TWI520298B - Electrostatic discharge protection against latch-up - Google Patents
Electrostatic discharge protection against latch-up Download PDFInfo
- Publication number
- TWI520298B TWI520298B TW102119721A TW102119721A TWI520298B TW I520298 B TWI520298 B TW I520298B TW 102119721 A TW102119721 A TW 102119721A TW 102119721 A TW102119721 A TW 102119721A TW I520298 B TWI520298 B TW I520298B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrostatic discharge
- latch
- coupled
- terminal
- potential power
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims description 22
- 239000002019 doping agent Substances 0.000 claims description 19
- 230000003071 parasitic effect Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000002955 isolation Methods 0.000 description 15
- 239000004065 semiconductor Substances 0.000 description 5
- 230000001960 triggered effect Effects 0.000 description 5
- 238000007667 floating Methods 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
- H10D89/711—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using bipolar transistors as protective elements
- H10D89/713—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base region coupled to the collector region of the other transistor, e.g. silicon controlled rectifier [SCR] devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/4913—Assembling to base an electrical component, e.g., capacitor, etc.
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Bipolar Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Description
本發明係關於一種免於閂鎖之靜電放電保護。 The present invention relates to an electrostatic discharge protection that is free of latch-up.
由靜電產生的靜電放電(ESD),其特徵通常在於快速瞬間的高電壓放電。ESD事件可出現在電性及電子電路中,如積體電路(IC)。其可產生足以對連接於例如為積體電路輸入及/或輸出的裝置造成破壞性擊穿的高電壓。 Electrostatic discharge (ESD), which is generated by static electricity, is typically characterized by a high-voltage discharge at a rapid instant. ESD events can occur in electrical and electronic circuits, such as integrated circuits (ICs). It can generate a high voltage sufficient to cause destructive breakdown of devices connected to, for example, input and/or output of integrated circuits.
使ICs免於ESD的方式是使用矽控整流器(SCR)。然而,習知的SCR電路在正常IC操作期間受制於閂鎖。閂鎖影響IC的操作而造成缺陷。 The way to protect ICs from ESD is to use a controlled voltage rectifier (SCR). However, conventional SCR circuits are subject to latch-up during normal IC operation. The latch affects the operation of the IC and causes defects.
因此,能夠快速觸發以避免破壞內部電路並且在正常操作期間不受閂鎖影響的ESD保護電路是想要的。 Therefore, ESD protection circuits that can be quickly triggered to avoid damaging internal circuitry and are not affected by latch-up during normal operation are desirable.
所呈現的是靜電放電模組。該靜電放電模組包括:靜電放電電路,該靜電放電電路具有接墊端及低電位電源端;閂鎖控制電路,該閂鎖控制電路包括耦接於 高電位電源的第一閂鎖端以及耦接於該靜電放電電路的閂鎖輸出端;以及第一操作模式與第二操作模式;其中,在該第一操作模式中,閂鎖控制電路為被停用並且該靜電放電電路具有小於100mA的第一觸發電流It1,並且在該第二操作模式中,閂鎖控制電路被啟動,並且該靜電放電電路具有大於100mA的第二觸發電流It2。 Presented is an electrostatic discharge module. The electrostatic discharge module includes: an electrostatic discharge circuit having a pad end and a low potential power terminal; and a latch control circuit including a first latch end coupled to the high potential power source and coupled Connecting to a latch output of the electrostatic discharge circuit; and a first mode of operation and a second mode of operation; wherein, in the first mode of operation, the latch control circuit is disabled and the electrostatic discharge circuit has less than 100 mA The first trigger current I t1 , and in the second mode of operation, the latch control circuit is activated, and the electrostatic discharge circuit has a second trigger current I t2 greater than 100 mA.
在另一具體實施例中,所揭露的是靜電放電模組。該靜電放電模組包括:靜電放電電路,具有接墊端及低電位電源端;閂鎖控制電路,包括耦接於高電位電源的第一閂鎖輸入端、耦接於低電位電源的第二閂鎖輸入端以及耦接於該靜電放電電路的閂鎖輸出端;以及第一操作模式與第二操作模式;其中,在該第一操作模式中,閂鎖控制電路被停用並且該靜電放電電路具有小於100mA的第一觸發電流It1,而在該第二操作模式中,該閂鎖控制電路被啟動,並且該靜電放電電路具有大於100mA的第二觸發電流It2。 In another embodiment, an electrostatic discharge module is disclosed. The ESD module includes: an ESD circuit having a pad end and a low potential power terminal; and a latch control circuit including a first latch input coupled to the high potential power supply and a second coupled to the low potential power supply a latch input and a latch output coupled to the electrostatic discharge circuit; and a first mode of operation and a second mode of operation; wherein in the first mode of operation, the latch control circuit is deactivated and the electrostatic discharge The circuit has a first trigger current I t1 of less than 100 mA, and in the second mode of operation, the latch control circuit is activated and the electrostatic discharge circuit has a second trigger current I t2 greater than 100 mA.
在又一具體實施例中,所呈現的是形成裝置的方法。本方法包括:設置具有靜電放電模組的基板,其中該靜電放電模組包括具有接墊端及低電位電源端的靜電放電電路、包括耦接於高電位電源的第一閂鎖輸入端以及耦接於該靜電放電電路的閂鎖輸出端的閂鎖控制電路、以及用於該靜電放電模組的第一操作模式與第二操作模式;其中,在該第一操作模式中,該閂鎖控制電路被停用並且該靜電放電電路具有小於100mA的第一觸發電流 It1,而在第二操作模式中,閂鎖控制電路被啟動,並且該靜電放電電路具有大於100mA的第二觸發電流It2。 In yet another embodiment, presented is a method of forming a device. The method includes: providing a substrate having an electrostatic discharge module, wherein the electrostatic discharge module includes an electrostatic discharge circuit having a pad end and a low potential power terminal, including a first latch input coupled to the high potential power source and coupled a latch control circuit at a latch output end of the electrostatic discharge circuit, and a first mode of operation and a second mode of operation for the electrostatic discharge module; wherein, in the first mode of operation, the latch control circuit is The electrostatic discharge circuit is deactivated and has a first trigger current I t1 of less than 100 mA, while in the second mode of operation, the latch control circuit is activated and the electrostatic discharge circuit has a second trigger current I t2 greater than 100 mA.
本文所揭露具體實施例的這些及其它優點及特徵透過參照底下說明及附加圖式將變得清楚明白。另外,要理解的是,本文所述各種具體實施例的特徵是不互斥的並且可有各種組合及排列。 These and other advantages and features of the present invention will become apparent from the following description and appended claims. In addition, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can be various combinations and arrangements.
100‧‧‧裝置 100‧‧‧ device
110‧‧‧靜電放電模組 110‧‧‧Electrostatic discharge module
112‧‧‧第一接端、接墊 112‧‧‧First end, pad
116‧‧‧第二接端、低電位電源 116‧‧‧Second terminal, low potential power supply
118‧‧‧高電位電源 118‧‧‧High potential power supply
120‧‧‧靜電放電電路 120‧‧‧Electrostatic discharge circuit
124‧‧‧第一部位 124‧‧‧First part
128‧‧‧第二部位 128‧‧‧Second part
130‧‧‧第一部位阱區 130‧‧‧First site well zone
134‧‧‧第一個第一部位接觸區域 134‧‧‧ first first part contact area
136‧‧‧第二個第一部位接觸區域 136‧‧‧Second first site contact area
140‧‧‧第二部位阱區 140‧‧‧Second-site well zone
144‧‧‧第一個第二部位接觸區域 144‧‧‧ first second contact area
146‧‧‧第二個第二部位接觸區域 146‧‧‧Second second site contact area
160‧‧‧閂鎖控制電路 160‧‧‧Latch control circuit
162‧‧‧第一閂鎖控制輸入接端 162‧‧‧First latch control input connector
164‧‧‧第二閂鎖控制輸入接端 164‧‧‧Second latch control input connector
168‧‧‧閂鎖控制輸出端 168‧‧‧Latch control output
170‧‧‧內部電路 170‧‧‧Internal circuits
192‧‧‧閂鎖電流路徑 192‧‧‧Latch current path
220‧‧‧寄生電路 220‧‧‧ Parasitic circuit
292‧‧‧電流路徑 292‧‧‧ Current path
361‧‧‧閂鎖控制輸入(LUi) 361‧‧‧ latch control input (LU i)
364‧‧‧閂鎖輸出(LUo)部位 364‧‧‧Latch output (LU o )
366‧‧‧LUi輸出端 366‧‧‧LU i output
371‧‧‧LUo輸入端 371‧‧‧LU o input
372‧‧‧第一LUo接端 372‧‧‧First LU o connector
374‧‧‧第二LUo接端 374‧‧‧Second LU o connector
396‧‧‧第二閂鎖電流路徑 396‧‧‧Second latch current path
B1‧‧‧第一基極端 B1‧‧‧ first base extreme
B2‧‧‧第二基極端 B2‧‧‧ second base extreme
C1‧‧‧第一集極端 C1‧‧‧ first episode extreme
C2‧‧‧第二集極端 C2‧‧‧ Second episode extreme
D1‧‧‧第一寄生二極體 D1‧‧‧First parasitic diode
D2‧‧‧第二寄生二極體 D2‧‧‧Second parasitic diode
E1‧‧‧第一射極 E1‧‧‧first emitter
E2‧‧‧第二射極 E2‧‧‧second emitter
Inv1‧‧‧第一反向器 Inv 1 ‧‧‧First Inverter
Inv2‧‧‧第二反向器 Inv 2 ‧‧‧Secondary reverser
Ncon1、Ncon2、Ncon3‧‧‧節點 N con1 , N con2 , N con3 ‧‧‧ nodes
Q1‧‧‧第一雙極接面型電晶體(BJT)、第一寄生電晶體 Q1‧‧‧First bipolar junction transistor (BJT), first parasitic transistor
Q2‧‧‧第二雙極接面型電晶體(BJT)、第二寄生電晶體 Q2‧‧‧Second bipolar junction transistor (BJT), second parasitic transistor
RC‧‧‧電阻器 R C ‧‧‧Resistors
Rp‧‧‧第二電阻器 Rp‧‧‧second resistor
在圖式中,相同的元件符號在各圖示中普遍意指相同的部件。還有,圖式未必依比例繪製,在描述本發明的原理時通常加強重點。在底下的說明中,本發明的各種具體實施例是引用底下圖式予以說明,其中:第1圖表示具有靜電放電模組的裝置的一部份的具體實施例;第2圖表示具有寄生電路的靜電放電模組的具體實施例;第3圖表示閂鎖控制電路的具體實施例;第4a至4b圖表示靜電放電模組在靜電放電和閂鎖模式中的具體實施例;以及第5a至5b圖表示靜電放電模組在靜電放電模式和閂鎖模式中的具體實施例的電流-電壓(I-V)曲線。 In the drawings, the same component symbols generally refer to the same components throughout the drawings. Also, the drawings are not necessarily drawn to scale, and emphasis is often placed in describing the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, wherein: FIG. 1 shows a specific embodiment of a device having an electrostatic discharge module; and FIG. 2 shows a parasitic circuit. A specific embodiment of the electrostatic discharge module; FIG. 3 shows a specific embodiment of the latch control circuit; and FIGS. 4a to 4b show a specific embodiment of the electrostatic discharge module in the electrostatic discharge and latch mode; and 5a to Figure 5b shows the current-voltage (IV) curve for a particular embodiment of the electrostatic discharge module in electrostatic discharge mode and latch mode.
具體實施例普遍與半導體裝置有關。在一具體實施例中,裝置包括ESD電路。舉例而言,ESD電路是在ESD事件期間啟動以耗散(dissipate)傳輸線的脈衝 (TLP)電流。裝置舉例可為任何半導體裝置類型,如積體電路(ICs)。ICs可與例如電子產品、電腦、顯示器、行動電話、以及個人數位助理器(PDAs)合併或搭配使用。第1圖表示裝置100的一部份的具體實施例。本裝置是在半導體基板105中形成的。在一具體實施例中,基板為矽基板。其他類型的半導體基板也可有作用,包括絕緣體上半導體基板。在一具體實施例中,基板為輕摻雜的p型矽基板。例如,輕摻雜的p型基板具有大約1.7e15cm-3的摻質濃度。其他摻雜濃度也可有作用。在其他具體實施例中,基板可摻有n型摻質及/或其他摻質濃度。例如,包括硼(B)、鋁(Al)、銦(In)或其組合的P型摻質,而n型摻質可包括磷(P)、砷(As)、銻(Sb)或其組合。 Particular embodiments are generally associated with semiconductor devices. In a specific embodiment, the device includes an ESD circuit. For example, an ESD circuit is activated during an ESD event to dissipate a pulse (TLP) current of a transmission line. Examples of devices can be any type of semiconductor device, such as integrated circuits (ICs). ICs can be combined or used with, for example, electronics, computers, displays, mobile phones, and personal digital assistants (PDAs). FIG. 1 shows a specific embodiment of a portion of device 100. This device is formed in the semiconductor substrate 105. In a specific embodiment, the substrate is a germanium substrate. Other types of semiconductor substrates may also function, including on-insulator semiconductor substrates. In a specific embodiment, the substrate is a lightly doped p-type germanium substrate. For example, a lightly doped p-type substrate has a dopant concentration of about 1.7e15 cm" 3 . Other doping concentrations can also be useful. In other embodiments, the substrate can be doped with n-type dopants and/or other dopant concentrations. For example, a P-type dopant including boron (B), aluminum (Al), indium (In), or a combination thereof, and the n-type dopant may include phosphorus (P), arsenic (As), antimony (Sb), or a combination thereof. .
本裝置包括ESD模組110。在一具體實施例中,ESD模組包括ESD電路120及閂鎖(閂鎖)控制電路160。如圖所示,ESD電路是置於基板中。ESD電路可包括用以隔離ESD電路的隔離區域(圖中未示)。舉例來說,ESD隔離區域可圍繞ESD電路。ESD隔離區域可為溝槽隔離區域。ESD隔離區域例如為淺溝槽隔離(STI)區域。ESD隔離區域可與那些用於隔離裝置主動區域的區域一樣。其他類型的隔離區域配置也可有作用。在其他具體實施例中,未設置ESD隔離區域。 The device includes an ESD module 110. In one embodiment, the ESD module includes an ESD circuit 120 and a latch (latch) control circuit 160. As shown, the ESD circuit is placed in the substrate. The ESD circuit can include an isolation region (not shown) for isolating the ESD circuit. For example, an ESD isolation region can surround an ESD circuit. The ESD isolation region can be a trench isolation region. The ESD isolation region is, for example, a shallow trench isolation (STI) region. The ESD isolation area can be the same as those used to isolate the active area of the device. Other types of isolated area configurations can also be useful. In other embodiments, the ESD isolation region is not set.
在一具體實施例中,ESD電路為矽控整流器(SCR)ESD電路。ESD電路包括第一部位(第一部位)124及第二部位(第二部位)128。此等部位是作用為ESD電路的接 端。例如,第一接端112與第二接端116是耦接於第一部位與第二部位。在一具體實施例中,第一接端是耦接於接墊。例如,接墊為裝置的I/O接墊。第二接端是耦接於低電位電源。低電位電源舉例為接地或公共接地端電壓(VSS)。其他類接端耦接配置也可有作用。 In one embodiment, the ESD circuit is a Voltage Controlled Rectifier (SCR) ESD circuit. The ESD circuit includes a first portion (first portion) 124 and a second portion (second portion) 128. These parts are the terminals that act as ESD circuits. For example, the first terminal 112 and the second terminal 116 are coupled to the first portion and the second portion. In a specific embodiment, the first terminal is coupled to the pad. For example, the pads are I/O pads of the device. The second terminal is coupled to the low potential power source. The low potential power supply is exemplified by a ground or common ground voltage (V SS ). Other types of terminal coupling configurations may also be useful.
內部電路170是耦接於接墊。例如,內部電路為I/O電路,如反向器。也可使其他類內部電路耦接於接墊。內部電路是耦接於高電位電源118與低電位電源116間。例如,高電位電源舉例可為VDD並且低電位電源可為公共接地端電壓。其他類高與低電位電源也可有作用。 The internal circuit 170 is coupled to the pad. For example, the internal circuit is an I/O circuit such as an inverter. Other types of internal circuits can also be coupled to the pads. The internal circuit is coupled between the high potential power source 118 and the low potential power source 116. For example, a high potential power supply can be V DD and a low potential power supply can be a common ground voltage. Other high and low potential power supplies can also be useful.
在一具體實施例中,第一部位包括第一部位阱區130。第一部位阱區摻有第二極性類型摻質。第二部位包括第二部位阱區140。第二部位阱區摻有第一極性類型摻質。在一具體實施例中,第一極性為p型並且第二極性類型為n型。其他極性類型配置也可有作用。在某具體實施例中,阱區中的一個可由基板設置。基板在適當摻雜的情況下,其可當作ESD部位的一個的阱區。例如,若基板適當地摻有第一極性類型摻質,則其可充當為第二部位阱區。其他阱區配置也可有作用。 In a specific embodiment, the first portion includes a first portion well region 130. The first portion well region is doped with a second polarity type dopant. The second portion includes a second portion well region 140. The second portion well region is doped with a first polarity type dopant. In a specific embodiment, the first polarity is p-type and the second polarity type is n-type. Other polarity type configurations can also be useful. In a particular embodiment, one of the well regions can be disposed by a substrate. The substrate can be considered as a well region of one of the ESD sites with proper doping. For example, if the substrate is suitably doped with a first polarity type dopant, it can act as a second portion well region. Other well zone configurations can also be useful.
可通過中間隔離區域(圖中未示)分離第一部位與第二部位。中間隔離區域舉例可為ESD隔離區域的一部份。其他隔離區域配置也可有作用。 The first portion and the second portion may be separated by an intermediate isolation region (not shown). An example of an intermediate isolation region can be a portion of the ESD isolation region. Other isolated area configurations can also be useful.
第一部位包括第一接觸區域134與第二個第一部位接觸區域136。第一個第一部位接觸區域為第一 極性類型接觸區域,而第二個第一部位接觸區域為第二極性類型接觸區域。第一個與第二個第一部位接觸區域作用為第一接端的接觸區域。例如,第一個與第二個第一部位接觸區域共同耦接於接墊。在一具體實施例中,可設置用以分離第一部位接觸區域的第一部位隔離區域(圖中未示)。在其他具體實施例中,未設置用以分離第一部位接觸區域的第一部位隔離區域。例如,第一部位接觸區域為對接接觸區域。第二部位包括第一接觸區域144與第二個第二部位接觸區域146。第一個第二部位接觸區域為第一極性類型接觸區域,而第二個第二部位接觸區域為第二極性類型接觸區域。第一個與第二個第二部位接觸區域作用為第二接端的接觸區域。例如,第一個與第二個第二部位接觸區域是耦接於低電位電源,如公共接地端電壓。可設置用以分離第一個與第二個第二部位接觸區域的第二部位隔離區域(圖中未示)。在其他具體實施例中,未設置用以分離第一個與第二個第二部位接觸區域的第二部位隔離區域。例如,第一個與第二個第二部位接觸區域為對接接觸區域。 The first portion includes a first contact region 134 and a second first portion contact region 136. The first first part contact area is the first The polarity type contact area, and the second first part contact area is the second polarity type contact area. The first and second first portion contact regions act as contact regions for the first terminal. For example, the first and second first portion contact regions are commonly coupled to the pads. In a specific embodiment, a first portion isolation region (not shown) for separating the first portion contact region may be disposed. In other embodiments, a first portion isolation region for separating the first portion contact area is not provided. For example, the first portion contact area is a docking contact area. The second portion includes a first contact region 144 and a second second portion contact region 146. The first second portion contact area is a first polarity type contact area, and the second second part contact area is a second polarity type contact area. The first and second second portion contact regions act as contact regions for the second terminal. For example, the first and second second portion contact regions are coupled to a low potential power source, such as a common ground terminal voltage. A second portion isolation region (not shown) for separating the first and second second portion contact regions may be provided. In other embodiments, a second portion isolation region for separating the first and second second portion contact regions is not provided. For example, the first and second second portion contact areas are butt contact areas.
在一具體實施例中,接觸區域為重摻雜區域。設置其他摻質濃、度的接觸區域也可有作用。另外,可在接觸區域的表面上設置金屬矽化物接觸部。舉例來說,矽化物接觸部可降低接觸電阻。如圖所示,第一部位與第二部位的第一與第二接觸區域是經佈局以致第二接觸區域彼此鄰近。要理解的是,第一與第二接觸區域的其他 配置也可有作用。例如,第一接觸區域可彼此鄰近或一部分的第一接觸區域與另一部位的第二接觸區域是彼此鄰近。 In a specific embodiment, the contact area is a heavily doped region. It is also useful to set the contact area of other dopants with a rich concentration. In addition, a metal telluride contact portion may be provided on the surface of the contact region. For example, the telluride contact can reduce the contact resistance. As shown, the first and second contact regions of the first portion and the second portion are arranged such that the second contact regions are adjacent to each other. It is to be understood that the first and second contact areas are other Configuration can also be useful. For example, the first contact regions that are adjacent to each other or a portion of the first contact regions and the second contact regions of the other portion are adjacent to each other.
ESD電路在ESD狀況下從接墊到接地產生用以耗散ESD電流的電流路徑。例如,充足的ESD電流通過ESD電路時得以啟動或觸發ESD電路以產生電流路徑。啟動ESD電路的電流值稱為觸發電流It。 The ESD circuit generates a current path for dissipating ESD current from the pad to ground in an ESD condition. For example, sufficient ESD current can be initiated or triggered by the ESD circuit to generate a current path. The value of the current that starts the ESD circuit is called the trigger current I t .
在一具體實施例中,設置閂鎖(LU)控制電路160。如圖所示,閂鎖控制電路包括第一閂鎖控制輸入接端162與第二閂鎖控制輸入接端164及閂鎖控制輸出端168。第一閂鎖控制輸入端是耦接於高電位電源118以及第二閂鎖控制輸入端是耦接於低電位電源116。例如,高電位電源為VDD,而低電位電源為公共接地端電壓。設置其他高及/或低電位電源也可有作用。在一具體實施例中,控制輸出端是耦接於第二個第一部位接觸區域。 In a specific embodiment, a latch (LU) control circuit 160 is provided. As shown, the latch control circuit includes a first latch control input terminal 162 and a second latch control input terminal 164 and a latch control output 168. The first latch control input is coupled to the high potential power source 118 and the second latch control input is coupled to the low potential power source 116. For example, the high potential power supply is V DD and the low potential power supply is the common ground voltage. Setting other high and/or low potential power supplies can also be useful. In a specific embodiment, the control output is coupled to the second first portion contact area.
ESD模組具有第一及第二操作模式。其中一操作模式為ESD模式,而另一操作模式為閂鎖模式。例如,第一模式為ESD模式;第二模式為閂鎖(閂鎖)模式。閂鎖控制電路在ESD模式中遭到停用並且在閂鎖模式中遭到啟動。在閂鎖模式中,電源供應(例如VDD)是在裝置上或供應至裝置。如此,裝置是正在正常狀況下操作,但具有用以將電流驅向接墊的較高正或負直流(DC)電壓。電源供應對於ESD模式而言是浮接的。 The ESD module has first and second modes of operation. One of the modes of operation is the ESD mode and the other mode of operation is the latch mode. For example, the first mode is the ESD mode; the second mode is the latch (latch) mode. The latch control circuit is deactivated in ESD mode and is activated in latch mode. In the latch mode, the power supply (e.g., V DD) on the device or apparatus is supplied to. As such, the device is operating under normal conditions, but has a higher positive or negative direct current (DC) voltage to drive current to the pads. The power supply is floating for the ESD mode.
在一具體實施例中,ESD電路在第一操作模 式中具有第一觸發電流It1,而在第二操作模式中具有第二觸發電流It2。舉例來說,ESD電路在ESD模式中具有It1,而在閂鎖模式中具有It2。在一具體實施例中,It1<It2。在一具體實施例中,It1小於觸發電流閥值Itt並且It2大於Itt。觸發電流閥值Itt為100mA。根據固態技術協會JEDEC,It大於100mA時得以避免出現閂鎖。較佳的是,It1是低到能快速觸發ESD電路以避免破壞內部電路。 In a specific embodiment, the ESD circuit has a first trigger current I t1 in the first mode of operation and a second trigger current I t2 in the second mode of operation. For example, in the ESD circuit having ESD mode I t1, I t2 having the latch mode. In a specific embodiment, I t1 <I t2 . In one specific embodiment, I t1 less than the trigger current threshold and I t2 is greater than I tt I tt. The trigger current threshold I tt is 100 mA. According to Solid State Technology Association JEDEC, I t able to avoid latch greater than 100mA. Preferably, I t1 is low enough to quickly trigger the ESD circuit to avoid damaging internal circuitry.
ESD電路產生寄生電路。第2圖表示第1圖的ESD電路120的寄生電路220。請參閱第1至2圖,寄生電路包括介於接墊112與低電位電源116間的第一雙極接面型電晶體(BJT)Q1與第二雙極接面型電晶體(BJT)Q2。在一具體實施例中,Q1為pnp型電晶體以及Q2為npn型電晶體。 The ESD circuit generates parasitic circuits. Fig. 2 shows a parasitic circuit 220 of the ESD circuit 120 of Fig. 1. Referring to FIGS. 1 to 2, the parasitic circuit includes a first bipolar junction type transistor (BJT) Q1 and a second bipolar junction type transistor (BJT) Q2 between the pad 112 and the low potential power source 116. . In a specific embodiment, Q1 is a pnp type transistor and Q2 is an npn type transistor.
第一電晶體Q1包括第一射極端E1、第一基極端B1以及第一集極端C1。類似地,Q2包括第二射極端E2、第二基極端B2以及第二集極端C2。在一具體實施例中,Q1為pnp電晶體而Q2為npn電晶體。 The first transistor Q1 includes a first emitter terminal E1, a first base terminal B1, and a first collector terminal C1. Similarly, Q2 includes a second emitter extreme E2, a second base extreme B2, and a second set extreme C2. In a specific embodiment, Q1 is a pnp transistor and Q2 is an npn transistor.
在一具體實施例中,第一射極端E1由第一個第一部位接觸區域所形成。例如,第一射極端E1為重摻雜p型第一個第一部位接觸區域。P型基板形成第一集極C1而第一基極端B1是由n型摻雜第一部位阱區所形成。這產生第一垂直pnp電晶體。例如,垂直pnp電晶體是沿著垂直於基板表面的方向形成。接墊是耦接於第一射極端E1,而第一集極端C1則通過p型摻雜第二部位阱區 所形成的第二電阻器Rp來耦接於低電位電源。第一集極端C1與第二電阻器Rp的連接形成第二節點N2。Q1的基極是耦接於第二個第一部位接觸區域及控制電路的輸出端。介於第一基極端B1與第二個第一部位接觸區域間的連接形成第一節點N1。 In a specific embodiment, the first emitter extreme E1 is formed by the first first portion contact region. For example, the first emitter extreme E1 is a heavily doped p-type first first site contact region. The P-type substrate forms the first collector C1 and the first base terminal B1 is formed by n-doping the first portion well region. This produces a first vertical pnp transistor. For example, a vertical pnp transistor is formed along a direction perpendicular to the surface of the substrate. The pad is coupled to the first emitter terminal E1, and the first collector terminal C1 is coupled to the low potential power source by a second resistor R p formed by p-doping the second portion well region. The connection of the first set of extremes C1 to the second resistor Rp forms a second node N2. The base of Q1 is coupled to the contact area of the second first portion and the output of the control circuit. The connection between the first base end B1 and the second first portion contact area forms the first node N1.
如圖所示,第二雙極接面型電晶體Q2是耦接於第一節點N1與低電位電源間。例如,第二集極端C2是耦接於第一節點N1而第二射極端E2是耦接於低電位電源。第二雙極接面型電晶體Q2的基極是耦接於第二節點N2。例如,第二雙極接面型電晶體Q2是在第二節點N2處耦接於第一集極端C1及低電位電源。這形成第二橫向npn電晶體。例如,第二橫向電晶體是平行於基板表面。第二集極端C2由n型摻雜第一部位阱區所形成,第二基極端B2由p型摻雜第二部位阱區所形成,而第二射極端E2則由n型摻雜第二個第二部位接觸區域所形成。當ESD電路觸發時,在接墊與如公共接地端電壓的低電位電源,間產生電流路徑292。如圖所示,介於接墊與公共接地端電壓間的電流路徑流經第一射極端E1、第一基極端B1、第二集極端C2、第二基極端B2及第二射極端E2。此電流路徑稱為ESD電路的閂鎖電流路徑。當充足的基板電流,如It,經由第一基極端B1及第一集極端C1導通時,ESD電路遭到觸發以產生閂鎖電流路徑。在一具體實施例中,在ESD模式中,It等於It1。 As shown, the second bipolar junction transistor Q2 is coupled between the first node N1 and the low potential power supply. For example, the second set terminal C2 is coupled to the first node N1 and the second emitter terminal E2 is coupled to the low potential power source. The base of the second bipolar junction type transistor Q2 is coupled to the second node N2. For example, the second bipolar junction transistor Q2 is coupled to the first collector terminal C1 and the low potential power source at the second node N2. This forms a second lateral npn transistor. For example, the second lateral transistor is parallel to the surface of the substrate. The second set of extreme C2 is formed by n-doping the first portion well region, the second base terminal B2 is formed by the p-type doped second portion well region, and the second emitter terminal E2 is formed by the n-type doping second. A second portion of the contact area is formed. When the ESD circuit is triggered, a current path 292 is created between the pads and a low potential source such as a common ground terminal voltage. As shown, the current path between the pads and the common ground terminal voltage flows through the first emitter terminal E1, the first base terminal B1, the second collector terminal C2, the second base terminal B2, and the second emitter terminal E2. This current path is called the latch current path of the ESD circuit. When sufficient substrate current, such as I t , is turned on via the first base terminal B1 and the first collector terminal C1, the ESD circuit is triggered to generate a latch current path. In a specific embodiment, in the ESD mode, I t is equal to I t1 .
第3圖表示閂鎖控制電路160的具體實施 例,閂鎖控制電路可包括如第1圖所示的共同組件。如此,共同元件可不說明或不予以詳述。閂鎖控制電路包括閂鎖控制輸入(LUi)部位361及輸出(LUo)部位364。LUi部位具有LUi輸出端366並且是耦接於閂鎖控制電路的輸入端162與164。LUo部位包括LUo輸入端371以及第一LUo接端372與第二LUo接端374。LUo輸入端是耦接於LUi輸出端,而第一LUo接端是耦接於高電位電源,並且第二LUo接端是作用為耦接於ESD電路的閂鎖控制輸出端168。例如,閂鎖控制輸出端是耦接於ESD電路的第一節點N1。 Figure 3 shows a specific embodiment of a latch control circuit 160 that may include a common component as shown in Figure 1. As such, common elements may not be described or detailed. The latch control circuit includes a latch control input (LU i) and an output portion 361 (LU o) portion 364. The LU i portion has an LU i output 366 and is coupled to inputs 162 and 164 of the latch control circuit. The LU o portion includes a LU o input 371 and a first LU o terminal 372 and a second LU o terminal 374. The LU o input is coupled to the LU i output, and the first LU o terminal is coupled to the high potential power supply, and the second LU o terminal is coupled to the latch control output 168 of the ESD circuit. . For example, the latch control output is coupled to the first node N1 of the ESD circuit.
在一具體實施例中,若無電力供應至裝置,則LUi部位於LUi輸出端產生不動作LUi輸出信號。另一方面,若電力供應至裝置,則LUi部位於LUi輸出端產生有動作LUi輸出信號。例如,LUi在VDD=0V時產生不動作LUi輸出信號,而LUi在VDD=VDD時產生有動作LUi輸出信號。在一具體實施例中,不動作LUi輸出信號將LUo部位停用,致使ESD模組在ESD模式中操作;有動作LUi輸出信號啟動LUo部位,致使ESD模組在閂鎖模式中操作。 In one embodiment, if no power is supplied to the device, the LU i portion is located at the LU i output to generate a non-operating LU i output signal. On the other hand, when the electric power is supplied to the apparatus, the LU i located LU i LU i generated at the output signal has an output operation. For example, LU i produces a non-operating LU i output signal when V DD =0 V, and LU i produces an action LU i output signal when V DD = V DD . In one embodiment, the inactive LU i output signal disables the LU o portion, causing the ESD module to operate in the ESD mode; the action LU i output signal activates the LU o portion, causing the ESD module to be in the latch mode operating.
第二閂鎖電流路徑396是在LUo部位遭到啟動時產生的。第二閂鎖電流路徑是通過N1而從接墊到高電位電源。LUo不動作時,則不產生第二閂鎖電流路徑。例如,第二電流路徑在閂鎖模式中產生,但在ESD模式中則無電流路徑。在一具體實施例中,第二電流路徑包括介於接墊與第一節點N1間的第一雙極接面型電晶體D1,以及從第一節點N1至高電位電源的第二雙極接面型電晶體 D2。二極體呈串連耦接,其中第一雙極接面型電晶體D1的第一正極耦接於接墊,第一雙極接面型電晶體D1的第一負極耦接於第一節點N1,第二雙極接面型電晶體D2的第二正極耦接於第一節點N1,而第二雙極接面型電晶體D2的第二負極耦接於高電位電源。 The second latch current path 396 is generated when the LU o portion is activated. The second latch current path is from the pad to the high potential supply through N1. When LU o does not operate, no second latch current path is generated. For example, the second current path is generated in the latch mode, but there is no current path in the ESD mode. In a specific embodiment, the second current path includes a first bipolar junction type transistor D1 between the pad and the first node N1, and a second bipolar junction from the first node N1 to the high potential power source. Type transistor D2. The diodes are coupled in series, wherein the first anode of the first bipolar junction transistor D1 is coupled to the pad, and the first cathode of the first bipolar junction transistor D1 is coupled to the first node. N1, the second anode of the second bipolar junction transistor D2 is coupled to the first node N1, and the second cathode of the second bipolar junction transistor D2 is coupled to the high potential power source.
在一具體實施例中,LUo部位包括LUo電晶體。LUo電晶體在一具體實施例中為p型金屬氧化物半導體場效電晶體(pFET)。LUo電晶體包括第一與第二源/汲極(S/D)端與閘極端。源/汲極端為p型摻雜區域。由n型電晶體阱區所形成的電晶體的本體(body)是耦接於第一源/汲極端。 In a specific embodiment, the LU o site comprises a LU o transistor. LU o transistor is a p-type MOSFET (the pFET) in a particular embodiment. LU o comprises a first transistor and a second source / drain (S / D) terminal and gate terminal. The source/germanium is a p-type doped region. The body of the transistor formed by the n-type transistor well region is coupled to the first source/deuterium terminal.
有動作LUi信號在一具體實施例中為邏輯1信號,而不動作LUi信號為邏輯0信號。有動作及不動作LUi信號的其他配置也可有作用。有動作LUi信號在一具體實施例中關閉LUo電晶體。這導致包括包含有第一雙極接面型電晶體D1與第二雙極接面型電晶體D2的第二電流路徑的形成。第一二極體D1是由第一部位接觸區域與第一部位阱區所形成,而D2則由電晶體阱區與LUo電晶體的第一源/汲極端所形成。不動作LUi信號開通LUo電晶體而在第一與第二源/汲極端間產生路徑。這可使ESD電路在ESD模式中操作。 The active LU i signal is a logic 1 signal in one embodiment, while the LU i signal is a logic 0 signal. Other configurations with action and no action LU i signals can also be useful. The action LU i signal turns off the LU o transistor in one embodiment. This results in the formation of a second current path comprising the first bipolar junction type transistor D1 and the second bipolar junction type transistor D2. The first diode D1 is formed by a first portion with a first contact region portion the well region and the first source by the transistor well region D2 and the transistor LU o / drain terminal is formed. The no-action LU i signal turns on the LU o transistor to create a path between the first and second source/deuterium terminals. This allows the ESD circuit to operate in ESD mode.
在一具體實施例中,LUi部位包括串連耦接的第一與第二反向器Inv1與Inv2。電阻器RC是耦接於Inv1的第一反向器輸入端。在一具體實施例中,電阻器RC為多 晶電阻器(poly resistor)。電阻器舉例可為非矽化物電阻器。其在VDD有高電流時可防止反向器的閘極氧化物崩潰。Inv1的第一反向器輸出端是耦接於Inv2的第二反向器輸入端。第二反向器輸出端作用為耦接於LUo輸入端的LUi輸出端。當電力供應至裝置時,節點Ncon1等於邏輯1、Ncon2等於邏輯0以及Ncon3等於邏輯1。這產生有動作LUi輸出信號,導致LUo部位有動作以產生第二電流路徑。當電力未供應至裝置時,VDD是浮接的(零電位)。如此,節點Ncon1等於邏輯0、Ncon2等於邏輯1以及Ncon3等於邏輯0。這產生不動作LUi輸出信號,導致LUo部位不動作。 In a specific embodiment, the LU i portion includes first and second inverters Inv 1 and Inv 2 coupled in series. The resistor R C is coupled to the first inverter input of Inv 1 . In a specific embodiment, the resistor R C is a poly resistor. An example of a resistor can be a non-deuterated resistor. Which prevents inverter when V DD high current gate oxide breakdown. The first inverter output of Inv 1 is coupled to the second inverter input of Inv 2 . The second inverter output acts as an LU i output coupled to the LU o input. When power is supplied to the device, node N con1 is equal to logic 1, N con2 is equal to logic 0, and N con3 is equal to logic 1. This produces an action LU i output signal that causes the LU o portion to act to generate a second current path. When power is not supplied to the device, V DD is floating (zero potential). Thus, node N con1 is equal to logic 0, N con2 is equal to logic 1 and N con3 is equal to logic 0. This produces a non-operating LU i output signal, causing the LU o portion to not operate.
通過在閂鎖模式中設置第二電流路徑,用以觸發ESD電路所需的電流(例如,It2)是除以2。在此種狀況下,需要較高電流用以維持啟動ESD電路所需的基板電位。在一具體實施例中,It2大於閥值,而在閂鎖模式中防止閂鎖。另一方面,觸發電流(例如,It1)小於閥值,致使在ESD模式中快速觸發ESD電路以避免破壞內部電路。 By setting the second current path in the latch mode, the current required to trigger the ESD circuit (eg, I t2 ) is divided by two. In such a situation, a higher current is required to maintain the substrate potential required to start the ESD circuit. In a specific embodiment, I t2 is greater than the threshold and latch-up is prevented in the latch mode. On the other hand, the trigger current (eg, I t1 ) is less than the threshold, causing the ESD circuit to be quickly triggered in the ESD mode to avoid damaging the internal circuitry.
第4a至4b圖表示ESD模組在ESD及閂鎖模式中操作的具體實施例。ESD模組包括耦接於ESD電路120的閂鎖控制電路160。ESD模組可包括如第1至3圖所述的共同組件。例如,閂鎖控制電路及ESD電路與第1至3圖所述類似。如此,共同元件可不予以說明或詳述。 Figures 4a through 4b illustrate a particular embodiment of the operation of the ESD module in ESD and latch mode. The ESD module includes a latch control circuit 160 coupled to the ESD circuit 120. The ESD module can include common components as described in Figures 1 through 3. For example, the latch control circuit and the ESD circuit are similar to those described in FIGS. 1 to 3. As such, common components may not be described or detailed.
請參閱第4a至4b圖,ESD電路形成第一雙極接面型電晶體Q1與第二雙極接面型電晶體Q2。第一雙極接面型電晶體Q1為pnp電晶體以及第二雙極接面型電 晶體Q2為npn電晶體。至於閂鎖控制電路,第一閂鎖接端162與第二閂鎖接端164是耦接於高電位電源118與低電位電源116。高電位電源是舉例為VDD並且低電位電源可為公共接地端電壓。閂鎖輸出端是耦接於ESD電路的第一節點N1。 Referring to Figures 4a to 4b, the ESD circuit forms a first bipolar junction transistor Q1 and a second bipolar junction transistor Q2. The first bipolar junction type transistor Q1 is a pnp transistor and the second bipolar junction type transistor Q2 is an npn transistor. As for the latch control circuit, the first latch terminal 162 and the second latch terminal 164 are coupled to the high potential power source 118 and the low potential power source 116. The high potential power supply is exemplified as V DD and the low potential power supply can be a common ground voltage. The latch output is coupled to the first node N1 of the ESD circuit.
請參閱第4a圖,當VDD未供應至裝置或IC時,高電位電源是浮接的或處於零電位。如此,閂鎖控制電路遭到停用,導致ESD電路在ESD模式中操作。在ESD狀況下,例如,ESD打上(zap)接墊,電流經由基板Rp穿過第一雙極接面型電晶體Q1至接地。當有足夠的電流穿過第二電阻器Rp時,第二雙極接面型電晶體Q2得以開通,在ESD電路中產生閂鎖電流路徑192。例如,閂鎖電流路徑是在流經第二電阻器Rp的電流達到觸發電流It1時產生。 Referring to Figure 4a, when V DD is not supplied to the device or IC, the high potential power supply is floating or at zero potential. As such, the latch control circuitry is disabled, causing the ESD circuitry to operate in ESD mode. In an ESD condition, for example, the ESD is placed on a (zap) pad and current is passed through the substrate Rp through the first bipolar junction transistor Q1 to ground. When there is sufficient current to pass through the second resistor Rp , the second bipolar junction transistor Q2 is turned on, creating a latch current path 192 in the ESD circuit. For example, the latch current path is generated when the current flowing through the second resistor Rp reaches the trigger current It1 .
第5a圖表示ESD模組在ESD模式中的I-V曲線。觸發電流It1遠小於100mA。這致使ESD電路快速觸發以產生閂鎖電流路徑而避免其正在保護的內部電路損壞。 Figure 5a shows the IV curve of the ESD module in ESD mode. The trigger current I t1 is much less than 100 mA. This causes the ESD circuit to quickly trigger to create a latched current path that avoids damage to the internal circuitry it is protecting.
請參閱第4b圖,當電力供應至裝置時,高電位電源等於VDD。如此,閂鎖控制電路遭到啟動,致使ESD電路在閂鎖模式中操作。在閂鎖模式中,ESD電路沿著閂鎖電流路徑292而具有第二電流路徑396。第二電流路徑是從接墊至第一節點N1再到高電位電源。第二電流路徑是由第一與第二雙極接面型電晶體D1與D2所形成。 由於具有兩條電流路徑的ESD電路,閂鎖模式中的觸發電流It2大於100mA,如第5b圖所示。這防止ESD電路在閂鎖模式中出現閂鎖。 Referring to Figure 4b, when power is supplied to the device, the high potential power supply is equal to V DD . As such, the latch control circuit is activated, causing the ESD circuit to operate in the latch mode. In the latched mode, the ESD circuit has a second current path 396 along the latch current path 292. The second current path is from the pad to the first node N1 to the high potential power source. The second current path is formed by the first and second bipolar junction transistors D 1 and D 2 . Due to the ESD circuit with two current paths, the trigger current I t2 in the latch mode is greater than 100 mA, as shown in Figure 5b. This prevents the ESD circuit from latching in the latch mode.
本發明可用其他特定形式予以具體實施而不脫離其精神或重要特徵。因此,前述具體實施例是全面視為描述性質而非使本發明受限於本文所述。本發明的範疇因而是通過附加的申請專利範圍予以指示,而非前述說明,並且申請專利範圍均等意義及範圍內的所有變更都意欲含括在本文中。 The invention may be embodied in other specific forms without departing from the spirit or essential characteristics. Therefore, the foregoing specific embodiments are to be considered in all respect The scope of the present invention is intended to be in the scope of the appended claims, and is not intended to
100‧‧‧裝置 100‧‧‧ device
110‧‧‧靜電放電模組 110‧‧‧Electrostatic discharge module
112‧‧‧第一接端、接墊 112‧‧‧First end, pad
116‧‧‧第二接端、低電位電源 116‧‧‧Second terminal, low potential power supply
118‧‧‧高電位電源 118‧‧‧High potential power supply
120‧‧‧靜電放電電路 120‧‧‧Electrostatic discharge circuit
124‧‧‧第一部位 124‧‧‧First part
128‧‧‧第二部位 128‧‧‧Second part
130‧‧‧第一部位阱區 130‧‧‧First site well zone
134‧‧‧第一個第一部位接觸區域 134‧‧‧ first first part contact area
136‧‧‧第二個第一部位接觸區域 136‧‧‧Second first site contact area
140‧‧‧第二部位阱區 140‧‧‧Second-site well zone
144‧‧‧第一個第二部位接觸區域 144‧‧‧ first second contact area
146‧‧‧第二個第二部位接觸區域 146‧‧‧Second second site contact area
160‧‧‧閂鎖控制電路 160‧‧‧Latch control circuit
162‧‧‧第一閂鎖控制輸入接端 162‧‧‧First latch control input connector
164‧‧‧第二閂鎖控制輸入接端 164‧‧‧Second latch control input connector
168‧‧‧閂鎖控制輸出端 168‧‧‧Latch control output
170‧‧‧內部電路 170‧‧‧Internal circuits
Claims (20)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/535,314 US8913358B2 (en) | 2012-06-27 | 2012-06-27 | Latch-up immune ESD protection |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201405761A TW201405761A (en) | 2014-02-01 |
TWI520298B true TWI520298B (en) | 2016-02-01 |
Family
ID=49777886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102119721A TWI520298B (en) | 2012-06-27 | 2013-06-04 | Electrostatic discharge protection against latch-up |
Country Status (3)
Country | Link |
---|---|
US (1) | US8913358B2 (en) |
CN (1) | CN103515379B (en) |
TW (1) | TWI520298B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10366974B2 (en) * | 2017-05-15 | 2019-07-30 | Nxp B.V. | Electrostatic discharge (ESD) protection device and method for operating an ESD protection device |
TWI710193B (en) * | 2019-05-07 | 2020-11-11 | 旺宏電子股份有限公司 | Control circuit for esd circuit |
CN112764448B (en) * | 2019-11-05 | 2022-05-24 | 台达电子工业股份有限公司 | Over-temperature compensation control circuit |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002075892A1 (en) * | 2001-03-16 | 2002-09-26 | Sarnoff Corporation | Electrostatic discharge protection structures having high holding current for latch-up immunity |
CN1175490C (en) * | 2001-04-02 | 2004-11-10 | 华邦电子股份有限公司 | Output buffer and electrostatic protection electric appliance |
TW493265B (en) * | 2001-08-16 | 2002-07-01 | Winbond Electronics Corp | ESD protection circuit with high trigger current |
KR100725361B1 (en) * | 2005-02-24 | 2007-06-07 | 삼성전자주식회사 | Multi-power block type integrated circuit device with ESD protection element and power clamp |
US20090268359A1 (en) * | 2008-04-25 | 2009-10-29 | International Business Machines Corporation | Electrostatic discharge power clamp with improved electrical overstress robustness |
-
2012
- 2012-06-27 US US13/535,314 patent/US8913358B2/en active Active
-
2013
- 2013-06-04 TW TW102119721A patent/TWI520298B/en not_active IP Right Cessation
- 2013-06-27 CN CN201310263009.7A patent/CN103515379B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US8913358B2 (en) | 2014-12-16 |
CN103515379A (en) | 2014-01-15 |
US20140002934A1 (en) | 2014-01-02 |
TW201405761A (en) | 2014-02-01 |
CN103515379B (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108701693A (en) | Embedded PMOS-triggered Silicon Controlled Rectifier (SCR) with suppression ring for electrostatic discharge (ESD) protection | |
TWI295101B (en) | Low voltage triggering silicon controlled rectifier and circuit thereof | |
US20140167099A1 (en) | Integrated circuit including silicon controlled rectifier | |
US9343413B2 (en) | ESD protection for high voltage applications | |
CN108520875A (en) | A High Sustain Voltage NPNPN Type Bidirectional Thyristor Electrostatic Protection Device | |
CN109427770B (en) | Electrostatic discharge protection circuit with bidirectional silicon controlled rectifier (SCR) | |
CN107230673A (en) | Use the electrostatic discharge (ESD) protection of zone of protection | |
US20190109128A1 (en) | Series connected esd protection circuit | |
US10600776B2 (en) | Device and method for electrostatic discharge (ESD) protection | |
TWI511262B (en) | Latchless electrostatic discharge protection | |
US6323523B1 (en) | N-type structure for n-type pull-up and down I/O protection circuit | |
CN108511435A (en) | Static discharge(ESD)The method of protective device and operation Esd protection device | |
TWI520298B (en) | Electrostatic discharge protection against latch-up | |
CN104766858B (en) | Electrostatic Discharge Protection Device | |
JP2006313880A (en) | Electrostatic discharge circuit and integrated circuit having the same | |
US10249610B1 (en) | IGBT coupled to a reverse bias device in series | |
KR102215312B1 (en) | Electrostatic discharge protection circuit | |
KR101349998B1 (en) | Electrostatic discaharge Protection Device | |
CN115708208B (en) | Electrostatic protection circuit and electrostatic protection structure | |
CN110600465A (en) | Semiconductor structure | |
KR102139088B1 (en) | Electrostatic Discharge Protection Device with High Holding Voltage | |
Koo et al. | Electrical characteristics of novel ESD protection devices for I/O and power clamp | |
TWI574372B (en) | Electrostatic discharge protection apparatus and applications thereof | |
CN111106109A (en) | ESD Clamp Protection Components for Positive and Negative Voltage Interfaces | |
CN111009511A (en) | ESD protection device of positive and negative pressure interface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |