TWI508250B - Memory cell structures - Google Patents
Memory cell structures Download PDFInfo
- Publication number
- TWI508250B TWI508250B TW101123633A TW101123633A TWI508250B TW I508250 B TWI508250 B TW I508250B TW 101123633 A TW101123633 A TW 101123633A TW 101123633 A TW101123633 A TW 101123633A TW I508250 B TWI508250 B TW I508250B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode
- memory cell
- electrodes
- contact
- memory unit
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/841—Electrodes
- H10N70/8418—Electrodes adapted for focusing electric field or current, e.g. tip-shaped
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
- H10B63/82—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays the switching components having a common active material layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/20—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/021—Formation of switching materials, e.g. deposition of layers
- H10N70/023—Formation of switching materials, e.g. deposition of layers by chemical vapor deposition, e.g. MOCVD, ALD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/24—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
- H10N70/245—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/841—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/841—Electrodes
- H10N70/8416—Electrodes adapted for supplying ionic species
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8833—Binary metal oxides, e.g. TaOx
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8836—Complex metal oxides, e.g. perovskites, spinels
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Mram Or Spin Memory Techniques (AREA)
Description
本發明大體上係關於半導體記憶裝置及方法,且更特定言之,本發明係關於記憶體單元結構及其形成方法。The present invention relates generally to semiconductor memory devices and methods, and more particularly to memory cell structures and methods of forming the same.
記憶體裝置通常被設置為電腦或其他電子裝置中之內部半導體積體電路。存在諸多不同類型之記憶體,其尤其包含隨機存取記憶體(RAM)、唯讀記憶體(ROM)、動態隨機存取記憶體(DRAM)、同步動態隨機存取記憶體(SDRAM)、快閃記憶體、相變隨機存取記憶體(PCRAM)、自旋扭矩轉移隨機存取記憶體(STTRAM)、電阻隨機存取記憶體(RRAM)、磁電阻隨機存取記憶體(MRAM;亦被稱為磁性隨機存取記憶體)、導電橋接隨機存取記憶體(CBRAM)。The memory device is typically configured as an internal semiconductor integrated circuit in a computer or other electronic device. There are many different types of memory, including, in particular, random access memory (RAM), read only memory (ROM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), fast Flash memory, phase change random access memory (PCRAM), spin torque transfer random access memory (STTRAM), resistive random access memory (RRAM), magnetoresistive random access memory (MRAM; also Called magnetic random access memory), conductive bridged random access memory (CBRAM).
記憶體裝置係用作為需要高記憶密度、高可靠性及低功率消耗之廣範圍電子應用之非揮發性記憶體。非揮發性記憶體可尤其用在一個人電腦、一可攜式記憶卡、一固態驅動機(SSD)、一個人數位助理(PDA)、一數位相機、一蜂巢式電話、一可攜式音樂播放器(例如MP3播放器)及一電影播放器及其他電子裝置中。程式碼及系統資料(諸如一基本輸入/輸出系統(BIOS))通常儲存在非揮發性記憶體裝置中。The memory device is used as a non-volatile memory for a wide range of electronic applications requiring high memory density, high reliability, and low power consumption. Non-volatile memory can be used especially in a personal computer, a portable memory card, a solid state drive (SSD), a PDA, a digital camera, a cellular phone, a portable music player. (such as MP3 players) and a movie player and other electronic devices. Code and system data, such as a basic input/output system (BIOS), are typically stored in a non-volatile memory device.
例如,諸多記憶體裝置(諸如RRAM、PCRAM、MRAM、STTRAM及CBRAM)可包含組織成(例如)二端交叉點架構 之記憶體單元陣列。二端交叉點架構中之記憶體單元陣列可包含在記憶體單元材料之間具有平坦表面之電極。對於絲狀型記憶體裝置(例如RRAM及/或CBRAM),電極之平坦表面之間之記憶體單元之作用區之位置為可變,此係因為電極之平坦表面提供橫跨記憶體單元材料之一實質上均勻電場。For example, many memory devices (such as RRAM, PCRAM, MRAM, STTRAM, and CBRAM) can be organized into, for example, a two-terminal cross-point architecture. A memory cell array. The memory cell array in the two-terminal cross-point architecture can include electrodes having a flat surface between the memory cell materials. For a filament-like memory device (such as RRAM and/or CBRAM), the location of the active region of the memory cell between the flat surfaces of the electrodes is variable because the flat surface of the electrode provides material across the memory cell. A substantially uniform electric field.
本發明包含記憶體單元結構及其形成方法。此一記憶體單元包含:一第一電極,其具有相對於該第一電極之一底面成小於90度角之側壁;一第二電極,其包含該第二電極之一電極接觸部分,該電極接觸部分具有相對於該第一電極之該底面成小於90度角之側壁,其中該第二電極係在該第一電極上方;及一儲存元件,其介於該第一電極與該第二電極之該電極接觸部分之間。The present invention encompasses memory cell structures and methods of forming the same. The memory unit includes: a first electrode having a sidewall at an angle of less than 90 degrees with respect to a bottom surface of the first electrode; and a second electrode including an electrode contact portion of the second electrode, the electrode The contact portion has a sidewall at an angle of less than 90 degrees with respect to the bottom surface of the first electrode, wherein the second electrode is above the first electrode; and a storage element interposed between the first electrode and the second electrode The electrode contacts between the portions.
在一或多項實施例中,一記憶體單元(其具有:一第一電極,其具有相對於該第一電極之一底面成小於90度角之側壁;及一第二電極之一電極接觸部分,該電極接觸部分具有相對於該第一電極之該底面成小於90度角之側壁)可使其之纖絲成核位置定位於該第一電極之一鈍峰與該第二電極之該電極接觸部分之一點之間。In one or more embodiments, a memory cell (having: a first electrode having sidewalls at an angle of less than 90 degrees with respect to a bottom surface of the first electrode; and an electrode contact portion of a second electrode The electrode contact portion has a sidewall having an angle of less than 90 degrees with respect to the bottom surface of the first electrode, and the fibril nucleation position thereof is positioned at one of the first electrode and the electrode of the second electrode Contact one of the points between the points.
在本發明之以下詳細描述中,參考形成本發明之一部分之附圖,且附圖中以繪示方式展示可如何實踐本發明之諸多實施例。足夠詳細地描述此等實施例以使一般技術者能 夠實踐本發明之該等實施例,且應瞭解,可利用其他實施例且可在不背離本發明之範疇之情況下作出程序、電及/或結構變化。BRIEF DESCRIPTION OF THE DRAWINGS In the following detailed description of the invention, reference to the drawings These embodiments are described in sufficient detail to enable the general practitioner to The embodiments of the present invention are to be construed as being illustrative, and other embodiments may be utilized, and may be
如本文中所使用,「諸多」某物件可意指一或多個此物件。例如,諸多記憶體裝置可意指一或多個記憶體裝置。此外,如本文中所使用,圖式中尤其相對於元件符號之指定符「N」及「M」指示:本發明之諸多實施例可包含指定數量之特定特徵。As used herein, "a plurality of" items may mean one or more of such items. For example, many memory devices may mean one or more memory devices. In addition, as used herein, the designations "N" and "M", particularly with respect to the component symbols, indicate that the various embodiments of the invention may include a specified number of specific features.
在本文中,圖式遵循一編號慣例,其中首位數字或前若干位數字對應於圖式編號且剩餘數字識別圖式中之一元件或組件。可使用類似數字來識別不同圖之間之類似元件或組件。例如,208可意指圖2中之元件「08」且圖3中之一類似元件可被標記308。應瞭解,本文各種實施例中所展示之元件可經添加、交換及/或消除以便提供本發明之諸多額外實施例。此外,應瞭解,圖中所提供之元件之比例及相對尺度意欲繪示本發明之實施例且不應被視為意指限制。Herein, the drawings follow a numbering convention in which the first digit or the first digits correspond to the schema numbering and the remaining digits identify one of the elements or components in the drawing. Similar numbers may be used to identify similar elements or components between different figures. For example, 208 may refer to element "08" in FIG. 2 and one of the similar elements in FIG. 3 may be labeled 308. It will be appreciated that elements shown in the various embodiments herein can be added, exchanged, and/or eliminated to provide numerous additional embodiments of the invention. In addition, it should be understood that the proportions and relative dimensions of the elements of the present invention are intended to illustrate embodiments of the invention and are not to be considered as limiting.
圖1係一方塊圖,其繪示一記憶體單元陣列100之一部分。在圖1所繪示之實例中,陣列100係一交叉點陣列,其包含:第一數量之導電線130-0、130-1、...、130-N(例如存取線),其等在本文中可被稱為字線;及第二數量之導電線120-0、120-1、...、120-M(例如資料線),其等在本文中可被稱為位元線。如圖所繪示,字線130-0、130-1、...、130-N實質上彼此平行且實質上正交於實質上彼此 平行之位元線120-0、120-1、...、120-M;然而,實施例不限於此。1 is a block diagram showing a portion of a memory cell array 100. In the example illustrated in FIG. 1, array 100 is an array of intersections comprising: a first number of conductive lines 130-0, 130-1, . . ., 130-N (eg, access lines), Etc. may be referred to herein as a word line; and a second number of conductive lines 120-0, 120-1, ..., 120-M (eg, data lines), which may be referred to herein as bit elements. line. As depicted, word lines 130-0, 130-1, ..., 130-N are substantially parallel to each other and substantially orthogonal to each other substantially Parallel bit lines 120-0, 120-1, ..., 120-M; however, embodiments are not limited thereto.
記憶體單元陣列100可為記憶體單元,諸如結合圖2、圖3、圖4A、圖4B及圖4C而描述之記憶體單元。在此實例中,一記憶體單元係位於字線130-0、130-1、...、130-N與位元線120-0、120-1、...、120-M之交叉點之各者處且記憶體單元可配置成二端架構,該二端架構(例如)具有一特定字線130-0、130-1、...、130-N及位元線120-0、120-1、...、120-M作為記憶體單元之電極。The memory cell array 100 can be a memory cell, such as the memory cell described in connection with Figures 2, 3, 4A, 4B, and 4C. In this example, a memory cell is located at the intersection of word lines 130-0, 130-1, ..., 130-N and bit lines 120-0, 120-1, ..., 120-M. Each of the memory cells can be configured as a two-terminal architecture having, for example, a particular word line 130-0, 130-1, ..., 130-N and a bit line 120-0, 120-1, ..., 120-M are used as electrodes of the memory unit.
例如,記憶體單元可為電阻可變記憶體單元(例如RRAM單元、CBRAM單元、PCRAM單元及/或STT-RAM單元)及其他類型之記憶體單元。一儲存元件125可包含一儲存元件材料及/或一選擇裝置(例如一存取裝置)。儲存元件125之儲存元件材料部分可包含記憶體單元之一可程式化部分,例如,該部分可對諸多不同資料狀態程式化。該存取裝置可尤其為二極體或非歐姆裝置(NOD)。例如,在電阻可變記憶體單元中,一儲存元件可包含具有一電阻之記憶體單元之部分,該部分可回應於(例如)外加程式化電壓及/或電流脈衝而對與特定資料狀態對應之特定位準程式化。一儲存元件可包含一或多個材料,其等共同包括一儲存元件之一可變電阻儲存元件材料部分。例如,該等材料可包含一金屬離子源層、一吸氧層(例如氧源層)及一主動切換層(諸如一固態電解質、一硫族化物、一過渡金屬氧化物材料或具有兩種或兩種以上金屬(例如過渡金屬、鹼土金 屬及/或稀土金屬)之一混合價氧化物)之至少一者。實施例不受限於與記憶體單元之儲存元件125相關聯之一或若干特定電阻可變材料。例如,該電阻可變材料可為由各種摻雜或未摻雜材料形成之一硫族化物。可用以形成儲存元件之電阻可變材料之其他實例尤其包含二元金屬氧化物材料、超巨磁阻材料及/或各種聚合物基電阻可變材料。For example, the memory cells can be resistive variable memory cells (eg, RRAM cells, CBRAM cells, PCRAM cells, and/or STT-RAM cells) and other types of memory cells. A storage component 125 can include a storage component material and/or a selection device (e.g., an access device). The portion of the storage element material of the storage element 125 can include a programmable portion of the memory unit, for example, the portion can be programmed for a number of different data states. The access device can be, in particular, a diode or a non-ohmic device (NOD). For example, in a resistive variable memory cell, a storage component can include a portion of a memory cell having a resistor that can respond to a particular data state in response to, for example, an externally programmed voltage and/or current pulse. The specific level is programmed. A storage element can comprise one or more materials that collectively comprise a portion of a variable resistance storage element material of a storage element. For example, the materials may comprise a metal ion source layer, an oxygen absorbing layer (eg, an oxygen source layer), and an active switching layer (such as a solid electrolyte, a chalcogenide, a transition metal oxide material, or have two or Two or more metals (such as transition metals, alkaline earth gold At least one of a valence oxide and one of a rare earth metal). Embodiments are not limited to being associated with one or several specific resistance variable materials associated with storage elements 125 of a memory unit. For example, the resistance variable material can be a chalcogenide formed from various doped or undoped materials. Other examples of resistive variable materials that can be used to form the storage element include, inter alia, binary metal oxide materials, giant magnetoresistive materials, and/or various polymer-based resistance variable materials.
在操作中,可藉由施加經由選定字線130-0、130-1、...、130-N及位元線120-0、120-1、...、120-M之橫跨記憶體單元之一電壓(例如一寫入電壓)而程式化記憶體單元陣列100。橫跨記憶體單元之電壓脈衝之寬度及/或量值可經調整(例如經變動)以(例如)藉由調整儲存元件之一電阻位準而對記憶體單元之特定資料狀態程式化。In operation, cross-over memory can be applied by applying selected word lines 130-0, 130-1, ..., 130-N and bit lines 120-0, 120-1, ..., 120-M. The memory cell array 100 is programmed by one of the body cells (eg, a write voltage). The width and/or magnitude of the voltage pulses across the memory cells can be adjusted (e.g., varied) to program a particular data state of the memory cells, for example, by adjusting the resistance level of one of the storage elements.
可藉由回應於施加至與各自單元耦合之選定字線130-0、130-1、...、130-N之一特定電壓而感測與各自記憶體單元對應之一位元線120-0、120-1、...、120-M上之(例如)電流而使用一感測(例如讀取)操作來判定一記憶體單元之資料狀態。感測操作亦可包含在特定電壓處使未被選字線及位元線偏壓以感測一選定單元之資料狀態。One bit line 120 corresponding to the respective memory cell can be sensed in response to a particular voltage applied to one of the selected word lines 130-0, 130-1, ..., 130-N coupled to the respective cell. A sensing (e.g., reading) operation is used to determine the data state of a memory cell, for example, at currents of 0, 120-1, ..., 120-M. The sensing operation can also include biasing the unselected word lines and bit lines at a particular voltage to sense the data state of a selected cell.
圖2繪示根據本發明之一或多項實施例之一記憶體單元陣列之一部分。圖2中之記憶體單元陣列可為諸如圖1中所繪示之陣列100之一陣列。如圖2中所繪示,一電極材料204係形成於一基板材料201上。基板材料201可為一半導體材料(例如矽)及各種其他基板材料。電極材料204可為諸如銅及/或鎢之一導電材料及各種其他導電材料。電極材 料204可為一底部電極,例如一導電線(例如,圖1中所展示之一存取線(諸如字線130-0至130-N)或一資料線(諸如位元線120-0至120-M))。電極材料204可經蝕刻以於其內形成諸多谷。例如,可使用一各向同性蝕刻程序(諸如電漿蝕刻)及/或一濕式蝕刻程序來形成電極材料204中之該等谷。電極材料204中之該等谷具有(例如)相對於電極材料204之平坦底面成小於90度角之非垂直側壁。在一或多項實施例中,該等側壁可具有至少10度至80度之間之一角度。在一或多項實施例中,該等側壁可具有約30度至約60度之間之一角度。在一或多項實施例中,該等側壁可呈凸形及/或凹形且實質上非垂直。實施例不受限於電極204之該等側壁之一特定非垂直角。用以於電極材料204內形成該等谷之電極材料204之蝕刻亦可使電極204彼此隔離。2 illustrates a portion of a memory cell array in accordance with one or more embodiments of the present invention. The memory cell array of FIG. 2 can be an array such as one of the arrays 100 depicted in FIG. As shown in FIG. 2, an electrode material 204 is formed on a substrate material 201. The substrate material 201 can be a semiconductor material such as germanium and various other substrate materials. Electrode material 204 can be a conductive material such as copper and/or tungsten and various other conductive materials. Electrode material The material 204 can be a bottom electrode, such as a conductive line (eg, one of the access lines shown in FIG. 1 (such as word lines 130-0 to 130-N) or a data line (such as bit line 120-0 to 120-M)). Electrode material 204 can be etched to form a plurality of valleys therein. For example, an isotropic etch process (such as plasma etching) and/or a wet etch process can be used to form the valleys in electrode material 204. The valleys in electrode material 204 have, for example, non-perpendicular sidewalls that are at an angle of less than 90 degrees with respect to the flat bottom surface of electrode material 204. In one or more embodiments, the side walls can have an angle between at least 10 and 80 degrees. In one or more embodiments, the side walls can have an angle between about 30 degrees and about 60 degrees. In one or more embodiments, the sidewalls may be convex and/or concave and substantially non-perpendicular. Embodiments are not limited to a particular non-perpendicular angle of one of the sidewalls of electrode 204. The etching used to form the electrode material 204 of the valleys in the electrode material 204 also isolates the electrodes 204 from each other.
在一或多項實施例中,可用一介電材料202填充電極材料204中之谷。介電材料202可為諸如氮化矽(Si3 N4 )或矽氧化物(SiOx )之一介電氧化物或氮化物及各種其他介電材料。在圖2所展示之實例中,介電材料202及電極材料204經平坦化以形成介電材料202及電極材料204之一平坦表面。電極材料204之表面平坦化可導致電極204之橫截面具有一梯形橫截面形狀且由形成於電極204之間之各自谷中之介電材料202分離電極204。雖然圖2中未繪示,但電極204形成(例如)沿進入頁面之一方向之導電線。In one or more embodiments, a valley in the electrode material 204 can be filled with a dielectric material 202. Dielectric material 202 can be a dielectric oxide or nitride such as tantalum nitride (Si 3 N 4 ) or hafnium oxide (SiO x ) and various other dielectric materials. In the example shown in FIG. 2, dielectric material 202 and electrode material 204 are planarized to form a flat surface of dielectric material 202 and electrode material 204. The planarization of the surface of the electrode material 204 can result in the cross-sectional mask of the electrode 204 having a trapezoidal cross-sectional shape and separating the electrodes 204 from the dielectric material 202 formed in the respective valleys between the electrodes 204. Although not shown in FIG. 2, electrode 204 forms, for example, a conductive line along one of the directions into the page.
在一或多項實施例中,一儲存元件材料206可形成於介電材料202及電極材料204之平坦化表面上方。電極材料 204包含一接觸部分207。電極材料之接觸部分207可界接及接觸儲存元件材料206。例如,可使用一沈積程序(諸如原子層沈積(ALD)及/或化學氣相沈積(CVD))來形成儲存元件材料206。儲存元件材料206可包含(例如)一或多個電阻可變材料,諸如一過渡金屬氧化物材料或包含兩種或兩種以上金屬(例如過渡金屬、鹼土金屬及/或稀土金屬)之一鈣鈦礦。實施例不受限於一特定電阻可變材料。In one or more embodiments, a storage element material 206 can be formed over the planarization surface of the dielectric material 202 and the electrode material 204. Electrode material 204 includes a contact portion 207. The contact portion 207 of the electrode material can interface and contact the storage element material 206. For example, the storage element material 206 can be formed using a deposition process such as atomic layer deposition (ALD) and/or chemical vapor deposition (CVD). The storage element material 206 can comprise, for example, one or more resistance variable materials, such as a transition metal oxide material or one of two or more metals (eg, transition metals, alkaline earth metals, and/or rare earth metals). Titanium ore. Embodiments are not limited to a particular resistance variable material.
一介電材料212可形成於儲存元件材料206上方。介電材料212可為一介電氧化物或氮化物,諸如(例如)氮化矽(Si3 N4 )或矽氧化物(SiOx )。材料212可經蝕刻以於其內形成谷。例如,可使用一各向同性蝕刻程序(諸如電漿蝕刻)及/或一濕式蝕刻程序來形成材料212中之該等谷。該蝕刻程序可為向下蝕刻至儲存元件材料206之一選擇性蝕刻程序。介電材料212中之該等谷之側壁係非垂直的(例如,相對於基板之平坦底面及/或電極材料204之底面成小於90度角)且可呈筆直、凸形及/或凹形。A dielectric material 212 can be formed over the storage element material 206. Dielectric material 212 can be a dielectric oxide or nitride such as, for example, tantalum nitride (Si 3 N 4 ) or hafnium oxide (SiO x ). Material 212 can be etched to form a valley therein. For example, an isotropic etch process (such as plasma etching) and/or a wet etch process can be used to form the valleys in material 212. The etch process can be a selective etch process that etches down to one of the storage element materials 206. The sidewalls of the valleys in the dielectric material 212 are non-perpendicular (eg, at an angle of less than 90 degrees relative to the flat bottom surface of the substrate and/or the bottom surface of the electrode material 204) and may be straight, convex, and/or concave .
如圖2中所繪示,電極208之一電極接觸部分210可形成於介電材料212中所形成之谷中。因而,電極208之電極接觸部分210具有由形成於介電材料212中之谷之側壁界定之側壁。可經由一沈積程序(諸如物理氣相沈積(PVD)、CVD及/或ALD)而形成電極208之電極接觸部分210。實施例不受限於一特定接觸材料。在一或多項實施例中,接觸材料210可由與電極材料208相同之材料組成。在一或多項實施例中,接觸材料210可由與電極材料208之材料不同之一材 料組成。例如,接觸材料210可為一金屬離子源材料(諸如硫化銀及/或碲化銅),而電極材料208可為鎢及/或銅。在接觸材料210與電極材料208為不同材料之一或多項實施例中,接觸材料210與電極材料208之間可包含至少一介入層(例如TaN)(圖中未繪示)以提供黏著性及/或一擴散障壁。As depicted in FIG. 2, one of the electrode contact portions 210 of the electrode 208 can be formed in a valley formed in the dielectric material 212. Thus, the electrode contact portion 210 of the electrode 208 has sidewalls defined by sidewalls of the valleys formed in the dielectric material 212. The electrode contact portion 210 of the electrode 208 can be formed via a deposition process such as physical vapor deposition (PVD), CVD, and/or ALD. Embodiments are not limited to a particular contact material. In one or more embodiments, the contact material 210 can be composed of the same material as the electrode material 208. In one or more embodiments, the contact material 210 may be different from the material of the electrode material 208. Material composition. For example, contact material 210 can be a metal ion source material such as silver sulfide and/or copper telluride, while electrode material 208 can be tungsten and/or copper. In one or more embodiments in which the contact material 210 and the electrode material 208 are different materials, at least one intervening layer (eg, TaN) (not shown) may be included between the contact material 210 and the electrode material 208 to provide adhesion and / or a diffusion barrier.
一電極材料208可形成於介電材料212中所形成之谷之剩餘部分(例如,未被電極208之電極接觸部分210填充之餘留部分)中以接觸電極接觸部分210。電極材料208可為一導電材料,諸如(例如)銅及/或鎢。電極材料208可為一頂部電極,例如一導電線(例如如圖1中所展示之一存取線(諸如字線130-0至130-N)或一資料線(諸如位元線120-0至120-M))。形成於谷中之電極材料208及介電材料212可經平坦化(例如,經回蝕)以隔離形成於介電材料212中之各個谷中之電極材料208。形成於介電材料212中之谷具有與形成於(例如)電極材料204中之谷不平行之一定向使得電極204與208不平行。在一或多項實施例中,電極204與208係正交的。An electrode material 208 may be formed in the remaining portion of the valley formed in the dielectric material 212 (eg, the remaining portion not filled by the electrode contact portion 210 of the electrode 208) to contact the electrode contact portion 210. Electrode material 208 can be a conductive material such as, for example, copper and/or tungsten. The electrode material 208 can be a top electrode, such as a conductive line (such as one of the access lines (such as word lines 130-0 to 130-N) or a data line (such as bit line 120-0 as shown in FIG. 1). To 120-M)). The electrode material 208 and the dielectric material 212 formed in the valley may be planarized (eg, etched back) to isolate the electrode material 208 formed in each valley of the dielectric material 212. The valleys formed in the dielectric material 212 have an orientation that is not parallel to the valleys formed in, for example, the electrode material 204 such that the electrodes 204 and 208 are not parallel. In one or more embodiments, electrodes 204 and 208 are orthogonal.
根據圖2中所繪示實施例之記憶體單元可提供比前述記憶體單元(例如CBRAM及/或RRAM單元)小之與一纖絲成核位置相關之可變性。例如,該纖絲成核位置可定位於一各自電極204之鈍峰與各自電極接觸部分210之點之間。即,該纖絲成核位置介於電極208之電極接觸部分210之點與電極材料204之鈍峰之間,其之可變性小於具有(例如)兩個平坦表面之間之任一纖絲成核位置之一記憶體單元。此外, 電極208之電極接觸部分210之點及電極材料204之鈍峰可使電場集中於儲存元件材料206中使得與圖2中之一記憶體單元相關聯之一形成電壓小於具有含平坦表面之電極之一記憶體單元之一形成電壓。The memory cell according to the embodiment illustrated in FIG. 2 can provide less variability associated with a fibril nucleation location than the aforementioned memory cells (eg, CBRAM and/or RRAM cells). For example, the fibril nucleation sites can be positioned between a blunt peak of a respective electrode 204 and a point of the respective electrode contact portion 210. That is, the fibril nucleation site is between the point of the electrode contact portion 210 of the electrode 208 and the blunt peak of the electrode material 204, which is less variably less than having any fibril nucleation between, for example, two flat surfaces. One of the memory units in position. In addition, The point of the electrode contact portion 210 of the electrode 208 and the blunt peak of the electrode material 204 may concentrate the electric field in the storage element material 206 such that one of the voltages associated with one of the memory cells of FIG. 2 forms a voltage less than an electrode having a flat surface. One of the memory cells forms a voltage.
圖3繪示根據本發明之一或多項實施例之一記憶體單元陣列之一部分。圖3中之記憶體單元陣列可為諸如圖1中所繪示之陣列100之一陣列。如圖3中所繪示,一電極材料304可形成於一基板301上。基板材料301可為諸如矽之一基板材料及各種其他基板材料。電極材料304可為諸如銅/或鎢之一導電材料及各種其他導電材料。電極材料304可為一底部電極,例如一導電線(例如圖1中所展示之一存取線(諸如字線130-0至130-N)或一資料線(諸如位元線120-0至120-M))。電極材料304可經蝕刻以於其內形成諸多谷。例如,可使用一般各向同性蝕刻程序(諸如電漿蝕刻)及/或一濕式蝕刻程序來形成電極材料304中之該等谷。電極材料304中之該等谷具有(例如)相對於電極材料304之平坦底面成一小於90度角之非垂直側壁。在一或多項實施例中,該等側壁可具有至少10度至80度之間之一角度。在一或多項實施例中,該等側壁可具有約30度至約60度之間之一角度。實施例不受限於電極304之該等側壁之一特定非垂直角。用以於電極材料304內形成該等谷之電極材料304之蝕刻亦可使電極304彼此隔離。3 illustrates a portion of a memory cell array in accordance with one or more embodiments of the present invention. The memory cell array of FIG. 3 can be an array such as one of the arrays 100 depicted in FIG. As shown in FIG. 3, an electrode material 304 may be formed on a substrate 301. The substrate material 301 can be a substrate material such as tantalum and various other substrate materials. Electrode material 304 can be a conductive material such as copper/or tungsten and various other conductive materials. The electrode material 304 can be a bottom electrode, such as a conductive line (such as one of the access lines shown in FIG. 1 (such as word lines 130-0 to 130-N) or a data line (such as bit line 120-0 to 120-M)). Electrode material 304 can be etched to form a plurality of valleys therein. For example, the valleys in the electrode material 304 can be formed using a general isotropic etch process (such as plasma etching) and/or a wet etch process. The valleys in electrode material 304 have, for example, non-vertical sidewalls that are at an angle of less than 90 degrees with respect to the flat bottom surface of electrode material 304. In one or more embodiments, the side walls can have an angle between at least 10 and 80 degrees. In one or more embodiments, the side walls can have an angle between about 30 degrees and about 60 degrees. Embodiments are not limited to a particular non-perpendicular angle of one of the sidewalls of electrode 304. The etching of the electrode material 304 for forming the valleys in the electrode material 304 also isolates the electrodes 304 from each other.
在一或多項實施例中,可用一介電材料302填充電極材料304中之谷。介電材料302可為諸如氮化矽(Si3 N4 )或矽氧 化物(SiOx )之一介電氧化物或氮化物及各種其他介電材料。在圖3所展示之實例中,介電材料302可經蝕刻以暴露電極材料304之尖峰。例如,可使用一各向異性蝕刻程序(諸如電漿蝕刻及/或物理濺鍍)來蝕刻介電材料302。該蝕刻程序可為僅蝕刻介電材料302之一選擇性蝕刻程序。電極材料304之蝕刻可導致電極304之橫截面具有三角形橫截面形狀。電極材料304之蝕刻可包含形成三角形橫截面之電極材料304,其中由形成於電極材料之間之各自谷中之介電材料302分離電極材料之實質上呈三角形之各部分。雖然圖3中未繪示,但電極304形成(例如)沿進入頁面之方向之導電線。In one or more embodiments, a valley in the electrode material 304 can be filled with a dielectric material 302. Dielectric material 302 can be a dielectric oxide or nitride such as tantalum nitride (Si 3 N 4 ) or tantalum oxide (SiO x ) and various other dielectric materials. In the example shown in FIG. 3, dielectric material 302 can be etched to expose spikes in electrode material 304. For example, the dielectric material 302 can be etched using an anisotropic etch process such as plasma etching and/or physical sputtering. The etch process can be a selective etch process that etches only one of the dielectric materials 302. Etching of electrode material 304 can result in a cross-section of electrode 304 having a triangular cross-sectional shape. The etching of the electrode material 304 can include forming an electrode material 304 having a triangular cross-section, wherein the substantially triangular portions of the electrode material are separated by a dielectric material 302 formed in respective valleys between the electrode materials. Although not shown in FIG. 3, electrode 304 forms, for example, a conductive line along the direction into the page.
在一或多項實施例中,一儲存元件材料306可形成於電極材料304及介電材料302上方。例如,可使用一沈積程序(諸如原子層沈積(ALD)及/或化學氣相沈積(CVD))來形成儲存元件材料306。電極材料304包含一接觸部分307。電極材料之接觸部分307可界接儲存元件材料306。儲存元件材料306係形成於電極材料304之尖峰上,且用以形成儲存元件材料306之保形程序可導致儲存元件材料306包含形成於電極材料304之尖峰上方之尖峰。儲存元件材料306可包含(例如)一或多個電阻可變材料,諸如由一過渡金屬氧化物材料或一硫族化物材料組成之一固態電解質。實施例不受限於一特定電阻可變材料。In one or more embodiments, a storage element material 306 can be formed over the electrode material 304 and the dielectric material 302. For example, storage element material 306 can be formed using a deposition process such as atomic layer deposition (ALD) and/or chemical vapor deposition (CVD). The electrode material 304 includes a contact portion 307. The contact portion 307 of the electrode material can be bound to the storage element material 306. The storage element material 306 is formed on the peak of the electrode material 304, and the conformal procedure used to form the storage element material 306 can cause the storage element material 306 to include spikes formed over the peaks of the electrode material 304. The storage element material 306 can comprise, for example, one or more resistance variable materials, such as a solid electrolyte composed of a transition metal oxide material or a chalcogenide material. Embodiments are not limited to a particular resistance variable material.
一介電材料312可形成於儲存元件材料306上方。介電材料312可為一介電氧化物或氮化物,諸如(例如)氮化矽 (Si3 N4 )或矽氧化物(SiOx )。介電材料312可經蝕刻以於其內形成谷。例如,可使用一各向同性蝕刻程序(諸如電漿蝕刻)及/或一濕式蝕刻程序來形成介電材料312中之該等谷。該蝕刻程序可為向下蝕刻至儲存元件材料306之一選擇性蝕刻程序。介電材料312中之該等谷之側壁係非垂直的,例如相對於介電材料312之平坦底面及/或電極材料304之底面成一小於90度角。A dielectric material 312 can be formed over the storage element material 306. Dielectric material 312 can be a dielectric oxide or nitride such as, for example, tantalum nitride (Si 3 N 4 ) or hafnium oxide (SiO x ). Dielectric material 312 can be etched to form valleys therein. For example, an isotropic etch process (such as plasma etching) and/or a wet etch process can be used to form the valleys in the dielectric material 312. The etch process can be a selective etch process that etches down to one of the storage element materials 306. The sidewalls of the valleys in the dielectric material 312 are non-perpendicular, such as at an angle of less than 90 degrees relative to the flat bottom surface of the dielectric material 312 and/or the bottom surface of the electrode material 304.
如圖3中所繪示,一電極308之一電極接觸部分310可形成於介電材料312中所形成之谷中。因而,電極308之電極接觸部分310可形成於儲存元件材料306之尖峰上。儲存元件材料306之尖峰可充當鞍座,其中電極308之電極接觸部分310係形成於尖峰上。電極308之電極接觸部分310可具有由形成於介電材料312中之谷之側壁界定之側壁。可使用PVD、CVD及/或ALD來形成電極接觸材料。在各種實施例中,電極308之電極接觸部分310可為經由PVD而形成之CuTe。然而,實施例不受限於一特定接觸材料。As depicted in FIG. 3, one of the electrode contact portions 310 of the electrode 308 can be formed in a valley formed in the dielectric material 312. Thus, the electrode contact portion 310 of the electrode 308 can be formed on the peak of the storage element material 306. The peak of the storage element material 306 can serve as a saddle in which the electrode contact portion 310 of the electrode 308 is formed on a spike. The electrode contact portion 310 of the electrode 308 can have sidewalls defined by sidewalls of the valleys formed in the dielectric material 312. The electrode contact material can be formed using PVD, CVD, and/or ALD. In various embodiments, the electrode contact portion 310 of the electrode 308 can be CuTe formed via PVD. However, embodiments are not limited to a particular contact material.
一電極材料308可形成於介電材料312中所形成之谷之剩餘部分(例如,未被電極308之電極接觸部分310填充之餘留部分)中以接觸電極接觸部分310。電極材料308可為一導電材料,諸如(例如)銅及/或鎢。電極材料308可為一頂部電極,例如一導電線(例如如圖1中所展示之一存取線(諸如字線130-0至130-N)或一資料線(諸如位元線120-0至120-M))。形成於谷中之電極材料308及介電材料312可經平坦化(例如,經拋光及/或回蝕)以隔離形成於介電材料312中 之各個谷中之電極材料308。形成於介電材料312中之谷具有與形成於(例如)電極材料304中之谷正交之一定向使得電極304與308係正交的。An electrode material 308 may be formed in the remaining portion of the valley formed in the dielectric material 312 (eg, the remaining portion not filled by the electrode contact portion 310 of the electrode 308) to contact the electrode contact portion 310. Electrode material 308 can be a conductive material such as, for example, copper and/or tungsten. Electrode material 308 can be a top electrode, such as a conductive line (such as one of the access lines (such as word lines 130-0 to 130-N) or a data line (such as bit line 120-0 as shown in FIG. 1). To 120-M)). The electrode material 308 and the dielectric material 312 formed in the valley may be planarized (eg, polished and/or etched back) to be isolated from the dielectric material 312. Electrode material 308 in each valley. The valleys formed in the dielectric material 312 have an orientation orthogonal to one of the valleys formed in, for example, the electrode material 304 such that the electrodes 304 and 308 are orthogonal.
根據圖3中所繪示實施例之記憶體單元可提供比前述記憶體單元(例如CBRAM及/或RRAM單元)小之與一纖絲成核位置相關之可變性。例如,該纖絲成核位置可定位於形成於儲存元件材料306之尖峰上之電極308之電極接觸部分310與電極材料304之尖峰之間。即,該纖絲成核位置介於與儲存元件材料306之尖峰耦合之電極308之電極接觸部分310與電極材料304之尖峰之間,其之可變性小於具有(例如)兩個平坦表面之間之一纖絲成核位置之一記憶體單元。此外,與儲存元件材料306之尖峰耦合之電極308之電極接觸部分310及電極材料304之尖峰可使電場集中於儲存元件材料306中使得圖3中之一記憶體單元之一形成電壓小於與具有含平坦表面之電極之一記憶體單元相關聯之一形成電壓。The memory unit according to the embodiment illustrated in FIG. 3 can provide less variability associated with a fibril nucleation location than the aforementioned memory unit (eg, CBRAM and/or RRAM unit). For example, the fibril nucleation location can be positioned between the electrode contact portion 310 of the electrode 308 formed on the peak of the storage element material 306 and the spike of the electrode material 304. That is, the fibril nucleation site is between the electrode contact portion 310 of the electrode 308 coupled to the peak of the storage element material 306 and the peak of the electrode material 304, the variability of which is less than, for example, between two flat surfaces One of the fibril nucleation sites is a memory unit. In addition, the electrode contact portion 310 of the electrode 308 coupled to the peak of the storage element material 306 and the peak of the electrode material 304 can concentrate the electric field in the storage element material 306 such that one of the memory cells of FIG. 3 forms a voltage less than and has One of the memory cells associated with one of the electrodes having a flat surface forms a voltage.
圖4A至圖4C繪示根據本發明之一或多項實施例之一記憶體單元之一部分。圖4A係根據本發明之一或多項實施例之一記憶體單元之一部分之一方塊圖。圖4A繪示一記憶體單元之一電極404。電極404可為該記憶體單元之一底部電極。在諸多實施例中,電極404包含一鞍形區405。鞍形區405包含自(例如)電極404之表面凹入使得其具有一鞍形形狀之一區。可藉由蝕刻電極404而形成鞍形區405。可使用(例如)電極及/或濕式化學蝕刻程序來完成用以形成鞍形區 405之電極404之蝕刻。鞍形區405可包含比電極404之待蝕刻部分之蝕刻前表面面積大之一表面面積。4A-4C illustrate a portion of a memory cell in accordance with one or more embodiments of the present invention. 4A is a block diagram of one portion of a memory cell in accordance with one or more embodiments of the present invention. FIG. 4A illustrates an electrode 404 of a memory unit. Electrode 404 can be one of the bottom electrodes of the memory unit. In various embodiments, electrode 404 includes a saddle region 405. The saddle region 405 includes a region that is recessed from, for example, the surface of the electrode 404 such that it has a saddle shape. The saddle region 405 can be formed by etching the electrode 404. Can be used to form saddle regions using, for example, electrodes and/or wet chemical etching procedures Etching of electrode 404 of 405. The saddle region 405 can include one surface area that is larger than the etched front surface area of the portion of the electrode 404 to be etched.
圖4B係根據本發明之一或多項實施例之一記憶體單元之一部分之一方塊圖。圖4B繪示圖4A之電極404,其中儲存元件材料406形成於鞍形區405中。儲存元件材料406具有均勻厚度且與以上結合圖4A而描述之蝕刻程序期間所界定之鞍形區405之表面區上方之電極404保形接觸。與儲存元件材料406接觸之鞍形區405之部分之表面面積大於鞍形區下方之電極404之底部之一表面之一表面面積(其為一對應平坦交叉點裝置之面積)。與儲存元件材料406接觸之鞍形區405之部分之界面面積大於儲存元件之投影區佔用面積。可藉由使電極404之寬度411與電極408之寬度413相乘而界定儲存元件之投影區佔用面積。4B is a block diagram of one portion of a memory cell in accordance with one or more embodiments of the present invention. 4B illustrates electrode 404 of FIG. 4A in which storage element material 406 is formed in saddle region 405. The storage element material 406 has a uniform thickness and is in conformal contact with the electrode 404 above the surface region of the saddle region 405 defined during the etching process described above in connection with FIG. 4A. The surface area of the portion of the saddle region 405 that is in contact with the storage element material 406 is greater than the surface area of one of the surfaces of the bottom of the electrode 404 below the saddle region (which is the area of a corresponding flat intersection device). The interface area of the portion of the saddle region 405 that is in contact with the storage element material 406 is greater than the footprint of the projection region of the storage element. The footprint of the projection area of the storage element can be defined by multiplying the width 411 of the electrode 404 by the width 413 of the electrode 408.
圖4C係根據本發明之一或多項實施例之一記憶體單元之一部分之一方塊圖。圖4C中繪示一電極408。電極408可為一頂部電極且可形成於圖4B中所展示電極404之鞍形區405中所形成之材料406上方。因而,電極408係經由削減及/或鑲嵌處於而保形地形成於鞍形區405及保形儲存元件材料406上方。因而,電極408包含一反向鞍形區409。當電極408被放置在電極404上時,409之表面區可與儲存元件材料406之外表面區接觸。電極408可經組態使得在電極408被放置在電極404上時電極408之一底面係在電極404之一頂面下。儲存元件材料406之表面面積大於鞍形區下方之電極404之底部之一表面之一表面面積(其與一平坦裝置 之面積對應)。電極408可被放置在電極404及儲存元件材料406上使得電極408係定向成與電極404不平行。4C is a block diagram of one portion of a memory cell in accordance with one or more embodiments of the present invention. An electrode 408 is illustrated in Figure 4C. Electrode 408 can be a top electrode and can be formed over material 406 formed in saddle region 405 of electrode 404 shown in Figure 4B. Thus, the electrode 408 is conformally formed over the saddle region 405 and the conformal storage element material 406 via the cut and/or damascene. Thus, electrode 408 includes a reverse saddle region 409. When electrode 408 is placed over electrode 404, the surface region of 409 can be in contact with the outer surface region of storage element material 406. Electrode 408 can be configured such that one of the bottom surfaces of electrode 408 is under the top surface of one of electrodes 404 when electrode 408 is placed over electrode 404. The surface area of the storage element material 406 is greater than the surface area of one of the bottom surfaces of the electrode 404 below the saddle area (which is associated with a flat device) The area corresponds to). Electrode 408 can be placed over electrode 404 and storage element material 406 such that electrode 408 is oriented non-parallel to electrode 404.
根據圖4A至圖4C中所繪示實施例而形成之記憶體單元可具有比具有電極與儲存元件材料之間之接觸面之一平坦表面面積之記憶體單元大之電極與儲存元件材料之間(例如電極406及408與儲存元件材料406之間)之接觸面之一表面面積。比平坦交叉點記憶體單元大之由鞍形交叉點提供記憶體單元中之電極與儲存元件材料之間之接觸面之表面面積可給一給定技術節點及具有一面積分佈切換機構之RRAM裝置提供更大信雜比(例如感測裕度)及其他益處。The memory cell formed according to the embodiment illustrated in FIGS. 4A-4C may have a larger memory electrode between the electrode and the storage element material than the memory cell having a flat surface area of the contact surface between the electrode and the storage element material. One surface area of the contact surface (e.g., between electrodes 406 and 408 and storage element material 406). Providing a surface area of the contact surface between the electrode and the storage element material in the memory unit by the saddle intersection than the flat intersection memory unit can give a given technology node and an RRAM device having an area distribution switching mechanism Provides greater signal-to-noise ratio (eg, sensing margin) and other benefits.
結論in conclusion
本發明包含記憶體單元結構及其形成方法。此一記憶體單元包含:一第一電極,其具有相對於該第一電極之一底面成小於90度角之側壁;一第二電極,其包含該第二電極之一電極接觸部分,該電極接觸部分具有相對於該第一電極之該底面成小於90度角之側壁,其中該第二電極係在該第一電極上方;及一儲存元件,其介於該第一電極與該第二電極之該電極接觸部分之間。The present invention encompasses memory cell structures and methods of forming the same. The memory unit includes: a first electrode having a sidewall at an angle of less than 90 degrees with respect to a bottom surface of the first electrode; and a second electrode including an electrode contact portion of the second electrode, the electrode The contact portion has a sidewall at an angle of less than 90 degrees with respect to the bottom surface of the first electrode, wherein the second electrode is above the first electrode; and a storage element interposed between the first electrode and the second electrode The electrode contacts between the portions.
雖然已在本文中繪示及描述特定實施例,但一般技術者應瞭解,經計算以實現相同結果之一配置可替代所展示之特定實施例。本發明意欲涵蓋本發明之諸多實施例之適應或變動。應瞭解,已以一繪示方式且非一限制方式作出以上描述。一般技術者將在檢視以上描述後明白以上實施例與本文中未具體描述之其他實施例之組合。本發明之諸多 實施例之範疇包含其中使用以上結構及方法之其他應用。因此,應參考隨附請求項及此等請求項所授權之等效物之全範圍而判定本發明之諸多實施例之範疇。Although specific embodiments have been illustrated and described herein, it will be understood by those skilled in the art that the <RTIgt; The invention is intended to cover adaptations or variations of the various embodiments of the invention. It should be understood that the above description has been made in an illustrative and non-limiting manner. Combinations of the above embodiments with other embodiments not specifically described herein will be apparent to those of ordinary skill in the art. Many of the invention The scope of the embodiments encompasses other applications in which the above structures and methods are used. Accordingly, the scope of the various embodiments of the invention should be
在前述[實施方式]中,為簡化本發明,可在一單一實施例中將一些特徵群組在一起。本發明之方法不應被解譯為反映一意圖:本發明之所揭示實施例必須使用比各請求項中所清楚列舉之特徵多之特徵。相反,如以下請求項所反映,本發明之標的在於小於一單一所揭示實施例之全部特徵。因此,以下請求項係特此併入至[實施方式]中,其中各請求項支持其自身作為一單獨實施例。In the foregoing [Embodiment], in order to simplify the present invention, some features may be grouped together in a single embodiment. The method of the present invention should not be construed as reflecting the intention that the disclosed embodiments of the present invention must use more features than those clearly recited in the claims. Rather, as the following claims reflect, the invention is characterized by less than all features of a single disclosed embodiment. Therefore, the following request items are hereby incorporated into [Embodiment], wherein each request item supports itself as a separate embodiment.
100‧‧‧記憶體單元陣列100‧‧‧Memory Cell Array
120-0‧‧‧導電線/資料線/位元線120-0‧‧‧Conductive wire/data line/bit wire
120-1‧‧‧導電線/資料線/位元線120-1‧‧‧Conductive wire/data line/bit wire
120-M‧‧‧導電線/資料線/位元線120-M‧‧‧Conductive wire/data line/bit wire
125‧‧‧儲存元件125‧‧‧Storage components
130-0‧‧‧導電線/存取線/字線130-0‧‧‧Conductive wire/access wire/word wire
130-1‧‧‧導電線/存取線/字線130-1‧‧‧Conductive wire/access wire/word wire
130-N‧‧‧導電線/存取線/字線130-N‧‧‧Conductive wire/access wire/word wire
201‧‧‧基板材料201‧‧‧Substrate material
202‧‧‧介電材料202‧‧‧ dielectric materials
204‧‧‧電極材料/電極204‧‧‧Electrode material / electrode
206‧‧‧儲存元件材料206‧‧‧Storage component materials
207‧‧‧接觸部分207‧‧‧Contact section
208‧‧‧電極材料/電極208‧‧‧Electrode material / electrode
210‧‧‧電極接觸部分/接觸材料210‧‧‧Electrode contact parts/contact materials
212‧‧‧介電材料212‧‧‧ dielectric materials
301‧‧‧基板301‧‧‧Substrate
302‧‧‧介電材料302‧‧‧Dielectric materials
304‧‧‧電極材料/電極304‧‧‧Electrode material / electrode
306‧‧‧儲存元件材料306‧‧‧Storage component materials
307‧‧‧接觸部分307‧‧‧Contact section
308‧‧‧電極材料/電極308‧‧‧Electrode material / electrode
310‧‧‧電極接觸部分/接觸材料310‧‧‧Electrode contact parts/contact materials
312‧‧‧介電材料312‧‧‧ dielectric materials
404‧‧‧電極404‧‧‧electrode
405‧‧‧鞍形區405‧‧‧ saddle area
406‧‧‧儲存元件材料/材料406‧‧‧Storage component materials/materials
408‧‧‧電極408‧‧‧electrode
409‧‧‧反向鞍形區409‧‧‧Reverse saddle area
411‧‧‧寬度411‧‧‧Width
413‧‧‧寬度413‧‧‧Width
圖1係繪示一記憶體單元陣列之一部分之一方塊圖。1 is a block diagram showing a portion of a memory cell array.
圖2繪示根據本發明之一或多項實施例之一記憶體單元陣列之一部分。2 illustrates a portion of a memory cell array in accordance with one or more embodiments of the present invention.
圖3繪示根據本發明之一或多項實施例之一記憶體單元陣列之一部分。3 illustrates a portion of a memory cell array in accordance with one or more embodiments of the present invention.
圖4A至圖4C繪示根據本發明之一或多項實施例之一記憶體單元之一部分。4A-4C illustrate a portion of a memory cell in accordance with one or more embodiments of the present invention.
201‧‧‧基板材料201‧‧‧Substrate material
202‧‧‧介電材料202‧‧‧ dielectric materials
204‧‧‧電極材料/電極204‧‧‧Electrode material / electrode
206‧‧‧儲存元件材料206‧‧‧Storage component materials
207‧‧‧接觸部分207‧‧‧Contact section
208‧‧‧電極材料/電極208‧‧‧Electrode material / electrode
210‧‧‧電極接觸部分/接觸材料210‧‧‧Electrode contact parts/contact materials
212‧‧‧介電材料212‧‧‧ dielectric materials
Claims (34)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/175,482 US8598562B2 (en) | 2011-07-01 | 2011-07-01 | Memory cell structures |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201306220A TW201306220A (en) | 2013-02-01 |
TWI508250B true TWI508250B (en) | 2015-11-11 |
Family
ID=47389626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101123633A TWI508250B (en) | 2011-07-01 | 2012-06-29 | Memory cell structures |
Country Status (7)
Country | Link |
---|---|
US (5) | US8598562B2 (en) |
EP (1) | EP2727147B1 (en) |
JP (1) | JP5859121B2 (en) |
KR (1) | KR101535763B1 (en) |
CN (1) | CN103733339B (en) |
TW (1) | TWI508250B (en) |
WO (1) | WO2013006363A2 (en) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8598562B2 (en) * | 2011-07-01 | 2013-12-03 | Micron Technology, Inc. | Memory cell structures |
US9000412B2 (en) * | 2012-07-30 | 2015-04-07 | Macronix International Co., Ltd. | Switching device and operating method for the same and memory array |
FR2998708B1 (en) * | 2012-11-27 | 2016-01-01 | Commissariat Energie Atomique | ELECTRONIC DEVICE OF MEMORY TYPE |
US9349950B2 (en) | 2013-03-13 | 2016-05-24 | Microchip Technology Incorporated | Resistive memory cell with trench-shaped bottom electrode |
US9444040B2 (en) | 2013-03-13 | 2016-09-13 | Microchip Technology Incorporated | Sidewall type memory cell |
CN103515534B (en) * | 2013-10-10 | 2015-05-13 | 北京大学 | Resistive random access memory with high uniformity and manufacturing method thereof |
US9019754B1 (en) | 2013-12-17 | 2015-04-28 | Micron Technology, Inc. | State determination in resistance variable memory |
US9269606B2 (en) | 2014-02-19 | 2016-02-23 | Microchip Technology Incorporated | Spacer enabled active isolation for an integrated circuit device |
US9318702B2 (en) | 2014-02-19 | 2016-04-19 | Microchip Technology Incorporated | Resistive memory cell having a reduced conductive path area |
US9412942B2 (en) | 2014-02-19 | 2016-08-09 | Microchip Technology Incorporated | Resistive memory cell with bottom electrode having a sloped side wall |
US10003021B2 (en) | 2014-02-19 | 2018-06-19 | Microchip Technology Incorporated | Resistive memory cell with sloped bottom electrode |
US9385313B2 (en) | 2014-02-19 | 2016-07-05 | Microchip Technology Incorporated | Resistive memory cell having a reduced conductive path area |
US9425237B2 (en) | 2014-03-11 | 2016-08-23 | Crossbar, Inc. | Selector device for two-terminal memory |
US10211397B1 (en) * | 2014-07-07 | 2019-02-19 | Crossbar, Inc. | Threshold voltage tuning for a volatile selection device |
US9633724B2 (en) | 2014-07-07 | 2017-04-25 | Crossbar, Inc. | Sensing a non-volatile memory device utilizing selector device holding characteristics |
US10115819B2 (en) | 2015-05-29 | 2018-10-30 | Crossbar, Inc. | Recessed high voltage metal oxide semiconductor transistor for RRAM cell |
US9460788B2 (en) | 2014-07-09 | 2016-10-04 | Crossbar, Inc. | Non-volatile memory cell utilizing volatile switching two terminal device and a MOS transistor |
US10109346B2 (en) | 2014-07-30 | 2018-10-23 | Hewlett Packard Enterprise Development Lp | Apparatus having a memory cell and a shunt device |
KR20160031903A (en) * | 2014-09-15 | 2016-03-23 | 에스케이하이닉스 주식회사 | Electronic device and method for fabricating the same |
US20160104839A1 (en) * | 2014-10-14 | 2016-04-14 | Seoul National University R&Db Foundation | Resistive random access memory device having nano-scale tip and nanowire, memory array using the same and fabrication method thereof |
KR101623854B1 (en) * | 2014-10-14 | 2016-05-24 | 서울대학교산학협력단 | Resistive random access memory device having nano-scale tip, memory array using the same and fabrication method thereof |
EP3224875A1 (en) | 2014-11-26 | 2017-10-04 | Microchip Technology Incorporated | Resistive memory cell having a spacer region for reduced conductive path area / enhanced electric field |
US9397145B1 (en) | 2015-05-14 | 2016-07-19 | Micron Technology, Inc. | Memory structures and related cross-point memory arrays, electronic systems, and methods of forming memory structures |
KR102326547B1 (en) * | 2015-08-19 | 2021-11-15 | 삼성전자주식회사 | Magnetoresistive random access device and method of manufacturing the same |
FR3041808B1 (en) * | 2015-09-30 | 2018-02-09 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | METHOD FOR MAKING A RESISTIVE MEMORY CELL |
US20170133588A1 (en) * | 2015-11-06 | 2017-05-11 | HGST Netherlands B.V. | Resistive ram cell with focused electric field |
KR101907039B1 (en) * | 2016-11-04 | 2018-12-05 | 한국과학기술연구원 | Nonvolatile resistance random access memory device with reliable operating parameters, device-to-device uniformity and multi-level cell storage and fabrication method thereof |
CN110140172B (en) * | 2016-11-14 | 2023-07-28 | 合肥睿科微电子有限公司 | RRAM process integration scheme and cell structure to reduce the number of mask operations |
US10096362B1 (en) | 2017-03-24 | 2018-10-09 | Crossbar, Inc. | Switching block configuration bit comprising a non-volatile memory cell |
CN108963070B (en) * | 2017-05-18 | 2021-12-31 | 中国科学院微电子研究所 | Resistive random access memory and manufacturing method thereof |
KR102402945B1 (en) | 2017-08-31 | 2022-05-30 | 마이크론 테크놀로지, 인크 | Semiconductor devices, transistors, and related methods for contacting metal oxide semiconductor devices |
EP3676878A4 (en) | 2017-08-31 | 2020-11-04 | Micron Technology, Inc. | SEMICONDUCTOR COMPONENTS, HYBRID TRANSISTORS AND RELATED PROCESSES |
US10825867B2 (en) | 2018-04-24 | 2020-11-03 | Micron Technology, Inc. | Cross-point memory array and related fabrication techniques |
US10950663B2 (en) * | 2018-04-24 | 2021-03-16 | Micron Technology, Inc. | Cross-point memory array and related fabrication techniques |
US10729012B2 (en) | 2018-04-24 | 2020-07-28 | Micron Technology, Inc. | Buried lines and related fabrication techniques |
US10467524B1 (en) | 2018-06-06 | 2019-11-05 | International Business Machines Corporation | Three-terminal neuromorphic vertical sensing |
JP2021129071A (en) * | 2020-02-17 | 2021-09-02 | キオクシア株式会社 | Semiconductor storage device and manufacturing method of semiconductor storage device |
US11711987B2 (en) * | 2020-08-31 | 2023-07-25 | Micron Technology, Inc. | Memory electrodes and formation thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030071255A1 (en) * | 2001-10-11 | 2003-04-17 | Daniel Xu | Forming tapered lower electrode phase-change memories |
US20030189200A1 (en) * | 2002-04-04 | 2003-10-09 | Heon Lee | Low heat loss and small contact area composite electrode for a phase change media memory device |
US20070096162A1 (en) * | 2005-11-02 | 2007-05-03 | Thomas Happ | Phase change memory having multilayer thermal insulation |
US20100110746A1 (en) * | 2008-11-05 | 2010-05-06 | Seagate Technology Llc | Memory cell with alignment structure |
KR20100074545A (en) * | 2008-12-24 | 2010-07-02 | 주식회사 하이닉스반도체 | Resistive memory device and method for manufacturing the same |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5107459A (en) | 1990-04-20 | 1992-04-21 | International Business Machines Corporation | Stacked bit-line architecture for high density cross-point memory cell array |
US6147395A (en) * | 1996-10-02 | 2000-11-14 | Micron Technology, Inc. | Method for fabricating a small area of contact between electrodes |
US6750079B2 (en) * | 1999-03-25 | 2004-06-15 | Ovonyx, Inc. | Method for making programmable resistance memory element |
AU2003296988A1 (en) | 2002-12-19 | 2004-07-29 | Matrix Semiconductor, Inc | An improved method for making high-density nonvolatile memory |
US20040197947A1 (en) * | 2003-04-07 | 2004-10-07 | Fricke Peter J. | Memory-cell filament electrodes and methods |
US7001846B2 (en) | 2003-05-20 | 2006-02-21 | Sharp Laboratories Of America, Inc. | High-density SOI cross-point memory array and method for fabricating same |
JP4744788B2 (en) * | 2003-05-22 | 2011-08-10 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
US7282757B2 (en) * | 2003-10-20 | 2007-10-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | MIM capacitor structure and method of manufacture |
US7791141B2 (en) * | 2004-07-09 | 2010-09-07 | International Business Machines Corporation | Field-enhanced programmable resistance memory cell |
JP2006032729A (en) * | 2004-07-16 | 2006-02-02 | Matsushita Electric Ind Co Ltd | Nonvolatile memory and its manufacturing method |
WO2007102341A1 (en) * | 2006-03-09 | 2007-09-13 | Matsushita Electric Industrial Co., Ltd. | Resistance-varying type element, semiconductor device, and method for manufacturing the element |
KR100782482B1 (en) * | 2006-05-19 | 2007-12-05 | 삼성전자주식회사 | A phase change memory cell employing a thin film as a phase change material film, a phase change memory device having the same, an electronic device having the same, and a manufacturing method thereof |
US8148223B2 (en) * | 2006-05-22 | 2012-04-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | 1T MIM memory for embedded ram application in soc |
US8003972B2 (en) * | 2006-08-30 | 2011-08-23 | Micron Technology, Inc. | Bottom electrode geometry for phase change memory |
JP2008091601A (en) * | 2006-10-02 | 2008-04-17 | Matsushita Electric Ind Co Ltd | Nonvolatile memory element, and its manufacturing method |
KR100806034B1 (en) * | 2006-12-05 | 2008-02-26 | 동부일렉트로닉스 주식회사 | Semiconductor device having MIM capacitor and manufacturing method thereof |
US7989251B2 (en) * | 2007-05-14 | 2011-08-02 | Micron Technology, Inc. | Variable resistance memory device having reduced bottom contact area and method of forming the same |
US7906368B2 (en) * | 2007-06-29 | 2011-03-15 | International Business Machines Corporation | Phase change memory with tapered heater |
JP5305711B2 (en) * | 2008-03-31 | 2013-10-02 | 株式会社東芝 | Nonvolatile memory device and manufacturing method thereof |
JP5422231B2 (en) * | 2008-08-13 | 2014-02-19 | 株式会社東芝 | Nonvolatile semiconductor memory device and manufacturing method thereof |
US7791925B2 (en) | 2008-10-31 | 2010-09-07 | Seagate Technology, Llc | Structures for resistive random access memory cells |
US20100109085A1 (en) | 2008-11-05 | 2010-05-06 | Seagate Technology Llc | Memory device design |
EP2202816B1 (en) | 2008-12-24 | 2012-06-20 | Imec | Method for manufacturing a resistive switching memory device |
US8431921B2 (en) | 2009-01-13 | 2013-04-30 | Hewlett-Packard Development Company, L.P. | Memristor having a triangular shaped electrode |
US8283649B2 (en) | 2009-07-28 | 2012-10-09 | Hewlett-Packard Development Company, L.P. | Memristor with a non-planar substrate |
US20110084248A1 (en) | 2009-10-13 | 2011-04-14 | Nanya Technology Corporation | Cross point memory array devices |
JP2011146632A (en) * | 2010-01-18 | 2011-07-28 | Toshiba Corp | Nonvolatile memory device, and method of manufacturing the same |
US8598562B2 (en) * | 2011-07-01 | 2013-12-03 | Micron Technology, Inc. | Memory cell structures |
-
2011
- 2011-07-01 US US13/175,482 patent/US8598562B2/en active Active
-
2012
- 2012-06-28 JP JP2014519002A patent/JP5859121B2/en not_active Expired - Fee Related
- 2012-06-28 EP EP12807889.6A patent/EP2727147B1/en not_active Not-in-force
- 2012-06-28 KR KR1020147001905A patent/KR101535763B1/en not_active Expired - Fee Related
- 2012-06-28 WO PCT/US2012/044581 patent/WO2013006363A2/en active Application Filing
- 2012-06-28 CN CN201280039517.0A patent/CN103733339B/en not_active Expired - Fee Related
- 2012-06-29 TW TW101123633A patent/TWI508250B/en not_active IP Right Cessation
-
2013
- 2013-11-20 US US14/085,192 patent/US9070874B2/en active Active
-
2014
- 2014-12-16 US US14/571,752 patent/US9385315B2/en not_active Expired - Fee Related
-
2016
- 2016-06-02 US US15/171,508 patent/US9755144B2/en active Active
-
2017
- 2017-08-29 US US15/689,055 patent/US10608178B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030071255A1 (en) * | 2001-10-11 | 2003-04-17 | Daniel Xu | Forming tapered lower electrode phase-change memories |
US20030189200A1 (en) * | 2002-04-04 | 2003-10-09 | Heon Lee | Low heat loss and small contact area composite electrode for a phase change media memory device |
US20070096162A1 (en) * | 2005-11-02 | 2007-05-03 | Thomas Happ | Phase change memory having multilayer thermal insulation |
US20100110746A1 (en) * | 2008-11-05 | 2010-05-06 | Seagate Technology Llc | Memory cell with alignment structure |
KR20100074545A (en) * | 2008-12-24 | 2010-07-02 | 주식회사 하이닉스반도체 | Resistive memory device and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
WO2013006363A2 (en) | 2013-01-10 |
KR20140040830A (en) | 2014-04-03 |
JP2014523647A (en) | 2014-09-11 |
US9385315B2 (en) | 2016-07-05 |
US20140138608A1 (en) | 2014-05-22 |
US20180006218A1 (en) | 2018-01-04 |
CN103733339A (en) | 2014-04-16 |
EP2727147A2 (en) | 2014-05-07 |
EP2727147A4 (en) | 2015-03-25 |
US9070874B2 (en) | 2015-06-30 |
US20130001501A1 (en) | 2013-01-03 |
WO2013006363A3 (en) | 2013-04-18 |
US8598562B2 (en) | 2013-12-03 |
US10608178B2 (en) | 2020-03-31 |
CN103733339B (en) | 2016-08-24 |
US20160276587A1 (en) | 2016-09-22 |
TW201306220A (en) | 2013-02-01 |
KR101535763B1 (en) | 2015-07-09 |
US9755144B2 (en) | 2017-09-05 |
JP5859121B2 (en) | 2016-02-10 |
US20150200364A1 (en) | 2015-07-16 |
EP2727147B1 (en) | 2016-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI508250B (en) | Memory cell structures | |
US11730069B2 (en) | Memory cell structures | |
TWI434408B (en) | Resistive memory and methods of processing resistive memory | |
US20160104748A1 (en) | Memory cell array structures and methods of forming the same | |
US8716059B2 (en) | Combined conductive plug/conductive line memory arrays and methods of forming the same | |
JP2011040483A (en) | Resistance-change memory | |
US20180211910A1 (en) | Variable resistance memory devices | |
US9153780B2 (en) | Semiconductor device and method of fabricating the same | |
KR101297088B1 (en) | 3-dimensional non-volatile memory device and method of fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |