TWI518027B - Large area nanopattering method and apparatus - Google Patents
Large area nanopattering method and apparatus Download PDFInfo
- Publication number
- TWI518027B TWI518027B TW097144514A TW97144514A TWI518027B TW I518027 B TWI518027 B TW I518027B TW 097144514 A TW097144514 A TW 097144514A TW 97144514 A TW97144514 A TW 97144514A TW I518027 B TWI518027 B TW I518027B
- Authority
- TW
- Taiwan
- Prior art keywords
- cylinder
- substrate
- mask
- radiation
- rotatable
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 67
- 239000000758 substrate Substances 0.000 claims description 137
- 230000005855 radiation Effects 0.000 claims description 125
- 239000000463 material Substances 0.000 claims description 86
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 230000010363 phase shift Effects 0.000 claims description 21
- 238000001459 lithography Methods 0.000 claims description 13
- 238000003384 imaging method Methods 0.000 claims description 9
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 230000033001 locomotion Effects 0.000 claims description 3
- 238000005329 nanolithography Methods 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 41
- 229920002120 photoresistant polymer Polymers 0.000 description 40
- 238000000059 patterning Methods 0.000 description 21
- 239000004205 dimethyl polysiloxane Substances 0.000 description 19
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 19
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 19
- 230000008569 process Effects 0.000 description 17
- 239000013545 self-assembled monolayer Substances 0.000 description 15
- 239000012528 membrane Substances 0.000 description 13
- 238000001127 nanoimprint lithography Methods 0.000 description 11
- 238000012546 transfer Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- 238000004049 embossing Methods 0.000 description 7
- 229920006254 polymer film Polymers 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 238000001376 thermoplastic nanoimprint lithography Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 238000001527 near-field phase shift lithography Methods 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 5
- 239000004926 polymethyl methacrylate Substances 0.000 description 5
- 238000002174 soft lithography Methods 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000005670 electromagnetic radiation Effects 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000976 ink Substances 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009954 braiding Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011796 hollow space material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002120 nanofilm Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- -1 polydimethylsiloxane Polymers 0.000 description 2
- 229920000307 polymer substrate Polymers 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000005376 alkyl siloxane group Chemical group 0.000 description 1
- 150000001356 alkyl thiols Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002508 contact lithography Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000000276 deep-ultraviolet lithography Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000007687 exposure technique Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- ORTRWBYBJVGVQC-UHFFFAOYSA-N hexadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCS ORTRWBYBJVGVQC-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000000813 microcontact printing Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000054 nanosphere lithography Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000000820 replica moulding Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/42—Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
- B29C33/424—Moulding surfaces provided with means for marking or patterning
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/62—Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/50—Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/60—Substrates
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2002—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
- G03F7/2014—Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/24—Curved surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
本發明之實施例係關於奈米圖案化方法,其可以被用來圖案化大面積基材或例如被販售成捲狀物品之膜的基材。本發明之其他實施例係關於設備,其可以被用來圖案化基材以及可以被用來執行方法實施例(包括所述類型的方法實施例)。Embodiments of the present invention are directed to nanopatterning methods that can be used to pattern large area substrates or substrates such as films that are sold as roll articles. Other embodiments of the invention relate to apparatus that can be used to pattern substrates and can be used to perform method embodiments (including method embodiments of the type described).
此節係描述與本發明所揭示之實施例有關之背景標的主體。申請人沒有意圖,無論明示或暗示,使此節討論的背景技藝在法律上構成習知技術。This section describes the subject matter of the background matter related to the disclosed embodiments of the present invention. The Applicant has no intention, whether express or implied, to make the background art discussed in this section legally constitute a prior art.
對於許多的現今應用和工業以及對於正在發展的新技術,奈米結構化是必須的。對於目前在諸如太陽能電池和LED領域中的應用,以及在下一世代資料儲存裝置中(其係舉例而並非限制),可以達到效率的改善。Nanostructured is a must for many of today's applications and industries, as well as for new technologies that are evolving. For current applications in areas such as solar cells and LEDs, and in next generation data storage devices, which are by way of example and not limitation, efficiency improvements can be achieved.
奈米結構化之基材可以利用諸如電子束直接寫入、深UV微影、奈米球微影、奈米壓印微影、近場相位移微影、以及電漿子微影來被製造。Nanostructured substrates can be fabricated using, for example, electron beam direct writing, deep UV lithography, nanosphere lithography, nanoimprint lithography, near-field phase shift lithography, and plasmonic lithography. .
奈米壓印微影(NanoImprint Lithography;NIL)係藉由一壓印阻劑之機械變形與後續處理來建立圖案。典型地,壓印阻劑為單體或聚合物配方,其在壓印期間被熱或UV光所硬化。NIL有許多變化。然而,製程中的兩個似為最重要者。即是熱塑式奈米壓印微影(Thermoplastic NanoImprint Lithography;TNIL)與步進快閃式奈米壓印微影(Step and Flash NanoImprint Lithography;SFIL)。Nano Imprint Lithography (NIL) establishes a pattern by mechanical deformation and subsequent processing of an imprint resist. Typically, the embossing resist is a monomer or polymer formulation that is hardened by heat or UV light during embossing. There are many variations in NIL. However, two of the processes seem to be the most important. It is Thermoplastic NanoImprint Lithography (TNIL) and Step and Flash NanoImprint Lithography (SFIL).
TNIL是最早且最成熟的奈米壓印微影。在標準的TNIL製程中,一薄的壓印阻劑層(一熱塑式聚合物)係被旋塗到一樣本基材上。接著,一已預定義拓撲圖案的模子被使得和該印本接觸,並且在一給定壓力下被按壓抵靠該樣本。當熱塑式聚合物被加熱到高於玻璃轉移溫度時,模子上的圖案會被按壓到熱塑式聚合物膜熔體內。在具有經按壓之模子的樣本被冷卻後,模子從樣本分離,並且壓印阻劑會留置在樣本基材表面上。圖案不會穿過壓印阻劑,會有末改變之熱塑式聚合物膜的殘餘厚度在樣本基材表面上。一圖案轉移製程(諸如反應性離子蝕刻)可以被用來將阻劑中圖案轉移到下方基材。未改變之熱塑式聚合物膜的殘餘厚度的變化會造成用來將圖案轉移到基材之蝕刻製程的均勻性和最佳化的問題。TNIL is the earliest and most mature nanoimprint lithography. In a standard TNIL process, a thin embossed resist layer (a thermoplastic polymer) is spin coated onto the same substrate. Next, a mold having a predefined topographic pattern is brought into contact with the print and pressed against the sample at a given pressure. When the thermoplastic polymer is heated above the glass transition temperature, the pattern on the mold is pressed into the thermoplastic polymer film melt. After the sample with the pressed mold is cooled, the mold is separated from the sample and the embossing resist is left on the surface of the sample substrate. The pattern does not pass through the embossing resist, and the residual thickness of the thermoplastic polymer film that is ultimately altered is on the surface of the sample substrate. A pattern transfer process, such as reactive ion etching, can be used to transfer the pattern in the resist to the underlying substrate. Variations in the residual thickness of the unaltered thermoplastic polymer film can cause problems in the uniformity and optimization of the etching process used to transfer the pattern to the substrate.
在SFIL製程中,一UV可硬化液體阻劑被施加到樣本基材,並且模子是由可穿透基材(例如熔融的矽土)製成。在模子與樣本基材被按壓在一起之後,阻劑係利用UV光來硬化且變成固體。在模子從硬化的阻劑材料分離後,類似於用在TNIL的圖案可以被用來將圖案轉移到下方基材。SFIL與TNIL製程皆存在許多挑戰,包括模板壽命、產出速率、壓印層容忍度、以及在將圖案轉移到下方基材期間之臨界尺寸控制。殘餘的未壓印層(其在壓印製程後殘餘)在主要的圖案轉移蝕刻之前需要一額外的蝕刻步驟。由於維持大面積上方的均壓力有問題,單一場NIL對於控制在大面積基材上方之經複製之圖案的均勻性具有困難。一步進與重複方法可以潛在地覆蓋住大面積,但形成在每一步驟中的微結構係獨立於其他步驟,並且在大面積上方形成無縫的微或奈米結構而不編結(stitching)是一問題。當重複的圖案轉移沒有適當地被對準時,編結錯誤會發生。In the SFIL process, a UV hardenable liquid resist is applied to the sample substrate and the mold is made of a permeable substrate such as molten alumina. After the mold and the sample substrate are pressed together, the resist is hardened by UV light and becomes solid. After the mold is separated from the hardened resist material, a pattern similar to that used in TNIL can be used to transfer the pattern to the underlying substrate. Both the SFIL and TNIL processes have many challenges, including stencil lifetime, yield rate, embossed layer tolerance, and critical dimension control during transfer of the pattern to the underlying substrate. The residual unembossed layer, which remains after the imprint process, requires an additional etching step prior to the main pattern transfer etch. Due to the problem of maintaining a uniform pressure over a large area, a single field NIL has difficulty controlling the uniformity of the replicated pattern over a large area substrate. A step and repeat method can potentially cover a large area, but the microstructure formed in each step is independent of the other steps and forms a seamless micro or nano structure over a large area without stitching A problem. A braiding error can occur when repeated pattern shifts are not properly aligned.
若可以獲得一均勻圖案化的捲筒表面,捲筒至捲筒(roll-to-roll)處理是可能的。在日本未經審查的專利公開案號No. 59200419A中(西元1984年11月13日公開,標題為“Large Area Exposure Apparatus”),Toshio Aoki等人描述圓筒形鼓輪的適用可以旋轉且位移,該圓筒形鼓輪具有一內部光源和一被貼附在圓筒形鼓輪外面的圖案化光罩材料膜。一可穿透熱反射材料膜係位在鼓輪的內部。一基材(其在其表面具有一鋁膜以及一覆蓋該鋁膜的光阻劑)與鼓輪表面的圖案化光罩接觸,並且顯像光係穿過光罩以將鋁膜表面上的光阻劑顯像。接著,光阻劑被顯影,以提供一經顯影的光阻劑。然後,圖案化光阻劑被用作為對於基材上鋁膜的一蝕刻罩幕。If a uniformly patterned roll surface is available, a roll-to-roll process is possible. In Japanese Unexamined Patent Publication No. 59200419A (published on November 13, 1984, entitled "Large Area Exposure Apparatus"), Toshio Aoki et al. describe the application of a cylindrical drum that can be rotated and displaced. The cylindrical drum has an internal light source and a patterned reticle material film attached to the outside of the cylindrical drum. A film that penetrates the heat reflective material is anchored inside the drum. a substrate having an aluminum film on its surface and a photoresist covering the aluminum film is in contact with the patterned mask of the drum surface, and the developing light is passed through the mask to cover the surface of the aluminum film Photoreceptor imaging. Next, the photoresist is developed to provide a developed photoresist. The patterned photoresist is then used as an etch mask for the aluminum film on the substrate.
對於被用作為光罩膜或鋁膜表面上的光阻劑的材料類型沒有描述。一高壓水銀燈光源(500W)被用來將覆蓋鋁膜的光阻劑顯像。約210mm(8.3in.)×150mm(5.9in.)且約0.2mm(0.008in.)厚度的玻璃基材係使用圓筒形鼓輪圖案轉移設備來製造。使用此技術所轉移的圖案的特徵尺寸係約500μm2 ,其係顯然地為具有約22.2μm×22.2μm尺寸的方形。此特徵尺寸是根據此專利申請案在西元1984年申請時LCD顯示器的大約像素尺寸。圓筒形鼓輪外面的光罩膜據說可以持續約140,000次圖案轉移。Toshio Aoki等人所使用的接觸式微影計畫無法製造次微米特徵。There is no description of the type of material used as a photoresist on the surface of a photomask film or an aluminum film. A high pressure mercury lamp source (500 W) was used to develop a photoresist covering the aluminum film. A glass substrate having a thickness of about 210 mm (8.3 in.) x 150 mm (5.9 in.) and a thickness of about 0.2 mm (0.008 in.) was produced using a cylindrical drum pattern transfer device. The feature size of the pattern transferred using this technique is about 500 μm 2 , which is obviously a square having a size of about 22.2 μm × 22.2 μm. This feature size is based on the approximate pixel size of an LCD display when the patent application was filed in 1984. The reticle film outside the cylindrical drum is said to last for about 140,000 pattern transfers. The contact lithography program used by Toshio Aoki et al. cannot produce sub-micron features.
VTT(位在芬蘭的一技術研究中心)的Tapio Makela等人已經公布關於訂製的實驗室規模捲筒至捲筒(roll-to-roll)壓印工具的資訊,其可製造具有高產出的次微米結構。Hitachi和其他公司已經研發出薄片或捲筒至捲筒(roll-to-roll)原型NIL機器,並且已經證明能夠處理15公尺長度薄片的能力。目標已用以建立一使用帶模鑄(鍍鎳的模子)之連續壓印製程,以壓印聚苯乙烯薄片而用於大幾何形態的應用(例如用在燃料電池、電池和可能是顯示器的薄膜)。目前,原型工具無法供應希望的產出。此外,對於被壓印的表面,需要改善可靠性與重複性。Toshiba也已經公布關於捲筒至捲筒(roll-to-roll)UV壓印工具的資訊,其據說可以製造次微米特徵尺寸。Tapio Makela et al. at VTT (a technical research center in Finland) has published information on custom-made laboratory-scale roll-to-roll embossing tools that can be manufactured with high yields. Submicron structure. Hitachi and other companies have developed sheet- or roll-to-roll prototype NIL machines and have demonstrated the ability to handle sheets of 15 meter length. The goal has been to create a continuous imprint process using a die cast (nickel plated mold) to imprint polystyrene sheets for large geometry applications (eg for use in fuel cells, batteries and possibly displays). film). Currently, prototype tools cannot supply the desired output. In addition, for embossed surfaces, there is a need to improve reliability and repeatability. Toshiba has also published information on roll-to-roll UV imprinting tools that are said to produce sub-micron feature sizes.
奈米壓印微影技術(包括捲筒至捲筒(roll-to-roll)NIL)仍必須克服許多挑戰。不完全的負型圖案填充以及聚合物材料的萎縮現象會產生缺陷。模子與基材之間的熱膨脹係數的差異造成橫向拉伸,並且拉伸係集中在圖案的角落。在模子釋放步驟期間,拉伸會致使缺陷,並且會在圖案的基部造成破裂缺陷。此外,對於在經壓印的阻劑層下方之大面積基材內獲得均勻蝕刻的圖案,殘餘的未壓印層(其在壓印製程後殘留)的不均勻厚度特別是有害的。Nanoimprint lithography, including roll-to-roll NIL, still has to overcome many challenges. Incomplete negative pattern filling and shrinkage of polymeric materials can create defects. The difference in coefficient of thermal expansion between the mold and the substrate causes lateral stretching, and the stretching is concentrated at the corners of the pattern. During the mold release step, stretching can cause defects and can cause cracking defects at the base of the pattern. Furthermore, for a uniformly etched pattern in a large area substrate below the embossed resist layer, the uneven thickness of the remaining unembossed layer, which remains after the embossing process, is particularly detrimental.
軟微影是光微影用於微米與奈米製造方法的替代方式。此技術係關於自組裝單層的複製模鑄。在軟微影中,一具有圖案化浮凸結構在其表面上之彈性的打印件被用來產生特徵尺寸介於30mm至100nm的圖案與結構。最有潛在性的軟微影技術是利用自組裝單層(self-assembled monolayers;SAMS)之微接觸印刷(microcontact printing;μCP)。μCP之基本製程包括:1.聚二甲基矽氧烷(PDMS)模子被浸入一特定材料的溶液內,在該溶液中特定材料可以形成一自組裝單層(self-assembled monolayers;SAMS)。這樣的特定材料可以被稱為墨水。特定材料會黏附到PDMS主表面上之凸出圖案。2.PDMS模子(其中被塗覆材料的表面係面向下)與被塗覆金屬(諸如金或銀)的基材表面接觸,因此只有PDMS模子表面上的圖案會與被塗覆金屬的基材接觸。3.特定材料與金屬形成了化學鍵結,因此在移除PDMS模子後,僅有位在凸出圖案表面上之特定材料仍然留置在被塗覆金屬的表面上。特定材料在被塗覆金屬的基材上形成SAM,其在被塗覆金屬的基材上方延伸約1-2nm(就如同紙張上的墨水)。4.PDMS模子從被塗覆金屬的基材移除,在被塗覆金屬的表面上留下了經圖案化的SAM。Soft lithography is an alternative to photolithography for micron and nanofabrication methods. This technology is about replica molding of self-assembled monolayers. In soft lithography, a printed article having a patterned relief structure on its surface is used to create patterns and structures having feature sizes between 30 mm and 100 nm. The most potential soft lithography technology is the use of self-assembled monolayers (SAMS) microcontact printing (μCP). The basic process of μCP includes: 1. A polydimethylsiloxane (PDMS) mold is immersed in a solution of a specific material in which a particular material can form a self-assembled monolayers (SAMS). Such specific materials may be referred to as inks. A specific material will adhere to the raised pattern on the main surface of the PDMS. 2. The PDMS mold (where the surface of the coated material faces down) is in contact with the surface of the substrate to which the metal (such as gold or silver) is coated, so that only the pattern on the surface of the PDMS mold and the substrate to which the metal is coated contact. 3. The specific material forms a chemical bond with the metal, so that after removal of the PDMS mold, only the particular material on the surface of the raised pattern remains on the surface of the metal being coated. The particular material forms a SAM on the metal coated substrate that extends about 1-2 nm above the metal coated substrate (just like the ink on the paper). 4. The PDMS mold is removed from the metal coated substrate leaving a patterned SAM on the metal coated surface.
用以在被塗覆金或銀之表面上形成SAM的最佳建立的特定材料是烷基硫醇(alkanethiolate)。當基材表面包含羥基結尾部分,諸如Si/SiO2 、Al/Al2 O3 、玻璃、雲母以及被電漿處理的聚合物,烷基矽氧(alkylsiloxane)作為特定材料可以作用良好。關於烷基硫醇,十六烷硫醇(hexadecanethiol)在被蒸發之薄的(厚度為10-200nm)金或銀膜上的μCP似為最有再現性的製程。雖然這些是用以實施圖案形成之最佳已知的材料,金和銀無法與矽技術為基礎之微電子元件相容,儘管可以使用含金或銀的電極或導線。目前,用於矽氧在Si/SiO2 表面上之SAM的μCP係不如用於烷基硫醇在金或銀上之SAM的μCP易處理。矽氧在Si/SiO2 上之SAM時常提供雜亂的SAM,並且在一些情況中會產生子單層或多層。最後,用在μCP之經圖案化的模子是平坦的“打印件(stamp)”表面,並且在大面積上之再現和可靠的印刷不僅需要來自模子之經印刷圖案之非常精確的編結,也需要恆定的打印件利用SAM形成之特定材料的潤濕,這是有問題的。The most preferred specific material to form a SAM on the surface to which gold or silver is coated is an alkanethiolate. When the surface of the substrate contains a hydroxyl end portion such as Si/SiO 2 , Al/Al 2 O 3 , glass, mica, and a plasma-treated polymer, an alkylsiloxane can function well as a specific material. With regard to alkyl mercaptans, hexadecanethiol appears to be the most reproducible process on the thin (10-200 nm thick) gold or silver film that is evaporated. While these are the best known materials for patterning, gold and silver are not compatible with germanium-based microelectronic components, although electrodes or wires containing gold or silver may be used. At present, the μCP for SAM on the surface of Si/SiO 2 is not as easy to handle as the μCP for the SAM of alkylthiol on gold or silver. The SAM of helium on Si/SiO 2 often provides a messy SAM and in some cases produces a sub-monolayer or multiple layers. Finally, the patterned mold used in μCP is a flat "stamp" surface, and reproduction over large areas and reliable printing requires not only very precise braiding of the printed pattern from the mold, but also Constant prints utilize the wetting of specific materials formed by SAM, which is problematic.
一些以近場漸逝效應(near field evanescent effects)為基礎的新光學微影技術已經證明印刷次100nm結構的優點,雖然僅在小面積上。近場相位移微影(near-field shift lithography;NFPSL)涉及光阻劑層對於紫外光(UV light)的曝光,其中該UV光係穿過一彈性相罩幕,而該罩幕係與一光阻劑共形接觸。將一彈性相罩幕與一薄的光阻劑層接觸係使得光阻劑“潤濕(wet)”罩幕之接觸表面。在罩幕與光阻劑接觸時使UV光穿過罩幕係暴露光阻劑於罩幕表面所發展之光強度分佈。在具有浮凸深度被設計用來調整傳送光之相為π之罩幕的情況中,局部的零強度出現在浮凸的階梯邊緣。當使用正型光阻劑時,經由這樣的罩幕來曝光且之後再進行顯影會產生一光阻劑線,該的寬度等於零強度的特徵寬度。對於365nm(近UV)光與一傳統光阻劑的組合,零強度的寬度為約100nm。PDMS罩幕可以被用來形成與一平坦固體光阻劑層之共形原子規模接觸。一旦接觸時,此接觸在沒有施加壓力即能自動地被建立。一般的黏附力會導引此製程,並且提供簡單且方便之將罩幕以正交於光阻劑表面之方向的角度和位置來對準的方法,以建立良好的接觸。相對於光阻劑,沒有實體間隙。PDMS對於波長大於300nm之UV光是可穿透的。將來自水銀燈之光(主要的光譜線是在355-365nm)穿過PDMS而PDMS正與一光阻劑層接觸,係暴露光阻劑於罩幕形成的強度分佈。Some new optical lithography techniques based on near field evanescent effects have demonstrated the advantages of printing a sub-100 nm structure, albeit only on a small area. Near-field shift lithography (NFPSL) involves exposure of a photoresist layer to ultraviolet light, wherein the UV light passes through an elastic phase mask, and the mask is attached to the The photoresist is conformally contacted. Contacting a resilient phase mask with a thin photoresist layer causes the photoresist to "wet" the contact surface of the mask. When the mask is in contact with the photoresist, the UV light is passed through the mask to expose the light intensity distribution developed by the photoresist on the surface of the mask. In the case of a mask having a relief depth designed to adjust the phase of the transmitted light to π, a local zero intensity occurs at the stepped edge of the relief. When a positive photoresist is used, exposure through such a mask and subsequent development produces a photoresist line having a width equal to the characteristic width of zero intensity. For a combination of 365 nm (near UV) light and a conventional photoresist, the zero intensity width is about 100 nm. The PDMS mask can be used to form a conformal atomic scale contact with a flat solid photoresist layer. Once contacted, this contact is automatically established without application of pressure. The general adhesion forces guide the process and provide a simple and convenient way to align the mask with angles and positions orthogonal to the direction of the photoresist surface to establish good contact. There is no physical gap relative to the photoresist. PDMS is permeable to UV light having a wavelength greater than 300 nm. The light from the mercury lamp (the main spectral line is at 355-365 nm) is passed through PDMS and the PDMS is in contact with a photoresist layer, exposing the intensity distribution of the photoresist formed on the mask.
在西元2006年之第32屆的微米與奈米工程國際會議中,Yasuhisa Inao在標題為“Near-Field Lighography as a prototype nano-fabrication tool”的簡報中敘述由Canon公司所發展出的一步進且重複的近場奈米微影。使用近場微影(near-field lithography;NFL),其中罩幕與光阻劑(其中一圖案欲被轉移到光阻劑)之間的距離越近越好。罩幕與晶圓基材之間的起初距離被設定在約50μm。此圖案化技術係使用一非常薄的光阻劑而被描述為“三層阻劑製程”。一圖案轉移罩幕被貼附到一壓力室的底部且被加壓,以在罩幕與晶圓表面之間達到“良好的實體接觸”。罩幕係“被變形以相配於晶圓”。罩幕與晶圓之間的起初50μm距離係據稱用來允許罩幕移動到另一位置以進行大於5mm×5mm面積的曝光和圖案化。圖案化系統利用來自水銀燈之i線(365nm)輻射作為光源。透過這樣的步進與重複方法,可以成功地達到具有小於50nm結構之4吋矽晶圓的圖案化。In the 32nd International Conference on Micron and Nano Engineering in 2006, Yasuhisa Inao described a step developed by Canon in a briefing entitled "Near-Field Lighography as a prototype nano-fabrication tool". Repeated near-field nano lithography. Near-field lithography (NFL) is used, where the closer the mask to the photoresist (one of which is to be transferred to the photoresist), the better. The initial distance between the mask and the wafer substrate was set at about 50 μm. This patterning technique is described as a "three-layer resist process" using a very thin photoresist. A pattern transfer mask is attached to the bottom of a pressure chamber and pressurized to achieve "good physical contact" between the mask and the wafer surface. The mask is "deformed to match the wafer." The initial 50 [mu]m distance between the mask and the wafer is said to be used to allow the mask to be moved to another location for exposure and patterning greater than 5 mm x 5 mm area. The patterning system utilizes i-line (365 nm) radiation from a mercury lamp as a light source. Through such a stepping and repeating method, patterning of a 4-inch wafer having a structure of less than 50 nm can be successfully achieved.
在JVST B 21(2002)之第78-81頁之標題為“Large-area patterning of 50 nm structures on flexible substrates using near-field 193 nm radiation”的一文章中,Kunz等人應用近場相位移罩幕微影到彈性薄片(聚醯亞胺膜)的奈米圖案化,其中該近場相位移罩幕微影係使用堅硬的熔融矽砂罩幕和深UV波長曝光。在JVST B 24(2)(2006)之第828-835頁之標題為“Experimental and computational studies of phase shift lithography with binary elastomeric masks”的一後續文章中,Maria等人提出一相位移光微影技術之實驗和計算的研究,其中該相位移光微影技術係使用與光阻劑層共形接觸的二元彈性相罩幕。此任務係引入最佳的罩幕,其是藉由澆鑄和硬化預聚合物成為彈性聚二甲基矽氧烷以抵靠SiO2 /Si上非等向性蝕刻之單結晶矽結構來形成的。作者報告在罩幕上浮凸的整個幾何形態中,使用PDMS相罩幕以形成阻劑特徵的能力。In an article entitled "Large-area patterning of 50 nm structures on flexible substrates using near-field 193 nm radiation" on pages 78-81 of JVST B 21 (2002), Kunz et al. applied a near-field phase shift mask. The nano-shadowing of the lithography to the elastic sheet (polyimine film), wherein the near-field phase shift mask lithography is exposed using a hard fused silica mask and a deep UV wavelength. In a follow-up article entitled "Experimental and computational studies of phase shift lithography with binary elastomeric masks" on pages 828-835 of JVST B 24(2) (2006), Maria et al. proposed a phase-shifted photolithography technique. Experimental and computational studies in which the phase-shifted photolithography technique uses a binary elastic phase mask in conformal contact with the photoresist layer. This task introduces an optimum mask that is formed by casting and hardening a prepolymer into an elastic polydimethyl siloxane to abut a non-isotropically etched single crystal 矽 structure on SiO 2 /Si. . The authors report the ability to use PDMS phase masks to form resist features throughout the geometry of the embossing on the mask.
西元2004年6月22日授予Rogers等人而標題為“Transparent Elastomeric,Contact-Mode Photolithography Mask,Sensor,and Wavefront Engineering Element”之美國專利案號US6,753,131係描述一接觸模式光微影相罩幕,其中該接觸模式光微影相罩幕包括一具有多個凹部與凸部的繞射表面。凸部與正型光阻劑之表面接觸,並且該表面經由相位移罩幕暴露於電磁輻射。由於輻射穿過相對於凸部的凹部,相位移實質上是完全的。電磁輻射強度的最小值藉此被產生在介於凸部與凹部之間的分界。彈性罩幕良好地共形於光阻劑表面,並且隨後的光阻劑顯影,可以獲得小於100nm的特徵。(摘要)在一實施例中,反射板被使用在基材與接觸罩幕以外,因此輻射將可以被返回到在一位移相之希望的位置。在另一實施例中,基材可以被製成具有能造成相位移罩幕而在曝光期間影響相位移罩幕行為的形狀。U.S. Patent No. 6,753,131, to Rogers et al., issued June 22, 2004, to "Transparent Elastomeric, Contact-Mode Photolithography Mask, Sensor, and Wavefront Engineering Element," describes a contact mode photolithographic mask Wherein the contact mode photolithographic mask comprises a diffractive surface having a plurality of recesses and protrusions. The protrusion is in contact with the surface of the positive photoresist and the surface is exposed to electromagnetic radiation via a phase shift mask. Since the radiation passes through the recess relative to the protrusion, the phase shift is substantially complete. The minimum value of the electromagnetic radiation intensity is thereby generated at the boundary between the convex portion and the concave portion. The elastic mask is well conformed to the photoresist surface, and subsequent photoresist development, a feature of less than 100 nm can be obtained. (Abstract) In one embodiment, the reflector is used outside of the substrate and the contact mask so that the radiation will be returned to a desired position in the displacement phase. In another embodiment, the substrate can be formed to have a shape that can cause a phase shift mask to affect the phase shift mask behavior during exposure.
Rogers等人申請之在西元2006年12月2日公開而標題為“Methods And Devices For Fabricating Three-Dimensional Nanoscale Structures”之美國專利公開案號US2006/0286488係描述製造在基材表面上3-D結構於基材表面上的方法。可以使用一共形的彈性相罩幕來產生3-D結構,其中該相罩幕能夠與經歷光處理(用以產生3-D結構)之一輻射敏感材料共形接觸。3-D結構不必完全地延伸穿過此輻射敏感材料。(摘要)U.S. Patent Publication No. US 2006/0286488, filed on Jan. 2, 2006, to the entire disclosure of the entire disclosure of the entire disclosure of A method on the surface of a substrate. A conformal elastic phase mask can be used to create a 3-D structure that is capable of conformal contact with a radiation sensitive material that undergoes light processing (to produce a 3-D structure). The 3-D structure does not have to extend completely through this radiation sensitive material. (Summary)
近場表面電漿子微影(Near Field Surface Plasmon Lithography;NFSPL)利用近場激化以誘使光化學或光物理變化,以製造奈米結構。主要的近場技術是以當金屬奈米結構被照射在表面電漿子共振頻率時其周圍的局部場增強為基礎。電漿子印刷係包括使用穿過金屬奈米結構之電漿子引導的漸逝波,以在金屬結構下方的一層中產生光化學與光物理變化。尤其,鄰近g線光阻劑(AZ-813,其可從德國Ulm的AZ-Electronic Materials,MicroChemicals GmbH獲得)薄膜之銀奈米微粒的可見曝光(λ=410nm)可以選擇性地製造具有直徑小於λ/20的曝光區域。在Nanoletters V4,N6(2004)之第1085-1088頁之標題為“Plasmonic Nanolithography”的一文章中,W. Srituravanich等人係描述近UV光(λ=230nm-350nm)的使用以在金屬基材上激化SPs,以增強經由次波長週期性穿孔的傳送,其相較於激化光波長具有有效更短的波長。被設計用於UV範圍內微影的一電漿子罩幕係由一鋁層(其被穿孔成具有維週期性孔陣列)與二環繞的介電層(每一側上具有一個)構成。選擇鋁是因為其可以在UV範圍內激化SPs。石英被用作為罩幕支撐基材,而具有聚甲基丙烯酸甲酯間隙層,其中該聚甲基丙烯酸甲酯間隙層係作為用於鋁箔片之黏著劑以及作為鋁和石英之間的介電質。聚甲基丙烯酸甲酯(PMMA)與石英組合使用,這是因為他們對於在曝光波長(在365nm的i線)之UV光的穿透性以及相當的介電常數(石英與PMMA各為2.18與2.30)。使用635nm波長的曝光輻射,已經成功地產生170nm週期之次100nm點陣列圖案。顯然,圖案化的總面積約為5μm×5μm,此研究中沒有討論規模放大問題。Near Field Surface Plasmon Lithography (NFSPL) utilizes near-field intensification to induce photochemical or photophysical changes to produce nanostructures. The primary near-field technique is based on local field enhancement around the metal nanostructure as it is illuminated at the surface plasmon resonance frequency. Electro-plasma printing involves the use of evanescent waves guided through a plasmonics of a metal nanostructure to produce photochemical and photophysical changes in a layer below the metal structure. In particular, visible exposure (λ = 410 nm) of a silver nanoparticle of a film adjacent to a g-line photoresist (AZ-813, available from AZ-Electronic Materials, MicroChemicals, Ulm, Germany) can be selectively produced with a diameter less than λ/20 exposure area. In an article entitled "Plasmonic Nanolithography" on pages 1085-1088 of Nanoletters V4, N6 (2004), W. Srituravanich et al. describe the use of near-UV light (λ = 230 nm - 350 nm) for use in metal substrates. The SPs are intensified to enhance the transmission of periodic perforations through the sub-wavelength, which has an effective shorter wavelength than the wavelength of the intensified light. A plasmonic mask designed for lithography in the UV range consists of an aluminum layer (which is perforated with a periodic array of periodic holes) and two surrounding dielectric layers (one on each side). Aluminum is chosen because it can intensify SPs in the UV range. Quartz is used as a curtain support substrate with a polymethyl methacrylate interstitial layer, which acts as an adhesive for aluminum foil and as a dielectric between aluminum and quartz. quality. Polymethyl methacrylate (PMMA) is used in combination with quartz because of their penetration into UV light at the exposure wavelength (i line at 365 nm) and comparable dielectric constant (quartz and PMMA are 2.18 each) 2.30). Using a 635 nm wavelength of exposure radiation, a sub-100 nm dot array pattern of 170 nm period has been successfully produced. Obviously, the total area of the patterning is about 5 μm × 5 μm, and the scale-up problem has not been discussed in this study.
似乎壓印方法(熱或UV硬化)或使用以SAM材料來印刷的軟微影不是高度可製造的製程。大致上,由於熱處理(諸如熱NIL)或聚合物硬化時(UV硬化的聚合物特徵)圖案特徵的萎縮,壓印方法會產生基材材料的變形。此外,由於打印件與基材之間的壓力(硬接觸)施加,缺陷實質上是無法避免的,並且打印件具有受限的壽命。軟微影具有其是不含熱與應力之印刷技術的優點。然而,由於分子在表面上方的漂移,對於次100nm圖案使用SAM作為“墨水”是很有問題的,並且在大面積上方的塗覆尚未被實驗地證實。It seems that the imprint method (hot or UV hardening) or the use of soft lithography printed with SAM material is not a highly manufacturable process. In general, the imprint method produces deformation of the substrate material due to shrinkage of the pattern features of the heat treatment (such as thermal NIL) or polymer hardening (UV-cured polymer features). Furthermore, due to the pressure (hard contact) applied between the print and the substrate, defects are virtually unavoidable and the print has a limited life. Soft lithography has the advantage that it is a printing technique that does not contain heat and stress. However, the use of SAM as an "ink" for sub-100 nm patterns is problematic due to drift of molecules above the surface, and coating over large areas has not been experimentally confirmed.
本發明之實施例係關於適於約200mm2 至約1,000,000mm2 (舉例用,而非限制)之大面積基材之奈米圖案化的方法與設備。在一些實例中,基材可以為一膜,該膜具有給定的寬度和未定義的長度,而在一捲筒上被販售。奈米圖案化技術係利用近場UV光微影,其中被用來圖案化基材之罩幕係與基材動態接觸或非常鄰近(在漸逝場中,小於100nm)基材。近場光微影可以包括一相位移罩幕或表面電漿子技術。使用所描述的方法所能獲得之特徵尺寸係介於約1μm至約1nm範圍內,並且時常介於約100nm至約10nm範圍內。Embodiments of the present invention based on nano large area substrates of about 200mm 2 to about adapted 1,000,000mm 2 (by way of example, and not limitation) of the patterning methods and apparatus. In some examples, the substrate can be a film having a given width and an undefined length that is sold on a reel. The nanopatterning technique utilizes near-field UV photolithography in which the mask used to pattern the substrate is in dynamic contact with the substrate or in very close proximity (less than 100 nm in the evanescent field) of the substrate. Near-field photo lithography can include a phase shift mask or surface plasmonic technique. The feature sizes obtainable using the described methods range from about 1 [mu]m to about 1 nm, and often range from about 100 nm to about 10 nm.
在一實施例中,曝光設備包括UV可穿透可旋轉罩幕形式的一相位移罩幕,其在其外表面上具有特定的相位移浮凸,在相位移罩幕技術之另一實施例中,可穿透可旋轉罩幕(其典型地為一圓筒)可以具有一聚合物膜(其為相位移罩幕),並且罩幕被貼附至圓筒之外表面。當難以與基材表面獲得良好且均勻的接觸時(尤其對於大的處理面積),聚合物膜為共形之彈性聚合物膜(例如PMDS)是有利的,其中該共形之彈性聚合物膜可藉由凡得瓦爾力與基材達到良好的共形接觸。聚合物膜相位移罩幕可以由多個層構成,其中外層係被圖案化以更精確地表現出一輻射敏感(光敏感)層中被指定的特徵尺寸。In one embodiment, the exposure apparatus includes a phase shift mask in the form of a UV translatable rotatable mask having a particular phase shift relief on its outer surface, another embodiment of the phase shift mask technique The penetrable rotatable mask (which is typically a cylinder) may have a polymeric film (which is a phase shift mask) and the mask is attached to the outer surface of the cylinder. When it is difficult to obtain good and uniform contact with the surface of the substrate (especially for large processing areas), it is advantageous for the polymer film to be a conformal elastic polymer film (e.g., PMDS), wherein the conformal elastic polymer film Good conformal contact with the substrate can be achieved by Van der Valli. The polymeric film phase shift mask can be constructed from a plurality of layers wherein the outer layer is patterned to more accurately represent the specified feature size in a radiation sensitive (light sensitive) layer.
曝光設備之另一實施例係使用一軟的彈性光罩材料,例如PDMS膜,其在其一表面上形成有非可穿透特徵,其中該表面被貼附至圓筒之外表面。這些特徵可以是利用此技藝中公知的微影技術之一被製造在PDMS膜上的鉻特徵。Another embodiment of the exposure apparatus utilizes a soft, resilient reticle material, such as a PDMS film, having a non-penetrable feature formed on one surface thereof, wherein the surface is attached to the outer surface of the cylinder. These features may be chromium features that are fabricated on the PDMS film using one of the lithographic techniques well known in the art.
在包括表面電漿子技術之曝光設備的一實施例中,一金屬層或膜係被壓合或被沉積到可旋轉罩幕之外表面上,其中該可旋轉罩幕典型地為一可穿透圓筒。金屬層或膜具有特定系列的奈米穿孔。在表面電漿子技術之另一實施例中,一金屬奈米微粒層被沉積在可穿透可旋轉罩幕之外表面上,以達成表面電漿子增強之奈米圖案化。一輻射源被提供到可穿透圓筒的內部。例如且不構成限制,一UV燈可以被安裝在圓筒的內部。替代地,輻射源可以被設置在圓筒的外部,來自輻射源的光係經由圓筒的一或兩端被引導至圓筒內部。可以使用一光學系統(包括鏡子、鏡片、或其組合)從圓筒外面或圓筒裡面引導輻射朝向圓筒內部的特定區域。可以使用一光柵來引導圓筒內之輻射朝向罩幕基材接觸區域。可以經由一波導利用一光柵來引導輻射朝向罩幕基材區域(已結合)。典型地,波導或光柵是被設置在圓筒內部,以再引導輻射朝向圓筒外表面與欲被顯像之基材表面之間的接觸區域。In an embodiment of an exposure apparatus comprising a surface plasmonic technique, a metal layer or film system is laminated or deposited onto the outer surface of the rotatable mask, wherein the rotatable mask is typically a wearable Through the cylinder. The metal layer or film has a specific series of nanoperforations. In another embodiment of the surface plasmonics technique, a layer of metallic nanoparticle is deposited on the outer surface of the permeable, rotatable mask to achieve surface plasmonic enhanced nanopatterning. A source of radiation is provided to the interior of the penetrable cylinder. For example and without limitation, a UV lamp can be mounted inside the cylinder. Alternatively, the radiation source may be disposed outside of the cylinder, and the light from the radiation source is directed to the interior of the cylinder via one or both ends of the cylinder. An optical system (including mirrors, lenses, or a combination thereof) can be used to direct radiation from a surface of the cylinder or inside the cylinder toward a particular area of the interior of the cylinder. A grating can be used to direct the radiation within the cylinder towards the contact area of the mask substrate. A grating can be utilized via a waveguide to direct radiation toward the mask substrate region (combined). Typically, the waveguide or grating is disposed inside the cylinder to redirect the radiation toward the contact area between the outer surface of the cylinder and the surface of the substrate to be imaged.
在一光輻射源之特殊實施例中,一OLED可撓顯示器可以被貼附在可旋轉罩幕外部,以從各像素放射出光朝向基材。在此情況中,可旋轉罩幕不需要是可穿透的。此外,欲被轉移到基材上之輻射敏感材料的特定圖案可以依據應用被產生,藉由控制從OLED放射出的光。欲被轉移的圖案可以“在飛時(on the fly)”被改變,而不需要關閉生產線。In a particular embodiment of an optical radiation source, an OLED flexible display can be attached to the exterior of the rotatable mask to emit light from each pixel toward the substrate. In this case, the rotatable mask does not need to be permeable. In addition, a particular pattern of radiation-sensitive material to be transferred to the substrate can be generated depending on the application by controlling the light emitted from the OLED. The pattern to be transferred can be changed "on the fly" without having to close the production line.
為了提供圖案轉移到輻射敏感材料之高產出,並且增加奈米圖案化表面區域的品質,彼此相對移動基材或可旋轉罩幕(例如圓筒)是有助益的。當基材是靜止時,圓筒在基材表面上被旋轉;或者當圓筒是靜止時,基材被移動朝向圓筒。如以下所討論的理由,將基材移動朝向圓筒是有利的。In order to provide high yields of pattern transfer to radiation sensitive materials and to increase the quality of the nanopatterned surface areas, it may be beneficial to move the substrate or rotatable mask (e.g., cylinder) relative to each other. When the substrate is stationary, the cylinder is rotated on the surface of the substrate; or when the cylinder is stationary, the substrate is moved toward the cylinder. It is advantageous to move the substrate towards the cylinder for the reasons discussed below.
能夠控制力量是重要的,其中該力量係發生於圓筒與基材表面上之輻射敏感材料之間的接觸線(例如圓筒表面上之彈性奈米圖案化膜與基材表面上之光阻劑之間的接觸線)。為了控制此接觸線,圓筒可以被一拉伸裝置(例如彈簧,其可補償圓筒的重量)支撐。基材或圓筒(或兩者)係朝向彼此被移動(向上與向下),因此可以減小該些表面之間的間距,直到達成圓筒表面與輻射敏感材料(例如彈性奈米圖案化膜與基材表面上之光阻劑)之間的接觸為止。彈性奈米圖案化膜將經由凡得瓦爾力與光阻劑產生一鍵結。接著,基材位置被移動回到(向下)彈簧伸長的位置,但彈性奈米圖案化膜保持與光阻劑接觸。然後,基材可以被移動朝向圓筒,迫使圓筒旋轉,維持彈性奈米圖案化膜與基材表面上之光阻劑之間的動態接觸。替代地,可以各自旋轉圓筒且移動基材,但同步地運動,其將可以在動態曝光期間確保不滑動的接觸。It is important to be able to control the force, which is the line of contact between the cylinder and the radiation-sensitive material on the surface of the substrate (eg the elastic nano-patterned film on the surface of the cylinder and the photoresist on the surface of the substrate) Contact line between agents). To control this line of contact, the cylinder can be supported by a stretching device, such as a spring, which compensates for the weight of the cylinder. The substrate or cylinder (or both) are moved toward each other (up and down) so that the spacing between the surfaces can be reduced until a cylindrical surface is achieved with the radiation sensitive material (eg elastic nanopatterning) The contact between the film and the photoresist on the surface of the substrate). The elastic nanopatterned film will create a bond with the photoresist via van der Waals force. The substrate position is then moved back to the (downward) spring extended position, but the elastic nanopatterned film remains in contact with the photoresist. The substrate can then be moved toward the cylinder, forcing the cylinder to rotate, maintaining dynamic contact between the elastic nanopatterned film and the photoresist on the surface of the substrate. Alternatively, the cylinders can each be rotated and the substrate moved, but moved synchronously, which will ensure non-sliding contact during dynamic exposure.
多個圓筒可以被結合成一系統,並且被被安排以藉由依序模式來將基材之輻射敏感表面予以曝光,以提供基材表面的兩次、三次及多次圖案化。此曝光技術可以被用來提供更高的解析度。該些圓筒的相對位置可以藉由干涉儀與適當的電腦化控制器統來控制。A plurality of cylinders can be combined into a system and arranged to expose the radiation-sensitive surface of the substrate by sequential mode to provide two, three, and multiple patterning of the substrate surface. This exposure technique can be used to provide higher resolution. The relative positions of the cylinders can be controlled by an interferometer and a suitable computerized controller.
在另一實施例中,曝光劑量會影響微影,因此可以將一邊緣微影(其中可以形成狹窄的特徵,該些特徵係對應PDMS罩幕中相的位移)改變成一傳統的接觸式微影,並且經顯像之光阻劑的特徵尺寸可以藉由曝光劑量來控制。藉由控制輻射源功率或圓筒之旋轉速度(曝光時間),這樣的曝光劑量控制是可行的。光阻劑中產生的特徵尺寸也可以藉由例如改變曝光輻射(光源)的波長來控制。In another embodiment, the exposure dose affects the lithography, so an edge lithography (where narrow features can be formed that correspond to the displacement of the phase in the PDMS mask) can be changed to a conventional contact lithography. And the characteristic size of the developed photoresist can be controlled by the exposure dose. Such exposure dose control is possible by controlling the power of the radiation source or the rotational speed of the cylinder (exposure time). The feature size produced in the photoresist can also be controlled by, for example, changing the wavelength of the exposure radiation (light source).
圓筒上的罩幕可以被配向成相對於基材移動方向呈一角度。這能致使在不同方向抵靠基材的圖案形成。可以依序地設置兩個或更多個圓筒,以產生2D圖案。The mask on the cylinder can be oriented at an angle relative to the direction of movement of the substrate. This can result in pattern formation against the substrate in different directions. Two or more cylinders may be arranged in sequence to create a 2D pattern.
在另一實施例中,可穿透圓筒腔室不必是堅硬的,但能夠由可撓材料製成,其中該可撓材料能夠以光學可穿透氣體來加壓。罩幕可以為圓筒壁,或可以為圓筒壁之表面上的共形材料。這允許圓筒能在不平坦的基材上被滾動,同時與基材表面達成共形接觸。In another embodiment, the penetrable cylindrical chamber need not be rigid, but can be made of a flexible material that can be pressurized with an optically permeable gas. The mask may be a cylindrical wall or may be a conformal material on the surface of the cylindrical wall. This allows the cylinder to be rolled over an uneven substrate while achieving conformal contact with the surface of the substrate.
作為詳細說明的前言,應注意,如同本案說明書與隨附申請專利範圍中所使用者,單數形式「一」與「該」係包括複數形式,除非文中有清楚地指出。As a prelude to the detailed description, it should be noted that the singular forms "a" and "the"
當本文使用此字「約」時,其係意指呈現的標稱數值是精確地位在±10%內。When the word "about" is used herein, it is meant to mean that the nominal value presented is within ±10%.
本發明之實施例係關於用在奈米圖案化大面積基材之方法與設備,其中一可旋轉罩幕被用來將輻射敏感材料顯像。典型地,可旋轉罩幕包含一圓筒。奈米圖案化技術是利用近場光微影,其中用來將基材上之一輻射敏感層顯像之輻射的波長為438nm或更小,並且其中用來圖案化基材之罩幕與基材接觸。近場光微影可以利用一相位移罩幕或一可穿透旋轉圓筒上的多個奈米微粒,或可以使用表面電漿子技術,其中位在旋轉圓筒表面上的金屬層包含多個奈米孔。下文提供的敘述僅為熟習此技藝之人士在閱讀本發明說明書時所能瞭解的多種可能性的一範例。Embodiments of the present invention are directed to methods and apparatus for nanopatterning large area substrates in which a rotatable mask is used to image the radiation sensitive material. Typically, the rotatable mask comprises a cylinder. The nanopatterning technique utilizes near-field photolithography in which the wavelength of the radiation used to image one of the radiation-sensitive layers on the substrate is 438 nm or less, and the mask and base used to pattern the substrate therein. Material contact. Near-field photolithography can utilize a phase shift mask or a plurality of nanoparticles that can penetrate a rotating cylinder, or a surface plasmonic technique can be used in which the metal layer on the surface of the rotating cylinder contains more A nano hole. The description provided below is merely an example of the many possibilities that one skilled in the art can understand while reading the description of the present invention.
雖然用來在一輻射敏感材料層內產生一奈米圖案的旋轉罩幕可以具有任何有利的組態,且下文描述數個該些組態,以在最少的維護成本下之被顯像基材可製造性而言,中空的圓筒是特別有利的。第1A圖顯示用來圖案化大面積基材材料之設備100之實施例的截面圖,其中一輻射可穿透圓筒106具有一中空內部104,一輻射源102位在該中空內部102中。在此實施例中,圓筒106之外表面111被圖案化成具有一特定表面浮凸112。圓筒106滾過一輻射敏感材料108,輻射敏感材料108位在基材110上方。第1B圖顯示第1A圖繪示之設備與基材的俯視圖,其中輻射敏感材料108已經被穿過表面浮凸112之輻射(未示出)所顯像109。圓筒是以箭頭118所示方向旋轉,並且來自輻射源102之輻射會穿過旋轉圓筒106之外表面103上的奈米圖案,以將基材108上之輻射敏感層(未示出)顯像,而在輻射敏感層內提供了一經顯像的圖案109。輻射敏感層接著被顯影,以在基材108之表面上提供一奈米結構。在第1B圖中,可旋轉圓筒106與基材120係被顯示成可彼此相對獨立地被驅動。在另一實施例中,基材120可以被保持成與可旋轉圓筒106動態接觸,並且被移動在朝向或遠離可旋轉圓筒106之接觸表面的方向,以提供運動予靜態的可旋轉圓筒106。在又另一實施例中,基材是靜態的,同時可旋轉圓筒106可以在基材120上被旋轉。Although a rotating mask for creating a nanopattern in a layer of radiation-sensitive material can have any advantageous configuration, and several of these configurations are described below to be imaged substrates with minimal maintenance costs. Hollow cylinders are particularly advantageous in terms of manufacturability. 1A shows a cross-sectional view of an embodiment of an apparatus 100 for patterning a large area of substrate material, wherein a radiation permeable cylinder 106 has a hollow interior 104 in which a radiation source 102 is located. In this embodiment, the outer surface 111 of the cylinder 106 is patterned to have a particular surface relief 112. The cylinder 106 is rolled over a radiation sensitive material 108 that is positioned above the substrate 110. 1B shows a top view of the apparatus and substrate depicted in FIG. 1A with the radiation sensitive material 108 having been imaged 109 by radiation (not shown) passing through the surface relief 112. The cylinder rotates in the direction indicated by arrow 118, and radiation from radiation source 102 passes through a nanopattern on outer surface 103 of rotating cylinder 106 to impart a radiation sensitive layer on substrate 108 (not shown). Imaging is provided while a developed pattern 109 is provided within the radiation sensitive layer. The radiation sensitive layer is then developed to provide a nanostructure on the surface of the substrate 108. In FIG. 1B, the rotatable cylinder 106 and the substrate 120 are shown as being driven independently of each other. In another embodiment, the substrate 120 can be held in dynamic contact with the rotatable cylinder 106 and moved in a direction toward or away from the contact surface of the rotatable cylinder 106 to provide motion to a static rotatable circle. Cartridge 106. In yet another embodiment, the substrate is static while the rotatable cylinder 106 can be rotated on the substrate 120.
特定的表面浮凸112可以被蝕刻至可穿透的旋轉圓筒106的外表面內。替代地,特定的表面浮凸112可以存在於一聚合物材料膜上,其中該聚合物材料膜係貼附至旋轉圓筒106的外表面。聚合物材料膜可以藉由沉積聚合物材料到模子(原版(master))上來製造。此被建立在矽基材上之原版係例如通常使用一圖案的電子束寫入至存在於矽基材上的光阻劑來產生。接著,圖案被蝕刻至矽基材內。然後,矽原版模子上的圖案被複製到沉積在模子表面上的聚合物材料中。較佳地,聚合物材料為一共形材料,其在作為接觸罩幕抵靠基材時係對於磨損展現足夠的堅硬性,但其也可以與基材表面上之輻射敏感材料形成良好接觸。通常被用作為轉移罩幕材料之共形材料的一實例為PDMS,其可以被澆鑄在原版模子表面上、以UV輻射來硬化、以及從模子被剝離,以產生模子表面的良好複製。A particular surface relief 112 can be etched into the outer surface of the penetrable rotating cylinder 106. Alternatively, a particular surface relief 112 may be present on a film of polymeric material that is attached to the outer surface of the rotating cylinder 106. The polymeric material film can be fabricated by depositing a polymeric material onto a mold (master). The master which is built on the ruthenium substrate is typically produced, for example, by writing a pattern of electron beams to a photoresist present on the ruthenium substrate. The pattern is then etched into the tantalum substrate. The pattern on the original mold is then copied into the polymeric material deposited on the surface of the mold. Preferably, the polymeric material is a conformal material that exhibits sufficient stiffness to wear as a contact mask against the substrate, but which can also form good contact with the radiation-sensitive material on the surface of the substrate. An example of a conformal material that is commonly used as a transfer mask material is PDMS, which can be cast onto the surface of a master mold, hardened with UV radiation, and stripped from the mold to produce a good replication of the mold surface.
第2圖顯示用來圖案化大面積基材材料之設備200之另一實施例的截面圖。在第2圖中,基材為一膜208,一圖案藉由輻射被顯像在該膜208上,其中在膜208從捲筒211行進至捲筒213時,該輻射係穿透第一(可穿透)圓筒206上的表面浮凸212。第二圓筒215被提供在膜208的背側209,以控制膜208與第一圓筒206之間的接觸。存在於可穿透圓筒206內中空空間204的輻射源202可以是一水銀蒸氣燈或另一輻射源,其提供365nm或更小的輻射波長。表面浮凸212可以是例如一相位移罩幕,其中該罩幕包括一具有多個凹部與凸部的繞射表面,如同前述在「先前技術」一節中所討論。凸部與正型光阻劑(輻射敏感材料)的表面接觸,並且該表面經由相罩幕暴露於電磁輻射。由於輻射相對於凸部而穿透凹部所造成的相位移是實質上完全的。電磁輻射之強度的最小值藉此被產生在凹部與凸部之間的邊界。彈性相罩幕係良好地共形於光阻劑之表面,並且光阻劑的後續顯影可以獲得小於100nm的特徵。Figure 2 shows a cross-sectional view of another embodiment of an apparatus 200 for patterning a large area of substrate material. In FIG. 2, the substrate is a film 208 on which a pattern is imaged by radiation, wherein the radiation penetrates the first film as it travels from the roll 211 to the roll 213 ( The surface relief 212 on the cylinder 206 can be penetrated. A second cylinder 215 is provided on the back side 209 of the membrane 208 to control contact between the membrane 208 and the first cylinder 206. Radiation source 202 present in hollow space 204 within penetrable cylinder 206 can be a mercury vapor lamp or another source of radiation that provides a wavelength of radiation of 365 nm or less. The surface relief 212 can be, for example, a phase shift mask, wherein the mask includes a diffractive surface having a plurality of recesses and protrusions as discussed above in the "Prior Art" section. The convex portion is in contact with the surface of the positive photoresist (radiation-sensitive material), and the surface is exposed to electromagnetic radiation via the phase mask. The phase shift caused by the penetration of the radiation relative to the protrusions through the recess is substantially complete. The minimum value of the intensity of the electromagnetic radiation is thereby generated at the boundary between the concave portion and the convex portion. The elastomeric mask is well conformed to the surface of the photoresist, and subsequent development of the photoresist can achieve features less than 100 nm.
第3圖顯示用來圖案化大面積基材材料之設備300之另一實施例的截面圖。基材為一膜308,其從捲筒311行進至捲筒313。在膜308之頂側以及底側309上具有一輻射敏感材料層(未示出)。存在第一可穿透圓筒306,其具有一包括輻射源302之中空中心304,第一可穿透圓筒306具有用來圖案化膜308之頂側310的表面浮凸312。存在第二可穿透圓筒326,其具有一包括輻射源322之中空中心324,第二可穿透圓筒326具有用來圖案化膜308之底側309的表面浮凸332。Figure 3 shows a cross-sectional view of another embodiment of an apparatus 300 for patterning a large area of substrate material. The substrate is a film 308 that travels from the reel 311 to the reel 313. A layer of radiation-sensitive material (not shown) is provided on the top side and bottom side 309 of film 308. There is a first penetrable cylinder 306 having a hollow center 304 including a radiation source 302 having a surface relief 312 for patterning the top side 310 of the membrane 308. There is a second penetrable cylinder 326 having a hollow center 324 including a radiation source 322 having a surface relief 332 for patterning the bottom side 309 of the membrane 308.
第4A圖顯示可穿透圓筒406之一實施例的截面圖400,可穿透圓筒406包括一具有內部輻射源402的中空中心區域404。表面浮凸412為一共形結構,其包括聚合物膜415,聚合物膜415具有在近場微影特別有用之圖案化表面413。圖案化表面413之聚合物材料必須足夠堅硬,而使圖案可接觸欲在適當位置被顯像之基材表面。另一方面,聚合物材料必須共形於欲被顯像之輻射敏感材料(未示出)之表面。4A shows a cross-sectional view 400 of one embodiment of a penetrable cylinder 406 that includes a hollow central region 404 having an internal radiation source 402. Surface relief 412 is a conformal structure that includes a polymeric film 415 having a patterned surface 413 that is particularly useful in near-field lithography. The polymeric material of the patterned surface 413 must be sufficiently rigid to allow the pattern to contact the surface of the substrate to be imaged in place. On the other hand, the polymeric material must conform to the surface of the radiation-sensitive material (not shown) to be imaged.
第4B圖顯示表面413的放大圖,表面413是位在聚合物基底材料415之頂部上的表面浮凸聚合物結構413。在第4B圖中,聚合物基底材料415可以是與圖案化表面材料413相同之聚合物材料,或可以是不同之聚合物材料。可穿透的共形材料(諸如聚矽氧烷或PDMS)可以被用作為聚合物膜415,其可與更堅硬之可穿透覆蓋材料層(例如具有不同混合成分比例之PDMS,或PMMA)組合。這提供了一圖案化表面413,其在接觸基材(未示出)之輻射敏感表面上的一位置時有助於避免特徵扭曲,而聚合物基底材料另一方面同時提供了與基材表面大致上之共形性。4B shows an enlarged view of surface 413, which is a surface relief polymer structure 413 positioned on top of polymer substrate material 415. In FIG. 4B, the polymeric substrate material 415 can be the same polymeric material as the patterned surface material 413, or can be a different polymeric material. A penetrable conformal material, such as polyoxyalkylene or PDMS, can be used as the polymer film 415, which can be combined with a harder layer of penetrable cover material (eg, PDMS with different mixing ratios, or PMMA). combination. This provides a patterned surface 413 that helps to avoid distortion of the features when in contact with a location on the radiation-sensitive surface of the substrate (not shown), while the polymeric substrate material simultaneously provides surface contact with the substrate. Roughly conformal.
第5A圖顯示一具有中空中心區域504之可穿透圓筒506的截面圖500,該中空中心區域504包括一輻射源502,其中表面511呈現表面浮凸512的替代實施例。第5B圖顯示表面浮凸512之放大圖,表面浮凸512是一被圖案化成具有一連串奈米孔洞513的薄金屬層514,其中該金屬層存在於中空可穿透圓筒506之外表面511上。金屬層可以是一貼附到可穿透圓筒506之外表面的圖案化層。替代地,金屬層可以藉由蒸發或濺鍍或其他此技藝中公知的技術被沉積在可穿透圓筒之表面上,並且接著利用雷射來蝕刻或脫離,以提供一經圖案化的金屬外表面511。第5C圖顯示一替代性表面浮凸522,其是由金屬微粒526來形成,其中該些金屬微粒526被塗覆在中空可穿透圓筒506之外表面511上,或被塗覆在貼附至中空可穿透圓筒506之外表面511的一可穿透膜524上。5A shows a cross-sectional view 500 of a penetrable cylinder 506 having a hollow central region 504 that includes a radiation source 502, wherein surface 511 presents an alternate embodiment of surface relief 512. 5B shows an enlarged view of surface relief 512, which is a thin metal layer 514 patterned into a series of nanoholes 513, wherein the metal layer is present on the outer surface 511 of the hollow penetrable cylinder 506. on. The metal layer can be a patterned layer that is attached to the outer surface of the penetrable cylinder 506. Alternatively, the metal layer can be deposited on the surface of the penetrable cylinder by evaporation or sputtering or other techniques known in the art, and then etched or detached using a laser to provide a patterned metal. Surface 511. Figure 5C shows an alternative surface relief 522 formed from metal particles 526 that are coated on the outer surface 511 of the hollow penetrable cylinder 506 or coated on the surface. Attached to a permeable membrane 524 on the outer surface 511 of the hollow penetrable cylinder 506.
第6A圖為一可穿透圓筒604的三維示意圖600,其中該可穿透圓筒604具有一圖案化表面608。一輻射源(未示出)存在於可穿透圓筒604的內部。可穿透圓筒604利用一拉伸裝置602被懸掛在基材610上方,拉伸裝置602在示意圖600中顯示為彈簧。熟悉此機械工程技藝之人士可以瞭解能被用來獲得可穿透圓筒604之外表面608與基材610之表面之間的適當接觸量的許多拉伸裝置。在使用第6A圖所顯示設備之一實施例方法中,設備被用來將基材610上之輻射敏感材料(未示出)予以顯像,其中該基材610是一聚合物膜,聚合物膜可以被提供到第2圖類型的捲筒至捲筒系統上且由其取得。可穿透圓筒604朝向聚合物膜基材被降低(或聚合物膜基材被升高),直到與輻射敏感材料形成接觸為止。聚合物膜,其典型地為彈性體,將與輻射敏感材料建立凡得瓦爾力鍵結。接著,可穿透圓筒604可以被升高(或聚合物膜基材被降低)到一位置,其中在該位置處可穿透圓筒604之表面608與輻射敏感材料之表面之間維持接觸,但該兩表面之間的張力係使得施加在表面608上的力量是最小。這使得位在可穿透圓筒604之表面608上的非常精細奈米圖案化特徵得以使用。當基材610開始移動時,可穿透圓筒604也將移動,迫使可穿透圓筒604旋轉、維持輻射敏感材料與下方聚合物膜基材610之間的動態接觸。在動態接觸之任何時候,圓筒與光阻劑層之間的接觸被限制成一狹窄的線。由於圓筒外表面上之彈性膜和基材上之輻射敏感(光敏感)層之間的強凡得瓦爾力,接觸可以在整個製程中且沿著圓筒表面上之罩幕(長度)整個寬度被均勻地維持住。在凡得瓦爾力無法在圓筒接觸表面與光敏感層之間提供足夠強黏附力的情況中,可以使用一致動(旋轉)圓筒,其中該致動(旋轉)圓筒係使用與基材之位移移動同步的步進馬達。這對於無法相對於基材提供強黏附力之聚合物或其他圓筒表面材料提供了一不滑動曝光製程。6A is a three-dimensional representation 600 of a penetrable cylinder 604 having a patterned surface 608. A source of radiation (not shown) is present inside the penetrable cylinder 604. The penetrable cylinder 604 is suspended above the substrate 610 by a stretching device 602, which is shown as a spring in the schematic 600. Those skilled in the art of mechanical engineering will be aware of a number of stretching devices that can be used to achieve a suitable amount of contact between the outer surface 608 of the pierceable cylinder 604 and the surface of the substrate 610. In an embodiment method using the apparatus shown in Figure 6A, the apparatus is used to image a radiation-sensitive material (not shown) on a substrate 610, wherein the substrate 610 is a polymer film, a polymer The film can be supplied to and taken from the roll-to-roll system of the type of Figure 2. The penetrable cylinder 604 is lowered toward the polymeric film substrate (or the polymeric film substrate is raised) until it comes into contact with the radiation sensitive material. A polymeric film, typically an elastomer, will establish a van der Waals bond with the radiation sensitive material. The penetrable cylinder 604 can then be raised (or the polymeric film substrate lowered) to a position where the surface 608 of the penetrable cylinder 604 maintains contact with the surface of the radiation-sensitive material. However, the tension between the two surfaces is such that the force exerted on the surface 608 is minimal. This allows the use of very fine nanopatterning features on the surface 608 of the penetrable cylinder 604. As the substrate 610 begins to move, the penetrable cylinder 604 will also move, forcing the penetrable cylinder 604 to rotate, maintaining dynamic contact between the radiation sensitive material and the underlying polymeric film substrate 610. At any time during dynamic contact, the contact between the cylinder and the photoresist layer is limited to a narrow line. Due to the strong Valer force between the elastic film on the outer surface of the cylinder and the radiation-sensitive (light-sensitive) layer on the substrate, the contact can be throughout the process and along the entire surface of the cylinder (length) The width is maintained evenly. In the case where Van der Waals forces are unable to provide a sufficiently strong adhesion between the cylinder contact surface and the light sensitive layer, an actuating (rotating) cylinder can be used, wherein the actuating (rotating) cylinder is used with the substrate The displacement moves the synchronized stepper motor. This provides a non-slip exposure process for polymers or other cylindrical surface materials that do not provide a strong adhesion to the substrate.
第6B圖為一實施例620的示意圖,其中用以達成顯像的輻射是從圓筒604外面的輻射源612來提供,輻射係在圓筒604之中空部分內部地被散佈615與616。可以使用各種鏡片、鏡子及其組合來引導輻射使其經由圖案化罩幕表面608穿過可穿透圓筒604而朝向基材608之輻射敏感表面(未示出)。6B is a schematic diagram of an embodiment 620 in which radiation for achieving imaging is provided from a radiation source 612 external to the cylinder 604, the radiation being internally dispersed 615 and 616 within the hollow portion of the cylinder 604. Various lenses, mirrors, and combinations thereof can be used to direct radiation through the patterned mask surface 608 through the penetrable cylinder 604 toward a radiation-sensitive surface (not shown) of the substrate 608.
第6C圖為一實施例630的示意圖,其中用以達成輻射敏感材料之顯像的輻射是從可穿透圓筒604外面的位置來提供。外部輻射源612被聚焦617到一波導618內,並且從波導618被散佈到一光柵620,其中該光柵620位在圓筒604之內表面601上。6C is a schematic illustration of an embodiment 630 in which radiation for achieving visualization of the radiation-sensitive material is provided from a location outside the penetrable cylinder 604. External radiation source 612 is focused 617 into a waveguide 618 and is dispersed from waveguide 618 to a grating 620, which is positioned on inner surface 601 of cylinder 604.
第6D圖一實施例640的示意圖,其中用以達成顯像的輻射是從兩個外部輻射源612A與612B且各被聚焦621與619到一光柵620來提供,其中該光柵620位在圓筒604之內表面601上。Figure 6D is a schematic illustration of an embodiment 640 in which radiation for achieving imaging is provided from two external sources 612A and 612B and each focused 621 and 619 to a grating 620, wherein the grating 620 is in the cylinder On the inner surface 601 of 604.
第7A圖為顯示多個圓筒之使用(諸如兩個串聯的圓筒702與704以提供多次圖案化,其中該多次圖案化能例如獲得更高的解析度)的示意圖700。可以使用來自一干涉儀(未示出)的資料以及一電腦化控制系統(未示出)來控制例如圓筒702與704的相對位置。FIG. 7A is a schematic diagram 700 showing the use of a plurality of cylinders, such as two cylinders 702 and 704 in series to provide multiple patterning, wherein the multiple patterning can, for example, achieve higher resolution. Information from an interferometer (not shown) and a computerized control system (not shown) can be used to control the relative positions of, for example, cylinders 702 and 704.
第7B圖為示意圖720,其顯示藉由第一圓筒702所建立而在輻射敏感材料710顯像及顯影後的圖案706。變更圖案708是藉由使用第一圓筒702和第二圓筒704的組合來建立變更圖案708時輻射敏感材料710顯像及顯影後的圖案。FIG. 7B is a schematic diagram 720 showing a pattern 706 developed and developed by the radiation sensitive material 710 by the first cylinder 702. The change pattern 708 is a pattern in which the radiation-sensitive material 710 is developed and developed when the pattern 708 is changed by using a combination of the first cylinder 702 and the second cylinder 704.
第8圖顯示一可變形圓筒800的截面圖,可變形圓筒800之內部804是使用設備813而被加壓,其中該設備813提供一光學可穿透的氣體(例如氮)。可變形圓筒800之外表面811可以是一共形材料之奈米圖案化/奈米結構化膜812,其被滾在一非平坦表面805上,因此來自輻射源802的輻射可以精確地被施加在基材805之表面816上方。Figure 8 shows a cross-sectional view of a deformable cylinder 800 in which the interior 804 of the deformable cylinder 800 is pressurized using apparatus 813, wherein the apparatus 813 provides an optically permeable gas (e.g., nitrogen). The outer surface 811 of the deformable cylinder 800 can be a conformal material nanopatterned/nanostructured film 812 that is rolled onto a non-planar surface 805 so that radiation from the radiation source 802 can be accurately applied Above the surface 816 of the substrate 805.
在另一實施例中,可以在圓筒表面與基材表面上之輻射敏感(例如光敏感)材料之間使用一具有折射率大於1的液體。例如,可以使用水。這可以增加光敏感層中圖案特徵的對比。In another embodiment, a liquid having a refractive index greater than one can be used between the surface of the cylinder and a radiation sensitive (e.g., light sensitive) material on the surface of the substrate. For example, water can be used. This can increase the contrast of the pattern features in the light sensitive layer.
儘管本發明已經以各種前述實施例來詳細地描述,熟悉此技術領域之人士將可以瞭解落入本發明範圍與精神內的各種變化。因此,本發明的範圍是應由隨附申請專利範圍來決定。While the invention has been described in detail with reference to the various embodiments of the invention Therefore, the scope of the invention should be determined by the scope of the appended claims.
100...設備100. . . device
102...輻射源102. . . Radiation source
103...外表面103. . . The outer surface
104...中空內部104. . . Hollow interior
106...輻射可穿透圓筒106. . . Radiation permeable cylinder
108...輻射敏感材料108. . . Radiation sensitive material
109...顯像109. . . Imaging
110...基材110. . . Substrate
111...外表面111. . . The outer surface
112...表面浮凸112. . . Surface relief
118...箭頭118. . . arrow
200...設備200. . . device
202...輻射源202. . . Radiation source
204...中空空間204. . . Hollow space
206...第一(可穿透)圓筒206. . . First (penetrable) cylinder
208...膜208. . . membrane
209...背側209. . . Dorsal side
211...捲筒211. . . reel
212...表面浮凸212. . . Surface relief
213...捲筒213. . . reel
215...第二圓筒215. . . Second cylinder
300...設備300. . . device
302...輻射源302. . . Radiation source
304...中空中心304. . . Hollow center
306...第一可穿透圓筒306. . . First penetrable cylinder
308...膜308. . . membrane
309...底側309. . . Bottom side
310...頂側310. . . Top side
311...捲筒311. . . reel
312...表面浮凸312. . . Surface relief
313...捲筒313. . . reel
322...輻射源322. . . Radiation source
324...中空中心324. . . Hollow center
326...第二可穿透圓筒326. . . Second penetrable cylinder
332...表面浮凸332. . . Surface relief
400...截面圖400. . . Sectional view
402...內部輻射源402. . . Internal radiation source
404...中空中心404. . . Hollow center
406...可穿透圓筒406. . . Penetrating cylinder
412...表面浮凸412. . . Surface relief
413...圖案化表面413. . . Patterned surface
415...聚合物膜415. . . Polymer film
500...截面圖500. . . Sectional view
502...輻射源502. . . Radiation source
504...中空中心504. . . Hollow center
506...可穿透圓筒506. . . Penetrating cylinder
511...表面511. . . surface
512...表面浮凸512. . . Surface relief
513...奈米孔洞513. . . Nano hole
514...金屬層514. . . Metal layer
522...表面浮凸522. . . Surface relief
524...可穿透膜524. . . Penetrating film
526...金屬微粒526. . . Metal particles
600...三維示意圖600. . . Three-dimensional schematic
601...內表面601. . . The inner surface
602...拉伸裝置602. . . Stretching device
604...可穿透圓筒604. . . Penetrating cylinder
608...圖案化表面608. . . Patterned surface
610...基材610. . . Substrate
612...輻射源612. . . Radiation source
612A...外部輻射源612A. . . External radiation source
612B...外部輻射源612B. . . External radiation source
615...散佈615. . . spread
616...散佈616. . . spread
617...聚焦617. . . Focus
618...波導618. . . waveguide
619...聚焦619. . . Focus
620...光柵620. . . Grating
621...聚焦621. . . Focus
630...實施例630. . . Example
640...實施例640. . . Example
700...示意圖700. . . schematic diagram
702...圓筒702. . . Cylinder
704...圓筒704. . . Cylinder
706...圖案706. . . pattern
708...變更圖案708. . . Change pattern
710...輻射敏感材料710. . . Radiation sensitive material
720...示意圖720. . . schematic diagram
800...可變形圓筒800. . . Deformable cylinder
802...輻射源802. . . Radiation source
804...內部804. . . internal
805...非平坦表面805. . . Non-flat surface
811...外表面811. . . The outer surface
812...膜812. . . membrane
813...設備813. . . device
816...表面816. . . surface
本發明之示範性實施例可以藉由參照前述說明而變得清楚且被詳加瞭解,申請人已經提供圖式。應當瞭解,圖式僅用於瞭解本發明之示範性實施例,並且沒有繪示出某些公知的製程與設備,以避免模糊了本文標的主體的發明本質。The exemplary embodiments of the present invention can be understood and understood by reference to the foregoing description. It is understood that the drawings are only for the purpose of understanding the exemplary embodiments of the invention,
第1A圖顯示用來圖案化大面積基材材料之設備100之實施例的截面圖,其中一輻射可穿透圓筒106具有一中空內部104,一輻射源102位在該中空內部102中。在此實施例中,圓筒106之外表面111被圖案化成具有一特定表面浮凸112。圓筒106滾過一輻射敏感材料108,輻射敏感材料108位在基材110上方。1A shows a cross-sectional view of an embodiment of an apparatus 100 for patterning a large area of substrate material, wherein a radiation permeable cylinder 106 has a hollow interior 104 in which a radiation source 102 is located. In this embodiment, the outer surface 111 of the cylinder 106 is patterned to have a particular surface relief 112. The cylinder 106 is rolled over a radiation sensitive material 108 that is positioned above the substrate 110.
第1B圖顯示第1A圖繪示之設備與基材的俯視圖,其中輻射敏感材料108已經被穿過表面浮凸112之輻射(未示出)所顯像109。1B shows a top view of the apparatus and substrate depicted in FIG. 1A with the radiation sensitive material 108 having been imaged 109 by radiation (not shown) passing through the surface relief 112.
第2圖顯示用來圖案化大面積基材材料之設備200之另一實施例的截面圖。在第2圖中,基材為一膜208,一圖案藉由輻射被顯像在該膜208上,其中在膜208從捲筒211行進至捲筒213時,該輻射係穿透第一(可穿透)圓筒206上的表面浮凸212。第二圓筒215被提供在膜208的背側209,以控制膜208與第一圓筒206之間的接觸。Figure 2 shows a cross-sectional view of another embodiment of an apparatus 200 for patterning a large area of substrate material. In FIG. 2, the substrate is a film 208 on which a pattern is imaged by radiation, wherein the radiation penetrates the first film as it travels from the roll 211 to the roll 213 ( The surface relief 212 on the cylinder 206 can be penetrated. A second cylinder 215 is provided on the back side 209 of the membrane 208 to control contact between the membrane 208 and the first cylinder 206.
第3圖顯示用來圖案化大面積基材材料之設備300之另一實施例的截面圖。在第3圖中,基材為一膜308,其從捲筒311行進至捲筒313。一具有表面浮凸312之第一可穿透圖筒306被用來圖案化膜308之頂側310,而一具有表面浮凸332之第二可穿透圓筒326被用來圖案化膜308之底側309。Figure 3 shows a cross-sectional view of another embodiment of an apparatus 300 for patterning a large area of substrate material. In FIG. 3, the substrate is a film 308 that travels from the reel 311 to the reel 313. A first penetrable cylinder 306 having a surface relief 312 is used to pattern the top side 310 of the membrane 308, and a second penetrable cylinder 326 having a surface relief 332 is used to pattern the membrane 308. The bottom side 309.
第4A圖顯示可穿透圓筒406之一實施例的截面圖400,可穿透圓筒406包括一具有內部輻射源402的中空中心區域404。表面浮凸區域412為一共形結構,其包括聚合物膜415,聚合物膜415具有在近場微影特別有用之圖案化表面413。4A shows a cross-sectional view 400 of one embodiment of a penetrable cylinder 406 that includes a hollow central region 404 having an internal radiation source 402. The surface relief region 412 is a conformal structure that includes a polymer film 415 having a patterned surface 413 that is particularly useful in near field lithography.
第4B圖顯示表面413的放大圖,表面413是位在聚合物基底材料415之頂部上的表面浮凸聚合物結構413。在第4B圖中,聚合物基底材料415可以是與圖案化表面材料413相同之聚合物材料,或可以是不同之聚合物材料。4B shows an enlarged view of surface 413, which is a surface relief polymer structure 413 positioned on top of polymer substrate material 415. In FIG. 4B, the polymeric substrate material 415 can be the same polymeric material as the patterned surface material 413, or can be a different polymeric material.
第5A圖顯示表面浮凸512之一替代實施例的截面圖,其中該表面浮凸512位在一中空可穿透圓筒506上。5A shows a cross-sectional view of an alternate embodiment of surface relief 512, wherein the surface relief 512 is positioned on a hollow penetrable cylinder 506.
第5B圖顯示表面浮凸512之放大圖,表面浮凸512是一被圖案化成具有一連串奈米孔洞513的薄金屬層514,其中該金屬層被貼附於中空可穿透圓筒506之外表面511上。5B shows an enlarged view of surface relief 512, which is a thin metal layer 514 patterned into a series of nanoholes 513, wherein the metal layer is attached to the hollow penetrable cylinder 506. On the surface 511.
第5C圖顯示用在可穿透圓筒506之表面上的一替代性表面浮凸522。表面浮凸522是由金屬微粒526來形成,其中該些金屬微粒526直接地被塗覆在中空可穿透圓筒506之外表面511上,或被塗覆在貼附至中空可穿透圓筒506之外表面511的一可穿透膜524上。Figure 5C shows an alternative surface relief 522 for use on the surface of the penetrable cylinder 506. The surface relief 522 is formed from metal particles 526 that are directly coated on the outer surface 511 of the hollow penetrable cylinder 506 or coated on the hollow penetrable circle. A permeable membrane 524 is formed on the outer surface 511 of the barrel 506.
第6A圖為一可穿透圓筒604的三維示意圖600,其中該可穿透圓筒604具有一圖案化表面608,圓筒604利用一拉伸裝置602被懸掛在基材610上方,其中該拉伸裝置602在示意圖600中顯示為彈簧。6A is a three-dimensional schematic 600 of a penetrable cylinder 604 having a patterned surface 608 that is suspended above the substrate 610 by a stretching device 602, wherein Stretching device 602 is shown as a spring in schematic 600.
第6B圖為一實施例620的示意圖,其中用以達成顯像的輻射是從圓筒604外面的輻射源612來提供,輻射係在圓筒604之中空部分內部地被散佈615與616。6B is a schematic diagram of an embodiment 620 in which radiation for achieving imaging is provided from a radiation source 612 external to the cylinder 604, the radiation being internally dispersed 615 and 616 within the hollow portion of the cylinder 604.
第6C圖為一實施例630的示意圖,其中用以達成顯像的輻射是從外部輻射源612來提供。外部輻射源612被聚焦617到一波導618內,並且從波導618被散佈到一光柵620,其中該光柵620位在圓筒604之內表面601上。6C is a schematic diagram of an embodiment 630 in which radiation for achieving imaging is provided from an external source of radiation 612. External radiation source 612 is focused 617 into a waveguide 618 and is dispersed from waveguide 618 to a grating 620, which is positioned on inner surface 601 of cylinder 604.
第6D圖一實施例640的示意圖,其中用以達成顯像的輻射是從兩個外部輻射源612A與612B且各被聚焦621與619到一光柵620來提供,其中該光柵620位在圓筒604之內表面601上。Figure 6D is a schematic illustration of an embodiment 640 in which radiation for achieving imaging is provided from two external sources 612A and 612B and each focused 621 and 619 to a grating 620, wherein the grating 620 is in the cylinder On the inner surface 601 of 604.
第7A圖為顯示多個圓筒之使用(諸如兩個串聯的圓筒702與704以提供多次圖案化,其中該多次圖案化能例如獲得更高的解析度)的示意圖700。FIG. 7A is a schematic diagram 700 showing the use of a plurality of cylinders, such as two cylinders 702 and 704 in series to provide multiple patterning, wherein the multiple patterning can, for example, achieve higher resolution.
第7B圖為顯示圖案706的示意圖,圖案706是藉由第一圓筒702所建立而在輻射敏感材料710顯像及顯影後的圖案。變更圖案708是藉由使用第一圓筒702和第二圓筒704的組合來建立變更圖案708時輻射敏感材料710顯像及顯影後的圖案。FIG. 7B is a schematic diagram showing a pattern 706 that is developed by the first cylinder 702 to be developed and developed by the radiation-sensitive material 710. The change pattern 708 is a pattern in which the radiation-sensitive material 710 is developed and developed when the pattern 708 is changed by using a combination of the first cylinder 702 and the second cylinder 704.
第8圖顯示一可變形圓筒800的截面圖,可變形圓筒800之內部804是使用設備813而被加壓,其中該設備813提供一光學可穿透的氣體。可變形圓筒800之外表面811可以是一共形材料之奈米圖案化/奈米結構化膜812,其被滾在一非平坦表面805上,因此來自輻射源802的輻射可以精確地被施加在基材805之表面816上方。Figure 8 shows a cross-sectional view of a deformable cylinder 800 in which the interior 804 of the deformable cylinder 800 is pressurized using apparatus 813, wherein the apparatus 813 provides an optically permeable gas. The outer surface 811 of the deformable cylinder 800 can be a conformal material nanopatterned/nanostructured film 812 that is rolled onto a non-planar surface 805 so that radiation from the radiation source 802 can be accurately applied Above the surface 816 of the substrate 805.
600...三維示意圖600. . . Three-dimensional schematic
602...拉伸裝置602. . . Stretching device
604...可穿透圓筒604. . . Penetrating cylinder
608...圖案化表面608. . . Patterned surface
610...基材610. . . Substrate
Claims (31)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1186108P | 2008-01-22 | 2008-01-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200932666A TW200932666A (en) | 2009-08-01 |
TWI518027B true TWI518027B (en) | 2016-01-21 |
Family
ID=40901352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097144514A TWI518027B (en) | 2008-01-22 | 2008-11-18 | Large area nanopattering method and apparatus |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP2238608A4 (en) |
JP (1) | JP5102879B2 (en) |
KR (1) | KR20110008159A (en) |
CN (2) | CN105171985A (en) |
AU (1) | AU2008348353A1 (en) |
CA (1) | CA2709718A1 (en) |
MX (1) | MX2010007954A (en) |
RU (1) | RU2488188C2 (en) |
TW (1) | TWI518027B (en) |
WO (1) | WO2009094009A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI765276B (en) * | 2020-06-12 | 2022-05-21 | 光群雷射科技股份有限公司 | Manufacturing method of lens in transfer manner and manufacturing method of lens transfer layer |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2871366A1 (en) | 2004-06-09 | 2005-12-16 | Ceravic Soc Par Actions Simpli | PROSTHETIC EXPANSIBLE BONE IMPLANT |
WO2008153674A1 (en) | 2007-06-09 | 2008-12-18 | Boris Kobrin | Method and apparatus for anisotropic etching |
US8518633B2 (en) | 2008-01-22 | 2013-08-27 | Rolith Inc. | Large area nanopatterning method and apparatus |
US8192920B2 (en) | 2008-04-26 | 2012-06-05 | Rolith Inc. | Lithography method |
US8334217B2 (en) | 2008-06-09 | 2012-12-18 | Rolith Inc. | Material deposition over template |
CN101692151B (en) * | 2009-09-17 | 2011-12-28 | 复旦大学 | Method for manufacturing silicon nano-wire based on soft template nano-imprinting technique |
AU2011205582A1 (en) * | 2010-01-12 | 2012-08-30 | Rolith, Inc. | Nanopatterning method and apparatus |
US9465296B2 (en) * | 2010-01-12 | 2016-10-11 | Rolith, Inc. | Nanopatterning method and apparatus |
CN101846880B (en) * | 2010-05-12 | 2012-05-30 | 上海交通大学 | Nano photoetching method for exciting surface plasma |
AT510217B1 (en) * | 2010-08-13 | 2013-12-15 | Hueck Folien Gmbh | PROCESS FOR PARTIAL MATTING OF UV VARNISH LAYERS |
RU2544280C2 (en) * | 2010-08-23 | 2015-03-20 | Ролит, Инк. | Mask for near-field lithography and its manufacture |
US9187839B2 (en) * | 2010-10-07 | 2015-11-17 | Michael Sheehy | Process for the manufacture of sealed anodized aluminum components |
CN102169819B (en) * | 2011-01-14 | 2013-01-30 | 中国科学院物理研究所 | A kind of method for preparing nano metal structure |
WO2013049367A2 (en) * | 2011-09-30 | 2013-04-04 | Rolith, Inc. | Plasmonic lithography using phase mask |
KR101260221B1 (en) * | 2011-12-01 | 2013-05-06 | 주식회사 엘지화학 | Mask |
US9720330B2 (en) * | 2012-04-17 | 2017-08-01 | The Regents Of The University Of Michigan | Methods for making micro- and nano-scale conductive grids for transparent electrodes and polarizers by roll to roll optical lithography |
US20150336301A1 (en) | 2012-05-02 | 2015-11-26 | Rolith, Inc. | Cylindrical polymer mask and method of fabrication |
WO2013165915A1 (en) * | 2012-05-02 | 2013-11-07 | Rolith,Inc. | Cylindrical polymer mask and method of fabrication |
US9481112B2 (en) | 2013-01-31 | 2016-11-01 | Metamaterial Technologies Usa, Inc. | Cylindrical master mold assembly for casting cylindrical masks |
US9782917B2 (en) | 2013-01-31 | 2017-10-10 | Metamaterial Technologies Usa, Inc. | Cylindrical master mold and method of fabrication |
CN102759855A (en) * | 2012-07-17 | 2012-10-31 | 西安交通大学 | Single code channel absolute grating scale rolling and impressing mould manufacturing method |
TWI474432B (en) * | 2012-11-15 | 2015-02-21 | Lextar Electronics Corp | Die grain positioning device, grain positioning system with grain positioning device and grain positioning method of light emitting diode display panel |
RU2593463C2 (en) * | 2013-12-23 | 2016-08-10 | Станислав Викторович Хартов | Method for producing conductive mesh micro- and nanostructures and structure therefor |
US9244356B1 (en) | 2014-04-03 | 2016-01-26 | Rolith, Inc. | Transparent metal mesh and method of manufacture |
KR101636696B1 (en) | 2014-05-23 | 2016-07-06 | 연세대학교 산학협력단 | variable large area nano imaging OPTICAL HEAD AND IMAGING DEVICE using flexible nano film optical structure |
WO2015183243A1 (en) | 2014-05-27 | 2015-12-03 | Rolith, Inc. | Anti-counterfeiting features and methods of fabrication and detection |
KR102252049B1 (en) * | 2014-08-04 | 2021-05-18 | 삼성디스플레이 주식회사 | Mask for photolithography, method of manufacturing the same and method of manufacturing substrate using the same |
KR102240761B1 (en) | 2015-01-29 | 2021-04-15 | 삼성디스플레이 주식회사 | Variable mask |
JP6808155B2 (en) * | 2015-08-19 | 2021-01-06 | 国立大学法人 東京大学 | Mother mold manufacturing method |
TWI579640B (en) * | 2015-10-15 | 2017-04-21 | 許銘案 | Thin-film mask, fitting aids, fitting and exposure device and fitting method for the thin-film mask pasted on a curved substrate |
CN106773531B (en) * | 2017-01-03 | 2020-06-16 | 京东方科技集团股份有限公司 | Impression roller in nano impression device and nano impression device |
CN106547044B (en) * | 2017-01-24 | 2019-03-01 | 深圳市华星光电技术有限公司 | A kind of process equipment and manufacturing method of polaroid |
CN106647192A (en) * | 2017-03-10 | 2017-05-10 | 深圳市华星光电技术有限公司 | Exposure equipment |
TWI694605B (en) * | 2017-08-07 | 2020-05-21 | 財團法人工業技術研究院 | Component spreading distance transfer method and equipment for implementing the transfer method |
CN109901362B (en) * | 2017-12-11 | 2022-04-19 | 中国科学院光电技术研究所 | Secondary imaging optical lithography method and apparatus |
WO2019130221A1 (en) * | 2017-12-29 | 2019-07-04 | 3M Innovative Properties Company | Nonplanar patterned nanostructured surface and printing methods for making thereof |
KR102096606B1 (en) * | 2018-08-29 | 2020-04-02 | 부산대학교 산학협력단 | Fabrication of nanoimprint soft mold for cylinder surface and nano-imprint process for cylindrical surface |
GB2576922B (en) * | 2018-09-06 | 2021-10-27 | Stensborg As | An optical engine for an imprinter |
CN109668631B (en) * | 2018-12-11 | 2021-06-01 | 中国科学院光电技术研究所 | Preparation method of large-area and low-cost superconducting nanowire single photon detector |
CN111807320B (en) * | 2019-04-10 | 2024-07-09 | 青岛九环新越新能源科技股份有限公司 | Roller for rolling nano-scale pore structure material, roller set and rolling production line |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59200419A (en) * | 1983-04-28 | 1984-11-13 | Toshiba Corp | Large area exposure apparatus |
DE69405451T2 (en) * | 1993-03-16 | 1998-03-12 | Koninkl Philips Electronics Nv | Method and device for producing a structured relief image from cross-linked photoresist on a flat substrate surface |
EA199800345A1 (en) * | 1995-09-29 | 1998-10-29 | Сейдж Текнолоджи, Инкорпорейтед | RECORDING SYSTEM FOR OPTICAL DIGITAL MEDIA INFORMATION AND REPRODUCTION WITH THEM |
US5865978A (en) * | 1997-05-09 | 1999-02-02 | Cohen; Adam E. | Near-field photolithographic masks and photolithography; nanoscale patterning techniques; apparatus and method therefor |
US5928815A (en) * | 1997-11-14 | 1999-07-27 | Martin; Joseph | Proximity masking device for near-field optical lithography |
DE19826971C2 (en) * | 1998-06-18 | 2002-03-14 | Reiner Goetzen | Process for the mechanical and electrical connection of system components |
WO2003001869A2 (en) * | 2001-06-29 | 2003-01-09 | California Institute Of Technology | Method and apparatus for use of plasmon printing in near-field lithography |
US7144539B2 (en) * | 2002-04-04 | 2006-12-05 | Obducat Ab | Imprint method and device |
DE10217151A1 (en) * | 2002-04-17 | 2003-10-30 | Clariant Gmbh | Nanoimprint resist |
RU2214359C1 (en) * | 2002-09-05 | 2003-10-20 | Санкт-Петербургский государственный институт точной механики и оптики (технический университет) | Process forming lattice of silicon nanoclusters on structurized substrate |
KR100756104B1 (en) * | 2003-01-17 | 2007-09-05 | 미크로텍 게젤샤프트 퓌어 미크로테흐놀로기 엠베하 | Method for producing microsystems |
JP4572406B2 (en) * | 2004-04-16 | 2010-11-04 | 独立行政法人理化学研究所 | Lithography mask |
CN100492588C (en) * | 2004-05-21 | 2009-05-27 | Jsr株式会社 | Liquid for immersion exposure and immersion exposure method |
JP2006013216A (en) * | 2004-06-28 | 2006-01-12 | Canon Inc | Method for forming resist pattern by near-field exposure, a method for processing substrate using method for forming resist pattern, and method for manufacturing device |
JP2006073784A (en) * | 2004-09-02 | 2006-03-16 | Ricoh Co Ltd | Photomask, exposure device, and exposure method |
JP4674105B2 (en) * | 2005-03-25 | 2011-04-20 | 独立行政法人科学技術振興機構 | Circuit pattern transfer apparatus and method |
JP4246174B2 (en) * | 2005-04-01 | 2009-04-02 | 独立行政法人科学技術振興機構 | Nanoimprint method and apparatus |
US7274998B2 (en) * | 2005-09-30 | 2007-09-25 | Intel Corporation | Near-field photo-lithography using nano light emitting diodes |
US20070116831A1 (en) * | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | Dental Composition with High-Potency Sweetener |
US20070138699A1 (en) * | 2005-12-21 | 2007-06-21 | Asml Netherlands B.V. | Imprint lithography |
US20070200276A1 (en) * | 2006-02-24 | 2007-08-30 | Micron Technology, Inc. | Method for rapid printing of near-field and imprint lithographic features |
JP2007329214A (en) * | 2006-06-07 | 2007-12-20 | Canon Inc | Proximity exposure method |
JP2008021869A (en) * | 2006-07-13 | 2008-01-31 | Ricoh Co Ltd | Plasmon resonation lithography and lithogram |
JP5570688B2 (en) * | 2007-06-28 | 2014-08-13 | ピーエスフォー ルクスコ エスエイアールエル | Fine resist pattern forming method and nanoimprint mold structure |
JP4406452B2 (en) * | 2007-09-27 | 2010-01-27 | 株式会社日立製作所 | Belt-shaped mold and nanoimprint apparatus using the same |
-
2008
- 2008-11-18 AU AU2008348353A patent/AU2008348353A1/en not_active Abandoned
- 2008-11-18 TW TW097144514A patent/TWI518027B/en not_active IP Right Cessation
- 2008-11-18 CN CN201510644135.6A patent/CN105171985A/en active Pending
- 2008-11-18 CN CN2008801245193A patent/CN101911249A/en active Pending
- 2008-11-18 RU RU2010134893/28A patent/RU2488188C2/en not_active IP Right Cessation
- 2008-11-18 JP JP2010543093A patent/JP5102879B2/en active Active
- 2008-11-18 CA CA2709718A patent/CA2709718A1/en not_active Abandoned
- 2008-11-18 EP EP08871196A patent/EP2238608A4/en not_active Withdrawn
- 2008-11-18 KR KR1020107018711A patent/KR20110008159A/en active Search and Examination
- 2008-11-18 WO PCT/US2008/012901 patent/WO2009094009A1/en active Application Filing
- 2008-11-18 MX MX2010007954A patent/MX2010007954A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI765276B (en) * | 2020-06-12 | 2022-05-21 | 光群雷射科技股份有限公司 | Manufacturing method of lens in transfer manner and manufacturing method of lens transfer layer |
Also Published As
Publication number | Publication date |
---|---|
MX2010007954A (en) | 2010-11-05 |
CA2709718A1 (en) | 2009-07-30 |
CN101911249A (en) | 2010-12-08 |
JP2011526069A (en) | 2011-09-29 |
WO2009094009A1 (en) | 2009-07-30 |
CN105171985A (en) | 2015-12-23 |
RU2488188C2 (en) | 2013-07-20 |
TW200932666A (en) | 2009-08-01 |
JP5102879B2 (en) | 2012-12-19 |
KR20110008159A (en) | 2011-01-26 |
RU2010134893A (en) | 2012-02-27 |
AU2008348353A1 (en) | 2009-07-30 |
EP2238608A4 (en) | 2012-02-22 |
EP2238608A1 (en) | 2010-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI518027B (en) | Large area nanopattering method and apparatus | |
US8518633B2 (en) | Large area nanopatterning method and apparatus | |
US9465296B2 (en) | Nanopatterning method and apparatus | |
US8182982B2 (en) | Method and device for patterning a disk | |
KR101520196B1 (en) | Mask for near-field lithography and fabrication the same | |
US20120282554A1 (en) | Large area nanopatterning method and apparatus | |
KR101430849B1 (en) | Nanopatterning method and apparatus | |
US20090001634A1 (en) | Fine resist pattern forming method and nanoimprint mold structure | |
JP5211505B2 (en) | Imprint mold, imprint mold manufacturing method, and optical imprint method | |
CN117348136A (en) | Off-axis illumination grating and preparation method thereof, detachable off-axis illumination photolithography mask | |
Cui et al. | Nanofabrication by Replication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |