TWI529453B - Dual modes liquid crystal display - Google Patents
Dual modes liquid crystal display Download PDFInfo
- Publication number
- TWI529453B TWI529453B TW102105289A TW102105289A TWI529453B TW I529453 B TWI529453 B TW I529453B TW 102105289 A TW102105289 A TW 102105289A TW 102105289 A TW102105289 A TW 102105289A TW I529453 B TWI529453 B TW I529453B
- Authority
- TW
- Taiwan
- Prior art keywords
- liquid crystal
- active matrix
- display mode
- pixel
- crystal display
- Prior art date
Links
Landscapes
- Liquid Crystal (AREA)
Description
本發明有關於一種液晶顯示器,且特別是指一種雙顯示模式液晶顯示器。 The present invention relates to a liquid crystal display, and more particularly to a dual display mode liquid crystal display.
隨著顯示技術的發展,液晶顯示裝置(Liquid Crystal Display,LCD)已廣泛地被應用於各類電子產品,例如筆記型電腦、平板電腦、行動電話以及數位照相機等。 With the development of display technology, liquid crystal display (LCD) has been widely used in various electronic products such as notebook computers, tablet computers, mobile phones, and digital cameras.
習知半反射半穿透液晶顯示器中的各個畫素通常會被劃分成穿透式子畫素區以及反射式子畫素區。於穿透式子畫素區中,背光模組產生的光線會經由配置穿透式子畫素區的液晶偏轉方式來調節光相位差以控制穿透的光量。而於反射式子畫素區,由外部入射並經由反射式子畫素區反射的外界環境光線,則會藉由配置反射式子畫素區的液晶偏轉方式來調節光相位差,以控制反射的光量。 The individual pixels in a conventional semi-reflective semi-transparent liquid crystal display are generally divided into a transmissive sub-pixel region and a reflective sub-pixel region. In the transmissive sub-pixel region, the light generated by the backlight module adjusts the optical phase difference to control the amount of light transmitted through the liquid crystal deflection mode of the transmissive sub-pixel region. In the reflective sub-pixel area, the ambient light reflected from the outside and reflected by the reflective sub-pixel area adjusts the optical phase difference by the liquid crystal deflection mode of the reflective sub-pixel area to control the reflection. The amount of light.
典型半反射半穿透液晶顯示器雖可同時改善反射型顯示器於環境照明不足時亮度過低以及穿透型顯示器於室外日光照射下影像淡化的缺點,降低背光源的電源耗用量。然而由於穿透式子畫素區與反射式子畫素區均採用相同的液晶顯示模式,例如皆為扭轉型(Twisted Nematic)液晶配向結構或者是皆為垂直排列型(Vertically Aligned)液晶配向結構,故穿透式子畫素區與反射式子畫素區中一般會具有相同液晶排列方式與同一配向結構(alignment structure)。但上述液晶配向結構在穿透式子畫素區,其液晶顯示模式都受限,如視角不佳,進而無法達到全視角、廣視角的效果。 A typical semi-reflective semi-transmissive liquid crystal display can simultaneously improve the low brightness of the reflective display when the ambient illumination is insufficient and the image display fades under the outdoor sunlight, and reduce the power consumption of the backlight. However, since both the transmissive sub-pixel region and the reflective sub-pixel region adopt the same liquid crystal display mode, for example, both Twisted Nematic liquid crystal alignment structures or Vertically Aligned liquid crystal alignment structures are used. Therefore, the penetrating sub-pixel region and the reflective sub-pixel region generally have the same liquid crystal arrangement and the same alignment structure. However, in the above-mentioned liquid crystal alignment structure, the liquid crystal display mode is limited in the transmissive sub-pixel region, and the viewing angle is not good, and the effect of the full viewing angle and the wide viewing angle cannot be achieved.
具體來說,一般半反射半穿透液晶顯示器較好的液晶配向模式為反射式電控雙折射模式(Reflective Electrically Controlled Birefringence,RTN)或是所謂的扭轉型液晶配向結構。而習知扭轉型液晶配向結構於傾斜方向會有漏光現象,故於正面及傾斜方向觀視時會依觀視角度不同而產生明暗及對比度變化,因此具有較差視角的缺點。而一般製做反射式子畫素區時,為顯示效果好通常會將反射式子畫素區做成常白狀態(normally white),並會加設光學補償膜來增強黑狀態的效果,增加黑狀態的視角。因此,於半反射半穿透液晶顯示器,會於穿透式子畫素區與反射式子畫素區同時於加設光學補償模。然而所述光學補償模一般僅能輔助於正面方向,於傾斜角度另會有漏光,致使穿透式子畫素區的黑狀態不夠黑, 據此,半反射半穿透液晶顯示器於操作於穿透模式顯示模式下,無法呈現廣視角顯示效果,甚至會比傳統穿透式液晶顯示器的顯示對比效果更差,降低穿透式的視角,進而無法達到全視角、廣視角的效果。 Specifically, a preferred liquid crystal alignment mode of a generally transflective liquid crystal display is a Reflective Electrically Controlled Birefringence (RTN) or a so-called twisted liquid crystal alignment structure. However, the conventional twisted liquid crystal alignment structure has a light leakage phenomenon in the oblique direction. Therefore, when the front side and the oblique direction are viewed, the brightness and the contrast change depending on the viewing angle, which has the disadvantage of a poor viewing angle. In general, when the reflective sub-pixel area is made, the reflective sub-pixel area is normally white, and the optical compensation film is added to enhance the black state. The perspective of the black state. Therefore, in the semi-reflective semi-transparent liquid crystal display, an optical compensation mode is added simultaneously with the transmissive sub-pixel region and the reflective sub-pixel region. However, the optical compensation mode can generally only assist in the front direction, and there is another light leakage at the oblique angle, so that the black state of the penetrating sub-pixel region is not black enough. Accordingly, the semi-reflective semi-transmissive liquid crystal display can not exhibit a wide viewing angle display effect when operated in the through mode display mode, and even has a worse contrast effect than the conventional transmissive liquid crystal display, and reduces the transmissive viewing angle. Furthermore, the effect of the full viewing angle and the wide viewing angle cannot be achieved.
因此,本發明之目的,即在提供一種在穿透模式下具有廣視角效果的雙顯示模式液晶顯示器。 Accordingly, it is an object of the present invention to provide a dual display mode liquid crystal display having a wide viewing angle effect in a penetration mode.
為達上述目的,本發明實施例提供一種雙顯示模式液晶顯示器,所述雙顯示模式液晶顯示器包括主動矩陣基板、上基板、液晶顯示層以及複數個以矩陣方式形成在該主動矩陣基板與該上基板之間的畫素。所述上基板設置於主動矩陣基板的上方,而所述液晶顯示層夾設於主動矩陣 基板與上基板之間。每一畫素至少具有第一區域與第二區域。所述第一區域至少具有一穿透式子畫素區,而所述第二區域至少具有一反射式子畫素區。穿透式子畫素區具有一第一顯示模式,並反射式子畫素區具有一第二顯示模式。第一顯示模式是穿透式垂直排列配向模式(Vertically Aligned)、多域分割排列模式(Multi-Domain Aligned)、橫向電場模式(In Plane Switching)、邊際電場切換模式(Fringe Field Switching)或表面增強電場模式(Surface Enhanced Fringe Field)。所述第二顯示模式是反射式扭轉排列模式(Reflective Twisted Nematic)、反射式電控雙折射模式(Reflective Electrically Controlled Birefringence)、混合扭轉排列模式(Mixed mode Twisted Nematic)、反射式光學補償模式(Reflective Optical Compensation)或反射式垂直配向排列模式(Reflective Vertically Aligned)。 To achieve the above objective, an embodiment of the present invention provides a dual display mode liquid crystal display including an active matrix substrate, an upper substrate, a liquid crystal display layer, and a plurality of matrix devices formed on the active matrix substrate. A pixel between the substrates. The upper substrate is disposed above the active matrix substrate, and the liquid crystal display layer is sandwiched between the active matrix Between the substrate and the upper substrate. Each pixel has at least a first area and a second area. The first region has at least one transmissive sub-pixel region, and the second region has at least one reflective sub-pixel region. The penetrating sub-pixel region has a first display mode, and the reflective sub-pixel region has a second display mode. The first display mode is a Vertically Aligned mode, a Multi-Domain Aligned mode, an In Plane Switching mode, a Fringe Field Switching mode, or a surface enhancement mode. Surface Enhanced Fringe Field. The second display mode is a Reflective Twisted Nematic, a Reflective Electrically Controlled Birefringence, a Mixed Mode Twisted Nematic, and a Reflective Optical Compensation Mode (Reflective). Optical Compensation) or Reflective Vertically Aligned mode.
在本發明其中一個實施例中,上述第一顯示模式是橫向電場模式、邊際電場切換模式或表面增強電場模式時,所述上基板的下表面另分散佈設複數條分別延伸穿越相對應列的該等畫素的共電極,且該些共電極不位在第一區域之該上基板的下表面,而僅位在第二區域之上基板的下表面。 In one embodiment of the present invention, when the first display mode is a transverse electric field mode, a marginal electric field switching mode, or a surface enhanced electric field mode, the lower surface of the upper substrate is further dispersed and disposed, and the plurality of strips respectively extend across the corresponding column. A common electrode of the same pixel, and the common electrodes are not located on the lower surface of the upper substrate of the first region, but only on the lower surface of the substrate above the second region.
在本發明其中一個實施例中,上述第一顯示模式是橫向電場模式、邊際電場切換模式或表面增強電場模式時,各該畫素在主動矩陣基板上具有位在穿透式子畫素區的第一次電極,且在透明基板上表面上與第一次電極相錯開地位置設有第一共電極。各該畫素另具有位在反射式子畫素 區的第二次電極,且位於反射式子畫素區之上基板的下表面設有第二共電極。所述第一共電極與該第二共電極電耦接,其中第一次電極與該第二次電極形成一畫素電極。所述第一共電極與該部分畫素電極之間是以一絕緣層相阻隔。所述第一共電極呈梳狀或柵狀、環繞狀或彎曲狀,並包含位於該部分畫素電極一側的一電極線以及複數由該電極線朝該部分畫素電極中心區域延伸的彎曲電極線。 In one embodiment of the present invention, when the first display mode is a transverse electric field mode, a marginal electric field switching mode or a surface enhanced electric field mode, each of the pixels has a position in the transmissive sub-pixel region on the active matrix substrate. The first electrode is provided with a first common electrode at a position on the upper surface of the transparent substrate that is offset from the first electrode. Each of the pixels has a position in the reflective sub-pixel The second electrode of the region, and the lower surface of the substrate above the reflective sub-pixel region is provided with a second common electrode. The first common electrode is electrically coupled to the second common electrode, wherein the first secondary electrode and the second secondary electrode form a pixel electrode. The first common electrode and the partial pixel electrode are blocked by an insulating layer. The first common electrode has a comb shape, a grid shape, a wrap shape or a curved shape, and includes an electrode line on a side of the partial pixel electrode and a plurality of bends extending from the electrode line toward a central region of the partial pixel electrode Electrode wire.
在本發明其中一個實施例中,上述第一液晶顯示層是水平排列的正型液晶或負型液晶或是垂直排列的負型液晶,且上述第二液晶顯示層是水平排列的正型液晶或負型液晶或是垂直排列的負型液晶。 In one embodiment of the present invention, the first liquid crystal display layer is a horizontally arranged positive liquid crystal or a negative liquid crystal or a vertically arranged negative liquid crystal, and the second liquid crystal display layer is a horizontally arranged positive liquid crystal or Negative liquid crystal or vertical liquid crystal arranged vertically.
在本發明其中一個實施例中,上述每一該畫素中該第一區域至少具有第一伽瑪穿透率灰階-電壓轉換曲線。上述第二區域至少具有第二伽瑪反射率灰階-電壓轉換曲線。 In one embodiment of the present invention, the first region of each of the pixels has at least a first gamma transmittance gray-voltage conversion curve. The second region has at least a second gamma reflectance gray-to-voltage conversion curve.
在本發明其中一個實施例中,上述第一伽瑪穿透率灰階-電壓轉換曲線與第二伽瑪反射率-灰階-電壓轉換曲線為反向的曲線。 In one embodiment of the present invention, the first gamma transmittance gray-voltage conversion curve and the second gamma reflectance-gray-voltage conversion curve are inverse curves.
在本發明其中一個實施例中,上述第一顯示模式之驅動電路與上述第二顯示模式之驅動電路更包含點反轉(Dot inversion)、線反轉(line inversion)驅動或圖框反轉(frame inversion)驅動。 In one embodiment of the present invention, the driving circuit of the first display mode and the driving circuit of the second display mode further include dot inversion, line inversion driving or frame inversion ( Frame inversion) driver.
綜上所述,本發明實施例提供一種雙顯示模式液晶顯示器,此雙顯示模式液晶顯示器藉由在每一畫素的穿透式子畫素區佈設廣視角的液晶配向結構,使得雙顯示模式液晶顯示器操作在穿透模式時,能增加可視角度進而達到廣 視角的功效和目的。 In summary, the embodiment of the present invention provides a dual display mode liquid crystal display, which provides a dual display mode by arranging a wide viewing angle liquid crystal alignment structure in a transmissive sub-pixel region of each pixel. When the liquid crystal display operates in the penetrating mode, it can increase the viewing angle and reach a wide range. The power and purpose of the perspective.
為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。 The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.
請同時參見圖1及圖2,圖1繪示本發明實施例提供之雙顯示模式液晶顯示器的畫素側面剖視示意圖。圖2本發明實施例提供之雙顯示模式液晶顯示器的局部畫素之細部電路示意圖。於此實施例中,雙顯示模式液晶顯示器包括一主動矩陣基板100、一相間隔地設置於主動矩陣基板100上方的上基板200、一夾設於主動矩陣基板100與上基板200之間的液晶顯示層300,以及複數個以矩陣方式形成在主動矩陣基板100與上基板200之間的畫素。 Please refer to FIG. 1 and FIG. 2 simultaneously. FIG. 1 is a schematic side cross-sectional view of a dual display mode liquid crystal display according to an embodiment of the present invention. 2 is a schematic diagram showing a detailed circuit of a partial pixel of a dual display mode liquid crystal display according to an embodiment of the present invention. In this embodiment, the dual display mode liquid crystal display includes an active matrix substrate 100, an upper substrate 200 disposed at intervals above the active matrix substrate 100, and a liquid crystal sandwiched between the active matrix substrate 100 and the upper substrate 200. The display layer 300, and a plurality of pixels formed in a matrix between the active matrix substrate 100 and the upper substrate 200.
圖2僅以四個畫素P11、P12、P21、P22為例,每一個畫素至少具有一第一區域與一第二區域。所述第一區域至少具有一穿透式子畫素區TA。所述第二區域至少具有一反射式子畫素區RA。也就是說,畫素P11、P12、P21、P22分別具有第一區域與第二區域,其中第一區域內設有至少一穿透式子畫素區TA,而第二區域內設有至少一反射式子畫素區RA。所述穿透式子畫素區TA具有一第一顯示模式,使得分佈在穿透式子畫素區TA中的液晶分子具有一產生具廣視角效果的第一配向結構。反射式子畫素區RA具有一第二顯示模式,使得分佈在反射式子畫素區RA中的 液晶分子具有一第二配向結構。 2 is exemplified by only four pixels P 11 , P 12 , P 21 , and P 22 , each of which has at least a first area and a second area. The first area has at least one transmissive sub-pixel area TA. The second region has at least one reflective sub-pixel area RA. That is, the pixels P 11 , P 12 , P 21 , and P 22 respectively have a first area and a second area, wherein the first area is provided with at least one transmissive sub-pixel area TA, and in the second area At least one reflective sub-pixel area RA is provided. The transmissive sub-pixel area TA has a first display mode such that liquid crystal molecules distributed in the transmissive sub-pixel area TA have a first alignment structure that produces a wide viewing angle effect. The reflective sub-pixel area RA has a second display mode such that the liquid crystal molecules distributed in the reflective sub-pixel area RA have a second alignment structure.
進一步地說,第一顯示模式於此實施例中可以是穿透式垂直排列配向模式(Transmissive Vertically Aligned,簡稱TVA)、多域分割垂直配向模式(Multi-domain Vertical Alignment,簡稱MVA)、橫向電場模式(In-Plane Switching,簡稱IPS)、增強邊際電場切換模式(Fringe Field Switching,簡稱FFS)以及表面增強電場模式(Surface Enhanced Fringe Field)的其中之一。 Further, the first display mode may be a Transmissive Vertically Aligned (TVA), a Multi-domain Vertical Alignment (MVA), and a transverse electric field in this embodiment. One of the modes (In-Plane Switching, IPS for short), the enhanced Fringe Field Switching (FFS), and the Surface Enhanced Fringe Field.
第二顯示模式可以是反射式扭轉向列模式(Reflective Twist Nematic,簡稱RTN)、反射式電控雙折射模式(Reflective Electrically Controlled Birefringence,簡稱R-ECB)、混合扭轉向列模式(Mixed Mode Twisted Nematic,簡稱MTN)、反射式光學補償模式(Reflective Optical Compensative,簡稱ROC)或反射式垂直配向排列模式(Reflective Vertical Alignment,簡稱RVA)其中之一。上述第一顯示模式與第二顯示模式中的液晶分子排列方式,例如液晶分子的傾斜角度,可依據實際視角設計需求、顯示操作方式、實際製作需求來配置,本實施例並不限制。 The second display mode may be Reflective Twist Nematic (RTN), Reflective Electrically Controlled Birefringence (R-ECB), Mixed Twisted Nematic (Mixed Mode Twisted Nematic) , referred to as MTN), Reflective Optical Compensative (ROC) or Reflective Vertical Alignment (RVA). The arrangement of the liquid crystal molecules in the first display mode and the second display mode, for example, the tilt angle of the liquid crystal molecules, may be configured according to actual viewing angle design requirements, display operation modes, and actual production requirements, and the embodiment is not limited.
在此實施例中,第一顯示模式是以多域分割垂直排列配向模式為例,因此,雙顯示模式液晶顯示器的第一顯示模式包含兩個分別設於主動矩陣基板100的上表面與上基板200的下表面,且對應於穿透式子畫素區TA的第一配向膜結構11、12,以使夾設於第一配向膜結構11、12之間的液晶分子沿第一配向方向上有序排列形成具有第一配向結構的第一液晶顯示層LC1。 In this embodiment, the first display mode is exemplified by the multi-domain division vertical alignment alignment mode. Therefore, the first display mode of the dual display mode liquid crystal display includes two upper surfaces and an upper substrate respectively disposed on the active matrix substrate 100. a lower surface of 200, and corresponding to the first alignment film structure 11, 12 of the transmissive sub-pixel region TA, such that liquid crystal molecules interposed between the first alignment film structures 11, 12 are in the first alignment direction The first liquid crystal display layer LC1 having the first alignment structure is formed in an ordered manner.
而所述第二顯示模式則可採用反射式扭轉向列模式、反射式電控雙折射模式、混合扭轉向列模式、反射式光學補償模式或反射式垂直配向排列模式。雙顯示模式液晶顯示器的第二顯示模式的結構主要包含兩個分別設於主動矩陣基板100的上表面與上基板200的下表面,且對應於反射式子畫素區RA的第二配向膜結構21、22,以使夾設於其間的液晶分子沿第二配向方向上有序排列形成具有第二配向結構的第二液晶顯示層LC2。 The second display mode may adopt a reflective twisted nematic mode, a reflective electronically controlled birefringence mode, a hybrid twisted nematic mode, a reflective optical compensation mode, or a reflective vertical alignment mode. The structure of the second display mode of the dual display mode liquid crystal display mainly comprises two second alignment film structures respectively disposed on the upper surface of the active matrix substrate 100 and the lower surface of the upper substrate 200 and corresponding to the reflective sub-pixel area RA. 21, 22, so that the liquid crystal molecules sandwiched therebetween are sequentially arranged in the second alignment direction to form the second liquid crystal display layer LC2 having the second alignment structure.
值得注意的是,上述第一配向膜結構11、12以及該第二配向膜結構21、22可以是凸塊結構或凹槽(slit),其中凸塊結構的材料可包括聚乙烯醇、聚亞醯胺、聚醯胺、聚脲、尼龍、二氧化矽或卵磷脂。上述第一配向膜結構11、12以及該第二配向膜結構21、22的材料可為同一材料或是類似結構的材料或是高分子聚合物,上述第一配向膜結構11、12以及該第二配向膜結構21、22的材料亦可為不同材料,但本實施例並不限制。此外,上述第一配向與第二配向可以是同一配向或夾一特定角度配向方向,上述第一配向與第二配向也可以是不同配向。於實務上,上述第一配向與第二配向的實際配向是依據液晶實際排列方式來配置,故本實施例並不限制。 It should be noted that the first alignment film structures 11, 12 and the second alignment film structures 21, 22 may be bump structures or slits, wherein the material of the bump structure may include polyvinyl alcohol, poly Asia. Indoleamine, polyamine, polyurea, nylon, ceria or lecithin. The materials of the first alignment film structures 11 and 12 and the second alignment film structures 21 and 22 may be the same material or a similar structure material or a high molecular polymer, and the first alignment film structures 11 and 12 and the first The materials of the two alignment film structures 21, 22 may also be different materials, but the embodiment is not limited. In addition, the first alignment direction and the second alignment direction may be the same alignment direction or a specific angle alignment direction, and the first alignment direction and the second alignment direction may also be different alignment directions. In practice, the actual alignment of the first alignment and the second alignment is configured according to the actual arrangement of the liquid crystals, and thus the embodiment is not limited.
第一液晶顯示層LC1是水平排列正型液晶(即△ε>0),且如圖1所示,垂直配向模式的配向技術是利用形成在上基板200側(及/或主動矩陣基板100側)的凸出物13(及/或凹槽),使液晶靜止時並非呈傳統的直立式排列,而是偏向某一個角度傾斜。從而,當施加電壓時,可讓液晶分 子快速地改變成水平排列,以大幅度縮短顯示時間,並且藉由凸出物13(及/或凹槽)改變液晶分子配向,讓視野角度更為寬廣。 The first liquid crystal display layer LC1 is a horizontally arranged positive liquid crystal (ie, Δε>0), and as shown in FIG. 1, the alignment technique of the vertical alignment mode is formed on the side of the upper substrate 200 (and/or on the side of the active matrix substrate 100). The protrusions 13 (and/or grooves) of the liquid crystals are not in a conventional upright arrangement when the liquid crystal is at rest, but are inclined at a certain angle. Thus, when a voltage is applied, the liquid crystal can be divided. The sub-items are rapidly changed to a horizontal arrangement to greatly shorten the display time, and the alignment of the liquid crystal molecules is changed by the protrusions 13 (and/or the grooves) to make the viewing angle wider.
而第二液晶顯示層LC2也是水平排列正型液晶(即△ε>0),但施加電壓後液晶會站直並扭轉,其中液晶扭轉角度範圍可為30度至90度之間。此外,第一液晶顯示層LC1可以是水平排列的負型液晶(即△ε<0)或是垂直排列的負型液晶。而第二液晶顯示層LC2可以是垂直排列的負型液晶或是水平排列的或負型液晶。 The second liquid crystal display layer LC2 is also horizontally arranged positive liquid crystal (ie, Δε>0), but the liquid crystal will stand straight and twist after applying a voltage, wherein the liquid crystal twist angle may range between 30 degrees and 90 degrees. Further, the first liquid crystal display layer LC1 may be a horizontally arranged negative liquid crystal (ie, Δε<0) or a vertically arranged negative liquid crystal. The second liquid crystal display layer LC2 may be a vertically arranged negative liquid crystal or a horizontally arranged or negative liquid crystal.
配合圖2所示,主動矩陣基板100另包含一透明基板101、多條平行且間隔地佈設在透明基板101上表面的掃描線S1、S2或S3以及多條平行且間隔地佈設在透明基板101上表面,並與該等掃描線S1、S2、S3交錯的資料線D1、D2或D3。各該畫素(即畫素P11、P12、P21或P22)包含形成在透明基板101的上表面的一個畫素電極102和一個主動矩陣T。所述畫素電極102在穿透式子畫素區TA的部分係被一狹縫14分隔成兩個次電極1021、1022,且次電極1021及次電極1022的表面分別佈設有上述第一配向膜結構12。而畫素電極102在反射式子畫素區RA的部分表面還設有一反射單元103(例如鋁層),且上述第二配向膜結構22實際上是佈設在反射單元103的表面。 As shown in FIG. 2, the active matrix substrate 100 further includes a transparent substrate 101, a plurality of scanning lines S1, S2 or S3 arranged in parallel and spaced apart on the upper surface of the transparent substrate 101, and a plurality of parallel and spacedly disposed transparent substrates 101. The upper surface, and the data lines D1, D2 or D3 interleaved with the scan lines S1, S2, S3. Each of the pixels (i.e., pixels P 11, P 12, P 21 or P 22) comprises a pixel electrode formed on the upper surface 102 of the transparent substrate 101 and an active matrix T. The portion of the pixel electrode 102 in the transmissive sub-pixel region TA is divided into two sub-electrodes 1021, 1022 by a slit 14, and the first alignment is disposed on the surfaces of the sub-electrode 1021 and the sub-electrode 1022, respectively. Membrane structure 12. The pixel electrode 102 is further provided with a reflection unit 103 (for example, an aluminum layer) on a part of the surface of the reflective sub-pixel area RA, and the second alignment film structure 22 is actually disposed on the surface of the reflection unit 103.
如圖2所示,各主動矩陣T是由電晶體,例如薄膜電晶體開關、雙閘極薄膜電晶體或輕摻雜汲極薄膜電晶體等來實現。主動矩陣T的閘極G分別與對應的掃描線S1、S2或S3電耦接。主動矩陣(如電晶體)T的源極S分別與對應 的資料線D1、D2或D3電耦接,以接受來自資料線D1、D2或D3的資料訊號。主動矩陣(如電晶體)T的汲極D與畫素電極102電耦接。 As shown in FIG. 2, each active matrix T is realized by a transistor such as a thin film transistor switch, a double gate thin film transistor or a lightly doped thin film transistor. The gates G of the active matrix T are electrically coupled to corresponding scan lines S1, S2 or S3, respectively. The source S of the active matrix (such as the transistor) T and the corresponding The data line D1, D2 or D3 is electrically coupled to receive data signals from the data line D1, D2 or D3. The drain D of the active matrix (e.g., transistor) T is electrically coupled to the pixel electrode 102.
在上基板200的下表面與第一配向膜結構11及第二配向膜結構21之間(圖1未示),還分散佈設複數條分別延伸穿越相對應列的該等畫素的共電極Vcom,使得畫素電極102、穿透式子畫素區TA之第一液晶顯示層LC1及共電極Vcom共同形成一第一液晶電容CLC1。畫素電極102、反射式子畫素區RA之第二液晶顯示層LC2及共電極Vcom共同形成第二液晶電容CLC2。反射單元103(例如鋁層)是與主動矩陣(電晶體)T的汲極D電耦接。值得一提的是,所述次電極1021、1022與共電極Vcom為銦錫氧化物(indium tin oxide,ITO)、銦鋅氧化物(indium zinc oxide,IZO)、金屬或合金。 Between the lower surface of the upper substrate 200 and the first alignment film structure 11 and the second alignment film structure 21 (not shown in FIG. 1 ), a plurality of common electrodes Vcom extending through the corresponding columns respectively are dispersedly disposed. The pixel electrode 102, the first liquid crystal display layer LC1 and the common electrode Vcom of the transmissive sub-pixel area TA together form a first liquid crystal capacitor C LC1 . The pixel electrode 102, the second liquid crystal display layer LC2 of the reflective sub-pixel area RA, and the common electrode Vcom together form a second liquid crystal capacitor C LC2 . The reflective unit 103 (eg, an aluminum layer) is electrically coupled to the drain D of the active matrix (transistor) T. It is worth mentioning that the secondary electrodes 1021, 1022 and the common electrode Vcom are indium tin oxide (ITO), indium zinc oxide (IZO), metal or alloy.
此外,如圖2所示,各該畫素(即畫素P11、P12、P21或P22)還包含一個形成在透明基板101上表面的儲存電容CST,各該儲存電容CST的一端與對應的共電極Vcom電耦接,儲存電容CST的另一端與對應的主動矩陣T的汲極D電耦接。 In addition, as shown in FIG. 2, each of the pixels (ie, pixels P 11 , P 12 , P 21 or P 22 ) further includes a storage capacitor C ST formed on the upper surface of the transparent substrate 101, and each of the storage capacitors C ST One end is electrically coupled to the corresponding common electrode Vcom, and the other end of the storage capacitor C ST is electrically coupled to the drain D of the corresponding active matrix T.
藉此,如圖1所示,當本實施例之雙顯示模式液晶顯示器工作在反射模式(例如工作在亮處)時,外部環境光源30射入畫素之反射式子畫素區RA,此時,與主動矩陣T之源極S連接的資料線D1輸入資料訊號以對第二液晶電容CLC2與儲存電容CST充電,使控制反射式子畫素區RA之第二液晶顯示層LC2中的液晶分子適當偏轉,進而調節由 外部進入反射式子畫素區RA及經由反射式子畫素區RA之反射單元103反射回去的外部環境光源30,從而將代表資料訊號的影像顯示出來。 Thereby, as shown in FIG. 1, when the dual display mode liquid crystal display of the embodiment operates in a reflective mode (for example, working in a bright place), the external ambient light source 30 is incident on the reflective sub-pixel area RA of the pixel. The data line D1 connected to the source S of the active matrix T inputs a data signal to charge the second liquid crystal capacitor C LC2 and the storage capacitor C ST to control the second liquid crystal display layer LC2 of the reflective sub-pixel area RA. The liquid crystal molecules are appropriately deflected to adjust the external ambient light source 30 that is externally incident into the reflective sub-pixel area RA and reflected back by the reflective unit 103 of the reflective sub-pixel area RA, thereby displaying an image representing the data signal.
當雙顯示模式液晶顯示器工作在穿透模式(例如工作在暗處)時,雙顯示模式液晶顯示器之背光模組(未繪示)所產生的背光源40會經由畫素之穿透式子畫素區TA穿出,此時,藉由與主動矩陣T之源極S連接的資料線D1輸入的資料訊號對第一液晶電容CLC1與儲存電容CST充電,使控制穿透式子畫素區TA之第一液晶顯示層LC1中的液晶分子適當偏轉,以調節穿出穿透式子畫素區TA之背光源40,而將代表資料訊號的影像顯示出來。換言之,背光模組具有根據環境光源調光以及根據第一顯示模式與該第二顯示模式工作切換狀態來調整背光源40或開啟/關閉功能之背光驅動架構。 When the dual display mode liquid crystal display operates in a penetrating mode (for example, working in a dark place), the backlight 40 generated by the backlight module (not shown) of the dual display mode liquid crystal display passes through the pixel through-sub-picture. The prime region TA is punctured. At this time, the first liquid crystal capacitor C LC1 and the storage capacitor C ST are charged by the data signal input from the data line D1 connected to the source S of the active matrix T, so that the control penetrating sub-pixel is controlled. The liquid crystal molecules in the first liquid crystal display layer LC1 of the area TA are appropriately deflected to adjust the backlight 40 that passes through the transmissive sub-pixel area TA, and the image representing the data signal is displayed. In other words, the backlight module has a backlight driving architecture that adjusts the backlight 40 or the on/off function according to the ambient light source dimming and the switching state according to the first display mode and the second display mode.
附帶一提的是,第一顯示模式與第二顯示模式之驅動方法可包含一點反轉(Dot inversion)驅動、一線反轉(line inversion)驅動或一圖框反轉(frame inversion)驅動。此外,第一顯示模式與第二顯示模式可具有不同的驅動方式。值得注意的是,第一顯示模式與第二顯示模式可分別具有不同之更新頻率,甚至可使第一顯示模式與第二顯示模式分別具有兩個或兩個以上之更新頻率。 Incidentally, the driving method of the first display mode and the second display mode may include a dot inversion driving, a line inversion driving, or a frame inversion driving. Furthermore, the first display mode and the second display mode may have different driving modes. It should be noted that the first display mode and the second display mode may respectively have different update frequencies, and even the first display mode and the second display mode may have two or more update frequencies respectively.
舉例來說,於一具體驅動方式,第一顯示模式可使用點反轉方式來驅動,而第二顯示模式可使用線反轉或圖框反轉來驅動。具體地說,以第二顯示模式使用線反轉驅動方式為例,可透過資料線(例如D1、D2、D3)傳送資料訊號 至畫素P11、P12、P21、P22使任一畫素例如畫素P11中的第一液晶電容CLC1充電的極性與其四周其他畫素P12、P21、P22的第一液晶電容CLC1充電的極性互為相反。同時,透過資料線(例如D1、D2、D3)傳送資料訊號至畫素P11、P12、P21、P22使在任一相鄰水平掃描線上例如畫素P11、P12中的第二液晶電容CLC2所被充電的電壓極性與畫素P21、P22中的第二液晶電容CLC2所被充電的電壓極性互為相反。 For example, in a specific driving manner, the first display mode can be driven using a dot inversion mode, and the second display mode can be driven using line inversion or frame inversion. Specifically, in the second display mode, the line inversion driving method is used as an example, and the data signal can be transmitted to the pixels P 11 , P 12 , P 21 , and P 22 through the data lines (for example, D1, D2, and D3). The polarity of the first liquid crystal capacitor C LC1 in the pixel, for example, pixel P 11 , is opposite to the polarity of charging of the first liquid crystal capacitor C LC1 of the other pixels P 12 , P 21 , P 22 around it. At the same time, through the data lines (e.g. D1, D2, D3) transmits data signals to the pixels P 11, P 12, P 21 , P 22 so that in any pixel, for example, P 11, P 12 of an adjacent second horizontal scan line the liquid crystal capacitor C LC2 of the polarity of the voltage charged pixels P 21, P in the second liquid crystal capacitor C LC2 of 22 is charged voltage polarity opposite to each other.
值得注意的是,習知一般使第一顯示模式具較佳顯示效果的驅動方式為點反轉驅動方式,然點反轉驅動方式的耗電量較大。因此,於本實施例中,對應第一顯示模式較佳的驅動方式為點反轉,而對應二顯示模式較佳的驅動方式為線反轉或圖框反轉,以節省第二顯示模式驅動顯式的電力。此外,第一顯示模式與第二顯示模式的驅動方式可依據使用所述雙顯示模式液晶顯示器之電子裝置的電力或是使用環境的光源強弱來配置,本實施例並不限制。 It is worth noting that the driving mode in which the first display mode has a better display effect is generally a dot inversion driving mode, and the power consumption of the dot inversion driving mode is large. Therefore, in the embodiment, the driving mode corresponding to the first display mode is dot inversion, and the driving mode corresponding to the two display modes is line inversion or frame inversion to save the second display mode driving. Explicit power. In addition, the driving manners of the first display mode and the second display mode may be configured according to the power of the electronic device using the dual display mode liquid crystal display or the light source strength of the use environment, which is not limited in this embodiment.
另由於上述點反轉、線反轉或圖框反轉驅動方均為習知液晶顯示驅動技術,本發明領域具有通常知識者應知上述之點反轉、線反轉或圖框反轉的實際運用方式,故在此不在贅述。 In addition, since the above-mentioned dot inversion, line inversion or frame inversion driving are conventional liquid crystal display driving technologies, those skilled in the art should know the above-mentioned dot inversion, line inversion or frame inversion. The actual application method is not described here.
另外,由於穿透式子畫素區TA是採用多域分割垂直排列廣視角配向結構,因此當雙顯示模式液晶顯示器工作在穿透模式時,會使可視角度增加,讓雙顯示模式液晶顯示器視野角度更為寬廣。 In addition, since the transmissive sub-pixel area TA is a multi-domain segmentation and vertically arranged wide viewing angle alignment structure, when the dual display mode liquid crystal display operates in the penetrating mode, the viewing angle is increased, and the dual display mode liquid crystal display has a field of view. The angle is wider.
再請參見圖3至圖4所示,是本發明另一實施例提供之雙顯示模式液晶顯示器的畫素側面之剖視示意圖。圖3至圖4所示所述之雙顯示模式液晶顯示器與圖1所述之雙顯示模式液晶顯示器的共同點是共電極與畫素電極皆設在主動矩陣基板100上。 Referring to FIG. 3 to FIG. 4, FIG. 3 is a schematic cross-sectional view of a pixel side of a dual display mode liquid crystal display according to another embodiment of the present invention. The dual display mode liquid crystal display shown in FIG. 3 to FIG. 4 has the same feature as the dual display mode liquid crystal display shown in FIG. 1 in that the common electrode and the pixel electrode are disposed on the active matrix substrate 100.
圖3至圖4所示所述之雙顯示模式液晶顯示器與圖1所述之雙顯示模式液晶顯示器的不同處在於,本實施例中各該畫素之穿透式子畫素區TA的第一顯示模式是採用橫向電場模式(IPS)、增強橫向電場模式(Advanced In-Plane Switching,簡稱AIPS)、超級橫向電場模式(Super In-Plane Switching,簡稱SIPS)或增強邊際電場切換模式(Advanced Fringe Field Switching,簡稱AFFS)其中一種。 The difference between the dual display mode liquid crystal display shown in FIG. 3 to FIG. 4 and the dual display mode liquid crystal display shown in FIG. 1 is that in the embodiment, the penetrating sub-pixel area TA of the pixel is the first. A display mode is to use the transverse electric field mode (IPS), the enhanced transverse electric field mode (Advanced In-Plane Switching (AIPS), the super transverse-electric field mode (SIPS) or the enhanced marginal electric field switching mode (Advanced Fringe). Field Switching (AFFS) is one of them.
如圖3所示,當第一顯示模式是橫向電場模式、邊際電場切換模式或表面增強電場模式時,主動矩陣基板100上方的上基板200的下表面另分散佈設複數條分別延伸穿越相對應列的該等畫素的共電極,該些共電極並不位在第一區域內穿透式子畫素區TA之上基板200的下表面,而僅位在第二區域內反射式子畫素區RA之上基板200的下表面。 As shown in FIG. 3, when the first display mode is a transverse electric field mode, a marginal electric field switching mode, or a surface enhanced electric field mode, the lower surface of the upper substrate 200 above the active matrix substrate 100 is further dispersed and arranged to extend through the corresponding columns. a common electrode of the pixels, the common electrodes are not located in the lower region of the substrate 200 above the trans-sub-pixel region TA in the first region, but only in the second region The lower surface of the substrate 200 above the area RA.
本實施例是以雙顯示模式液晶顯示器的第一顯示模式使用邊際電場切換模式為例來做說明,如圖4所示,各該畫素具有一個位於第一區域內穿透式子畫素區TA的第一次電極105,以及位於第二區域內反射式子畫素區RA的第二次電極106,兩者構成畫素電極102。 In this embodiment, the first display mode of the dual display mode liquid crystal display is exemplified by using the marginal electric field switching mode. As shown in FIG. 4, each of the pixels has a transmissive sub-pixel area in the first region. The first electrode 105 of the TA and the second electrode 106 of the reflective sub-pixel area RA in the second region constitute the pixel electrode 102.
進一步地說,穿透式子畫素區TA之第一次電極105 的上方設有一第一共電極Vcom1,且第一共電極Vcom1與其下方之第一次電極105以一絕緣層104相阻隔,且第一共電極Vcom1包含位於第一次電極105一側的電極線31,以及複數由電極線31朝第一次電極105中心區域延伸的彎折電極線32。所述第一共電極105可以呈梳狀或柵狀、環繞狀或彎曲狀,依實際設計需求來配置,本實施例並不限制。 Further, the first electrode 105 of the transmissive sub-pixel area TA A first common electrode Vcom1 is disposed above the first common electrode Vcom1, and the first common electrode 105 is blocked by an insulating layer 104, and the first common electrode Vcom1 includes an electrode line on a side of the first electrode 105. 31, and a plurality of bent electrode lines 32 extending from the electrode line 31 toward the central region of the first electrode 105. The first common electrode 105 can be configured in a comb shape, a grid shape, a wrap shape or a curved shape, and is configured according to actual design requirements. This embodiment is not limited.
第一顯示模式具有由該液晶顯示層、該主動矩陣基板之該第一共電極以及該畫素電極的彎曲電場形成之一第一液晶電容;該第二顯示模式具有由該液晶顯示層、該上基板之該第二共電極、該主動矩陣基板之該畫素電極的電場形成之一第二液晶電容。 The first display mode has a first liquid crystal capacitor formed by the liquid crystal display layer, the first common electrode of the active matrix substrate, and a bending electric field of the pixel electrode; the second display mode has the liquid crystal display layer, the The second common electrode of the upper substrate and the electric field of the pixel electrode of the active matrix substrate form a second liquid crystal capacitor.
由於邊際電場切換模式是習知廣視角技術,於此不再詳述。如圖3所示,對應於每一畫素的反射式子畫素區RA之上基板200的下表面則設有一第二共電極Vcom2,且第一共電極Vcom1與第二共電極Vcom2電耦接而共電位。 Since the marginal electric field switching mode is a conventional wide viewing angle technology, it will not be described in detail herein. As shown in FIG. 3, a lower surface of the substrate 200 corresponding to the reflective sub-pixel area RA of each pixel is provided with a second common electrode Vcom2, and the first common electrode Vcom1 and the second common electrode Vcom2 are electrically coupled. Connected to the common potential.
主動矩陣基板100包含透明基板101,多條平行且間隔地佈設在透明基板101上表面的掃描線S1以及多條平行且間隔地佈設在透明基板101上表面,並與該等掃描線S1交錯的資料線D1、D2。各該畫素包含形成在透明基板101的上表面的一個畫素電極102、第一主動矩陣T1和第二主動矩陣T2。所述第一主動矩陣T1和第二主動矩陣T2可分別是由電晶體,例如薄膜電晶體開關、雙閘極薄膜電晶體或輕摻雜汲極薄膜電晶體來實現。 The active matrix substrate 100 includes a transparent substrate 101, a plurality of scanning lines S1 disposed in parallel and spaced apart on the upper surface of the transparent substrate 101, and a plurality of parallel and spacedly disposed upper surfaces of the transparent substrate 101, and interlaced with the scanning lines S1. Data lines D1, D2. Each of the pixels includes a pixel electrode 102, a first active matrix T1, and a second active matrix T2 formed on the upper surface of the transparent substrate 101. The first active matrix T1 and the second active matrix T2 may be implemented by a transistor, such as a thin film transistor switch, a double gate thin film transistor, or a lightly doped thin film transistor, respectively.
如圖4所述,各該畫素中位於反射式子畫素區RA內的 第一主動矩陣T1的源極S電耦接資料線D1,第一主動矩陣T1的閘極G電耦接對應的掃描線,例如掃描線S1,而第一主動矩陣T1的汲極D電耦接畫素電極102。各該畫素中位於穿透式子畫素區TA內的第二主動矩陣T2的源極S電耦接資料線D2,第二主動矩陣T2的閘極G電耦接對應的掃描線,例如掃描線S1,而第二主動矩陣T2的汲極D與畫素電極102電耦接。 As shown in FIG. 4, each of the pixels is located in the reflective sub-pixel area RA. The source S of the first active matrix T1 is electrically coupled to the data line D1. The gate G of the first active matrix T1 is electrically coupled to a corresponding scan line, such as the scan line S1, and the drain D of the first active matrix T1 is electrically coupled. The pixel electrode 102 is connected. The source S of the second active matrix T2 in the transmissive sub-pixel area TA is electrically coupled to the data line D2, and the gate G of the second active matrix T2 is electrically coupled to the corresponding scan line, for example The line S1 is scanned, and the drain D of the second active matrix T2 is electrically coupled to the pixel electrode 102.
值得一提的是,穿透式子畫素區TA的第一顯示模式與的反射式子畫素區RA的第二顯示模式如前述可分別具有不同之更新頻率。因此,於本實施例中,穿透式子畫素區TA的第一顯示模式使用20赫茲的更新頻率,而反射式子畫素區RA的第二顯示模式使用5赫茲的更新頻率。 It is worth mentioning that the first display mode of the transmissive sub-pixel area TA and the second display mode of the reflective sub-pixel area RA may have different update frequencies as described above. Therefore, in the present embodiment, the first display mode of the transmissive sub-pixel area TA uses an update frequency of 20 Hz, and the second display mode of the reflective sub-pixel area RA uses an update frequency of 5 Hz.
圖3的雙顯示模式液晶顯示器架構與其他電路架構類似於圖1之雙顯示模式液晶顯示器且本發明技術領域具有通常知識者應可上述說明推知圖3的雙顯示模式液晶顯示器的運作方式,故在此不再贅述。 The dual display mode liquid crystal display architecture and other circuit architecture of FIG. 3 are similar to the dual display mode liquid crystal display of FIG. 1 and those skilled in the art should be able to infer the operation mode of the dual display mode liquid crystal display of FIG. 3, I will not repeat them here.
接著請參見圖5,圖5繪示本發明另一實施例提供之雙顯示模式液晶顯示器的畫素側面之剖視示意圖,另外,如圖5所示,雙顯示模式液晶顯示器之各該畫素的穿透式子畫素區TA的第一顯示模式是採用橫向電場模式配向模式(IPS)結構例,其與圖3之雙顯示模式液晶顯示器的第一顯示模式使用的邊際電場切換模式不同的之處在於,位於穿透式子畫素區TA中的第一次電極105’與第一共電極Vcom1’是上下交錯且相錯開地設置在透明基板101的上表 面,且兩者之間以絕緣層104’相阻隔。第一次電極105’與主動矩陣T(未繪示於圖5)的源極電耦接,而第一共電極Vcom1’則因與設於反射式子畫素區RA之上基板200的下表面之第二共電極Vcom2電耦接而共電位。 Referring to FIG. 5, FIG. 5 is a cross-sectional view of a pixel side of a dual display mode liquid crystal display according to another embodiment of the present invention. In addition, as shown in FIG. 5, each pixel of the dual display mode liquid crystal display is shown in FIG. The first display mode of the transmissive sub-pixel area TA is an example of a transverse electric field mode alignment mode (IPS) structure, which is different from the marginal electric field switching mode used by the first display mode of the dual display mode liquid crystal display of FIG. The first electrode 105' located in the transmissive sub-pixel area TA and the first common electrode Vcom1' are vertically staggered and staggered on the upper surface of the transparent substrate 101. The face is separated by an insulating layer 104'. The first electrode 105' is electrically coupled to the source of the active matrix T (not shown in FIG. 5), and the first common electrode Vcom1' is disposed under the substrate 200 disposed above the reflective sub-pixel area RA. The second common electrode Vcom2 of the surface is electrically coupled to have a common potential.
圖5的雙顯示模式液晶顯示器架構與其他電路架構類似於圖1之雙顯示模式液晶顯示器且本發明技術領域具有通常知識者應可上述說明推知圖5的雙顯示模式液晶顯示器的運作方式,故在此不再贅述。 The dual display mode liquid crystal display architecture and other circuit architecture of FIG. 5 are similar to the dual display mode liquid crystal display of FIG. 1 and those of ordinary skill in the art should be able to infer the operation mode of the dual display mode liquid crystal display of FIG. 5, I will not repeat them here.
此外,請參見圖6,圖6繪示本發明另一實施例提供之雙顯示模式液晶顯示器的每一畫素的細部電路示意圖。 In addition, please refer to FIG. 6. FIG. 6 is a detailed circuit diagram of each pixel of the dual display mode liquid crystal display according to another embodiment of the present invention.
於此實施例是圖6中的每一畫素(例如畫素P11)的穿透式子畫素區TA及反射式子畫素區RA可以被各別控制。也就是說,每一行畫素分配有兩條資料線D1、D2,並每一列畫素分配有一條掃描線S1。各該畫素包含對應設於穿透式子畫素區TA的一個第一儲存電容CST1與一個第一主動矩陣T1,以及對應設於反射式子畫素區RA的一個第二儲存電容CST2與一個第二主動矩陣T2。各畫素(例如畫素P11)中的該第一儲存電容CST1的一端與對應的第一共電極Vcom1電耦接,而各畫素(例如畫素P11)中的第二儲存電容CST2的一端與對應的第二共電極Vcom2電耦接。各畫素(例如畫素P11)中的第一主動矩陣T1的閘極G與相對應的掃描線S1電耦接,其源極S與該二條資料線其中之一,如資料線D1電耦接,其汲極D與相對應的第一儲存電容CST1的另一端以及相對應的第一次電極105電耦接,進而由第 一次電極105、第一液晶顯示層LC1及第一共電極Vcom1形成第一液晶電容CLC1。各畫素(例如畫素P11)中的第二主動矩陣T2的閘極G與相對應的掃描線S1電耦接,其源極S與該二條資料線其中另一即資料線D2電耦接,其汲極D與相對應的第二儲存電容CST2的另一端以及相對應的第二次電極106電耦接,進而由第二次電極106、第二液晶顯示層LC2及第二共電極Vcom2形成第二液晶電容CLC2。 In this embodiment, the transmissive sub-pixel area TA and the reflective sub-pixel area RA of each pixel (for example, pixel P 11 ) in FIG. 6 can be individually controlled. That is to say, each row of pixels is assigned two data lines D1, D2, and each column of pixels is assigned a scan line S1. Each of the pixels includes a first storage capacitor C ST1 corresponding to the transmissive sub-pixel area TA and a first active matrix T1, and a second storage capacitor C corresponding to the reflective sub-pixel area RA. ST2 and a second active matrix T2. Each pixel (e.g., pixel P 11) Vcom1 the first common electrode is electrically coupled to the first end of the storage capacitor C ST1 and the corresponding, and each pixel (e.g., pixel P 11) of the second storage capacitor One end of the CST2 is electrically coupled to the corresponding second common electrode Vcom2. The gate G of the first active matrix T1 in each pixel (for example, pixel P 11 ) is electrically coupled to the corresponding scan line S1, and the source S and one of the two data lines, such as the data line D1. Coupling, the drain D is electrically coupled to the other end of the corresponding first storage capacitor C ST1 and the corresponding first sub-electrode 105, and further includes a first sub-electrode 105, a first liquid crystal display layer LC1, and a first The common electrode Vcom1 forms a first liquid crystal capacitor C LC1 . The gate G of the second active matrix T2 in each pixel (for example, pixel P 11 ) is electrically coupled to the corresponding scan line S1, and the source S is electrically coupled to the other of the two data lines, that is, the data line D2. Connected, the drain D is electrically coupled to the other end of the corresponding second storage capacitor C ST2 and the corresponding second sub-electrode 106, and further by the second sub-electrode 106, the second liquid crystal display layer LC2, and the second The electrode Vcom2 forms a second liquid crystal capacitor C LC2 .
藉此,當雙顯示模式顯示器工作在穿透模式時,掃描線S1將同時驅動同一列各畫素(例如畫素P11)的第一主動矩陣T1及第一主動矩陣T2,但只有資料線D1送出資料訊號給第一主動矩陣T1,以對第一液晶電容CLC1與第一儲存電容CST1充電,以控制穿透式子畫素區TA之第一液晶顯示層LC1中的液晶分子適當偏轉,進而調節穿出穿透式子畫素區TA之背光源40,使代表資料訊號的影像顯示出來。此外,由於穿透式子畫素區TA是採用邊際電場切換模式廣視角配向結構,因此可增加雙顯示模式液晶顯示器的可視角度。雖然於此實施例中,穿透式子畫素區TA是採用邊際電場切換模式廣視角配向結構,但於實務上,穿透式子畫素區TA亦可配置增強橫向電場模式、超級橫向電場模式或增強邊際電場切換模式(Fringe Field Switching),本實施例並不限制。 Thereby, when the dual display mode display operates in the penetration mode, the scan line S1 will simultaneously drive the first active matrix T1 and the first active matrix T2 of the same column of pixels (for example, pixel P11), but only the data line D1 Sending a data signal to the first active matrix T1 to charge the first liquid crystal capacitor C LC1 and the first storage capacitor C ST1 to control proper deflection of liquid crystal molecules in the first liquid crystal display layer LC1 of the transmissive sub-pixel region TA Then, the backlight 40 passing through the transmissive sub-pixel area TA is adjusted to display an image representing the data signal. In addition, since the transmissive sub-pixel area TA is a wide viewing angle alignment structure using the marginal electric field switching mode, the viewing angle of the dual display mode liquid crystal display can be increased. In this embodiment, the transmissive sub-pixel area TA is a wide viewing angle alignment structure using a marginal electric field switching mode, but in practice, the transmissive sub-pixel area TA may also be configured to enhance the transverse electric field mode and the super transverse electric field. The mode or the enhanced fringe field switching mode (Fringe Field Switching) is not limited in this embodiment.
而當雙顯示模式液晶顯示器工作在反射模式時,掃描線S1同時驅動同一列之畫素(例如畫素P11)的第一主動矩陣T1及第二主動矩陣T2,但只有資料線D2送出資料訊號給第二主動矩陣T2,以對第二液晶電容CLC2與第二儲存 電容CST2充電,以控制反射式子畫素區RA之第二液晶顯示層LC2中的液晶分子適當偏轉,使調節進入反射式子畫素區RA。同時,由反射式子畫素區RA之反射單元103反射回去之外部環境光源30,使代表資料訊號的影像顯示出來。 When the dual display mode liquid crystal display operates in the reflective mode, the scan line S1 simultaneously drives the first active matrix T1 and the second active matrix T2 of the same column of pixels (for example, pixel P 11 ), but only the data line D2 sends the data. The signal is applied to the second active matrix T2 to charge the second liquid crystal capacitor C LC2 and the second storage capacitor C ST2 to control the proper deflection of the liquid crystal molecules in the second liquid crystal display layer LC2 of the reflective sub-pixel region RA, so as to adjust Enter the reflective sub-pixel area RA. At the same time, the external ambient light source 30 is reflected back by the reflecting unit 103 of the reflective sub-pixel area RA, so that the image representing the data signal is displayed.
再者,當雙顯示模式液晶顯示器工作在一穿透暨反射模式時,掃描線S1同時驅動同一列之各該畫素(例如畫素P11)的第一主動矩陣T1及第二主動矩陣T2,使第一主動矩陣T1及該第二主動矩陣T2同時收到相對應的資料線D1、D2送出的資料訊號,以使第一主動矩陣T1對第一液晶電容CLC1及第一儲存電容CST1充電,使第二主動矩陣T2對第二液晶電容CLC2及第二儲存電容CST2充電。 Moreover, when the dual display mode liquid crystal display operates in a penetration and reflection mode, the scan line S1 simultaneously drives the first active matrix T1 and the second active matrix T2 of the pixels (eg, pixels P11) of the same column, The first active matrix T1 and the second active matrix T2 simultaneously receive the data signals sent by the corresponding data lines D1 and D2, so that the first active matrix T1 is opposite to the first liquid crystal capacitor C LC1 and the first storage capacitor C ST1 Charging, the second active matrix T2 charges the second liquid crystal capacitor C LC2 and the second storage capacitor C ST2 .
值得一提的是,單一畫素採用兩個主動矩陣T1、T2來分別控制穿透式子畫素區TA及反射式子畫素區RA的優點可以降低漏電流以及功率消耗。另外,上述之第二主動矩陣可至少包含兩個或兩個以上的薄膜電晶體開關、雙閘極薄膜電晶體或輕摻雜汲極薄膜電晶體。 It is worth mentioning that the single pixel uses two active matrices T1 and T2 to control the advantages of the transmissive sub-pixel area TA and the reflective sub-pixel area RA, respectively, to reduce leakage current and power consumption. In addition, the second active matrix may include at least two or more thin film transistor switches, double gate thin film transistors or lightly doped thin film transistors.
再參見圖7,圖7繪示本發明又一實施例提供之雙顯示模式液晶顯示器的每一畫素的細部電路示意圖。圖7之雙顯示模式液晶顯示器的畫素電路與圖6之雙顯示模式液晶顯示器的畫素電路不同的之處在於,本實施例中每一行畫素僅分配有一條資料線D1,而每一列畫素分配有兩條掃描線S1、S2。各該畫素(例如畫素P11)的第一主動矩陣T1的閘極G與該二掃描線其中之一,如掃描線S1(即第一掃描線) 電耦接,其源極S與相對應的資料線D1電耦接,其汲極D與相對應的第一儲存電容CST1的另一端以及相對應的第一次電極105電耦接。各該畫素(例如畫素P11)的第二主動矩陣T2的閘極G與該二掃描線其中另一條掃描線S2(即第二掃描線)電耦接,其源極S與相對應的資料線D1電耦接,其汲極D與相對應的第二儲存電容CST2的另一端以及相對應的第二次電極106電耦接。 Referring to FIG. 7, FIG. 7 is a detailed circuit diagram of each pixel of the dual display mode liquid crystal display according to another embodiment of the present invention. The pixel circuit of the dual display mode liquid crystal display of FIG. 7 is different from the pixel circuit of the dual display mode liquid crystal display of FIG. 6 in that, in this embodiment, only one data line D1 is assigned to each row of pixels, and each column The pixels are assigned two scanning lines S1, S2. The gate G of the first active matrix T1 of each pixel (for example, pixel P 11 ) is electrically coupled to one of the two scan lines, such as the scan line S1 (ie, the first scan line), and the source S thereof The corresponding data line D1 is electrically coupled, and the drain D is electrically coupled to the other end of the corresponding first storage capacitor C ST1 and the corresponding first sub-electrode 105. The gate G of the second active matrix T2 of each pixel (for example, pixel P 11 ) is electrically coupled to the other scan line S2 (ie, the second scan line) of the two scan lines, and the source S thereof corresponds to The data line D1 is electrically coupled, and the drain D is electrically coupled to the other end of the corresponding second storage capacitor C ST2 and the corresponding second secondary electrode 106.
藉此,當雙顯示模式液晶顯示器工作在穿透模式時,資料線D1會同時送資料訊號至同一行畫素的第一主動矩陣T1及第二主動矩陣T2,但只有同一列畫素的第一主動矩陣T1會被掃描線S1(即第一掃描線)驅動(導通),以使資料訊號輸入第一主動矩陣T1,並對第一儲存電容CST1與第一液晶電容CLC1充電。從而可控制穿透式子畫素區TA之第一液晶顯示層LC1中的液晶分子適當偏轉,以調節穿出穿透式子畫素區TA之背光源(未繪示),使代表資料訊號之影像顯示出來,且由於穿透式子畫素區TA是採用邊際電場切換模式廣視角配向結構,因此會使雙顯示模式液晶顯示器的可視角度增加。雖然於此實施例中,穿透式子畫素區TA是採用邊際電場切換模式廣視角配向結構,但於實務上,穿透式子畫素區TA亦可配置增強橫向電場模式、超級橫向電場模式或增強邊際電場切換模式,本實施例並不限制。 Therefore, when the dual display mode liquid crystal display operates in the penetrating mode, the data line D1 simultaneously sends the data signal to the first active matrix T1 and the second active matrix T2 of the same pixel, but only the same column of pixels An active matrix T1 is driven (turned on) by the scan line S1 (ie, the first scan line) to input the data signal into the first active matrix T1, and charge the first storage capacitor C ST1 and the first liquid crystal capacitor C LC1 . Therefore, the liquid crystal molecules in the first liquid crystal display layer LC1 of the transmissive sub-pixel area TA can be appropriately deflected to adjust the backlight (not shown) passing through the transmissive sub-pixel area TA to make the representative data signal The image is displayed, and since the transmissive sub-pixel area TA is a wide viewing angle alignment structure using the marginal electric field switching mode, the viewing angle of the dual display mode liquid crystal display is increased. In this embodiment, the transmissive sub-pixel area TA is a wide viewing angle alignment structure using a marginal electric field switching mode, but in practice, the transmissive sub-pixel area TA may also be configured to enhance the transverse electric field mode and the super transverse electric field. The mode or the enhanced marginal electric field switching mode is not limited in this embodiment.
接著,當雙顯示模式液晶顯示器工作在反射模式時,資料線D1會同時送資料訊號至同一行畫素的第一主動矩陣T1及第二主動矩陣T2,但只有同一列畫素之第二主動 矩陣T2會被掃描線S2(即第二掃描線)驅動(導通),使資料訊號輸入第二主動矩陣T2,使第二主動矩陣T2對第二儲存電容CST2與第二液晶電容CLC2充電,以控制反射式子畫素區RA之第二液晶顯示層LC2中的液晶分子適當偏轉。從而可調節進入反射式子畫素區RA並由反射式子畫素區RA之反射單元103反射回去之外部環境光源(未繪示),使將代表資料訊號之影像顯示出來。 Then, when the dual display mode liquid crystal display operates in the reflective mode, the data line D1 simultaneously sends the data signal to the first active matrix T1 and the second active matrix T2 of the same pixel, but only the second active of the same column of pixels The matrix T2 is driven (turned on) by the scan line S2 (ie, the second scan line), so that the data signal is input to the second active matrix T2, so that the second active matrix T2 charges the second storage capacitor C ST2 and the second liquid crystal capacitor C LC2 . The liquid crystal molecules in the second liquid crystal display layer LC2 of the reflective sub-pixel area RA are appropriately deflected. Thereby, the external ambient light source (not shown) which enters the reflective sub-pixel area RA and is reflected back by the reflection unit 103 of the reflective sub-pixel area RA can be adjusted to display the image representing the data signal.
再者,當雙顯示模式液晶顯示器工作在一穿透暨反射模式時,同一行畫素的第一主動矩陣T1及該第二主動矩陣T2會同時收到相對應的資料線D1送出的一資料訊號,且同一列畫素的第一主動矩陣T1會被相對應掃描線S1(即第一掃描線)驅動(導通),而同一列畫素的第二主動矩陣T2會被相對應掃描線S2(即第二掃描線)驅動(導通)。從而,使第一主動矩陣T1與第二主動矩陣T2分別對第一儲存電容CST1與第一液晶電容CLC1以及第二儲存電容CST2與第二液晶電容CLC2充電。 Furthermore, when the dual display mode liquid crystal display operates in a penetration and reflection mode, the first active matrix T1 and the second active matrix T2 of the same row of pixels simultaneously receive a data sent by the corresponding data line D1. a signal, and the first active matrix T1 of the same column of pixels is driven (conducted) by the corresponding scan line S1 (ie, the first scan line), and the second active matrix T2 of the same column of pixels is corresponding to the scan line S2 (ie, the second scan line) is driven (conducted). Therefore, the first active matrix T1 and the second active matrix T2 are respectively charged to the first storage capacitor C ST1 and the first liquid crystal capacitor C LC1 and the second storage capacitor C ST2 and the second liquid crystal capacitor C LC2 .
值得一提的是,上述之第二主動矩陣可至少包含兩個或兩個以上的薄膜電晶體開關、雙閘極薄膜電晶體或輕摻雜汲極薄膜電晶體。 It is worth mentioning that the second active matrix may include at least two or more thin film transistor switches, double gate thin film transistors or lightly doped thin film transistors.
再參見圖8,圖8繪示本發明再一實施例提供之雙顯示模式液晶顯示器的每一畫素的細部電路示意圖。圖8之雙顯示模式液晶顯示器與圖7之雙顯示模式液晶顯示器的不同之處在於,每一畫素還包含一第三主動矩陣T3,其閘極G與該二掃描線中的掃描線S2電耦接,其源極S與相對應 的第一儲存電容CST1另一端電耦接,其汲極D與相對應的第二主動矩陣T2之源極S電耦接。 Referring to FIG. 8 again, FIG. 8 is a detailed circuit diagram of each pixel of the dual display mode liquid crystal display according to another embodiment of the present invention. The dual display mode liquid crystal display of FIG. 8 is different from the dual display mode liquid crystal display of FIG. 7 in that each pixel further includes a third active matrix T3, the gate G thereof and the scan line S2 in the two scan lines. The source S is electrically coupled to the other end of the corresponding first storage capacitor C ST1 , and the drain D is electrically coupled to the source S of the corresponding second active matrix T2 .
藉此,當雙顯示模式液晶顯示器工作在反射模式時,掃描線S2(即第二掃描線)會同時驅動導通同一列畫素的第二主動矩陣T2及第三主動矩陣T3,使第一儲存電容CST1與第二儲存電容CST2相互並聯,進而增加反射式子畫素區RA的儲存電容量。當反射式子畫素區RA的儲存電容量增加時,即可儲存很多電荷,進而於操作上可使用較低的更新頻率,從而可以節省反射式子畫素區RA運作時所需電力。據此,可透過調整反射式子畫素區RA的儲存電容量,還可使第一顯示模式與第二顯示模式分別具有更新頻率低於20赫茲(Hertz)。 Therefore, when the dual display mode liquid crystal display operates in the reflective mode, the scan line S2 (ie, the second scan line) simultaneously drives the second active matrix T2 and the third active matrix T3 that turn on the same column of pixels to make the first storage. The capacitor C ST1 and the second storage capacitor C ST2 are connected in parallel to each other, thereby increasing the storage capacity of the reflective sub-pixel area RA. When the storage capacity of the reflective sub-pixel area RA increases, a large amount of charge can be stored, and a lower update frequency can be used in operation, thereby saving power required for the operation of the reflective sub-pixel area RA. Accordingly, the storage capacity of the reflective sub-pixel area RA can be adjusted, and the first display mode and the second display mode can also have an update frequency lower than 20 Hz (Hertz).
值得一提的是,第一液晶電容CLC1與第一儲存電容CST1以及第二液晶電容CLC2與第二儲存電容CST2相關,其公式如下:
其中C lc1表示該第一液晶電容的電容值;C st1表示該第一儲存電容的電容值;C lc2表示該第二液晶電容的電容值;C st2表示該第二儲存電容的電容值。從而,可透過配置主動矩陣的數量,串聯或並聯第一儲存電容CST1與第二儲存電容CST2配置反射式子畫素區RA的儲存電容量。 Wherein C lc 1 represents a capacitance value of the first liquid crystal capacitor; C st 1 represents a capacitance value of the first storage capacitor; C lc 2 represents a capacitance value of the second liquid crystal capacitor; C st 2 represents a capacitance of the second storage capacitor Capacitance value. Therefore, the storage capacity of the reflective sub-pixel area RA can be configured by arranging the number of active matrices in series or in parallel with the first storage capacitor C ST1 and the second storage capacitor C ST2 .
此外,由於穿透式子畫素區TA的第一顯示模式採用前述實施例所述之多域分割排列模式、橫向電場模式、增強橫向電場模式、超級橫向電場模式或增強邊際電場切換模 式等,其在不加電壓時為全黑,亦即為常黑狀態(normally black),並隨電壓增加而漸亮,而反射式子畫素區RA的第二顯示模式採用前述實施例所述之反射式扭轉排列模式、反射式電控雙折射模式、混合扭轉排列模式或反射式光學補償模式等,其在不加電壓時為全亮,亦即為常白狀態(normally white),並隨電壓增加而漸暗。 In addition, since the first display mode of the transmissive sub-pixel area TA adopts the multi-domain segmentation arrangement mode, the transverse electric field mode, the enhanced transverse electric field mode, the super transverse electric field mode or the enhanced marginal electric field switching mode described in the foregoing embodiments. Or the like, which is all black when no voltage is applied, that is, it is normally black, and gradually brightens as the voltage increases, and the second display mode of the reflective sub-pixel area RA adopts the foregoing embodiment. The reflective twisting arrangement mode, the reflective electronically controlled birefringence mode, the hybrid torsional arrangement mode, or the reflective optical compensation mode, etc., which are fully bright when no voltage is applied, that is, normally white, and Darkens as the voltage increases.
因此,穿透式子畫素區TA的第一顯示模式與反射式子畫素區RA的第二顯示模式所產生的伽瑪曲線為反向變化。換言之,依據不同的液晶排列模式可分別使第一顯示模式具有第一伽瑪穿透率-灰階-電壓轉換曲線或對應穿透率-灰階-電壓轉換的第一對照表,而第二顯示模式具有第二伽瑪反射率-灰階-電壓轉換曲線或對應反射率-灰階-電壓轉換的第二對照表。所述第一伽瑪穿透率-灰階-電壓轉換曲線與第二伽瑪反射率-灰階-電壓轉換曲線為反向的曲線。本技術領域具有同常識者應可由上述說明推知第一顯示模式之第一伽瑪-灰階-電壓-穿透率轉換曲線與第二顯示模式之第二伽瑪-灰階-電壓-穿透率轉換曲線的實際配置方式,故在此不在贅述。 Therefore, the gamma curve generated by the first display mode of the transmissive sub-pixel area TA and the second display mode of the reflective sub-pixel area RA is reversed. In other words, the first display mode may have a first gamma transmittance-grayscale-voltage conversion curve or a first comparison table corresponding to the transmittance-grayscale-voltage conversion according to different liquid crystal alignment modes, and the second The display mode has a second gamma reflectance-grayscale-voltage conversion curve or a second comparison table corresponding to reflectance-grayscale-voltage conversion. The first gamma transmittance-grayscale-voltage conversion curve and the second gamma reflectance-grayscale-voltage conversion curve are inverse curves. Those of ordinary skill in the art should be able to infer from the above description that the first gamma-grayscale-voltage-transmission conversion curve of the first display mode and the second gamma-grayscale-voltage-transmission of the second display mode The actual configuration of the rate conversion curve is not described here.
綜上所述,本發明實施例提供一種雙顯示模式液晶顯示器,此雙顯示模式液晶顯示器可藉由在每一畫素的分別設置穿透式子畫素區與反射式子畫素區,並於穿透式子畫素區內佈設具廣視角的液晶配向結構,使得雙顯示模式液晶顯示器操作在穿透模式時,能增加可視角度進而達到廣視角的功效和目的。 In summary, the embodiment of the present invention provides a dual display mode liquid crystal display, which can be provided with a transmissive sub-pixel area and a reflective sub-pixel area respectively in each pixel. A liquid crystal alignment structure with a wide viewing angle is disposed in the transmissive sub-pixel region, so that the dual display mode liquid crystal display can increase the viewing angle and achieve the function and purpose of wide viewing angle when operating in the penetrating mode.
以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。 The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.
100‧‧‧主動矩陣基板 100‧‧‧Active matrix substrate
101‧‧‧透明基板 101‧‧‧Transparent substrate
102‧‧‧畫素電極 102‧‧‧ pixel electrodes
1021、1022‧‧‧次電極 1021, 1022‧‧‧ secondary electrodes
103‧‧‧反射單元 103‧‧‧Reflective unit
104、104’‧‧‧絕緣層 104, 104'‧‧‧Insulation
105、105’‧‧‧第一次電極 105, 105'‧‧‧ first electrode
106‧‧‧第二次電極 106‧‧‧second electrode
200‧‧‧上基板 200‧‧‧Upper substrate
300‧‧‧液晶顯示層 300‧‧‧LCD layer
11、12‧‧‧第一配向膜結構 11, 12‧‧‧ First alignment film structure
13‧‧‧凸出物 13‧‧‧Protrusions
14‧‧‧狹縫 14‧‧‧Slit
21、22‧‧‧第二配向膜結構 21, 22‧‧‧ second alignment film structure
30‧‧‧外部環境光源 30‧‧‧External ambient light source
31‧‧‧電極線 31‧‧‧Electrode lines
32‧‧‧彎折電極線 32‧‧‧Bending electrode line
40‧‧‧背光源 40‧‧‧ Backlight
LC1‧‧‧第一液晶顯示層 LC1‧‧‧First LCD display layer
LC2‧‧‧第二液晶顯示層 LC2‧‧‧Second LCD display layer
CLC1‧‧‧第一液晶電容 C LC1 ‧‧‧First LCD Capacitor
CLC2‧‧‧第二液晶電容 C LC2 ‧‧‧Second liquid crystal capacitor
CST‧‧‧儲存電容 C ST ‧‧‧ storage capacitor
CST1‧‧‧第一儲存電容 C ST1 ‧‧‧First storage capacitor
CST2‧‧‧第二儲存電容 C ST2 ‧‧‧Second storage capacitor
P11、P12、P21、P22‧‧‧畫素 P 11 , P 12 , P 21 , P 22 ‧ ‧ pixels
T‧‧‧主動矩陣 T‧‧‧Active Matrix
T1‧‧‧第一主動矩陣 T1‧‧‧First Active Matrix
T2‧‧‧第二主動矩陣 T2‧‧‧ second active matrix
T3‧‧‧第三主動矩陣 T3‧‧‧ third active matrix
D‧‧‧主動矩陣的汲極 D‧‧‧ Active matrix bungee
S‧‧‧主動矩陣的源極 Source of S‧‧‧ active matrix
G‧‧‧主動矩陣的閘極 Gate of the G‧‧‧ active matrix
TA‧‧‧穿透式子畫素區 TA‧‧‧Transparent sub-picture area
RA‧‧‧反射式子畫素區 RA‧‧‧Reflective sub-pixel area
Vcom‧‧‧共電極 Vcom‧‧‧ common electrode
Vcom1、Vcom1’‧‧‧第一共電極 Vcom1, Vcom1'‧‧‧ first common electrode
Vcom2‧‧‧第二共電極 Vcom2‧‧‧Second common electrode
X、Y、Z‧‧‧軸向 X, Y, Z‧‧‧ axial
S1、S2、S3‧‧‧掃描線 S1, S2, S3‧‧‧ scan lines
D1、D2、D3‧‧‧資料線 D1, D2, D3‧‧‧ data lines
圖1是本發明一實施例提供之雙顯示模式液晶顯示器的畫素側面之剖視示意圖,其中顯示穿透式子畫素區是採用多域分割垂直排列(Vertically Aligned)配向結構,其中顯示反射式子畫素區是採用反射式垂直配向排列模式(Reflective Vertically Aligned),或是所謂的反式扭轉型排列(Inversed Twisted Nematic)配向結構;圖2是本發明一實施例提供之雙顯示模式液晶顯示器的局部畫素之細部電路示意圖;圖3是本發明另一實施例提供之雙顯示模式液晶顯示器的畫素側面之剖視示意圖,其中顯示穿透式子畫素區是採用增強邊際電場切換(Fringe-Field Effect)配向結構,且穿透式子畫素區的第一共電極是設在主動矩陣基板上表面,而反射式子畫素區的第二共電極是設在上基板下表面;圖4是本發明一實施例提供之畫素的構造示意圖,其中顯示單一畫素分配有兩條資料線,用以各別控制分別設於穿透式子畫素區與反射式子畫素區的主動矩陣,且穿透式子畫素區的第一共電極與反射式子畫素區的第二共電極設在不同的面上;圖5是本發明另一實施例提供之雙顯示模式液晶顯示器的畫素側面之剖視示意圖,其中顯示穿透式子畫素區是採用橫向電場(In-Plane Switching,IPS)配向結構,且位於穿透式子畫素區TA中的部分畫素電極與第一共電極是上 下交錯且相錯開地設在主動矩陣基板上表面,而位於反射式子畫素區的第二共電極是設在上基板下表面;圖6是本發明另一實施例提供之雙顯示模式液晶顯示器的每一畫素的細部電路示意圖,其中顯示每一畫素由兩條資料線分別控制穿透式子畫素區與反射式子畫素區的主動矩陣,且穿透式子畫素區與反射式子畫素區各別設有一儲存電容;圖7是本發明又一實施例提供之雙顯示模式液晶顯示器的每一畫素的細部電路示意圖,其中顯示每一畫素由兩條掃描線分別控制穿透式子畫素區與反射式子畫素區的主動矩陣,且穿透式子畫素區與反射式子畫素區各別設有一儲存電容;及圖8是本發明再一實施例提供之雙顯示模式液晶顯示器的每一畫素的細部電路示意圖,其中顯示每一畫素由兩條掃描線分別控制穿透式子畫素區與反射式子畫素區的第一主動矩陣及二主動矩陣,且穿透式子畫素區與反射式子畫素區各別設有一儲存電容,且畫素中還具有一第三主動矩陣,它會被控制第二主動矩陣的掃描線控制,而與第二主動矩陣同時導通,使得兩儲存電容並聯。 1 is a cross-sectional view of a pixel side of a dual display mode liquid crystal display according to an embodiment of the present invention, wherein a transmissive sub-pixel region is displayed by using a vertically-aligned alignment structure in which a reflection is displayed. The pixel region is a reflective vertical alignment mode (Reflective Vertically Aligned) or a so-called Inversed Twisted Nematic alignment structure. FIG. 2 is a dual display mode liquid crystal according to an embodiment of the present invention. FIG. 3 is a schematic cross-sectional view showing a pixel side of a dual display mode liquid crystal display according to another embodiment of the present invention, wherein the transmissive sub-pixel area is switched by an enhanced marginal electric field. (Fringe-Field Effect) alignment structure, and the first common electrode of the transmissive sub-pixel region is disposed on the upper surface of the active matrix substrate, and the second common electrode of the reflective sub-pixel region is disposed on the lower surface of the upper substrate FIG. 4 is a schematic structural diagram of a pixel provided by an embodiment of the present invention, in which a single pixel is allocated with two data lines for separately controlling respectively. An active matrix of the transmissive sub-pixel region and the reflective sub-pixel region, and the first common electrode of the transmissive sub-pixel region and the second common electrode of the reflective sub-pixel region are disposed on different surfaces FIG. 5 is a cross-sectional view of a pixel side of a dual display mode liquid crystal display according to another embodiment of the present invention, wherein the through-sub-pixel area is an In-Plane Switching (IPS) alignment structure. And a part of the pixel electrode and the first common electrode located in the transmissive sub-pixel area TA are The second common electrode is disposed on the upper surface of the upper substrate, and the second common mode is provided on the lower surface of the upper substrate. FIG. 6 is a dual display mode liquid crystal according to another embodiment of the present invention. A detailed circuit diagram of each pixel of the display, wherein each pixel is controlled by two data lines to control the active matrix of the transmissive sub-pixel region and the reflective sub-pixel region, respectively, and the penetrating sub-pixel region FIG. 7 is a detailed circuit diagram of each pixel of the dual display mode liquid crystal display according to another embodiment of the present invention, wherein each pixel is displayed by two scans. The lines respectively control the active matrix of the transmissive sub-pixel region and the reflective sub-pixel region, and the transmissive sub-pixel region and the reflective sub-pixel region are respectively provided with a storage capacitor; and FIG. 8 is the present invention. A detailed circuit diagram of each pixel of the dual display mode liquid crystal display provided by an embodiment, wherein each pixel is controlled by two scan lines to respectively control the first of the transmissive sub-pixel area and the reflective sub-pixel area Active matrix and two active Array, and the transmissive sub-pixel area and the reflective sub-pixel area are respectively provided with a storage capacitor, and the pixel also has a third active matrix, which is controlled by the scan line of the second active matrix, and Simultaneously conducting with the second active matrix, so that the two storage capacitors are connected in parallel.
100‧‧‧主動矩陣基板 100‧‧‧Active matrix substrate
101‧‧‧透明基板 101‧‧‧Transparent substrate
102‧‧‧畫素電極 102‧‧‧ pixel electrodes
1021、1022‧‧‧次電極 1021, 1022‧‧‧ secondary electrodes
103‧‧‧反射單元 103‧‧‧Reflective unit
104‧‧‧絕緣層 104‧‧‧Insulation
200‧‧‧上基板 200‧‧‧Upper substrate
300‧‧‧液晶顯示層 300‧‧‧LCD layer
11、12‧‧‧第一配向膜結構 11, 12‧‧‧ First alignment film structure
13‧‧‧凸出物 13‧‧‧Protrusions
14‧‧‧狹縫 14‧‧‧Slit
21、22‧‧‧第二配向膜結構 21, 22‧‧‧ second alignment film structure
30‧‧‧外部環境光源 30‧‧‧External ambient light source
40‧‧‧背光源 40‧‧‧ Backlight
LC1‧‧‧第一液晶顯示層 LC1‧‧‧First LCD display layer
LC2‧‧‧第二液晶顯示層 LC2‧‧‧Second LCD display layer
TA‧‧‧穿透式子畫素區 TA‧‧‧Transparent sub-picture area
RA‧‧‧反射式子畫素區 RA‧‧‧Reflective sub-pixel area
Vcom‧‧‧共電極 Vcom‧‧‧ common electrode
X、Y、Z‧‧‧軸向 X, Y, Z‧‧‧ axial
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102105289A TWI529453B (en) | 2013-02-08 | 2013-02-08 | Dual modes liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102105289A TWI529453B (en) | 2013-02-08 | 2013-02-08 | Dual modes liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201432355A TW201432355A (en) | 2014-08-16 |
TWI529453B true TWI529453B (en) | 2016-04-11 |
Family
ID=51797391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102105289A TWI529453B (en) | 2013-02-08 | 2013-02-08 | Dual modes liquid crystal display |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI529453B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI571671B (en) * | 2016-02-19 | 2017-02-21 | 友達光電股份有限公司 | Liquid crystal display panel |
TWI638349B (en) * | 2016-03-04 | 2018-10-11 | 友達光電股份有限公司 | Pixel unit and displaying method |
-
2013
- 2013-02-08 TW TW102105289A patent/TWI529453B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201432355A (en) | 2014-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10809551B2 (en) | Liquid crystal display device having switchable viewing angles and viewing angle switching method thereof | |
JP5111808B2 (en) | Thin film transistor display panel | |
JP3971778B2 (en) | Display device | |
US7852446B2 (en) | Liquid crystal display and method of driving the same | |
US7532269B2 (en) | Liquid crystal displays | |
JP6472066B2 (en) | Capacitive voltage dividing type low color shift pixel circuit | |
US7944405B2 (en) | Dual display device | |
KR101046929B1 (en) | Liquid crystal display | |
US20070109238A1 (en) | Liquid crystal display and method thereof | |
US20070052898A1 (en) | Multi-domain structure of wide-view-angle liquid crystal displays | |
KR101544275B1 (en) | Transflective display device, electronic apparatus, and method of driving transflective display device | |
JP5024786B2 (en) | Transflective liquid crystal display device | |
CN103293747A (en) | Transparent liquid crystal display device | |
US9070339B2 (en) | Semi-transmissive liquid crystal display device | |
CN104062809B (en) | dual display mode liquid crystal display | |
KR101888516B1 (en) | Dual mode liquid crystal display device | |
KR101112551B1 (en) | LCD and its driving method | |
CN101308293A (en) | Liquid crystal display device and terminal unit | |
CN101149540B (en) | Liquid crystal display device | |
TWI529453B (en) | Dual modes liquid crystal display | |
KR20070061993A (en) | Liquid crystal display | |
KR101112561B1 (en) | Liquid crsytal display | |
JP4711439B2 (en) | Display device | |
JP6385707B2 (en) | Liquid crystal display device and driving method thereof | |
CN114428424A (en) | Liquid crystal display device having a plurality of pixel electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |