell as the wear level value of the memory cell increases. 如申請專利範圍第1項所述之資料寫入方法,其中上述根據所述記憶胞的磨損程度值調整對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值的至少其中之一的步驟包括:隨著所述記憶胞的磨損程度值增加,減少對應所述記憶胞的所述寫入電壓脈衝時間。 The data writing method of claim 1, wherein the initial writing voltage, the writing voltage pulse time corresponding to the memory cell are adjusted according to a value of a wear level of the memory cell The step of at least one of the compensation values includes decreasing the write voltage pulse time corresponding to the memory cell as the wear level value of the memory cell increases. 如申請專利範圍第3項所述之資料寫入方法,其中所述使用對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來程式化所述記憶胞,以將所述資料寫入至所述記憶胞的步驟包括: 使用所述初始寫入電壓、所減少的寫入電壓脈衝時間與所述補償值來進行該記憶胞的至少一個重複程式化;以及使用所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來進行該記憶胞的其他重複程式化。 The data writing method of claim 3, wherein the programming the memory by using the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell The step of writing the data to the memory cell includes: Performing at least one repetitive stylization of the memory cell using the initial write voltage, the reduced write voltage pulse time, and the compensation value; and using the initial write voltage, the write voltage pulse time and The compensation value is used to perform other repetitive stylization of the memory cell. 如申請專利範圍第1項所述之資料寫入方法,其中所述記憶胞的磨損程度值是依據所述記憶胞的一抹除次數、一寫入次數、一錯誤位元數、一錯誤位元比例及一讀取次數的至少其中之一來決定。 The data writing method of claim 1, wherein the memory cell wear level value is based on an erasure number of the memory cell, a write count, an error bit number, and an error bit. The ratio and the number of readings are determined by at least one of them. 如申請專利範圍第1項所述之資料寫入方法,其中所述使用對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來程式化所述記憶胞,以將所述資料寫入至所述記憶胞的步驟包括:使用所述初始寫入電壓、所述寫入電壓脈衝時間與所減少的補償值來進行該記憶胞的至少一個重複程式化;以及使用所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來進行該記憶胞的其他重複程式化。 The data writing method of claim 1, wherein the program is used to program the memory by using the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell. And the step of writing the data to the memory cell includes: performing at least one repetitive stylization of the memory cell using the initial write voltage, the write voltage pulse time, and the reduced compensation value And using the initial write voltage, the write voltage pulse time, and the compensation value to perform other repetitive stylization of the memory cell. 一種記憶體控制電路單元,用於將資料寫入至一記憶體儲存裝置的一可複寫式非揮發性記憶體模組的一記憶胞中,該記憶體控制電路單元包括:一主機介面,用以耦接至一主機系統;一記憶體介面,用以耦接至所述可複寫式非揮發性記憶體模組; 一記憶體管理電路,耦接至所述主機介面與所述記憶體介面;以及一溫度感測器,耦接至該記憶體管理電路並且用以偵測該記憶體儲存裝置的一運作溫度,其中所述記憶體管理電路用以判斷該記憶體儲存裝置的該運作溫度是否大於一預先定義溫度,倘若該記憶體儲存裝置的該運作溫度大於該預先定義溫度時,所述記憶體管理電路更用以調整對應該可複寫式非揮發性記憶體模組的至少一預先定義運作參數以產生對應該可複寫式非揮發性記憶體模組的至少一個已調整運作參數並且根據該至少一個已調整運作參數下達一指令序列給該可複寫式非揮發性記憶體模組以寫入該資料至該記憶胞中,其中在上述調整對應該可複寫式非揮發性記憶體模組的該至少一預先定義運作參數以產生對應該可複寫式非揮發性記憶體模組的該至少一個已調整運作參數並且根據該至少一個已調整運作參數下達該指令序列給該可複寫式非揮發性記憶體模組以寫入該資料至該記憶胞中的運作中,所述記憶體管理電路記錄所述記憶胞的磨損程度值,根據所述記憶胞的磨損程度值調整對應所述記憶胞的一初始寫入電壓、一寫入電壓脈衝時間與一補償值的至少其中之一,並且使用對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來程式化所述記憶胞,以將所述資料寫入至所述記憶胞, 其中在上述根據所述記憶胞的磨損程度值調整對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值的至少其中之一的運作中,所述記憶體管理電路用以隨著所述記憶胞的磨損程度值增加,減少對應所述記憶胞的所述補償值。 A memory control circuit unit for writing data into a memory cell of a rewritable non-volatile memory module of a memory storage device, the memory control circuit unit comprising: a host interface, To be coupled to a host system; a memory interface for coupling to the rewritable non-volatile memory module; a memory management circuit coupled to the host interface and the memory interface; and a temperature sensor coupled to the memory management circuit and configured to detect an operating temperature of the memory storage device, The memory management circuit is configured to determine whether the operating temperature of the memory storage device is greater than a predefined temperature, and if the operating temperature of the memory storage device is greater than the predefined temperature, the memory management circuit is further </ RTI> adjusting at least one predefined operational parameter corresponding to the rewritable non-volatile memory module to generate at least one adjusted operational parameter corresponding to the rewritable non-volatile memory module and adjusted according to the at least one The operating parameter issues a sequence of instructions to the rewritable non-volatile memory module to write the data to the memory cell, wherein the adjusting the at least one pre-corresponding non-volatile memory module Defining operational parameters to generate the at least one adjusted operational parameter corresponding to the rewritable non-volatile memory module and according to the Having an adjusted operating parameter to issue the sequence of instructions to the rewritable non-volatile memory module to write the data into the memory cell, the memory management circuit recording the degree of wear of the memory cell And adjusting, according to the wear level value of the memory cell, at least one of an initial write voltage, a write voltage pulse time, and a compensation value corresponding to the memory cell, and using the corresponding to the memory cell Initializing a write voltage, the write voltage pulse time, and the compensation value to program the memory cell to write the data to the memory cell, Wherein in the operation of adjusting at least one of the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell according to the wear level value of the memory cell, the memory The body management circuit is configured to reduce the compensation value corresponding to the memory cell as the wear level value of the memory cell increases. 如申請專利範圍第7項所述之記憶體控制電路單元,其中在上述根據所述記憶胞的磨損程度值調整對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值的至少其中之一的運作中,所述記憶體管理電路用以隨著所述記憶胞的磨損程度值增加,降低對應所述記憶胞的所述初始寫入電壓。 The memory control circuit unit of claim 7, wherein the initial write voltage, the write voltage pulse time corresponding to the memory cell are adjusted according to the wear level value of the memory cell In operation of at least one of the compensation values, the memory management circuit is configured to decrease the initial write voltage corresponding to the memory cell as the value of the wear level of the memory cell increases. 如申請專利範圍第7項所述之記憶體控制電路單元,其中在上述根據所述記憶胞的磨損程度值調整對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值的至少其中之一的運作中,所述記憶體管理電路用以隨著所述記憶胞的磨損程度值增加,減少對應所述記憶胞的所述寫入電壓脈衝時間。 The memory control circuit unit of claim 7, wherein the initial write voltage, the write voltage pulse time corresponding to the memory cell are adjusted according to the wear level value of the memory cell In operation of at least one of the compensation values, the memory management circuit is configured to reduce the write voltage pulse time corresponding to the memory cell as the wear level value of the memory cell increases. 如申請專利範圍第9項所述之記憶體控制電路單元,其中在所述使用對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來程式化所述記憶胞,以將所述資料寫入至所述記憶胞的運作中,所述記憶體管理電路使用所述初始寫入電壓、所減少的寫入電壓脈衝時間與所述補償值來進行該記憶胞的至少一個重複程式化,並且使用所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來進行該記憶胞的其他重複程式化。 The memory control circuit unit of claim 9, wherein the program is programmed to use the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell. Denoting a memory cell to write the data into operation of the memory cell, the memory management circuit performing the initial write voltage, the reduced write voltage pulse time, and the compensation value At least one of the memory cells is repeatedly programmed, and the other repeated programming of the memory cell is performed using the initial write voltage, the write voltage pulse time, and the compensation value. 如申請專利範圍第7項所述之記憶體控制電路單元,其中所述記憶胞的磨損程度值是依據所述記憶胞的一抹除次數、一寫入次數、一錯誤位元數、一錯誤位元比例及一讀取次數的至少其中之一來決定。 The memory control circuit unit of claim 7, wherein the memory cell wear level value is based on an erasure number of the memory cell, a write count, an error bit number, and an error bit. The meta ratio and at least one of the number of readings are determined. 如申請專利範圍第7項所述之記憶體控制電路單元,其中在所述使用對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來程式化所述記憶胞,以將所述資料寫入至所述記憶胞的運作中,所述記憶體管理電路使用所述初始寫入電壓、所述寫入電壓脈衝時間與所減少的補償值來進行該記憶胞的至少一個重複程式化,並且使用所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來進行該記憶胞的其他重複程式化。 The memory control circuit unit of claim 7, wherein the initial writing voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell are used to program the program Denoting a memory cell to write the data into operation of the memory cell, the memory management circuit performing the initial write voltage, the write voltage pulse time, and the reduced compensation value At least one of the memory cells is repeatedly programmed, and the other repeated programming of the memory cell is performed using the initial write voltage, the write voltage pulse time, and the compensation value. 一種記憶體儲存裝置,包括:一連接介面單元,用以耦接至一主機系統;一可複寫式非揮發性記憶體模組;以及一記憶體控制電路單元,耦接至所述連接介面單元與所述可複寫式非揮發性記憶體模組,其中所述記憶體控制電路單元用以偵測該記憶體儲存裝置的一運作溫度,其中所述記憶體控制電路單元更用以判斷該記憶體儲存裝置的該運作溫度是否大於一預先定義溫度,其中倘若該記憶體儲存裝置的該運作溫度大於該預先定義溫 度時,所述記憶體控制電路單元更用以調整對應該可複寫式非揮發性記憶體模組的至少一預先定義運作參數以產生對應該可複寫式非揮發性記憶體模組的至少一個已調整運作參數並且根據該至少一個已調整運作參數下達一指令序列給該可複寫式非揮發性記憶體模組以寫入該資料至該記憶胞中,其中在上述調整對應該可複寫式非揮發性記憶體模組的該至少一預先定義運作參數以產生對應該可複寫式非揮發性記憶體模組的該至少一個已調整運作參數並且根據該至少一個已調整運作參數下達該指令序列給該可複寫式非揮發性記憶體模組以寫入該資料至該記憶胞中的運作中,所述記憶體控制電路單元記錄所述記憶胞的磨損程度值,根據所述記憶胞的磨損程度值調整對應所述記憶胞的一初始寫入電壓、一寫入電壓脈衝時間與一補償值的至少其中之一,並且藉由使用對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來程式化所述記憶胞,以將所述資料寫入至所述記憶胞,其中在上述根據所述記憶胞的磨損程度值調整對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值的至少其中之一的運作中,所述記憶體控制電路單元用以隨著所述記憶胞的磨損程度值增加,減少對應所述記憶胞的所述補償值。 A memory storage device includes: a connection interface unit for coupling to a host system; a rewritable non-volatile memory module; and a memory control circuit unit coupled to the connection interface unit And the rewritable non-volatile memory module, wherein the memory control circuit unit is configured to detect an operating temperature of the memory storage device, wherein the memory control circuit unit is further configured to determine the memory Whether the operating temperature of the bulk storage device is greater than a predefined temperature, wherein if the operating temperature of the memory storage device is greater than the predefined temperature The memory control circuit unit is further configured to adjust at least one predefined operational parameter corresponding to the rewritable non-volatile memory module to generate at least one corresponding to the rewritable non-volatile memory module. Adjusting the operational parameters and issuing a sequence of instructions to the rewritable non-volatile memory module to write the data to the memory cell according to the at least one adjusted operational parameter, wherein the adjustment corresponds to the rewritable non- The at least one predefined operational parameter of the volatile memory module to generate the at least one adjusted operational parameter corresponding to the rewritable non-volatile memory module and to issue the instruction sequence according to the at least one adjusted operational parameter The rewritable non-volatile memory module for writing the data into the memory cell, wherein the memory control circuit unit records the wear level value of the memory cell according to the degree of wear of the memory cell The value adjustment corresponds to at least one of an initial write voltage, a write voltage pulse time, and a compensation value of the memory cell, and The memory cell is programmed using the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell to write the data to the memory cell, wherein The memory control circuit is configured to adjust at least one of the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell according to the wear level value of the memory cell The unit is configured to reduce the compensation value corresponding to the memory cell as the wear level value of the memory cell increases. 如申請專利範圍第13項所述之記憶體儲存裝置,其中在上述根據所述記憶胞的磨損程度值調整對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值的至少其中之 一的運作中,所述記憶體控制電路單元用以隨著所述記憶胞的磨損程度值增加,降低對應所述記憶胞的所述初始寫入電壓。 The memory storage device of claim 13, wherein the initial write voltage, the write voltage pulse time and the corresponding memory cell are adjusted according to the wear level value of the memory cell At least one of the compensation values In one operation, the memory control circuit unit is configured to decrease the initial write voltage corresponding to the memory cell as the wear level value of the memory cell increases. 如申請專利範圍第13項所述之記憶體儲存裝置,其中在上述根據所述記憶胞的磨損程度值調整對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值的至少其中之一的運作中,所述記憶體控制電路單元用以隨著所述記憶胞的磨損程度值增加,減少對應所述記憶胞的所述寫入電壓脈衝時間。 The memory storage device of claim 13, wherein the initial write voltage, the write voltage pulse time and the corresponding memory cell are adjusted according to the wear level value of the memory cell In operation of at least one of the compensation values, the memory control circuit unit is configured to reduce the write voltage pulse time corresponding to the memory cell as the wear level value of the memory cell increases. 如申請專利範圍第15項所述之記憶體儲存裝置,其中在所述使用對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來程式化所述記憶胞,以將所述資料寫入至所述記憶胞的運作中,所述記憶體控制電路單元使用所述初始寫入電壓、所減少的寫入電壓脈衝時間與所述補償值來進行該記憶胞的至少一個重複程式化,並且使用所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來進行該記憶胞的其他重複程式化。 The memory storage device of claim 15, wherein the program is programmed to use the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell. a memory cell for writing the data to the operation of the memory cell, the memory control circuit unit performing the initial write voltage, the reduced write voltage pulse time, and the compensation value At least one of the memory cells is repeatedly programmed, and the other repeated programming of the memory cell is performed using the initial write voltage, the write voltage pulse time, and the compensation value. 如申請專利範圍第13項所述之記憶體儲存裝置,其中所述記憶胞的磨損程度值是依據所述記憶胞的一抹除次數、一寫入次數、一錯誤位元數、一錯誤位元比例及一讀取次數的至少其中之一來決定。 The memory storage device of claim 13, wherein the memory cell wear level value is based on an erasure number of the memory cell, a write count, an error bit number, and an error bit. The ratio and the number of readings are determined by at least one of them. 如申請專利範圍第13項所述之記憶體儲存裝置,其中在所述使用對應所述記憶胞的所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來程式化所述記憶胞,以將所述資料寫入至 所述記憶胞的運作中,所述記憶體控制電路單元使用所述初始寫入電壓、所述寫入電壓脈衝時間與所減少的補償值來進行該記憶胞的至少一個重複程式化,並且使用所述初始寫入電壓、所述寫入電壓脈衝時間與所述補償值來進行該記憶胞的其他重複程式化。 The memory storage device of claim 13, wherein the program is programmed to use the initial write voltage, the write voltage pulse time, and the compensation value corresponding to the memory cell. Memory cell to write the data to In operation of the memory cell, the memory control circuit unit performs at least one repetitive stylization of the memory cell using the initial write voltage, the write voltage pulse time, and the reduced compensation value, and uses The initial write voltage, the write voltage pulse time, and the compensation value perform other repetitive stylization of the memory cell.
TW103119007A 2014-04-21 2014-05-30 Data writing method, and memory controller and memory storage apparatus using the same TWI541810B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/257,010 US9286986B2 (en) 2012-08-13 2014-04-21 Data writing method, and memory control circuit unit and memory storage apparatus using the same

Publications (2)

Publication Number Publication Date
TW201541459A TW201541459A (en) 2015-11-01
TWI541810B true TWI541810B (en) 2016-07-11

Family

ID=54413516

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103119007A TWI541810B (en) 2014-04-21 2014-05-30 Data writing method, and memory controller and memory storage apparatus using the same

Country Status (2)

Country Link
CN (1) CN105023609A (en)
TW (1) TWI541810B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10043577B2 (en) * 2016-03-08 2018-08-07 Toshiba Memory Corporation Semiconductor memory device
CN107204205B (en) * 2016-03-16 2020-05-26 群联电子股份有限公司 Memory management method, memory control circuit unit and memory storage device
CN106128507A (en) * 2016-06-27 2016-11-16 联想(北京)有限公司 Information processing method and storage device
US9977627B1 (en) * 2016-11-09 2018-05-22 Macronix International Co., Ltd. Memory device and memory controlling method
US10360947B2 (en) 2017-08-31 2019-07-23 Micron Technology, Inc. NAND cell encoding to improve data integrity
CN110297596B (en) * 2018-03-21 2024-09-03 北京忆恒创源科技股份有限公司 Memory device with wide operating temperature range
TWI680373B (en) * 2018-03-29 2019-12-21 大陸商合肥沛睿微電子股份有限公司 Solid-state disk and operation method of the same
TWI705333B (en) * 2018-03-29 2020-09-21 大陸商合肥沛睿微電子股份有限公司 Control circuit and control method
US10446237B1 (en) 2018-06-29 2019-10-15 Micron Technology, Inc. Temperature sensitive NAND programming
CN112309490B (en) * 2019-07-26 2024-07-19 第一检测有限公司 Memory testing method
CN112035060B (en) * 2020-08-17 2024-04-26 合肥康芯威存储技术有限公司 Error detection method and system for storage medium and storage system
CN114121072B (en) 2020-08-27 2023-12-12 长鑫存储技术有限公司 Memory adjusting method, adjusting system and semiconductor device
CN114121073B (en) 2020-08-27 2023-09-12 长鑫存储技术有限公司 Memory adjusting method, adjusting system and semiconductor device
CN114121096B (en) 2020-08-27 2024-03-26 长鑫存储技术有限公司 Memory adjusting method, adjusting system and semiconductor device
CN114121058B (en) 2020-08-27 2023-08-29 长鑫存储技术有限公司 Memory adjusting method, adjusting system and semiconductor device
TWI859669B (en) 2022-12-16 2024-10-21 群聯電子股份有限公司 Decoding method, memory storage device and memory control circuit unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495966B2 (en) * 2006-05-01 2009-02-24 Micron Technology, Inc. Memory voltage cycle adjustment
KR101938659B1 (en) * 2012-02-29 2019-01-15 삼성전자주식회사 Nonvolatile memory device and memory system including the same
US8873316B2 (en) * 2012-07-25 2014-10-28 Freescale Semiconductor, Inc. Methods and systems for adjusting NVM cell bias conditions based upon operating temperature to reduce performance degradation
US8902667B2 (en) * 2012-07-25 2014-12-02 Freescale Semiconductor, Inc. Methods and systems for adjusting NVM cell bias conditions for program/erase operations to reduce performance degradation
TWI479489B (en) * 2012-08-13 2015-04-01 Phison Electronics Corp Data writing method, and memory controller and memory storage apparatus using the same

Also Published As

Publication number Publication date
CN105023609A (en) 2015-11-04
TW201541459A (en) 2015-11-01

Similar Documents

Publication Publication Date Title
TWI541810B (en) Data writing method, and memory controller and memory storage apparatus using the same
TWI479489B (en) Data writing method, and memory controller and memory storage apparatus using the same
TWI489469B (en) Data reading method, and control circuit, memory module and memory storage apparatus and memory module using the same
TWI521513B (en) Data reading method, and control circuit, and memory storage apparatus using the same
US9286986B2 (en) Data writing method, and memory control circuit unit and memory storage apparatus using the same
CN108766495B (en) Data writing method, memory controller, and memory storage device
TWI498911B (en) Memory management method, and memory controller and memory storage apparatus using the same
TWI515734B (en) Data storing method, memory control circuit unit and memory storage apparatus
CN103870399B (en) Memory management method, memory controller and memory storage device
US8611150B2 (en) Flash memory device including flag cells and method of programming the same
CN104282339B (en) Read voltage setting method, control circuit and memory storage device
TWI545572B (en) Memory cell programming method, memory control circuit unit and memory storage apparatus
TWI512462B (en) Memory management method, memory control circuit unit and memory storage device
CN104952486B (en) Data storage method, memory control circuit unit and memory storage device
TWI501245B (en) Data reading method, and control circuit, memory module and memory storage apparatus and memory module using the same
US20150106667A1 (en) Solid state storage device and controlling method thereof
CN105988880A (en) Memory management method, memory control circuit unit and memory storage device
CN104102598B (en) Data reading method, control circuit, memory module and memory storage device
CN104167220B (en) Data reading method, control circuit, memory module and memory storage device
CN103594116A (en) Data reading method, control circuit, memory module and memory storage device
TWI521525B (en) Time estimating method, memory storage device, and memory controlling circuit unit
CN105761754B (en) Memory cell programming method, memory control circuit unit, and memory device