[go: up one dir, main page]

TWI512753B - Sense amplifier and method for determining values of voltages on bit line pair - Google Patents

Sense amplifier and method for determining values of voltages on bit line pair Download PDF

Info

Publication number
TWI512753B
TWI512753B TW100141929A TW100141929A TWI512753B TW I512753 B TWI512753 B TW I512753B TW 100141929 A TW100141929 A TW 100141929A TW 100141929 A TW100141929 A TW 100141929A TW I512753 B TWI512753 B TW I512753B
Authority
TW
Taiwan
Prior art keywords
signal
drain
source
type transistor
voltage
Prior art date
Application number
TW100141929A
Other languages
Chinese (zh)
Other versions
TW201322271A (en
Inventor
Shi Wen Chen
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW100141929A priority Critical patent/TWI512753B/en
Publication of TW201322271A publication Critical patent/TW201322271A/en
Application granted granted Critical
Publication of TWI512753B publication Critical patent/TWI512753B/en

Links

Landscapes

  • Manipulation Of Pulses (AREA)

Description

感測放大器與位元線對的電壓判讀方法Voltage interpretation method of sense amplifier and bit line pair

本發明是有關於記憶體之技術領域,且特別是有關於一種記憶體的感測放大器與一種位元線對的電壓判讀方法。The present invention relates to the technical field of memory, and more particularly to a voltage sensing method for a memory sense amplifier and a bit line pair.

在現有的記憶體技術中,有些是採用類比的感測放大器(sense amplifier)來進行位元線對(bit line pair)的訊號放大工作。類比的感測放大器具有操作速度快的優點,然由於這種感測放大器係以差動放大器(differential amplifier)來實現,故常因製程問題而發生電晶體之臨界電壓(Vth)不同的問題(即所謂的mismatch問題),導致這種感測放大器會有電壓偏移(offset)的缺點。In the existing memory technology, some use an analog sense amplifier to perform signal amplification of a bit line pair. The analog sense amplifier has the advantage of fast operation speed. However, since the sense amplifier is implemented by a differential amplifier, the threshold voltage (Vth) of the transistor often occurs due to process problems (ie, The so-called mismatch problem) has the disadvantage that this sense amplifier has a voltage offset.

此外,有些記憶體技術是採用數位的感測放大器來進行訊號放大的工作,然而因數位的感測放大器需要以全擺幅(full swing)的方式來進行操作,故其有操作速度慢的缺點。In addition, some memory technologies use digital sense amplifiers for signal amplification. However, the sense amplifiers of the factor bits need to operate in full swing mode, so they have the disadvantage of slow operation speed. .

本發明提供一種感測放大器,其操作速度快,且電壓偏移問題小。The present invention provides a sense amplifier that operates at a fast speed and has a small voltage offset problem.

本發明另提供一種位元線對的電壓判讀方法,其適合與前述之感測放大器搭配使用。The invention further provides a voltage interpretation method for a bit line pair, which is suitable for use with the aforementioned sense amplifier.

本發明提出一種感測放大器,其包括有一第一延遲鏈與一第二延遲鏈。所述之第一延遲鏈係用以電性連接一位元線,並用以接收一時脈訊號與位元線上之第一電壓,以依據第一電壓的電壓大小來延遲時脈訊號,據以產生第一延遲訊號。而所述之第二延遲鏈係用以電性連接一互補位元線,並用以接收上述時脈訊號與互補位元線上之第二電壓,以依據第二電壓的電壓大小來延遲時脈訊號,據以產生第二延遲訊號。The present invention provides a sense amplifier that includes a first delay chain and a second delay chain. The first delay chain is electrically connected to a bit line, and is configured to receive a first signal of a clock signal and a bit line to delay a clock signal according to a voltage level of the first voltage, thereby generating The first delay signal. The second delay chain is electrically connected to a complementary bit line, and is configured to receive the second voltage on the clock signal and the complementary bit line to delay the clock signal according to the voltage of the second voltage. According to the second delay signal.

本發明另提出一種位元線對的電壓判讀方法,其包括有下列步驟:依據一位元線上之第一電壓的電壓大小來延遲一時脈訊號,據以產生第一延遲訊號,並依據一互補位元線上之第二電壓的電壓大小來延遲上述時脈訊號,據以產生一第二延遲訊號;以及依據第一延遲訊號與第二延遲訊號二者的相位關係來判定上述第一電壓與第二電壓二者的電壓大小。The invention further provides a voltage interpretation method for a bit line pair, comprising the steps of: delaying a clock signal according to a voltage level of a first voltage on a bit line, thereby generating a first delay signal, and according to a complementary The voltage of the second voltage on the bit line is delayed by the clock signal to generate a second delay signal; and the first voltage and the first voltage are determined according to the phase relationship between the first delay signal and the second delay signal. The voltage magnitude of both voltages.

本發明係採用二個延遲鏈來分別將位元線與互補位元線上的電壓大小轉換成相位上的延遲。因此,使用者僅需依據第一延遲訊號與第二延遲訊號二者的相位關係,就可以判定位元線與互補位元線上的電壓大小。由於電壓越大,延遲就越小,因此當第一延遲訊號的相位係超前第二延遲訊號的相位時,便可判定位元線上的電壓係大於互補位元線上的電壓;而當判定第二延遲訊號的相位係超前第一延遲訊號的相位時,則可判定互補位元線上的電壓係大於位元線上的電壓。The present invention employs two delay chains to convert the magnitude of the voltage on the bit line and the complementary bit line to a phase delay, respectively. Therefore, the user only needs to determine the voltage level on the bit line and the complementary bit line according to the phase relationship between the first delay signal and the second delay signal. Since the voltage is larger, the delay is smaller. Therefore, when the phase of the first delay signal leads the phase of the second delay signal, it can be determined that the voltage on the bit line is greater than the voltage on the complementary bit line; When the phase of the delayed signal leads the phase of the first delayed signal, it can be determined that the voltage on the complementary bit line is greater than the voltage on the bit line.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features and advantages of the present invention will become more <RTIgt;

圖1繪示有依照本發明一實施例之一種感測放大器。此感測放大器110適用於記憶體,例如是隨機存取記憶體(random access memory,RAM)。請參照圖1,此感測放大器110用以電性連接由位元線102與互補位元線104所組成之一位元線對。在此例中,感測放大器110係包括有延遲鏈120與130,且每一延遲鏈係具有偶數個反相器(如標示122~132、142~152所示)。1 illustrates a sense amplifier in accordance with an embodiment of the present invention. The sense amplifier 110 is suitable for use in a memory such as a random access memory (RAM). Referring to FIG. 1 , the sense amplifier 110 is configured to electrically connect one bit line pair formed by the bit line 102 and the complementary bit line 104 . In this example, sense amplifier 110 includes delay chains 120 and 130, and each delay chain has an even number of inverters (as indicated by flags 122-132, 142-152).

延遲鏈120係用以電性連接位元線102,並用以接收時脈訊號CLK與位元線102上之電壓V1,以依據電壓V1的電壓大小來延遲時脈訊號CLK,據以產生延遲訊號DS1。而延遲鏈140係用以電性連接互補位元線104,並用以接收時脈訊號CLK與互補位元線104上之電壓V2,以依據電壓V2的電壓大小來延遲時脈訊號CLK,據以產生延遲訊號DS2。此外,在此例中,每一反相器皆接收讀取致能訊號EN,以供進行讀取控制用。The delay chain 120 is electrically connected to the bit line 102, and is configured to receive the clock signal CLK and the voltage V1 on the bit line 102 to delay the clock signal CLK according to the voltage of the voltage V1, thereby generating a delay signal. DS1. The delay chain 140 is electrically connected to the complementary bit line 104, and is configured to receive the clock signal CLK and the voltage V2 on the complementary bit line 104 to delay the clock signal CLK according to the voltage of the voltage V2. A delay signal DS2 is generated. In addition, in this example, each inverter receives the read enable signal EN for read control.

圖2係繪示延遲鏈120中之反相器的其中一種電路架構。請參照圖2,此反相器200包括有二個P型電晶體(分別以202與204來標示)以及二個N型電晶體(分別以206與208來標示)。P型電晶體202的其中一源/汲極用以電性連接電源電壓VDD,而P型電晶體202的閘極用以接收讀取致能訊號EN。P型電晶體204的其中一源/汲極電性連接P型電晶體202之另一源/汲極,P型電晶體204的閘極用以作為反相器200之輸入端,以接收輸入訊號IN,而P型電晶體204的另一源/汲極則用以作為反相器200之輸出端,以提供輸出訊號OUT。FIG. 2 illustrates one of the circuit architectures of the inverter in the delay chain 120. Referring to FIG. 2, the inverter 200 includes two P-type transistors (indicated by 202 and 204, respectively) and two N-type transistors (indicated by 206 and 208, respectively). One of the source/drain electrodes of the P-type transistor 202 is electrically connected to the power supply voltage VDD, and the gate of the P-type transistor 202 is used to receive the read enable signal EN. One source/drain of the P-type transistor 204 is electrically connected to another source/drain of the P-type transistor 202, and the gate of the P-type transistor 204 is used as an input terminal of the inverter 200 to receive input. The signal IN, and the other source/drain of the P-type transistor 204 is used as the output of the inverter 200 to provide the output signal OUT.

此外,N型電晶體206的其中一源/汲極電性連接P型電晶體204之另一源/汲極,而N型電晶體206的閘極電性連接P型電晶體204之閘極。N型電晶體208的其中一源/汲極電性連接N型電晶體206之另一源/汲極,N型電晶體208的閘極用以接收電壓V1(即位元線102上的電壓),而N型電晶體208的另一源/汲極用以電性連接參考電位VSS。由圖2所示的電路架構可知,當電壓V1的值越大,反相器200之輸出端電位的充、放電速度就會越快。In addition, one source/drain of the N-type transistor 206 is electrically connected to another source/drain of the P-type transistor 204, and the gate of the N-type transistor 206 is electrically connected to the gate of the P-type transistor 204. . One source/drain of the N-type transistor 208 is electrically connected to another source/drain of the N-type transistor 206, and the gate of the N-type transistor 208 is used to receive the voltage V1 (ie, the voltage on the bit line 102). The other source/drain of the N-type transistor 208 is used to electrically connect the reference potential VSS. It can be seen from the circuit architecture shown in FIG. 2 that the larger the value of the voltage V1, the faster the charging and discharging speed of the potential of the output terminal of the inverter 200.

圖3係繪示延遲鏈140中之反相器的其中一種電路架構。請參照圖3,此反相器300同樣包括有二個P型電晶體(分別以302與304來標示)以及二個N型電晶體(分別以306與308來標示)。由圖3可知,此反相器300的電路架構與反相器200的電路架構相同,只是反相器300中之N型電晶體308的閘極係用以接收電壓V2(即互補位元線104上的電壓)。由圖3所示的電路架構可知,當電壓V2的值越大,反相器300之輸出端電位的充、放電速度就會越快。FIG. 3 illustrates one of the circuit architectures of the inverter in the delay chain 140. Referring to FIG. 3, the inverter 300 also includes two P-type transistors (indicated by 302 and 304, respectively) and two N-type transistors (labeled 306 and 308, respectively). As can be seen from FIG. 3, the circuit architecture of the inverter 300 is the same as that of the inverter 200, except that the gate of the N-type transistor 308 in the inverter 300 is used to receive the voltage V2 (ie, the complementary bit line). Voltage on 104). As can be seen from the circuit architecture shown in FIG. 3, when the value of the voltage V2 is larger, the charging and discharging speeds of the potential of the output terminal of the inverter 300 are faster.

請再參照圖1,由於延遲鏈120中之每一反相器的輸出端的充、放電速度是根據電壓V1的大小來決定,而延遲鏈140中之每一反相器的輸出端的充、放電速度是根據電壓V2的大小來決定,因此若是電壓V1與V2的大小不同,那麼延遲鏈120所輸出的延遲訊號DS1與延遲鏈140所輸出的延遲訊號DS2這二者的延遲程度就會不同。因此,後端電路就可以根據這二個延遲訊號的延遲程度來判定電壓V1與V2誰大誰小,以圖4來舉例說明之。Referring again to FIG. 1, since the charging and discharging speeds of the output terminals of each of the inverters in the delay chain 120 are determined according to the magnitude of the voltage V1, the charging and discharging of the output terminals of each of the inverter chains 140 are charged. The speed is determined according to the magnitude of the voltage V2. Therefore, if the magnitudes of the voltages V1 and V2 are different, the delay degree of the delay signal DS1 outputted by the delay chain 120 and the delay signal DS2 outputted by the delay chain 140 will be different. Therefore, the back-end circuit can determine whether the voltages V1 and V2 are small and small according to the delay degree of the two delay signals, which is illustrated by FIG.

圖4繪示有時脈訊號CLK、延遲訊號DS1與延遲訊號DS2這三者的其中一種時序關係。如圖所示,延遲訊號DS1係延遲了Td1的時間,而延遲訊號DS2係延遲了Td2的時間。也就是說,延遲訊號DS1的相位係超前延遲訊號DS2的相位。由於每一延遲訊號的延遲程度係與電壓V1或V2的大小成反比,因此可判定電壓V1係大於電壓V2。反之,若是延遲訊號DS2的相位係超前延遲訊號DS1的相位,便可判定電壓V2係大於電壓V1。FIG. 4 illustrates one of the timing relationships of the pulse signal CLK, the delay signal DS1, and the delay signal DS2. As shown, the delay signal DS1 is delayed by Td1, while the delayed signal DS2 is delayed by Td2. That is to say, the phase of the delay signal DS1 is advanced by the phase of the delay signal DS2. Since the degree of delay of each delay signal is inversely proportional to the magnitude of the voltage V1 or V2, it can be determined that the voltage V1 is greater than the voltage V2. On the other hand, if the phase of the delay signal DS2 is advanced by the phase of the delay signal DS1, it can be determined that the voltage V2 is greater than the voltage V1.

由於上述每一延遲鏈皆由多個反相器所組成,因此即使有某個電晶體的臨界電壓(Vth)因製程問題而有所不同,電壓偏移問題也會隨著每一延遲鏈所採用之反相器數目的增加而減小。是以,相對於傳統的類比式感測放大器而言,本發明之感測放大器的電壓偏移問題小。此外,由於上述每一延遲鏈中的反相器係採用低擺幅(small swing)的電路架構,因此相對於傳統的數位式感測放大器而言,本發明之感測放大器的操作速度較快。Since each of the above delay chains is composed of a plurality of inverters, even if the threshold voltage (Vth) of a certain transistor is different due to a process problem, the voltage offset problem will follow each delay chain. The number of inverters used is reduced by an increase in the number of inverters. Therefore, the voltage offset problem of the sense amplifier of the present invention is small compared to the conventional analog sense amplifier. In addition, since the inverter in each of the above delay chains adopts a low swing circuit structure, the sensing amplifier of the present invention operates faster than a conventional digital sense amplifier. .

以下將再舉出二種低擺幅之反相器的電路架構。請參照圖5,其係繪示延遲鏈120中之反相器的另一種電路架構。請參照圖5,此反相器500包括有一個P型電晶體(以502來標示)以及二個N型電晶體(分別以504與506來標示)。P型電晶體502的其中一源/汲極用以電性連接電源電壓VDD,P型電晶體502的閘極用以作為反相器500之輸入端,以接收輸入訊號IN,而P型電晶體502的另一源/汲極用以作為反相器500之輸出端,以提供輸出訊號OUT。N型電晶體504的其中一源/汲極電性連接P型電晶體502之另一源/汲極,而N型電晶體504的閘極電性連接P型電晶體502之閘極。N型電晶體506的其中一源/汲極電性連接N型電晶體504之另一源/汲極,N型電晶體506的閘極用以接收電壓V1(即位元線102上的電壓),而N型電晶體506的另一源/汲極用以電性連接參考電位VSS。The circuit architecture of the two low swing inverters will be further exemplified below. Referring to FIG. 5, another circuit architecture of the inverter in the delay chain 120 is illustrated. Referring to FIG. 5, the inverter 500 includes a P-type transistor (indicated by 502) and two N-type transistors (indicated by 504 and 506, respectively). One of the source/drain electrodes of the P-type transistor 502 is electrically connected to the power supply voltage VDD, and the gate of the P-type transistor 502 is used as an input terminal of the inverter 500 to receive the input signal IN, and the P-type power Another source/drain of crystal 502 is used as the output of inverter 500 to provide an output signal OUT. One source/drain of the N-type transistor 504 is electrically connected to another source/drain of the P-type transistor 502, and the gate of the N-type transistor 504 is electrically connected to the gate of the P-type transistor 502. One source/drain of the N-type transistor 506 is electrically connected to another source/drain of the N-type transistor 504, and the gate of the N-type transistor 506 is used to receive the voltage V1 (ie, the voltage on the bit line 102). The other source/drain of the N-type transistor 506 is used to electrically connect the reference potential VSS.

圖6係繪示延遲鏈140中之反相器的另一種電路架構。請參照圖6,此反相器600同樣包括有一個P型電晶體(以602來標示)以及二個N型電晶體(分別以604與606來標示)。由圖6可知,此反相器600的電路架構與反相器500的電路架構相同,只是反相器600中之N型電晶體606的閘極係用以接收電壓V2(即互補位元線104上的電壓)。FIG. 6 illustrates another circuit architecture of the inverter in the delay chain 140. Referring to FIG. 6, the inverter 600 also includes a P-type transistor (indicated by 602) and two N-type transistors (indicated by 604 and 606, respectively). As can be seen from FIG. 6, the circuit structure of the inverter 600 is the same as that of the inverter 500, except that the gate of the N-type transistor 606 in the inverter 600 is used to receive the voltage V2 (ie, the complementary bit line). Voltage on 104).

圖7係繪示延遲鏈120中之反相器的再一種電路架構。請參照圖7,此反相器700包括有二個P型電晶體(以702與704來標示)以及一個N型電晶體(以706來標示)。P型電晶體702的其中一源/汲極用以電性連接電源電壓VDD,而P型電晶體702的閘極用以接收電壓V1(即位元線102上的電壓)。P型電晶體704的其中一源/汲極電性連接P型電晶體702之另一源/汲極,P型電晶體704的閘極作為反相器700之輸入端,以接收輸入訊號IN,而P型電晶體704的另一源/汲極用以作為反相器700之輸出端,以提供輸出訊號OUT。N型電晶體706的其中一源/汲極電性連接P型電晶體704之另一源/汲極,N型電晶體706的閘極電性連接P型電晶體704之閘極,而N型電晶體706的另一源/汲極用以電性連接參考電位VSS。FIG. 7 illustrates still another circuit architecture of the inverter in the delay chain 120. Referring to Figure 7, the inverter 700 includes two P-type transistors (indicated by 702 and 704) and an N-type transistor (labeled 706). One of the sources/drains of the P-type transistor 702 is used to electrically connect the power supply voltage VDD, and the gate of the P-type transistor 702 is used to receive the voltage V1 (ie, the voltage on the bit line 102). One source/drain of the P-type transistor 704 is electrically connected to another source/drain of the P-type transistor 702. The gate of the P-type transistor 704 serves as an input terminal of the inverter 700 to receive the input signal IN. The other source/drain of the P-type transistor 704 is used as an output of the inverter 700 to provide an output signal OUT. One source/drain of the N-type transistor 706 is electrically connected to another source/drain of the P-type transistor 704, and the gate of the N-type transistor 706 is electrically connected to the gate of the P-type transistor 704, and N The other source/drain of the type transistor 706 is used to electrically connect the reference potential VSS.

圖8係繪示延遲鏈140中之反相器的再一種電路架構。請參照圖8,此反相器800同樣包括有二個P型電晶體(以802與804來標示)以及一個N型電晶體(以806來標示)。由圖8可知,此反相器800的電路架構與反相器700的電路架構相同,只是反相器800中之P型電晶體802的閘極係用以接收電壓V2(即互補位元線104上的電壓)。FIG. 8 illustrates yet another circuit architecture of the inverter in delay chain 140. Referring to Figure 8, the inverter 800 also includes two P-type transistors (labeled 802 and 804) and an N-type transistor (labeled 806). As can be seen from FIG. 8, the circuit architecture of the inverter 800 is the same as that of the inverter 700, except that the gate of the P-type transistor 802 in the inverter 800 is used to receive the voltage V2 (ie, the complementary bit line). Voltage on 104).

此外,為了避免延遲訊號DS1與延遲訊號DS2的相位相同而使得後端電路無法判定位元線102上的電壓與互補位元線104上的電壓究竟是誰大誰小,設計者可在感測放大器中增設一相位變化檢測器來幫助辨識,一如圖9所示。In addition, in order to avoid the same phase of the delay signal DS1 and the delay signal DS2, the back-end circuit cannot determine whether the voltage on the bit line 102 and the voltage on the complementary bit line 104 are large or small, and the designer can sense the voltage. A phase change detector is added to the amplifier to aid identification, as shown in Figure 9.

圖9為依照本發明另一實施例之一種感測放大器。請參照圖9,此感測放大器900包括有延遲鏈910、延遲鏈920與相位變化檢測器930。延遲鏈910用以依據一位元線(未繪示)上之電壓V1的電壓大小來延遲時脈訊號CLK,並據以產生延遲訊號DS1。而延遲鏈920用以依據一互補位元線(未繪示)上之電壓V2的電壓大小來延遲時脈訊號CLK,並據以產生延遲訊號DS2。至於相位變化檢測器930,其具有一初始操作階段與一感測操作階段,其中感測操作階段係在初始操作階段之後。在所述之初始操作階段中,相位變化檢測器930會檢測延遲訊號DS1與DS2二者之相位的先後順序,並據以儲存成第一檢測結果。因此,可在此初始操作階段中使電壓V1與V2的電壓大小一樣,使得相位變化檢測器930所儲存的第一檢測結果可以反應出延遲鏈910與920二者於充、放電速度上的差異。9 is a sense amplifier in accordance with another embodiment of the present invention. Referring to FIG. 9, the sense amplifier 900 includes a delay chain 910, a delay chain 920, and a phase change detector 930. The delay chain 910 is configured to delay the clock signal CLK according to the voltage level of the voltage V1 on a bit line (not shown), and accordingly generate the delay signal DS1. The delay chain 920 is configured to delay the clock signal CLK according to the voltage of the voltage V2 on a complementary bit line (not shown), and accordingly generate the delay signal DS2. As for the phase change detector 930, it has an initial operational phase and a sensing operational phase, wherein the sensing operational phase is after the initial operational phase. In the initial operation phase, the phase change detector 930 detects the order of the phases of the delay signals DS1 and DS2 and stores them as the first detection result. Therefore, the voltages of the voltages V1 and V2 can be made the same in this initial operation phase, so that the first detection result stored by the phase change detector 930 can reflect the difference in charging and discharging speed between the delay chains 910 and 920. .

在儲存完第一檢測結果之後,接著便可使相位變化檢測器930進入感測操作階段,並使記憶體開始正常操作,以使電壓V1與V2能分別反應出位元線(未繪示)與互補位元線(未繪示)上的電壓變化。而在感測操作階段中,相位變化檢測器930會檢測延遲訊號DS1與DS2之相位的先後順序,並據以儲存成第二檢測結果。當第二檢測結果顯示出延遲訊號DS1與DS2之相位為相同時,相位變化檢測器930便會利用其輸出訊號SAO與SAOB來輸出與第一檢測結果相反的結果;而當第二檢測結果顯示出延遲訊號DS1與DS2之相位為不同時,相位變化檢測器930便會便會利用其輸出訊號SAO與SAOB來輸出第二檢測結果。以下將進一步舉例來作解釋。After storing the first detection result, the phase change detector 930 can then be brought into the sensing operation phase, and the memory starts normal operation, so that the voltages V1 and V2 can respectively reflect the bit line (not shown). The voltage changes on the complementary bit line (not shown). In the sensing operation phase, the phase change detector 930 detects the sequence of the phases of the delay signals DS1 and DS2 and stores them as the second detection result. When the second detection result shows that the phases of the delay signals DS1 and DS2 are the same, the phase change detector 930 uses the output signals SAO and SAOB to output a result opposite to the first detection result; and when the second detection result is displayed When the phases of the delay signals DS1 and DS2 are different, the phase change detector 930 will use the output signals SAO and SAOB to output the second detection result. Further examples will be explained below.

假設第一檢測結果顯示延遲訊號DS2超前延遲訊號DS1,表示在電壓V1與V2相同的情況下,延遲鏈920的充、放電速度快於延遲鏈910的充、放電速度。因此,當第二檢測結果顯示延遲訊號DS1與DS2同相位時,表示實際上的檢測結果應與第一檢測結果相反,因此相位變化檢測器930便會利用其輸出訊號SAO與SAOB來輸出與第一檢測結果相反的結果,也就是利用輸出訊號SAO與SAOB來輸出延遲訊號DS1為超前延遲訊號DS2的結果。而當第二檢測結果顯示出延遲訊號DS1與DS2之相位為不同時,表示實際上的檢測結果應與第二檢測結果相同,因此相位變化檢測器930便會便會利用其輸出訊號SAO與SAOB來輸出第二檢測結果。It is assumed that the first detection result shows that the delay signal DS2 leads the delay signal DS1, indicating that the charging and discharging speed of the delay chain 920 is faster than the charging and discharging speed of the delay chain 910 when the voltages V1 and V2 are the same. Therefore, when the second detection result shows that the delay signals DS1 and DS2 are in phase, it means that the actual detection result should be opposite to the first detection result, so the phase change detector 930 uses the output signals SAO and SAOB to output and The result of the opposite detection result, that is, the output signal SAO and SAOB are used to output the delayed signal DS1 as the result of the leading delay signal DS2. When the second detection result shows that the phases of the delay signals DS1 and DS2 are different, it means that the actual detection result should be the same as the second detection result, so the phase change detector 930 will use the output signals SAO and SAOB. To output the second test result.

圖10係繪示相位變化檢測器930的其中一種實現方式。請參照圖10,此相位變化檢測器930包括有四個D型正反器(分別以932、934、936與938來標示)、一個比較電路(以940來標示)與二個多工器(分別以942與944來標示)。每一D型正反器皆具有一資料輸入端(以D來標示)、一資料輸出端(以Q來標示)與一時脈輸入端(以三角形來標示)。D型正反器932的資料輸入端D用以接收延遲訊號DS1,而D型正反器932的時脈輸入端用以接收延遲訊號DS2。D型正反器934的資料輸入端D用以接收延遲訊號DS2,而D型正反器934的時脈輸入端用以接收延遲訊號DS1。D型正反器936的資料輸入端D用以接收D型正反器932的資料輸出端Q所輸出之訊號Qn,而D型正反器936的時脈輸入端用以接收初始設定訊號INI。此初始設定訊號INI用以決定相位變化檢測器930處於初始操作階段或感測操作階段。D型正反器938的資料輸入端D用以接收D型正反器934的資料輸出端Q所輸出之訊號Qbn,而D型正反器938的時脈輸入端用以接收初始設定訊號INI。FIG. 10 illustrates one implementation of phase change detector 930. Referring to FIG. 10, the phase change detector 930 includes four D-type flip-flops (indicated by 932, 934, 936, and 938, respectively), a comparison circuit (indicated by 940), and two multiplexers ( Marked with 942 and 944 respectively). Each D-type flip-flop has a data input (marked by D), a data output (marked by Q), and a clock input (marked by a triangle). The data input terminal D of the D-type flip-flop 932 is used to receive the delay signal DS1, and the clock input terminal of the D-type flip-flop 932 is used to receive the delay signal DS2. The data input terminal D of the D-type flip-flop 934 is used to receive the delay signal DS2, and the clock input terminal of the D-type flip-flop 934 is used to receive the delay signal DS1. The data input terminal D of the D-type flip-flop 936 is used to receive the signal Qn outputted by the data output terminal Q of the D-type flip-flop 932, and the clock input terminal of the D-type flip-flop 936 is used to receive the initial setting signal INI. . This initial setting signal INI is used to determine whether the phase change detector 930 is in an initial operational phase or a sensing operational phase. The data input terminal D of the D-type flip-flop 938 is used to receive the signal Qbn outputted by the data output terminal Q of the D-type flip-flop 934, and the clock input terminal of the D-type flip-flop 938 is used to receive the initial setting signal INI. .

此外,多工器942用以接收訊號Qn與Qbi,並依據選擇訊號SEL輸出訊號Qn與Qbi二者其中之一。多工器944用以接收訊號Qbn與Qi,並依據選擇訊號SEL輸出訊號Qbn與Qi二者其中之一。至於比較電路940,其用以接收訊號Qn、Qbn、Qi與Qbi,並用以比較訊號Qn、Qbn二者的相位是否相同,據以輸出上述之選擇訊號SEL。當比較結果為是時,比較電路940便利用選擇訊號SEL控制多工器942與944分別輸出訊號Qbi與Qi,以分別作為相位變化檢測器930的輸出訊號SAO與SAOB,並作為與第一檢測結果相反的結果來輸出。而當比較結果為否時,比較電路940便利用選擇訊號SEL控制多工器942與944分別輸出訊號Qn與Qbn,以分別作為相位變化檢測器930的輸出訊號SAO與SAOB,並作為第二檢測結果來輸出。In addition, the multiplexer 942 is configured to receive the signals Qn and Qbi and output one of the signals Qn and Qbi according to the selection signal SEL. The multiplexer 944 is configured to receive the signals Qbn and Qi and output one of the signals Qbn and Qi according to the selection signal SEL. The comparison circuit 940 is configured to receive the signals Qn, Qbn, Qi, and Qbi, and compare whether the phases of the signals Qn and Qbn are the same, thereby outputting the selection signal SEL. When the comparison result is YES, the comparison circuit 940 conveniently controls the multiplexers 942 and 944 to output the signals Qbi and Qi respectively by the selection signal SEL to respectively output the signals SAO and SAOB of the phase change detector 930, and as the first detection. The result is the opposite of the output. When the comparison result is no, the comparison circuit 940 conveniently controls the multiplexers 942 and 944 to output the signals Qn and Qbn respectively by the selection signal SEL to respectively serve as the output signals SAO and SAOB of the phase change detector 930, and as the second detection. The result is output.

藉由上述各實施方式之教示,本領域具有通常知識者當可歸納出一種位元線對的電壓判讀方法的基本步驟,一如圖11所示。請參照圖11,此電壓判讀方法的步驟包括:依據一位元線上之第一電壓的電壓大小來延遲一時脈訊號,據以產生第一延遲訊號,並依據一互補位元線上之第二電壓的電壓大小來延遲上述時脈訊號,據以產生一第二延遲訊號(如步驟S1102所示);以及依據第一延遲訊號與第二延遲訊號二者的相位關係來判定上述第一電壓與第二電壓二者的電壓大小(如步驟S1104所示)。With the teachings of the above embodiments, there is a basic step in the art for a voltage interpretation method that can be generalized to a bit line pair, as shown in FIG. Referring to FIG. 11, the voltage reading method includes: delaying a clock signal according to a voltage level of a first voltage on a bit line, thereby generating a first delay signal, and according to a second voltage on a complementary bit line The voltage level is used to delay the clock signal to generate a second delay signal (as shown in step S1102); and to determine the first voltage and the first phase according to the phase relationship between the first delay signal and the second delay signal. The voltage magnitude of both voltages (as shown in step S1104).

而上述的電壓判讀方法更可包括下列步驟:當判定第一延遲訊號的相位係超前第二延遲訊號的相位時,係判定第一電壓係大於第二電壓,而當判定第二延遲訊號的相位係超前第一延遲訊號的相位時,則判定第二電壓係大於第一電壓。The voltage interpretation method may further include the following steps: when determining that the phase of the first delay signal leads the phase of the second delay signal, determining that the first voltage system is greater than the second voltage, and determining the phase of the second delay signal When the phase of the first delay signal is advanced, it is determined that the second voltage system is greater than the first voltage.

綜上所述,本發明係採用二個延遲鏈來分別將位元線與互補位元線上的電壓大小轉換成相位上的延遲。因此,使用者僅需依據第一延遲訊號與第二延遲訊號二者的相位關係,就可以判定位元線與互補位元線上的電壓大小。由於電壓越大,延遲就越小,因此當第一延遲訊號的相位係超前第二延遲訊號的相位時,便可判定位元線上的電壓係大於互補位元線上的電壓;而當判定第二延遲訊號的相位係超前第一延遲訊號的相位時,則可判定互補位元線上的電壓係大於位元線上的電壓。In summary, the present invention employs two delay chains to convert the magnitudes of the voltages on the bit lines and the complementary bit lines into phase delays, respectively. Therefore, the user only needs to determine the voltage level on the bit line and the complementary bit line according to the phase relationship between the first delay signal and the second delay signal. Since the voltage is larger, the delay is smaller. Therefore, when the phase of the first delay signal leads the phase of the second delay signal, it can be determined that the voltage on the bit line is greater than the voltage on the complementary bit line; When the phase of the delayed signal leads the phase of the first delayed signal, it can be determined that the voltage on the complementary bit line is greater than the voltage on the bit line.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

102...位元線102. . . Bit line

104...互補位元線104. . . Complementary bit line

110、900...感測放大器110, 900. . . Sense amplifier

120、140、910、920...延遲鏈120, 140, 910, 920. . . Delay chain

122~132、142~152、200、300、500、600、700、800...反相器122~132, 142~152, 200, 300, 500, 600, 700, 800. . . inverter

202、204、302、304、502、602、702、704、802、804...P型電晶體202, 204, 302, 304, 502, 602, 702, 704, 802, 804. . . P-type transistor

206、208、306、308、504、506、604、606、706、806...N型電晶體206, 208, 306, 308, 504, 506, 604, 606, 706, 806. . . N type transistor

930...相位變化檢測器930. . . Phase change detector

932、934、936、938...D型正反器932, 934, 936, 938. . . D-type flip-flop

940...比較電路940. . . Comparison circuit

942、944...多工器942, 944. . . Multiplexer

CLK...時脈訊號CLK. . . Clock signal

DS1、DS2...延遲訊號DS1, DS2. . . Delay signal

EN...讀取致能訊號EN. . . Read enable signal

IN...反相器的輸入訊號IN. . . Inverter input signal

INI...初始設定訊號INI. . . Initial setting signal

OUT...反相器的輸出訊號OUT. . . Inverter output signal

SAO、SAOB...相位變化檢測器的輸出訊號SAO, SAOB. . . Phase change detector output signal

Td1...延遲訊號DS1的延遲時間Td1. . . Delay time of delay signal DS1

Td2...延遲訊號DS2的延遲時間Td2. . . Delay time of delay signal DS2

V1...位元線102上之電壓V1. . . Voltage on bit line 102

V2...互補位元線104上之電壓V2. . . Voltage on complementary bit line 104

VDD...電源電壓VDD. . . voltage

SEL...選擇訊號SEL. . . Select signal

VSS...參考電位VSS. . . Reference potential

Qn、Qbn、Qi、Qbi...D型正反器所輸出的訊號Qn, Qbn, Qi, Qbi. . . Signal output by D-type flip-flop

D...D型正反器的資料輸入端D. . . Data input terminal of D-type flip-flop

Q...D型正反器的資料輸出端Q. . . Data output of D-type flip-flop

R...D型正反器的重置端R. . . Reset end of D-type flip-flop

S1102、S1104...步驟S1102, S1104. . . step

圖1繪示有依照本發明一實施例之一種感測放大器。1 illustrates a sense amplifier in accordance with an embodiment of the present invention.

圖2係繪示延遲鏈120中之反相器的其中一種電路架構。FIG. 2 illustrates one of the circuit architectures of the inverter in the delay chain 120.

圖3係繪示延遲鏈140中之反相器的其中一種電路架構。FIG. 3 illustrates one of the circuit architectures of the inverter in the delay chain 140.

圖4繪示有時脈訊號CLK、延遲訊號DS1與延遲訊號DS2這三者的其中一種時序關係。FIG. 4 illustrates one of the timing relationships of the pulse signal CLK, the delay signal DS1, and the delay signal DS2.

圖5係繪示延遲鏈120中之反相器的另一種電路架構。FIG. 5 illustrates another circuit architecture of the inverter in the delay chain 120.

圖6係繪示延遲鏈140中之反相器的另一種電路架構。FIG. 6 illustrates another circuit architecture of the inverter in the delay chain 140.

圖7係繪示延遲鏈120中之反相器的再一種電路架構。FIG. 7 illustrates still another circuit architecture of the inverter in the delay chain 120.

圖8係繪示延遲鏈140中之反相器的再一種電路架構。FIG. 8 illustrates yet another circuit architecture of the inverter in delay chain 140.

圖9為依照本發明另一實施例之一種感測放大器。9 is a sense amplifier in accordance with another embodiment of the present invention.

圖10係繪示相位變化檢測器930的其中一種實現方式。FIG. 10 illustrates one implementation of phase change detector 930.

圖11為依照本發明一實施例之位元線對的電壓判讀方法的基本步驟。Figure 11 is a diagram showing the basic steps of a voltage interpretation method for bit line pairs in accordance with an embodiment of the present invention.

102...位元線102. . . Bit line

104...互補位元線104. . . Complementary bit line

110...感測放大器110. . . Sense amplifier

120、140...延遲鏈120, 140. . . Delay chain

122~132、142~152...反相器122~132, 142~152. . . inverter

CLK...時脈訊號CLK. . . Clock signal

DS1、DS2...延遲訊號DS1, DS2. . . Delay signal

EN...讀取致能訊號EN. . . Read enable signal

V1...位元線102上之電壓V1. . . Voltage on bit line 102

V2...互補位元線104上之電壓V2. . . Voltage on complementary bit line 104

Claims (12)

一種感測放大器,包括:一第一延遲鏈,用以電性連接一位元線,並用以接收一時脈訊號與該位元線上之一第一電壓,以依據該第一電壓的電壓大小來延遲該時脈訊號,據以產生一第一延遲訊號;以及一第二延遲鏈,用以電性連接一互補位元線,並用以接收該時脈訊號與該互補位元線上之一第二電壓,以依據該第二電壓的電壓大小來延遲該時脈訊號,據以產生一第二延遲訊號。 A sense amplifier includes: a first delay chain electrically connected to a bit line, and configured to receive a clock signal and a first voltage on the bit line to depend on a voltage of the first voltage Delaying the clock signal to generate a first delay signal; and a second delay chain for electrically connecting a complementary bit line and for receiving the clock signal and the second of the complementary bit line The voltage is delayed by the clock signal according to the voltage of the second voltage, thereby generating a second delay signal. 如申請專利範圍第1項所述之感測放大器,其中每一延遲鏈係具有偶數個反相器。 A sense amplifier as claimed in claim 1 wherein each delay chain has an even number of inverters. 如申請專利範圍第2項所述之感測放大器,其中該第一延遲鏈中之每一反相器包括:一第一P型電晶體,其一源/汲極用以電性連接一電源電壓,而其閘極用以接收一讀取致能訊號;一第二P型電晶體,其一源/汲極電性連接該第一P型電晶體之另一源/汲極,其閘極作為反相器之輸入端,而其另一源/汲極作為反相器之輸出端;一第一N型電晶體,其一源/汲極電性連接該第二P型電晶體之另一源/汲極,而其閘極電性連接該第二P型電晶體之閘極;以及一第二N型電晶體,其一源/汲極電性連接該第一N型電晶體之另一源/汲極,其閘極用以接收該第一電壓,而其另一源/汲極用以電性連接一參考電位。 The sense amplifier of claim 2, wherein each of the first delay chains comprises: a first P-type transistor, wherein a source/drain is electrically connected to a power source. a voltage, and a gate thereof for receiving a read enable signal; a second P-type transistor, wherein a source/drain is electrically connected to another source/drain of the first P-type transistor, and the gate thereof The pole is used as the input end of the inverter, and the other source/drain is used as the output end of the inverter; a first N-type transistor, one source/drain is electrically connected to the second P-type transistor Another source/drain, wherein the gate is electrically connected to the gate of the second P-type transistor; and a second N-type transistor, wherein a source/drain is electrically connected to the first N-type transistor The other source/drain has a gate for receiving the first voltage and another source/drain for electrically connecting to a reference potential. 如申請專利範圍第3項所述之感測放大器,其中該第二延遲鏈中之每一反相器包括:一第一P型電晶體,其一源/汲極用以電性連接該電源電壓,而其閘極用以接收該讀取致能訊號;一第二P型電晶體,其一源/汲極電性連接該第一P型電晶體之另一源/汲極,其閘極作為反相器之輸入端,而其另一源/汲極作為反相器之輸出端;一第一N型電晶體,其一源/汲極電性連接該第二P型電晶體之另一源/汲極,而其閘極電性連接該第二P型電晶體之閘極;以及一第二N型電晶體,其一源/汲極電性連接該第一N型電晶體之另一源/汲極,其閘極用以接收該第二電壓,而其另一源/汲極用以電性連接該參考電位。 The sense amplifier of claim 3, wherein each of the second delay chains comprises: a first P-type transistor, wherein a source/drain is electrically connected to the power source. a voltage, and a gate thereof for receiving the read enable signal; a second P-type transistor, wherein a source/drain is electrically connected to another source/drain of the first P-type transistor, and the gate thereof The pole is used as the input end of the inverter, and the other source/drain is used as the output end of the inverter; a first N-type transistor, one source/drain is electrically connected to the second P-type transistor Another source/drain, wherein the gate is electrically connected to the gate of the second P-type transistor; and a second N-type transistor, wherein a source/drain is electrically connected to the first N-type transistor The other source/drain is configured to receive the second voltage and another source/drain for electrically connecting the reference potential. 如申請專利範圍第2項所述之感測放大器,其中該第一延遲鏈中之每一反相器包括:一P型電晶體,其一源/汲極用以電性連接一電源電壓,其閘極作為反相器之輸入端,而其另一源/汲極作為反相器之輸出端;一第一N型電晶體,其一源/汲極電性連接該P型電晶體之另一源/汲極,而其閘極電性連接該P型電晶體之閘極;以及一第二N型電晶體,其一源/汲極電性連接該第一N型電晶體之另一源/汲極,其閘極用以接收該第一電壓,而其另一源/汲極用以電性連接一參考電位。 The sense amplifier of claim 2, wherein each of the first delay chains comprises: a P-type transistor, wherein a source/drain is electrically connected to a power supply voltage, The gate is used as the input end of the inverter, and the other source/drain is used as the output end of the inverter; a first N-type transistor, one source/drain is electrically connected to the P-type transistor Another source/drain, wherein the gate is electrically connected to the gate of the P-type transistor; and a second N-type transistor, wherein a source/drain is electrically connected to the first N-type transistor A source/drain has a gate for receiving the first voltage and another source/drain for electrically connecting to a reference potential. 如申請專利範圍第5項所述之感測放大器,其中該第二延遲鏈中之每一反相器包括:一P型電晶體,其一源/汲極用以電性連接該電源電壓,其閘極作為反相器之輸入端,而其另一源/汲極作為反相器之輸出端;一第一N型電晶體,其一源/汲極電性連接該P型電晶體之另一源/汲極,而其閘極電性連接該P型電晶體之閘極;以及一第二N型電晶體,其一源/汲極電性連接該第一N型電晶體之另一源/汲極,其閘極用以接收該第二電壓,而其另一源/汲極用以電性連接該參考電位。 The sense amplifier of claim 5, wherein each of the second delay chains comprises: a P-type transistor, wherein a source/drain is electrically connected to the power supply voltage, The gate is used as the input end of the inverter, and the other source/drain is used as the output end of the inverter; a first N-type transistor, one source/drain is electrically connected to the P-type transistor Another source/drain, wherein the gate is electrically connected to the gate of the P-type transistor; and a second N-type transistor, wherein a source/drain is electrically connected to the first N-type transistor A source/drain has a gate for receiving the second voltage and another source/drain for electrically connecting the reference potential. 如申請專利範圍第2項所述之感測放大器,其中該第一延遲鏈中之每一反相器包括:一第一P型電晶體,其一源/汲極用以電性連接一電源電壓,而其閘極接收該第一電壓;一第二P型電晶體,其一源/汲極電性連接該第一P型電晶體之另一源/汲極,其閘極作為反相器之輸入端,而其另一源/汲極作為反相器之輸出端;以及一N型電晶體,其一源/汲極電性連接該第二P型電晶體之另一源/汲極,而其閘極電性連接該第二P型電晶體之閘極,而其另一源/汲極用以電性連接一參考電位。 The sense amplifier of claim 2, wherein each of the first delay chains comprises: a first P-type transistor, wherein a source/drain is electrically connected to a power source. a voltage, and a gate thereof receives the first voltage; a second P-type transistor, a source/drain is electrically connected to another source/drain of the first P-type transistor, and the gate thereof is inverted The input of the device, and the other source/drain as the output of the inverter; and an N-type transistor, one source/drain is electrically connected to another source of the second P-type transistor The gate is electrically connected to the gate of the second P-type transistor, and the other source/drain is electrically connected to a reference potential. 如申請專利範圍第7項所述之感測放大器,其中該第二延遲鏈中之每一反相器包括: 一第一P型電晶體,其一源/汲極用以電性連接該電源電壓,而其閘極接收該第二電壓;一第二P型電晶體,其一源/汲極電性連接該第一P型電晶體之另一源/汲極,其閘極作為反相器之輸入端,而其另一源/汲極作為反相器之輸出端;以及一N型電晶體,其一源/汲極電性連接該第二P型電晶體之另一源/汲極,而其閘極電性連接該第二P型電晶體之閘極,而其另一源/汲極用以電性連接該參考電位。 The sense amplifier of claim 7, wherein each of the second delay chains comprises: a first P-type transistor, wherein a source/drain is electrically connected to the power supply voltage, and a gate thereof receives the second voltage; and a second P-type transistor is electrically connected to a source/drain Another source/drain of the first P-type transistor has a gate as an input of the inverter and another source/drain as an output of the inverter; and an N-type transistor, One source/drain is electrically connected to another source/drain of the second P-type transistor, and the gate is electrically connected to the gate of the second P-type transistor, and the other source/drain is used The reference potential is electrically connected. 如申請專利範圍第2項所述之感測放大器,其更包括一相位變化檢測器,該相位變化檢測器具有一初始操作階段與一感測操作階段,該感測操作階段在該初始操作階段之後,且在該初始操作階段中,該相位變化檢測器會檢測該第一延遲訊號與該第二延遲訊號之相位的先後順序,並據以儲存成一第一檢測結果,而在該感測操作階段中,該相位變化檢測器會檢測該第一延遲訊號與該第二延遲訊號之相位的先後順序,並據以儲存成一第二檢測結果,且當該第二檢測結果顯示出該第一延遲訊號與該第二延遲訊號之相位為相同時,該相位變化檢測器輸出與該第一檢測結果相反的結果,而當該第二檢測結果顯示出該第一延遲訊號與該第二延遲訊號之相位為不同時,該相位變化檢測器輸出該第二檢測結果。 The sense amplifier of claim 2, further comprising a phase change detector having an initial operation phase and a sensing operation phase, the sensing operation phase being after the initial operation phase And in the initial operation phase, the phase change detector detects the sequence of the phase of the first delay signal and the second delay signal, and stores the first detection result according to the first detection result, and in the sensing operation phase The phase change detector detects the sequence of the phase of the first delay signal and the second delay signal, and stores the result as a second detection result, and when the second detection result displays the first delay signal When the phase of the second delay signal is the same, the phase change detector outputs a result opposite to the first detection result, and when the second detection result shows the phase of the first delay signal and the second delay signal In the case of not being the same, the phase change detector outputs the second detection result. 如申請專利範圍第9項所述之感測放大器,其中該相位變化檢測器包括:一第一D型正反器,具有一第一資料輸入端、一第一資料輸出端與一第一時脈輸入端,該第一資料輸入端用以接收該 第一延遲訊號,而該第一時脈輸入端用以接收該第二延遲訊號;一第二D型正反器,具有一第二資料輸入端、一第二資料輸出端與一第二時脈輸入端,該第二資料輸入端用以接收該第二延遲訊號,而該第二時脈輸入端用以接收該第一延遲訊號;一第三D型正反器,具有一第三資料輸入端、一第三資料輸出端與一第三時脈輸入端,該第三資料輸入端用以接收該第一資料輸出端所輸出之訊號,而該第三時脈輸入端用以接收一初始設定訊號,該初始設定訊號用以決定該相位變化檢測器處於該初始操作階段或該感測操作階段;一第四D型正反器,具有一第四資料輸入端、一第四資料輸出端與一第四時脈輸入端,該第四資料輸入端用以接收該第二資料輸出端所輸出之訊號,而該第四時脈輸入端用以接收該初始設定訊號;一第一多工器,用以接收該第一資料輸出端所輸出之訊號與該第四資料輸出端所輸出之訊號,並依據一選擇訊號輸出該第一資料輸出端所輸出之訊號與該第四資料輸出端所輸出之訊號二者其中之一;一第二多工器,用以接收該第二資料輸出端所輸出之訊號與該第三資料輸出端所輸出之訊號,並依據該選擇訊號輸出該第二資料輸出端所輸出之訊號與該第三資料輸出端所輸出之訊號二者其中之一;以及一比較電路,用以接收該第一資料輸出端所輸出之訊號、該第二資料輸出端所輸出之訊號、該第三資料輸出端所輸出之訊號與該第四資料輸出端所輸出之訊號,並用以比較該第一資 料輸出端所輸出之訊號與該第二資料輸出端所輸出之訊號二者的相位是否相同,據以輸出該選擇訊號,且當比較結果為是時,該比較電路利用該選擇訊號控制該第一多工器與該第二多工器分別輸出該第四資料輸出端所輸出之訊號與該第三資料輸出端所輸出之訊號,以作為與該第一檢測結果相反的結果來輸出,而當比較結果為否時,該比較電路利用該選擇訊號控制該第一多工器與該第二多工器分別輸出該第一資料輸出端所輸出之訊號與該第二資料輸出端所輸出之訊號,以作為該第二檢測結果來輸出。 The sense amplifier of claim 9, wherein the phase change detector comprises: a first D-type flip-flop having a first data input, a first data output, and a first time a pulse input end, the first data input end is configured to receive the a first delay signal, wherein the first clock input is configured to receive the second delay signal; and a second D-type flip-flop has a second data input end, a second data output end, and a second time a second data input terminal for receiving the second delay signal, wherein the second clock input terminal is configured to receive the first delay signal; and a third D-type flip-flop device having a third data source An input end, a third data output end and a third clock input end, wherein the third data input end is configured to receive the signal output by the first data output end, and the third clock input end is configured to receive a signal An initial setting signal, the initial setting signal is used to determine that the phase change detector is in the initial operation phase or the sensing operation phase; a fourth D-type flip-flop has a fourth data input terminal and a fourth data output And a fourth clock input end, the fourth data input end is configured to receive the signal output by the second data output end, and the fourth clock input end is configured to receive the initial setting signal; a device for receiving the first data output end The output signal and the signal output by the fourth data output end, and output one of the signal output by the first data output end and the signal output by the fourth data output end according to a selection signal; a second multiplexer for receiving the signal output by the second data output end and the signal output by the third data output end, and outputting the signal output by the second data output end according to the selection signal and the third One of the signals outputted by the data output terminal; and a comparison circuit for receiving the signal output by the first data output terminal, the signal output by the second data output terminal, and the third data output terminal The output signal and the signal output by the fourth data output are used to compare the first capital Whether the phase outputted by the output end of the signal and the signal outputted by the second data output end are the same, according to which the selection signal is output, and when the comparison result is yes, the comparison circuit controls the first use of the selection signal a multiplexer and the second multiplexer respectively output a signal output by the fourth data output terminal and a signal output by the third data output terminal to output as a result opposite to the first detection result, and When the comparison result is no, the comparison circuit controls the first multiplexer and the second multiplexer to output the signal output by the first data output end and the second data output end respectively by using the selection signal. The signal is output as the second detection result. 一種位元線對的電壓判讀方法,包括:依據一位元線上之一第一電壓的電壓大小來延遲一時脈訊號,據以產生一第一延遲訊號,並依據一互補位元線上之一第二電壓的電壓大小來延遲該時脈訊號,據以產生一第二延遲訊號;以及依據該第一延遲訊號與該第二延遲訊號二者的相位關係來判定該第一電壓與該第二電壓二者的電壓大小。 A voltage interpretation method for a bit line pair includes: delaying a clock signal according to a voltage level of a first voltage on a bit line, thereby generating a first delay signal, and according to one of the complementary bit lines The voltage of the two voltages delays the clock signal to generate a second delay signal; and determines the first voltage and the second voltage according to a phase relationship between the first delay signal and the second delay signal The voltage of both. 如申請專利範圍第11項所述之電壓判讀方法,其中當判定該第一延遲訊號的相位係超前該第二延遲訊號的相位時,係判定該第一電壓係大於該第二電壓,而當判定該第二延遲訊號的相位係超前該第一延遲訊號的相位時,則判定該第二電壓係大於該第一電壓。The voltage interpretation method of claim 11, wherein when determining that the phase of the first delay signal is ahead of the phase of the second delay signal, determining that the first voltage system is greater than the second voltage When it is determined that the phase of the second delay signal is ahead of the phase of the first delay signal, it is determined that the second voltage system is greater than the first voltage.
TW100141929A 2011-11-16 2011-11-16 Sense amplifier and method for determining values of voltages on bit line pair TWI512753B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100141929A TWI512753B (en) 2011-11-16 2011-11-16 Sense amplifier and method for determining values of voltages on bit line pair

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100141929A TWI512753B (en) 2011-11-16 2011-11-16 Sense amplifier and method for determining values of voltages on bit line pair

Publications (2)

Publication Number Publication Date
TW201322271A TW201322271A (en) 2013-06-01
TWI512753B true TWI512753B (en) 2015-12-11

Family

ID=49032451

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100141929A TWI512753B (en) 2011-11-16 2011-11-16 Sense amplifier and method for determining values of voltages on bit line pair

Country Status (1)

Country Link
TW (1) TWI512753B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795372B2 (en) * 2002-09-11 2004-09-21 Samsung Electronics Co. Ltd. Bit line sense amplifier driving control circuits and methods for synchronous drams that selectively supply and suspend supply of operating voltages
US7095665B2 (en) * 2003-06-25 2006-08-22 Samsung Electronics Co., Ltd. Sense amplifier driver and semiconductor device comprising the same
US7376026B2 (en) * 2005-03-01 2008-05-20 Infineon Technologies Ag Integrated semiconductor memory having sense amplifiers selectively activated at different timing
US7379355B2 (en) * 2006-01-17 2008-05-27 Samsung Electronics Co., Ltd. Circuit for enabling sense amplifier and semiconductor memory device having the same
US7746714B2 (en) * 2007-02-23 2010-06-29 Hynix Semiconductor, Inc. Semiconductor memory device having bit-line sense amplifier
US7764557B2 (en) * 2007-10-29 2010-07-27 Hynix Semiconductor Inc. Sense amplifier driving circuit and semiconductor device having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795372B2 (en) * 2002-09-11 2004-09-21 Samsung Electronics Co. Ltd. Bit line sense amplifier driving control circuits and methods for synchronous drams that selectively supply and suspend supply of operating voltages
US7095665B2 (en) * 2003-06-25 2006-08-22 Samsung Electronics Co., Ltd. Sense amplifier driver and semiconductor device comprising the same
US7376026B2 (en) * 2005-03-01 2008-05-20 Infineon Technologies Ag Integrated semiconductor memory having sense amplifiers selectively activated at different timing
US7379355B2 (en) * 2006-01-17 2008-05-27 Samsung Electronics Co., Ltd. Circuit for enabling sense amplifier and semiconductor memory device having the same
US7746714B2 (en) * 2007-02-23 2010-06-29 Hynix Semiconductor, Inc. Semiconductor memory device having bit-line sense amplifier
US7764557B2 (en) * 2007-10-29 2010-07-27 Hynix Semiconductor Inc. Sense amplifier driving circuit and semiconductor device having the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Attarzadeh, Hourieh et al., "A Scalable Offset-Cancelled Current/Voltage Sense Amplifier", Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on May 30 2010-June 2 2010 *
Song T. et al., "A Robust Latch-Type Sense Amplifier Using Adaptive Latch Resistance", IC Design and Technology (ICICDT), 2010 IEEE International Conference on 2-4 June 2010 *

Also Published As

Publication number Publication date
TW201322271A (en) 2013-06-01

Similar Documents

Publication Publication Date Title
KR101367063B1 (en) Apparatus and method for adjusting an operating parameter of an integrated circuit
KR101559436B1 (en) System and method for reducing cross coupling effects
US10164638B2 (en) Balanced charge-recycling repeater link
KR102060073B1 (en) Semiconductor circuit
US20140355334A1 (en) Handshaking sense amplifier
TW201619948A (en) Shift register
US8854897B2 (en) Static random access memory apparatus and bit-line voltage controller thereof
KR20170016543A (en) Level shifter circuit and parallel to serial converter circuit including the same
KR101906371B1 (en) Duty cycle error accumulation circuit and duty cycle correction circuit having the same
JP2011050004A (en) Semiconductor device and phase detection circuit
US10382025B2 (en) Circuit for meeting setup and hold times of a control signal with respect to a clock
US8305125B2 (en) Low latency synchronizer circuit
JP5241685B2 (en) Voltage level converter without phase distortion
US20080001628A1 (en) Level conversion circuit
CN106990367A (en) SoC on-chip power supply noise monitoring systems
JP2008131256A (en) Flip-flop circuit
TWI512753B (en) Sense amplifier and method for determining values of voltages on bit line pair
CN107909957A (en) Gate drive circuit
CN206461708U (en) ADC dynamic logics reverse circuit, word line voltage selection circuit and storage unit circuit
KR100942976B1 (en) Data sorting circuit and its driving method
CN103137174B (en) Voltage Determination Method of Sense Amplifier and Bit Line Pair
US8588020B2 (en) Sense amplifier and method for determining values of voltages on bit-line pair
TW201308907A (en) Differential comparator
EP3070845B1 (en) Comparison circuit
KR100689711B1 (en) Temperature sensing circuit and temperature sensing method accordingly