[go: up one dir, main page]

TWI506810B - Method for manufacturing light emitting diode - Google Patents

Method for manufacturing light emitting diode Download PDF

Info

Publication number
TWI506810B
TWI506810B TW100131217A TW100131217A TWI506810B TW I506810 B TWI506810 B TW I506810B TW 100131217 A TW100131217 A TW 100131217A TW 100131217 A TW100131217 A TW 100131217A TW I506810 B TWI506810 B TW I506810B
Authority
TW
Taiwan
Prior art keywords
light
layer
doped
substrate
emitting diode
Prior art date
Application number
TW100131217A
Other languages
Chinese (zh)
Other versions
TW201214747A (en
Inventor
Hung Wen Huang
Hsing Kuo Hsia
Ching Hua Chiu
Original Assignee
Taiwan Semiconductor Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg Co Ltd filed Critical Taiwan Semiconductor Mfg Co Ltd
Publication of TW201214747A publication Critical patent/TW201214747A/en
Application granted granted Critical
Publication of TWI506810B publication Critical patent/TWI506810B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/018Bonding of wafers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/83Electrodes
    • H10H20/832Electrodes characterised by their material
    • H10H20/835Reflective materials

Landscapes

  • Led Devices (AREA)

Description

發光二極體之製造方法Method for manufacturing light emitting diode

本發明係關於半導體光源(semiconductor light source),且特別是關於一種發光二極體(light-emitting diode,LED)。The present invention relates to a semiconductor light source, and more particularly to a light-emitting diode (LED).

於本處使用之發光二極體係為用於產生具有特定波長或介於一特定波長範圍之一光線的一半導體光源。通常發光二極體係用於顯示燈(indicator lamp)中,且逐漸地應用於顯示器(displays)中。當施加電壓並橫跨於由相反摻雜之半導體化合物膜層所形成之一p-n接面時,發光二極體可發出光線。使用不同材料以改變半導體層之能隙以及形成一主動層於p-n接面內可產生不同波長的光線。此外,選擇性之螢光材料則改變了由發光二極體所產生光線的特性。The light-emitting diode system used herein is a semiconductor light source for generating light having a specific wavelength or a specific wavelength range. Generally, a light-emitting diode system is used in an indicator lamp and is gradually applied to displays. The light emitting diode emits light when a voltage is applied across a p-n junction formed by the oppositely doped semiconductor compound film layer. The use of different materials to change the energy gap of the semiconductor layer and the formation of an active layer in the p-n junction can produce light of different wavelengths. In addition, the selective phosphor material changes the characteristics of the light generated by the light-emitting diode.

發光二極體之持續發展已形成了可覆蓋可見光光譜及其後波長之有效且機械上耐用之光源。當其耦接於可能之長效固態元件時,將可形成多種新的顯示方面應用,並可使得發光二極體處於可與固有的白熾及螢光燈具相競爭之一地位。然而,仍需要持續思考製造製程的改善,以製做出高效率與機械上耐用之發光二極體。The continued development of light-emitting diodes has resulted in an efficient and mechanically durable light source that covers the visible light spectrum and its subsequent wavelengths. When coupled to a possible long-lasting solid state component, a variety of new display applications can be formed and the LED can be placed in a position to compete with the inherent incandescent and fluorescent fixtures. However, there is still a need to continuously consider improvements in the manufacturing process to produce high efficiency and mechanically durable light-emitting diodes.

有鑑於此,本發明提供了一種發光二極體之製造方法,以製作出較佳之發光二極體。In view of the above, the present invention provides a method of fabricating a light-emitting diode to produce a preferred light-emitting diode.

依據一實施例,本發明提供了一種發光二極體之製造方法,包括:提供一藍寶石基板;形成一發光結構於該藍寶石基板上,該發光結構包括:一第一摻雜層,摻雜有第一導電類型之一第一摻質;一主動層,位於該第一摻雜層之上;以及一第二摻雜層,位於該主動層之上,該第二摻雜層摻雜有相反於該第一導電類型之一第二導電類型之一第二摻質;研磨該藍寶石基板之一背面,以移除該藍寶石基板之一部;以及藉由蝕刻以移除該藍寶石基板之一剩餘部。According to an embodiment, the present invention provides a method of fabricating a light emitting diode, comprising: providing a sapphire substrate; forming a light emitting structure on the sapphire substrate, the light emitting structure comprising: a first doped layer, doped with a first dopant of a first conductivity type; an active layer over the first doped layer; and a second doped layer over the active layer, the second doped layer being doped oppositely a second dopant of one of the second conductivity types of the first conductivity type; grinding a back surface of the sapphire substrate to remove a portion of the sapphire substrate; and removing one of the sapphire substrates by etching unit.

依據另一實施例,本發明提供了一種發光二極體之製造方法,包括:提供一成長基板;形成一發光結構於該成長基板之上,該發光結構包括:一緩衝層;一第一摻雜層,位於該緩衝層之上,該第一摻雜層摻雜有第一類型之一第一摻質;一主動層,位於該第一摻雜層之上;以及一第二摻雜層,位於該主動層之上,該第二摻雜層摻雜有相反於該第一類型之一第二類型之一第二摻質;蝕刻出複數個通道於該發光結構內,以形成具有露出側壁之複數個發光平台結構;沈積一保護層以覆蓋該露出側壁;藉由研磨該成長基板之一背面,以移除該成長基板之一第一部;以及藉由蝕刻以移除該成長基板之一剩餘部。According to another embodiment, the present invention provides a method for fabricating a light emitting diode, comprising: providing a growth substrate; forming a light emitting structure on the growth substrate, the light emitting structure comprising: a buffer layer; a dummy layer overlying the buffer layer, the first doped layer being doped with one of the first types of first dopants; an active layer over the first doped layer; and a second doped layer Located on the active layer, the second doped layer is doped with a second dopant opposite to one of the second types of the first type; a plurality of channels are etched into the light emitting structure to form an exposed a plurality of light emitting platform structures on the sidewall; depositing a protective layer to cover the exposed sidewall; removing a first portion of the grown substrate by polishing a back surface of the grown substrate; and removing the grown substrate by etching One of the remaining parts.

依據又一實施例,本發明提供了一種發光二極體之製造方法,包括:提供一成長基板;形成一發光結構於該成長基板之上,該發光結構包括:一緩衝層;一第一摻雜層,位於該緩衝層之上,該第一摻雜層摻雜有一第一類型之一第一摻質;一主動層,位於該第一摻雜層之上;以及一第二摻雜層,位於該主動層之上,該第二摻雜層摻雜有相反於該第一類型之一第二類型之一第二摻質;蝕刻出複數個通道於該發光結構內,以形成複數個發光平台結構;藉由研磨該成長基板之一背面,以移除該成長基板之一第一部,使得該成長基板之一剩餘部約為5微米;以及藉由電漿蝕刻或濕蝕刻以移除該成長基板之一剩餘部。According to still another embodiment, the present invention provides a method for fabricating a light emitting diode, comprising: providing a growth substrate; forming a light emitting structure on the growth substrate, the light emitting structure comprising: a buffer layer; a dummy layer overlying the buffer layer, the first doped layer being doped with a first dopant of a first type; an active layer over the first doped layer; and a second doped layer Located on the active layer, the second doped layer is doped with a second dopant opposite to one of the second types of the first type; a plurality of channels are etched into the light emitting structure to form a plurality of a light emitting platform structure; by polishing a back surface of one of the growth substrates to remove a first portion of the growth substrate such that a remaining portion of the growth substrate is about 5 microns; and moving by plasma etching or wet etching Except for the remaining portion of the growth substrate.

為讓本發明之上述目的、特徵及優點能更明顯易懂,下文特舉一較佳實施例,並配合所附的圖式,作詳細說明如下:The above described objects, features and advantages of the present invention will become more apparent and understood.

可以理解的是,於下文中提供了用於施行本發明之不同特徵之多個不同實施例,或範例。基於簡化本發明之目的,以下描述了構件與設置情形之特定範例。然而,此些構件與設置情形僅作為範例之用而非用於限制本發明。舉例來說,於描述中關於於一第二元件之上或上之第一元件的形成可包括了第一元件與第二元件係為直接接觸之實施情形,且亦包括了於第一元件與第二元件之間包括了額外元件之實施情形,因而使得第一元件與第二元件之間並未直接接觸。此外,於不同範例中本發明可重複參考標號及或文字。此些重複情形細基於簡化與清楚之目的,而並非用於顯示於不同實施例及/或圖式間所探討之關連性。It will be appreciated that a number of different embodiments, or examples, are provided below for performing different features of the present invention. Specific examples of components and setup scenarios are described below for the purpose of simplifying the present invention. However, such components and arrangements are for illustrative purposes only and are not intended to limit the invention. For example, the formation of a first component on or in a second component in the description may include the implementation of direct contact of the first component with the second component, and also includes the first component and The implementation of additional components is included between the second components such that there is no direct contact between the first component and the second component. In addition, the present invention may repeat reference numerals and or characters in different examples. These repetitive cases are based on the simplification and clarity of the present invention and are not intended to illustrate the relevance of the various embodiments and/or drawings.

於第1圖與第2圖內顯示了依據本發明之發光二極體之製造方法11與12。第3-15圖為依據本發明之部分實施實施例中之一發光二極體於多個製程階段中的概括局部圖式。發光二極體可為具有數個此發光二極體之一顯示器或一發光裝置之一部,而此些發光二極體可單獨地或一併地控制。此發光二極體亦可為一積體電路、一晶片上系統之一部或其上可能包括如電阻、電容、電感、二極體、金氧半導體場效應電晶體(MOSFET)、互補型金氧半導體電晶體(CMOS)、雙載子接面電晶體(BJT)、橫向擴散金氧半導體電晶體(LDMOS)、高功率金氧半導體電晶體或其他類型之電晶體之多個被動與主動的微電子元件之部份。可以理解的是,基於較佳瞭解本發明之發明概念的目的,此些圖式已經過簡化。如此,可以理解的是可於如第1-2圖之方法施行之前、之中與之後施行額外製程,而亦僅於此處簡單描述某些製程,且所描述之製程可為多種製程所替換以達到相同效果。The manufacturing methods 11 and 12 of the light-emitting diode according to the present invention are shown in Figs. 1 and 2. 3-15 are schematic partial views of one of the light-emitting diodes in a plurality of process stages in accordance with some embodiments of the present invention. The light-emitting diode can be a display having one of the plurality of light-emitting diodes or a light-emitting device, and the light-emitting diodes can be controlled individually or collectively. The light emitting diode may also be an integrated circuit, a part of a system on a wafer or may include such as a resistor, a capacitor, an inductor, a diode, a MOSFET, a complementary gold. Multiple passive and active oxygen semiconductor transistors (CMOS), bipolar junction transistors (BJT), laterally diffused metal oxide semiconductor transistors (LDMOS), high power MOS transistors or other types of transistors Part of a microelectronic component. It will be appreciated that such drawings have been simplified for purposes of better understanding of the inventive concepts of the present invention. Thus, it can be understood that additional processes can be performed before, during, and after the methods as in Figures 1-2, and only certain processes are simply described herein, and the processes described can be replaced by multiple processes. To achieve the same effect.

請參照第1圖,方法11起使於操作13,以提供一基板。此基板包括了適用於成長一發光結構之一材料。因此,此基板亦可稱為一成長基板或一成長晶圓。於不同實施例中,基板包括了藍寶石(sapphire)。其他實施例中,基板包括氮化鎵、碳化矽、矽或其他適用於成長發光結構之適當材料。於操作15中,可於基板上形成一發光結構。此發光結構通常為一半導體二極體。Referring to Figure 1, method 11 proceeds to operation 13 to provide a substrate. The substrate includes a material suitable for growing a light emitting structure. Therefore, the substrate can also be referred to as a growth substrate or a growth wafer. In various embodiments, the substrate comprises sapphire. In other embodiments, the substrate comprises gallium nitride, tantalum carbide, niobium or other suitable material suitable for growing the light emitting structure. In operation 15, a light emitting structure can be formed on the substrate. The light emitting structure is typically a semiconductor diode.

第3圖顯示了位於一基板31上之一發光結構30。發光結構30係形成於基板31之上。於本實施例中,發光結構30包括了一摻雜層35、一多重量子井(multiple quantum well,MQW)層37以及一摻雜層39。摻雜層35與39為經相反摻雜之半導體層。於部份實施例中,摻雜層35包括了一n型氮化鎵材料,而摻雜層39包括了p型氮化鎵材料。於其他實施例中,摻雜層35可包括一p型氮化鎵材料,而摻雜層39可包括一n型氮化鎵材料。第3圖中所示之多重量子井層37包括了如氮化鎵與氮化銦鎵之主動材料(active materials)之數個交錯(或間隔)層。如此處的使用中,於發光二極體內之主動材料為於操作時自一發光二極體處發光一主要來源。舉例來說,於一實施例中,多重量子井層37包括了十層之氮化鎵與十層的氮化銦鎵,其中一氮化銦鎵層係形成於一氮化鎵層之上,而另一氮化鎵層則形成於此氮化銦鎵層之上,且繼續按照上述形態實施。交錯膜層的數量及其厚度影響了發光效率。多重量子井層37的厚度可為如約100-2000奈米,約1微米或約1.5微米。Figure 3 shows one of the light emitting structures 30 on a substrate 31. The light emitting structure 30 is formed on the substrate 31. In the present embodiment, the light emitting structure 30 includes a doped layer 35, a multiple quantum well (MQW) layer 37, and a doped layer 39. Doped layers 35 and 39 are oppositely doped semiconductor layers. In some embodiments, doped layer 35 includes an n-type gallium nitride material and doped layer 39 includes a p-type gallium nitride material. In other embodiments, the doped layer 35 can comprise a p-type gallium nitride material and the doped layer 39 can comprise an n-type gallium nitride material. The multiple quantum well layer 37 shown in FIG. 3 includes a plurality of staggered (or spaced) layers of active materials such as gallium nitride and indium gallium nitride. As used herein, the active material in the light-emitting diode is a major source of illumination from a light-emitting diode during operation. For example, in one embodiment, the multiple quantum well layer 37 includes ten layers of gallium nitride and ten layers of indium gallium nitride, wherein an indium gallium nitride layer is formed on a gallium nitride layer. The other gallium nitride layer is formed on the indium gallium nitride layer and continues to be implemented in the above manner. The number of interleaved layers and their thickness affect the luminous efficiency. The multiple quantum well layer 37 can have a thickness of, for example, about 100-2000 nm, about 1 micron or about 1.5 microns.

於第3圖中,摻雜層35、多重量子井層37與摻雜層39皆採用磊晶成長製程所形成。於此磊晶成長製程中,一通常為氮化鎵層(於某些範例中為氮化鋁)之第一未摻雜層33成長於基板31之上。此第一未摻雜層33亦稱之為一緩衝層33。此緩衝層可為約500奈米至5微米,例如約為1.5微米或約2微米。接著依序地成長膜層35、37與39。而於磊晶成長製程中可藉由於一氣體源中加入雜質而完成摻雜。於此些磊晶成長製程中,形成了位於相反之摻雜層35與39間之包括多重量子井層37之一p-n接面(或一p-n二極體)。當電壓施加於摻雜層35與摻雜層39之間時,電流將流過發光結構30,而多重量子井層37將發出光線。由多重量子井層37所發出之光線的顏色係與所發射光線的波長有關,其可藉由改變多重量子井層37之成分與結構而達成調整。舉例來說,於氮化銦鎵層之銦含量的微小增加可使得輸出波長的偏移朝向更長之波長。In FIG. 3, the doped layer 35, the multiple quantum well layer 37, and the doped layer 39 are all formed by an epitaxial growth process. In the epitaxial growth process, a first undoped layer 33, typically a gallium nitride layer (in some cases, aluminum nitride), grows above the substrate 31. This first undoped layer 33 is also referred to as a buffer layer 33. The buffer layer can be from about 500 nanometers to 5 microns, such as about 1.5 microns or about 2 microns. The film layers 35, 37 and 39 are then sequentially grown. In the epitaxial growth process, doping can be accomplished by adding impurities to a gas source. In these epitaxial growth processes, a p-n junction (or a p-n diode) comprising a plurality of quantum well layers 37 between opposite doped layers 35 and 39 is formed. When a voltage is applied between the doped layer 35 and the doped layer 39, current will flow through the light emitting structure 30, and the multiple quantum well layer 37 will emit light. The color of the light emitted by the multiple quantum well layers 37 is related to the wavelength of the emitted light, which can be adjusted by changing the composition and structure of the multiple quantum well layers 37. For example, a slight increase in the indium content of the indium gallium nitride layer can cause the output wavelength to shift toward longer wavelengths.

形成發光結構30的操作可選擇性地包括形成未顯示於第3圖內之額外膜層。例如,可於摻雜層39之上增加一歐姆接觸層或其他膜層。此些其他膜層可包括一氧化銦錫(ITO)層或其他之透明導電層。The operation of forming the light emitting structure 30 can optionally include forming additional film layers not shown in FIG. For example, an ohmic contact layer or other film layer can be added over the doped layer 39. Such other layers may include an indium tin oxide (ITO) layer or other transparent conductive layer.

為了促進於操作時發光二極體之良好電性接觸、光汲出與有效冷卻情形,於許多發光二極體產品中將移除成長基板,特別是於高功率發光二極體的應用中。於一範例中,採用電磁波(例如一激發雷射)以摧毀介於成長基板與緩衝層33間的介面,因而分解了位於介面處之緩衝材料。此介面可為一未摻雜氮化鎵層。如藍寶石之此成長基板可被剝離並移除。於此雷射剝離(laser lift-off,LLO)方法中,使用激發雷射所產生之雷射光束係自藍寶石側注射進入發光二極體結構,以分解位於介於基板與緩衝層間之介面處的氮化鎵材料成為鎵原子與氮氣。當基板移除之後,此雷射剝離方法通常適用於發光二極體的製造。此雷射剝離方法之一特徵為於許多範例中,經移除之藍寶石可循環並再次作為一成長基板,進而節省了材料成本。然而,如發明人所發現及於此處所揭露之,此雷射剝離方法並不適用於許多先進發光二極體應用與有效率製作。In order to facilitate good electrical contact, light extraction and effective cooling of the light-emitting diode during operation, the growth substrate will be removed in many light-emitting diode products, particularly in high power light-emitting diode applications. In one example, electromagnetic waves (e.g., an excitation laser) are employed to destroy the interface between the growth substrate and the buffer layer 33, thereby decomposing the buffer material at the interface. This interface can be an undoped gallium nitride layer. Such a growth substrate such as sapphire can be peeled off and removed. In the laser lift-off (LLO) method, a laser beam generated by using an excitation laser is injected from a sapphire side into a light-emitting diode structure to decompose at an interface between the substrate and the buffer layer. The gallium nitride material becomes a gallium atom and a nitrogen gas. This laser lift-off method is generally suitable for the manufacture of light-emitting diodes after the substrate is removed. One of the features of this laser lift-off method is that in many instances, the removed sapphire can be recycled and reused as a growth substrate, thereby saving material costs. However, as discovered by the inventors and disclosed herein, this laser lift-off method is not suitable for many advanced light-emitting diode applications and efficient fabrication.

此雷射剝離方法通常使用了高雷射功率密度以分解位於緩衝層與基板介面處之氮化鎵。雷射光點通常設定為發光二極體之晶粒尺寸以確保完美的剝離。隨著成長基板尺寸的增加,於相同基板上可成長越來越多的發光二極體晶粒,隨著雷射移除自點至點(晶粒至晶粒),雷射剝離的時間因而增加。由於高功率密度限制了雷射光束區域或光點,適用於雷射剝離製程之發光二極體晶粒的尺寸亦受到限制。隨著使用較大之發光二極體晶粒之高功率發光二極體的越來越廣泛應用,此雷射剝離製程恐無法符合越來越大晶粒的乾淨剝離的需求。This laser lift-off method typically uses a high laser power density to decompose gallium nitride at the buffer layer and substrate interface. The laser spot is usually set to the grain size of the light-emitting diode to ensure perfect peeling. As the size of the growing substrate increases, more and more light-emitting diode crystal grains can grow on the same substrate. As the laser is removed from point to point (grain to grain), the time for laser stripping is thus increase. Since the high power density limits the area of the laser beam or the spot, the size of the light-emitting diode die suitable for the laser stripping process is also limited. With the increasing use of high power light-emitting diodes using larger light-emitting diode dies, this laser stripping process may not meet the demand for cleaner stripping of larger and larger grains.

為了確保可移除整個基板,雷射光點稍微地覆蓋了邊緣處。然而,此高功率密度具非常之毀滅性,而可於每一雷射光點覆蓋處的邊緣造成破裂。此雷射可能毀壞露出表面與發光結構的側壁。於操作時,此些破裂與毀損可能造成了漏電流。To ensure that the entire substrate can be removed, the laser spot slightly covers the edge. However, this high power density is very devastating and can cause cracking at the edge of each laser spot coverage. This laser may destroy the exposed surface and the sidewalls of the light-emitting structure. Such ruptures and damage may cause leakage current during operation.

由於雷射光束進入通過了藍寶石,如果於發光二極體結構成長之後的藍寶石界面包括了不規則情形,此雷射剝除製程可能為非均勻的。因此,習知雷射剝離方法亦包括了背側之藍寶石研磨步驟以改善雷射剝除製程的均勻性。此藍寶石研磨降低了於製程結束後藍寶石的回收可能性並增加了製程時間與成本。Since the laser beam enters the sapphire, if the sapphire interface after the growth of the light-emitting diode structure includes irregularities, the laser stripping process may be non-uniform. Therefore, the conventional laser peeling method also includes a sapphire grinding step on the back side to improve the uniformity of the laser stripping process. This sapphire grinding reduces the possibility of recycling sapphire after the end of the process and increases process time and cost.

於一方面,本發明係關於不包括使用一雷射光束之多重操作中移除一成長基板之一方法。藍寶石基板係首先採用一單一研磨料或多重研磨料而研磨至一第一特定厚度。並藉由乾蝕刻或濕蝕刻方式以移除剩餘之藍寶石基板。In one aspect, the invention relates to a method of removing a growing substrate from multiple operations that do not include the use of a laser beam. The sapphire substrate is first ground to a first specific thickness using a single abrasive or multiple abrasives. The remaining sapphire substrate is removed by dry etching or wet etching.

請再次參照第1圖,於操作17中,藉由研磨成長基板的一背側以移除成長基板之一第一部。於部份實施例中,可調整此研磨,以移除足夠之成長基板,使其殘留有約3-20微米、約10微米或約5微米。此研磨依照所使用研磨料而於一操作中或多個操作中完成。研磨機台則為含結合有環氧樹脂或蠟之極細尺寸的鑽石微粒之研磨輪(wheel)。當基板設置於此機台上時,研磨輪緊迫基板背側並依照不同方向而旋轉。藉由施加於基板之剪力(shear force),此硬之鑽石顆粒自基板背側移除了矽。薄矽基板的研磨操作則可額外地牽涉了化學蝕刻劑。部分用於背側研磨矽基板之商用機台可用於如藍寶石基板之其他基板的應用。Referring again to FIG. 1, in operation 17, a first side of the growth substrate is removed by grinding a back side of the substrate. In some embodiments, the grinding can be adjusted to remove sufficient growth of the substrate to leave about 3-20 microns, about 10 microns, or about 5 microns. This grinding is done in one operation or in multiple operations depending on the abrasive used. The grinding machine is a grinding wheel containing diamond particles of extremely fine size combined with epoxy or wax. When the substrate is placed on the machine, the grinding wheel presses the back side of the substrate and rotates in different directions. The hard diamond particles remove the crucible from the back side of the substrate by a shear force applied to the substrate. The polishing operation of the thin tantalum substrate may additionally involve a chemical etchant. Some commercial machines for backside grinding of the substrate can be used for other substrates such as sapphire substrates.

於一範例中,僅使用了一次的研磨操作。而研磨料可為具有介於15-5微米之尺寸的鑽石微粒。於控制研磨均勻度與速率之下,研磨料的選擇可最大化移除率。此研磨操作約為30-90分鐘。In one example, only one grinding operation was used. The abrasive material can be diamond particles having a size between 15 and 5 microns. Under the control of the uniformity and rate of grinding, the choice of abrasive can maximize the removal rate. This grinding operation is about 30-90 minutes.

於其他範例中,使用了多於一次之研磨操作。於其他範例中。一第一研磨操作可較單一研磨操作移除較少材料。此第一研磨操作可移除足夠成長基板,使其剩餘多於6微米。舉例來說,可使用鑽石微粒研磨料,而晶圓的研磨可採用大尺寸微粒之研磨料於約為35分鐘的研磨時間下,以薄化晶圓自約430微米至約50微米。接著於一第二階段研磨製程中再採用6微米之鑽石研磨料研磨此約50微米厚之晶圓約20分鐘,使之至約5微米厚度。第一操作研磨料可經過選擇,以具有最大移除率。而於第二階段研磨製程中,其研磨則移除成長基板至特定厚度。因此第一研磨料可較第二研磨料及當使用多於兩道操作時之其他後續研磨料為較硬且/或較具腐蝕性。相較於採用雷射剝離方法,起始的藍寶石背面狀況並不適用於研磨製程。因此,不像雷射剝離製程般需要先研磨表面,於此研磨操作之前並沒有施行表面準備措施。In other examples, more than one grinding operation was used. In other examples. A first grinding operation can remove less material than a single grinding operation. This first grinding operation removes enough growth of the substrate to leave more than 6 microns. For example, a diamond particulate abrasive can be used, and the wafer can be ground using a large size abrasive slurry at a polishing time of about 35 minutes to thin the wafer from about 430 microns to about 50 microns. The approximately 50 micron thick wafer is then ground in a second stage polishing process using a 6 micron diamond abrasive for about 20 minutes to a thickness of about 5 microns. The first operating abrasive can be selected to have a maximum removal rate. In the second stage of the grinding process, the grinding removes the grown substrate to a specific thickness. Thus the first abrasive can be harder and/or more corrosive than the second abrasive and other subsequent abrasives when more than two operations are used. The initial sapphire back condition is not suitable for the grinding process as compared to the laser stripping method. Therefore, unlike the laser stripping process, the surface needs to be ground first, and surface preparation measures are not performed before the grinding operation.

於研磨操作17之後,可藉由第1圖內操作19中之蝕刻以移除成長基板之剩餘部。於部份實施例中,此蝕刻為採用感應耦合電漿(inductively coupled plasma,ICP)之乾蝕刻。感應耦合電漿蝕刻可使用如氮、氬、氪、氙之惰性元素、氧或其他已知氣體。此感應耦合電漿蝕刻可使用反應性離子元素,例如含氟蝕刻劑(即CF4 、CHF3 、SF6 、C4 F8 、C4 F10 、Cx F2x+2 、CCl3 、CCl2 F2 、CF3 Cl、C2 ClF5 )、含氯蝕刻劑(即BCl3 、BCl3 +Cl2 、CCl4 、CCl4 +Cl2 、BCl3 +Cl2 、CCl3 F、CCl2 F2 、CF3 Cl、C2 ClF5 )、含溴蝕刻劑(即HBr)及其他含鹵素蝕刻劑。於製程腔體內可臨場地產生一高密度電漿。此電漿蝕刻操作可於少於約150℃之一基板溫度下施行,較佳地約為室溫下施行。可於基板處施加一偏壓以導引電漿朝向基板。After the polishing operation 17, the remaining portion of the grown substrate can be removed by etching in operation 19 in FIG. In some embodiments, the etching is dry etching using inductively coupled plasma (ICP). Inductively coupled plasma etching may use inert elements such as nitrogen, argon, helium, neon, oxygen or other known gases. This inductively coupled plasma etch can use reactive ionic elements such as fluorine-containing etchants (ie, CF 4 , CHF 3 , SF 6 , C 4 F 8 , C 4 F 10 , C x F 2x+2 , CCl 3 , CCl). 2 F 2 , CF 3 Cl, C 2 ClF 5 ), chlorine-containing etchant (ie BCl 3 , BCl 3 +Cl 2 , CCl 4 , CCl 4 +Cl 2 , BCl 3 +Cl 2 , CCl 3 F, CCl 2 F 2 , CF 3 Cl, C 2 ClF 5 ), a bromine-containing etchant (ie, HBr) and other halogen-containing etchants. A high-density plasma is produced in the process chamber. This plasma etching operation can be carried out at a substrate temperature of less than about 150 ° C, preferably at about room temperature. A bias can be applied at the substrate to direct the plasma toward the substrate.

此電漿乾蝕刻可採用其他電漿產生方式而施行,包括了電容耦合電漿(capacitively coupled plasma,CCP)、磁控電漿(magnetron plasma)、電子迴旋共振(electron cyclotron resonance,ECR)電漿、或微波電漿。電漿可臨場或遙控地產生。此電漿具有高離子密度。The plasma dry etching can be performed by other plasma generation methods, including capacitively coupled plasma (CCP), magnetron plasma, electron cyclotron resonance (ECR) plasma. Or microwave plasma. The plasma can be produced on-site or remotely. This plasma has a high ion density.

或者,於部份實施例中,上述蝕刻為濕蝕刻。此濕蝕刻可使用硫酸、磷酸或此些蝕刻劑的組合。於一濕蝕刻中,基板係浸入於一蝕刻溶液中一段時間直到移除足夠量之成長基板。硫酸可為H2 SO4 ,而磷酸可為H3 PO4 。此蝕刻溶液亦可使用些許的醋酸(CH3 COOH)、硝酸(HNO3 )、水與其他常用之蝕刻劑成分。舉例來說,此蝕刻溶液可為包括醋酸、硝酸與水之的3硫酸:1磷酸混合物。亦可加熱此蝕刻溶液至高於100℃、高於200℃、高於300℃或高於400℃。此濕蝕刻可於低於如1大氣壓或高於1.5大氣壓或2大氣壓之一壓力下的一腔體內施行。典型之蝕刻溶液為於大氣壓下之300℃之包括醋酸、硝酸與水之的3硫酸:1磷酸混合物。熟悉此技藝者可設計一濕蝕刻製程以達到一適當蝕刻率與選擇率。由於製作出之發光二極體的整個部份係暴露於蝕刻溶液中,元件之部分可先為一保護層所保護。保護層可選擇於蝕刻製程中具有一蝕刻率遠低於成長基板的蝕刻率之材料。保護層亦可適當地覆蓋露出發光二極體平台結構的側壁,換句話說,其可足夠地順應因此於元件本身並無不期待的蝕刻發生。Alternatively, in some embodiments, the etching is wet etching. This wet etching can use sulfuric acid, phosphoric acid or a combination of such etchants. In a wet etch, the substrate is immersed in an etching solution for a period of time until a sufficient amount of the growth substrate is removed. The sulfuric acid can be H 2 SO 4 and the phosphoric acid can be H 3 PO 4 . The etching solution may also use a small amount of acetic acid (CH 3 COOH), nitric acid (HNO 3 ), water, and other commonly used etchant components. For example, the etching solution can be a mixture of 3 sulfuric acid: 1 phosphoric acid including acetic acid, nitric acid and water. The etching solution may also be heated to above 100 ° C, above 200 ° C, above 300 ° C or above 400 ° C. This wet etching can be carried out in a cavity below a pressure of, for example, 1 atmosphere or more than 1.5 atmospheres or 2 atmospheres. A typical etching solution is a mixture of 3 sulfuric acid:1 phosphoric acid comprising acetic acid, nitric acid and water at 300 ° C under atmospheric pressure. Those skilled in the art can design a wet etch process to achieve an appropriate etch rate and selectivity. Since the entire portion of the fabricated LED is exposed to the etching solution, portions of the component can be protected by a protective layer. The protective layer may be selected to have a material having an etching rate much lower than that of the grown substrate in the etching process. The protective layer may also suitably cover the sidewalls of the light-emitting diode platform structure, in other words, it may be sufficiently compliant to occur without the etching of the component itself.

第2圖為依據本發明之較廣流程11及不同實施例之一示範流程12的製程流程圖。此範例流程12顯示了依據本發明之方法實施例之製作包括具有移除其內基板之一發光二極體之一發光二極體封裝物之一製程。於示範流程12以外之其他製程所形成之其他類型之發光二極體封裝物亦適用依據本發明之方法實施例之製作包括具有移除其內基板之一發光二極體之一發光二極體封裝物之一製程。在此顯示了包括了藉由銲錫凸塊而附著於一封裝物基板之一覆晶發光二極體封裝物之一範例。Figure 2 is a flow diagram of a process flow for demonstrating process 12 in accordance with a broader flow 11 of the present invention and a different embodiment. This example flow 12 shows a process for fabricating a light emitting diode package having one of the light emitting diodes of the inner substrate in accordance with an embodiment of the method of the present invention. Other types of light-emitting diode packages formed by other processes than the exemplary process 12 are also applicable to the fabrication of an embodiment of the method according to the present invention, including one of the light-emitting diodes having one of the light-emitting diodes removed from the inner substrate. One of the packages. An example of a flip-chip LED package including one of the package substrates attached by solder bumps is shown.

請參照第2圖,於操作13中,提供如一藍寶石基板之一成長基板。於操作15中,於此基板上形成一發光結構。接著選擇性地形成一接觸金屬層於發光結構之上,以及於操作16中形成一連結金屬層於接觸金屬層之上。可設置一反射金屬層於接觸金屬層與連結金屬層之間。於操作17中,接著採用一切割道圖案(scribe pattern)以蝕刻此結構,以形成發光平台結構。於操作18中沈積一保護層以保護平台結構,特別地保護露出之平台側壁部。於操作19中,藉由研磨基板的背面以移除成長基板之第一部。如前所示,此研磨操作可包括採用不同研磨料之一或多個操作。接著於操作20中,可藉由電漿蝕刻、濕蝕刻或其組合之蝕刻以移除成長基板的剩餘部。Referring to FIG. 2, in operation 13, a growth substrate such as a sapphire substrate is provided. In operation 15, a light emitting structure is formed on the substrate. A contact metal layer is then selectively formed over the light emitting structure, and a bonding metal layer is formed over the contact metal layer in operation 16. A reflective metal layer may be disposed between the contact metal layer and the bonding metal layer. In operation 17, a scribe pattern is then employed to etch the structure to form a light emitting platform structure. A protective layer is deposited in operation 18 to protect the platform structure, particularly the exposed platform sidewall portions. In operation 19, the first portion of the grown substrate is removed by grinding the back side of the substrate. As indicated previously, this grinding operation can include one or more operations using different abrasives. Next, in operation 20, the remaining portion of the grown substrate can be removed by etching by plasma etching, wet etching, or a combination thereof.

第3-15圖顯示了如第2圖之製程流程之示範中間結構。第3圖顯示了形成前述之發光結構30。第4圖顯示了形成於發光結構30上之一接觸金屬層41與選擇性之一反光金屬層43。接觸金屬層41為一金屬,其可為鎳、如鎳/金之鎳合金,或如鉻/鉑/金、鈦/鋁/鈦/金之金屬合金、或其他相似合金。於一實施例中,接觸金屬41層為鎳/銀合金。接觸金屬層41牢固地黏著於發光結構30與反光金屬層43的頂層。反光金屬層43可為如鋁、銅、鈦、銀、金之金屬、如鈦/鉑/金之此些材料的合金、或其結合。特別地,銀與鋁為習知之適用於藍光的良好反光物。可藉由一物理氣相沈積(PVD)製程或一化學氣相沈積(CVD)或其他沈積製程以形成反光層。接觸金屬層41與反光金屬層43可具有約為300奈米之一結合厚度。Figures 3-15 show an exemplary intermediate structure of the process flow as shown in Figure 2. Figure 3 shows the formation of the aforementioned illumination structure 30. 4 shows one of the contact metal layer 41 and the selective one of the reflective metal layer 43 formed on the light emitting structure 30. The contact metal layer 41 is a metal which may be nickel, such as a nickel/gold nickel alloy, or a metal alloy such as chromium/platinum/gold, titanium/aluminum/titanium/gold, or other similar alloy. In one embodiment, the layer of contact metal 41 is a nickel/silver alloy. The contact metal layer 41 is firmly adhered to the top layer of the light emitting structure 30 and the reflective metal layer 43. The reflective metal layer 43 can be an alloy such as aluminum, copper, titanium, silver, gold, alloys such as titanium/platinum/gold, or combinations thereof. In particular, silver and aluminum are well-known good reflectors for blue light. The light reflecting layer can be formed by a physical vapor deposition (PVD) process or a chemical vapor deposition (CVD) or other deposition process. The contact metal layer 41 and the reflective metal layer 43 may have a combined thickness of about 300 nm.

接觸金屬層41與選擇性的反光金屬層43係使用一物理氣相沈積製程或一化學氣相沈積製程或其他沈積製程且沈積有相同之圖案。此些膜層可採用不同技術而沈積。舉例來說,反光金屬層43可沈積採用電化學電鍍,而接觸金屬層41可採用物理氣相沈積而沈積。The contact metal layer 41 and the selective reflective metal layer 43 are formed using a physical vapor deposition process or a chemical vapor deposition process or other deposition process and deposited with the same pattern. These layers can be deposited using different techniques. For example, the reflective metal layer 43 can be deposited using electrochemical plating, and the contact metal layer 41 can be deposited by physical vapor deposition.

第5圖顯示了位於金屬層41與43之上且環繞之的一阻劑圖案45。於工件之上沈積、曝光與顯影一阻劑圖案。此圖案定義出了環繞了金屬層41與43之一區域。第6圖顯示了依據平台圖案(mesa pattern)45而蝕刻至如第5圖所示之發光結構30內之數個通道(streets)47、或溝槽。此些通道47分隔了個別之發光平台結構(light-emitting mesa structure)。而此些通道顯示了具有高深寬比,然而此些圖式並未依照實際比例繪示,而且此些通道可寬於其所顯示之情形。此平台結構可具有數個微米之高以及數百或數千個微米之寬。此通道之寬度可為多於50微米寬。如圖所示,蝕刻係停止於約為介於緩衝層33與成長基板31間之界面。於不同實施例中,此製程可包括一輕度過度蝕刻,而基板31可做為一蝕刻停止層。Figure 5 shows a resist pattern 45 overlying and surrounding metal layers 41 and 43. A resist pattern is deposited, exposed and developed over the workpiece. This pattern defines an area surrounding the metal layers 41 and 43. Figure 6 shows a plurality of streets 47, or trenches, etched into the light-emitting structure 30 as shown in Figure 5 in accordance with a mesa pattern 45. These channels 47 separate individual light-emitting mesa structures. While these channels show a high aspect ratio, these figures are not drawn to scale and the channels can be wider than they are displayed. This platform structure can have a height of a few microns and a width of hundreds or thousands of microns. The width of this channel can be more than 50 microns wide. As shown, the etching stops at an interface between the buffer layer 33 and the growth substrate 31. In various embodiments, the process can include a slight overetch, and the substrate 31 can serve as an etch stop.

此發光平台結構之蝕刻可為一乾蝕刻或一濕蝕刻。對於乾蝕刻而言,可使用採用氬或氮電漿之一感應耦合電漿(ICP)。而對於濕蝕刻而言,可依序使用鹽酸(HCl)、氫氟酸(HF)、氫碘酸(HI)、硫酸(H2 SO4 )、亞磷酸(H2 PO4 )、磷酸(H3 PO4 )或其結合。部份之濕蝕刻劑需要一較高溫度以達到一有效蝕刻率,例如磷酸具有約為50-100℃之蝕刻溫度。The etching of the light emitting platform structure may be a dry etching or a wet etching. For dry etching, an inductively coupled plasma (ICP) using one of argon or nitrogen plasma can be used. For wet etching, hydrochloric acid (HCl), hydrofluoric acid (HF), hydroiodic acid (HI), sulfuric acid (H 2 SO 4 ), phosphorous acid (H 2 PO 4 ), phosphoric acid (H) can be used in sequence. 3 PO 4 ) or a combination thereof. Part of the wet etchant requires a higher temperature to achieve an effective etch rate, such as phosphoric acid having an etch temperature of about 50-100 °C.

如第7A圖所示,於蝕刻形成發光平台結構後,移除阻劑圖案45。接著形成一保護層51於發光平台結構的頂面與側壁之上,以及位於通道47內基板之上,如第7B圖所示。此保護層51保護了露出表面免於受到於後續製程中所使用之材料所造成之不期望反應。特別地,保護層51保護了發光平台結構之露出免於受到如阻劑移除、背側研磨與背側蝕刻等後續製程操作的影響。因此,可選擇蝕刻製程中相較於成長基板之具有一較低蝕刻率之保護層51。保護層51亦可適當地覆蓋了露出之發光平台結構的側壁,換句話說,其可為足夠地順應。依據保護層材料,上述考量將限制了可用於沈積此材料之製程類型。As shown in FIG. 7A, after etching to form the light-emitting platform structure, the resist pattern 45 is removed. A protective layer 51 is then formed over the top and sidewalls of the light emitting platform structure and over the substrate within the channel 47, as shown in FIG. 7B. This protective layer 51 protects the exposed surface from undesired reactions caused by materials used in subsequent processes. In particular, the protective layer 51 protects the exposure of the light-emitting platform structure from subsequent processing operations such as resist removal, backside polishing, and backside etching. Therefore, the protective layer 51 having a lower etching rate than the grown substrate in the etching process can be selected. The protective layer 51 may also suitably cover the sidewalls of the exposed light-emitting platform structure, in other words, it may be sufficiently compliant. Depending on the material of the protective layer, the above considerations will limit the types of processes that can be used to deposit this material.

於部份實施例中,保護層51可為氧化矽、氮化矽、氮氧化矽、碳化矽、摻碳氧化矽、摻碳氮化矽或其他已知的非導電性保護材料。舉例來說,可採用電漿加強型化學氣相沈積(PECVD)製程而沈積一氧化矽。電漿加強型化學氣相沈積為常用的,基於其他介電沈積技術使用了一較高溫度,其將於早先沈積之金屬層41與43處造成問題。於使用電漿加強型化學氣相沈積以沈積氧化矽中,熟悉此技藝者可調整製程以沈積一適當膜層。In some embodiments, the protective layer 51 may be tantalum oxide, tantalum nitride, hafnium oxynitride, tantalum carbide, carbon-doped cerium oxide, carbon-doped carbonitride or other known non-conductive protective materials. For example, ruthenium oxide can be deposited using a plasma enhanced chemical vapor deposition (PECVD) process. Plasma enhanced chemical vapor deposition is commonly used, using a higher temperature based on other dielectric deposition techniques that cause problems at the previously deposited metal layers 41 and 43. In the use of plasma enhanced chemical vapor deposition to deposit yttria, those skilled in the art can adjust the process to deposit a suitable film layer.

為了避免環繞多重量子井層37的漏電流,故特別地重要需保護多重量子井層37的側壁及其鄰近膜層之部份。保護一較大區域為有利的,由於如此可減少了後續蝕刻製程毀損發光結構30的可能性。依照製程與所使用材料,可沈積且形成不同厚度之保護層51於如圖所示之側壁及於場(field)或水平區域之上。經量測,自側壁至發光平台結構之保護層51約為600埃,或至少為100埃,且可約為1000奈米之多,其係依照所使用之電漿形態與偏壓情形而決定。In order to avoid leakage currents surrounding the multiple quantum well layers 37, it is particularly important to protect the sidewalls of the multiple quantum well layers 37 and portions of their adjacent layers. It is advantageous to protect a larger area, as this reduces the likelihood that subsequent etching processes will damage the light emitting structure 30. Depending on the process and the materials used, a protective layer 51 of varying thickness can be deposited and formed over the sidewalls as shown and above the field or horizontal regions. The protective layer 51 from the sidewall to the light-emitting platform structure is measured to be about 600 angstroms, or at least 100 angstroms, and may be as much as about 1000 nanometers, depending on the plasma form and bias conditions used. .

如第8A圖所示,接著藉由圖案化與蝕刻而移除位於發光平台結構之頂面上之保護層51的一部。如圖所示,移除位於膜層39上之保護層51,以露出接觸金屬層41與反光金屬層43。形成一阻劑圖案於保護層51上,以保護位於通道內與發光平台結構的側壁上之保護層的一部。接著藉由乾蝕刻或濕蝕刻以蝕刻去除位於發光平台結構上及環繞金屬層41與43的保護層51之未保護部份(unprotected portion)。As shown in FIG. 8A, a portion of the protective layer 51 on the top surface of the light emitting platform structure is then removed by patterning and etching. As shown, the protective layer 51 on the film layer 39 is removed to expose the contact metal layer 41 and the reflective metal layer 43. A resist pattern is formed on the protective layer 51 to protect a portion of the protective layer located within the via and the sidewalls of the light emitting platform structure. The unprotected portion of the protective layer 51 on the light emitting platform structure and surrounding the metal layers 41 and 43 is then etched by dry etching or wet etching.

第8B圖顯示了形成於接觸金屬層41與反光金屬層43上之額外之結合金屬層53。此結合金屬材料可為適用於結合具有一黏著金屬層與一接合基板之一軟金屬(soft metal)。舉例來說,此結合材料可為金或金/錫合金。於移除保護層51之一部後,於結合金屬材料的沈積中並不需要去除或移除阻劑圖案。接合金屬可採用物理氣相沈積、化學氣相沈積或包括了電沈積(electrodeposition)或無電沈積(electroless deposition)之其他沈積製程所沈積。FIG. 8B shows an additional bonding metal layer 53 formed on the contact metal layer 41 and the reflective metal layer 43. The bonding metal material may be suitable for bonding a soft metal having an adhesive metal layer and a bonding substrate. For example, the bonding material can be gold or gold/tin alloy. After removing one of the protective layers 51, it is not necessary to remove or remove the resist pattern in the deposition of the bonding metal material. The bonding metal can be deposited by physical vapor deposition, chemical vapor deposition, or other deposition processes including electrodeposition or electroless deposition.

如第9圖所示,接著反置發光平台結構與成長基板且將之連結於一連結基板(bonding substrate)。此連結金屬層53係連結於位於一基板59上之一黏著金屬層57。此基板59通常為一矽基板,但可為一金屬或陶瓷。適當之基板可具有一高熱導率,例如矽或銅。黏著金屬層可由金、錫、或此些材料之合金所製成。連結金屬層53以及黏著金屬層57可透過共晶連結(eutectic bonding)或金屬連結(metal bonding)而連結。於共晶連結中,連結金屬層可為一金/錫合金,而黏著金屬層可由金所製成。於金屬連結中,金屬層53與57可皆為金。As shown in FIG. 9, the light-emitting platform structure and the growth substrate are then inverted and connected to a bonding substrate. The connecting metal layer 53 is connected to one of the adhesive metal layers 57 on a substrate 59. The substrate 59 is typically a germanium substrate, but may be a metal or ceramic. A suitable substrate can have a high thermal conductivity, such as tantalum or copper. The adhesive metal layer can be made of gold, tin, or an alloy of such materials. The connection metal layer 53 and the adhesion metal layer 57 can be connected by eutectic bonding or metal bonding. In the eutectic connection, the connecting metal layer may be a gold/tin alloy, and the adhesive metal layer may be made of gold. In the metal bond, the metal layers 53 and 57 may both be gold.

於發光二極體之晶粒連結至基板後,可依照此處所述之數個操作而移除成長基板31。第10圖顯示了經過一或多個研磨製程後之一經薄化的成長基板55。第11圖顯示了於完全去除成長基板後之連結於連結基板59之發光平台結構。如先前描述,經薄化之成長基板55係藉由乾蝕刻或濕蝕刻而移除。於完全移除成長基板之後,各別的發光平台結構可稱為發光二極體晶粒。每一發光二極體晶粒彼此可單獨地產生光線。After the die of the light emitting diode is bonded to the substrate, the growth substrate 31 can be removed in accordance with several operations described herein. Figure 10 shows a thinned growth substrate 55 after one or more polishing processes. Fig. 11 shows the structure of the light-emitting platform connected to the connection substrate 59 after the growth of the substrate is completely removed. As previously described, the thinned growth substrate 55 is removed by dry etching or wet etching. After completely removing the grown substrate, the respective light emitting platform structures may be referred to as light emitting diode grains. Each of the light emitting diode dies can generate light separately from each other.

第12圖顯示了具有一部之緩衝層33被移除的安裝有發光二極體晶粒之基板。首先可應用一阻劑圖案以保護結構之部分免於製程中被移除。阻劑圖案可形成於發光二極體晶粒的邊緣、保護層表面51以及金屬層53與57的表面上。可應用如感應耦合電漿製程之一乾蝕刻製程以移除部份之緩衝層33。值得注意的是雖然於第12圖中顯示了緩衝層33的邊緣殘留於發光二極體晶粒上,但其並非必要的。此些圖式與文字描述採用阻劑以保護了邊緣,因而不需移除保護層51。然而,可使用用於保護阻劑層51之其他方法,例如早於移除緩衝層前先沈積一犧牲層。通常,採用經偏壓之感應耦合電漿(ICP)以及使用例如氬、氪或氙之較重分子以施行實體蝕刻製程。Figure 12 shows a substrate with a light-emitting diode die mounted with a buffer layer 33 removed. A resist pattern can first be applied to protect portions of the structure from removal during processing. A resist pattern may be formed on the edge of the light emitting diode die, the protective layer surface 51, and the surfaces of the metal layers 53 and 57. A dry etching process such as an inductively coupled plasma process can be applied to remove portions of the buffer layer 33. It is to be noted that although it is shown in Fig. 12 that the edge of the buffer layer 33 remains on the light-emitting diode die, it is not necessary. These figures and text describe the use of a resist to protect the edges, so that the protective layer 51 need not be removed. However, other methods for protecting the resist layer 51 may be used, such as depositing a sacrificial layer prior to removal of the buffer layer. Typically, a biased inductively coupled plasma (ICP) is used and a heavier molecule such as argon, helium or neon is used to perform a physical etching process.

請參照第13圖,可接著處理第一摻雜層35的露出表面,以得到一粗糙表面61並形成金屬接觸物63與64於表面處。於部份實施例中,此表面先經過圖案化以保護用於形成金屬接觸物63之區域,且接著經過電漿處理以形成一粗糙表面。可使用採用如氯之化學蝕刻劑之一電漿蝕刻以沿著氮化鎵結晶晶格結構蝕刻其表面,以形成具有小的三角形之一粗糙表面。可接著圖案化經粗糙化之表面以用於接觸金屬的沈積。於特定實施例中,可沈積接觸金屬以形成具有數個接觸接墊64及薄接觸物63之內連圖案於晶粒表面。如此一內連結夠可散佈電流於表面之上。於第14圖內顯示了示範之一接觸圖案。可藉由薄接觸結構63連結接觸接墊64。此薄接觸物63可約為20-30微米寬,而接觸接墊可約為50-80微米寬。值得注意的是,藉由形成接觸物於經粗糙化表面些上或是藉由將接觸金屬置入於電漿蝕刻中,可省略了阻劑圖案化之步驟可去除,而接觸電阻可能相應地增加。Referring to Figure 13, the exposed surface of the first doped layer 35 can be subsequently processed to obtain a rough surface 61 and metal contacts 63 and 64 are formed at the surface. In some embodiments, the surface is first patterned to protect the area used to form the metal contacts 63 and then plasma treated to form a rough surface. Plasma etching using one of chemical etchants such as chlorine may be used to etch its surface along a gallium nitride crystal lattice structure to form a rough surface having a small triangle. The roughened surface can then be patterned for contact deposition of the metal. In a particular embodiment, the contact metal can be deposited to form an interconnect pattern having a plurality of contact pads 64 and thin contacts 63 on the die surface. Such an internal connection is sufficient to distribute current over the surface. An exemplary contact pattern is shown in Figure 14. The contact pads 64 can be joined by a thin contact structure 63. The thin contact 63 can be about 20-30 microns wide and the contact pads can be about 50-80 microns wide. It is worth noting that the step of patterning the resist can be omitted by forming the contact on the roughened surface or by placing the contact metal in the plasma etching, and the contact resistance may be correspondingly increase.

亦可沈積一額外之保護層材料65以保護露出之導電金屬層53的側壁。此額外之保護層65的材料可相同如保護層51之組成物或為不同材料。保護層65的材料可直接沈積於保護層51之上。An additional protective layer material 65 may also be deposited to protect the sidewalls of the exposed conductive metal layer 53. The material of this additional protective layer 65 may be the same as the composition of the protective layer 51 or a different material. The material of the protective layer 65 may be deposited directly on the protective layer 51.

於接觸結構63與64完成之後,便大體形成了一發光二極體。於安裝至連結基板之上及早於切割之前,可選擇性地測試或分組(binning)此發光二極體。於測試與分組過程中,移動電極而橫跨發光二極體晶粒與發光二極體晶粒間之基板。量測每一發光二極體晶粒的輸出。於此階段中,於發光二極體晶粒內之任何缺陷將造成了其光輸出量低於最低規範,因而其將被標記並於後續程序中被移除。倘若有缺陷之發光二極體晶粒係於稍後才被發現與拋棄,則將造成了如包裝、透鏡模塑及螢光塗佈等更多材料與製程方面的損失。如此之早期缺陷產品移除情形節省了製程時間與材料成本。具有光線輸出符合最小規範之發光二極體晶粒經過分類而成為不同分組,以用於具有不同特性之產品之進一步製作。After the contact structures 63 and 64 are completed, a light emitting diode is generally formed. The light emitting diode can be selectively tested or binned prior to mounting onto the bonding substrate and prior to cutting. During the testing and grouping process, the electrodes are moved across the substrate between the light-emitting diode die and the light-emitting diode die. The output of each of the light emitting diode dies is measured. At this stage, any defects in the luminescent diode grains will cause their light output to be below the minimum specification, so they will be marked and removed in subsequent procedures. If defective LED dies are discovered and discarded later, they will result in more material and process losses such as packaging, lens molding and fluorescent coating. Such early defect product removal scenarios save process time and material costs. Light-emitting diode dies having a light output that meets the minimum specifications are classified into different groups for further fabrication of products having different characteristics.

第15圖顯示了測試與分組基板安裝之發光二極體晶粒的一範例。在此顯示了形成於用於測試與分組之發光二極體晶粒之各別晶粒的通道處的暫時性接觸物(temporary contacts)。可圖案化與開啟保護層材料65的一部,以使得可沈積此暫時性接觸物67。此操作可通常與接觸物結構63與64的沈積時同時進行。於測試與分組製程中,將一電流導通並橫跨此發光二極體晶粒並量測得到之一光輸出量。採用一對電極探針69與71接觸接觸物64與暫時性接觸物67。此測試可包括量測相應於不同電流輸入量之不同輸出情形。具有相似反應之發光二極體將可規類為同類。熟悉此技藝者可注意到此臨時性接觸物亦可用於測試相鄰之數個發光二極體晶粒,此時此些結構係同時測試且具有相同類型。Figure 15 shows an example of test and group substrate mounted light emitting diode dies. Here, temporary contacts formed at the channels for testing the individual dies of the light-emitting diode dies of the group are shown. A portion of the protective layer material 65 can be patterned and opened such that the temporary contact 67 can be deposited. This operation can generally be performed simultaneously with the deposition of contact structures 63 and 64. In the test and grouping process, a current is conducted and traverses the light-emitting diode die and a light output is measured. A pair of electrode probes 69 and 71 are used to contact the contact 64 with the temporary contact 67. This test can include measuring different output situations corresponding to different current input quantities. Light-emitting diodes with similar responses will be classified as homogeneous. Those skilled in the art will appreciate that this temporary contact can also be used to test adjacent illuminating diode dies, at which point such structures are tested simultaneously and of the same type.

於發光二極體晶粒經過分組後,其可經過切割或分割成為各別之發光二極體。分割程序可為一非蝕刻製程,其可採用如一雷射光束或一切割刀之一切割裝置以實體地分隔發光二極體晶粒。經過切割之後,適用於產生光線之每一發光二極體可實體地且電性地相互獨立。After the light-emitting diode grains are grouped, they can be cut or divided into individual light-emitting diodes. The splitting process can be a non-etching process that can employ a cutting device such as a laser beam or a cutting blade to physically separate the light emitting diode dies. After dicing, each of the light-emitting diodes suitable for generating light can be physically and electrically independent of one another.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the invention may be modified and retouched without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached.

11、12...發光二極體之製造方法11,12. . . Method for manufacturing light emitting diode

13、15、16、17、18、19、20...操作13, 15, 16, 17, 18, 19, 20. . . operating

30...發光結構30. . . Light structure

31...基板31. . . Substrate

33...緩衝層33. . . The buffer layer

35...摻雜層35. . . Doped layer

37...多重量子井層37. . . Multiple quantum well layers

39...摻雜層39. . . Doped layer

41...緩衝層41. . . The buffer layer

43...反光金屬層43. . . Reflective metal layer

45...阻劑圖案45. . . Resistive pattern

47...通道47. . . aisle

51...保護層51. . . The protective layer

53...結合金屬層53. . . Bonded metal layer

55...經薄化的成長基板55. . . Thinned growth substrate

57...黏著金屬層57. . . Adhesive metal layer

59...基板59. . . Substrate

61...粗糙表面61. . . Rough surface

63...薄接觸結構63. . . Thin contact structure

64...接觸接墊64. . . Contact pad

65...保護層65. . . The protective layer

67...暫時性接觸物67. . . Temporary contact

69、71...電極探針69, 71. . . Electrode probe

第1、2圖為一流程圖,顯示了依據本發明之多個觀點之發光二極體之製造方法;以及1 and 2 are flow charts showing a method of manufacturing a light-emitting diode according to various aspects of the present invention;

第3~6、7A、7B、8A、8B及9~15圖顯示了依據本發明之特定實施例之發光二極體於製作中多個階段之圖式。Figures 3-6, 7A, 7B, 8A, 8B, and 9-15 show diagrams of various stages of fabrication of a light-emitting diode in accordance with a particular embodiment of the present invention.

12...發光二極體之製造方法12. . . Method for manufacturing light emitting diode

13、15、16、17、18、19、20...操作13, 15, 16, 17, 18, 19, 20. . . operating

Claims (9)

一種發光二極體之製造方法,包括:提供一藍寶石基板;形成一發光結構於該藍寶石基板上,該發光結構包括:一緩衝層;一第一摻雜層,位於該緩衝層上,摻雜有第一導電類型之一第一摻質;一主動層,位於該第一摻雜層之上;以及一第二摻雜層,位於該主動層之上,該第二摻雜層摻雜有相反於該第一導電類型之一第二導電類型之一第二摻質;研磨該藍寶石基板之一背面,以移除該藍寶石基板之一部;藉由蝕刻以完全地移除該藍寶石基板之一剩餘部;以及移除該緩衝層之一部,以於該緩衝層內形成一凹口。 A method for manufacturing a light-emitting diode, comprising: providing a sapphire substrate; forming a light-emitting structure on the sapphire substrate, the light-emitting structure comprising: a buffer layer; a first doped layer on the buffer layer, doped a first dopant of a first conductivity type; an active layer over the first doped layer; and a second doped layer over the active layer, the second doped layer being doped Conversely, the second dopant of one of the second conductivity types of the first conductivity type; grinding the back side of one of the sapphire substrates to remove a portion of the sapphire substrate; and etching to completely remove the sapphire substrate a remaining portion; and removing a portion of the buffer layer to form a recess in the buffer layer. 如申請專利範圍第1項所述之發光二極體之製造方法,其中研磨該藍寶石基板之背面包括依序使用具有不同硬度或顆粒尺寸之兩種研磨料。 The method of manufacturing a light-emitting diode according to claim 1, wherein the grinding the back surface of the sapphire substrate comprises sequentially using two kinds of abrasive materials having different hardnesses or particle sizes. 如申請專利範圍第1項所述之發光二極體之製造方法,其中該蝕刻為電漿蝕刻或濕蝕刻。 The method of manufacturing a light-emitting diode according to claim 1, wherein the etching is plasma etching or wet etching. 一種發光二極體之製造方法,包括:提供一成長基板;形成一發光結構於該成長基板之上,該發光結構包 括:一緩衝層;一第一摻雜層,位於該緩衝層之上,該第一摻雜層摻雜有第一類型之一第一摻質;一主動層,位於該第一摻雜層之上;以及一第二摻雜層,位於該主動層之上,該第二摻雜層摻雜有相反於該第一類型之一第二類型之一第二摻質;蝕刻出複數個通道於該發光結構內,以形成具有露出側壁之複數個發光平台結構;沈積一保護層以覆蓋該露出側壁;藉由研磨該成長基板之一背面,以移除該成長基板之一第一部;藉由蝕刻以完全地移除該成長基板之一剩餘部;以及移除該緩衝層之一部,以於該緩衝層內形成一凹口。 A method for manufacturing a light-emitting diode, comprising: providing a growth substrate; forming a light-emitting structure on the growth substrate, the light-emitting structure package Included: a buffer layer; a first doped layer over the buffer layer, the first doped layer is doped with one of the first types of first dopants; and an active layer is located at the first doped layer And a second doped layer over the active layer, the second doped layer being doped with a second dopant opposite to one of the second types of the first type; etching a plurality of channels In the light-emitting structure, a plurality of light-emitting platform structures having exposed sidewalls are formed; a protective layer is deposited to cover the exposed sidewalls; and a back surface of one of the growth substrates is removed by grinding a back surface of the growth substrate; The recess is completely removed by etching to remove a portion of the growth substrate; and a portion of the buffer layer is removed to form a recess in the buffer layer. 如申請專利第4項所述之發光二極體之製造方法,更包括:形成一接觸金屬層於該第二摻雜層之上;以及形成一連結金屬層於該接觸金屬層之上。 The method for manufacturing a light-emitting diode according to claim 4, further comprising: forming a contact metal layer on the second doped layer; and forming a bonding metal layer on the contact metal layer. 如申請專利第5項所述之發光二極體之製造方法,更包括:藉由接合該連結金屬層與位於一矽基板上之一黏著金屬層,以附著該成長基板上之該些發光平台結構與該矽基板。 The method for manufacturing a light-emitting diode according to claim 5, further comprising: bonding the light-emitting platforms on the growth substrate by bonding the bonding metal layer and one of the adhesion metal layers on a substrate Structure with the crucible substrate. 如申請專利第4項所述之發光二極體之製造方 法,更包括:粗糙化該第一摻雜層之一露出表面之一部;以及形成一金屬接觸物於該第一摻雜層之該露出表面之一剩餘部之上。 The manufacturer of the light-emitting diode as described in claim 4 The method further includes: roughening one of the exposed portions of the first doped layer; and forming a metal contact over a remaining portion of the exposed surface of the first doped layer. 如申請專利第7項所述之發光二極體之製造方法,更包括:形成一暫時接觸物於該黏著金屬層上;施加跨越該暫時接觸物與位於該第一摻雜層上之該金屬接觸物之一電壓,以使得由該發光平台結構發出光線;量測該光線;以及依據該光線之量測以分組該發光平台結構。 The method for manufacturing a light-emitting diode according to claim 7, further comprising: forming a temporary contact on the adhesive metal layer; applying the metal across the temporary contact and the first doped layer Contacting one of the voltages such that light is emitted by the illumination platform structure; measuring the light; and grouping the illumination platform structure according to the measurement of the light. 一種發光二極體之製造方法,包括:提供一成長基板;形成一發光結構於該成長基板之上,該發光結構包括:一緩衝層;一第一摻雜層,位於該緩衝層之上,該第一摻雜層摻雜有一第一類型之一第一摻質;一主動層,位於該第一摻雜層之上;以及一第二摻雜層,位於該主動層之上,該第二摻雜層摻雜有相反於該第一類型之一第二類型之一第二摻質;蝕刻出複數個通道於該發光結構內,以形成複數個發光平台結構;藉由研磨該成長基板之一背面,以移除該成長基板 之一第一部,使得該成長基板之一剩餘部約為5微米;藉由電漿蝕刻或濕蝕刻以完全地移除該成長基板之一剩餘部;以及移除該緩衝層之一部,以於該緩衝層內形成一凹口。 A method for manufacturing a light-emitting diode, comprising: providing a growth substrate; forming a light-emitting structure on the growth substrate, the light-emitting structure comprising: a buffer layer; a first doped layer on the buffer layer, The first doped layer is doped with a first dopant of a first type; an active layer is disposed over the first doped layer; and a second doped layer is disposed over the active layer. The doped layer is doped with a second dopant opposite to the second type of the first type; a plurality of channels are etched into the light emitting structure to form a plurality of light emitting platform structures; by grinding the growth substrate One of the back faces to remove the growth substrate a first portion such that a remaining portion of the growth substrate is about 5 microns; completely removing one of the remaining portions of the growth substrate by plasma etching or wet etching; and removing one of the buffer layers, A notch is formed in the buffer layer.
TW100131217A 2010-09-14 2011-08-31 Method for manufacturing light emitting diode TWI506810B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/881,457 US8563334B2 (en) 2010-09-14 2010-09-14 Method to remove sapphire substrate

Publications (2)

Publication Number Publication Date
TW201214747A TW201214747A (en) 2012-04-01
TWI506810B true TWI506810B (en) 2015-11-01

Family

ID=45807100

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100131217A TWI506810B (en) 2010-09-14 2011-08-31 Method for manufacturing light emitting diode

Country Status (3)

Country Link
US (1) US8563334B2 (en)
CN (2) CN102403415B (en)
TW (1) TWI506810B (en)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101659953B1 (en) * 2010-03-30 2016-09-27 삼성디스플레이 주식회사 Organic light emitting display apparatus and the manufacturing method thereof
DE102011116232B4 (en) * 2011-10-17 2020-04-09 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for its production
US8426227B1 (en) 2011-11-18 2013-04-23 LuxVue Technology Corporation Method of forming a micro light emitting diode array
US8573469B2 (en) * 2011-11-18 2013-11-05 LuxVue Technology Corporation Method of forming a micro LED structure and array of micro LED structures with an electrically insulating layer
US8349116B1 (en) 2011-11-18 2013-01-08 LuxVue Technology Corporation Micro device transfer head heater assembly and method of transferring a micro device
US8518204B2 (en) 2011-11-18 2013-08-27 LuxVue Technology Corporation Method of fabricating and transferring a micro device and an array of micro devices utilizing an intermediate electrically conductive bonding layer
US9620478B2 (en) 2011-11-18 2017-04-11 Apple Inc. Method of fabricating a micro device transfer head
US9773750B2 (en) 2012-02-09 2017-09-26 Apple Inc. Method of transferring and bonding an array of micro devices
US9076923B2 (en) * 2012-02-13 2015-07-07 Epistar Corporation Light-emitting device manufacturing method
US9548332B2 (en) 2012-04-27 2017-01-17 Apple Inc. Method of forming a micro LED device with self-aligned metallization stack
US9105492B2 (en) 2012-05-08 2015-08-11 LuxVue Technology Corporation Compliant micro device transfer head
US8415771B1 (en) 2012-05-25 2013-04-09 LuxVue Technology Corporation Micro device transfer head with silicon electrode
US9034754B2 (en) 2012-05-25 2015-05-19 LuxVue Technology Corporation Method of forming a micro device transfer head with silicon electrode
TWI488336B (en) 2012-06-07 2015-06-11 Lextar Electronics Corp Light-emitting diode and manufacturing method thereof
US8569115B1 (en) 2012-07-06 2013-10-29 LuxVue Technology Corporation Method of forming a compliant bipolar micro device transfer head with silicon electrodes
US8415767B1 (en) 2012-07-06 2013-04-09 LuxVue Technology Corporation Compliant bipolar micro device transfer head with silicon electrodes
US8415768B1 (en) 2012-07-06 2013-04-09 LuxVue Technology Corporation Compliant monopolar micro device transfer head with silicon electrode
US8791530B2 (en) 2012-09-06 2014-07-29 LuxVue Technology Corporation Compliant micro device transfer head with integrated electrode leads
US9162880B2 (en) 2012-09-07 2015-10-20 LuxVue Technology Corporation Mass transfer tool
US8835940B2 (en) 2012-09-24 2014-09-16 LuxVue Technology Corporation Micro device stabilization post
US8941215B2 (en) 2012-09-24 2015-01-27 LuxVue Technology Corporation Micro device stabilization post
TW201414012A (en) * 2012-09-26 2014-04-01 Chi Mei Lighting Tech Corp Light emitting device and manufacturing method thereof
US9558721B2 (en) 2012-10-15 2017-01-31 Apple Inc. Content-based adaptive refresh schemes for low-power displays
KR101997021B1 (en) * 2012-11-23 2019-07-08 서울바이오시스 주식회사 Method for Fabricating Vertical Type Light Emitting Device
US9178123B2 (en) 2012-12-10 2015-11-03 LuxVue Technology Corporation Light emitting device reflective bank structure
US9255001B2 (en) 2012-12-10 2016-02-09 LuxVue Technology Corporation Micro device transfer head array with metal electrodes
US9159700B2 (en) 2012-12-10 2015-10-13 LuxVue Technology Corporation Active matrix emissive micro LED display
US9236815B2 (en) 2012-12-10 2016-01-12 LuxVue Technology Corporation Compliant micro device transfer head array with metal electrodes
US9029880B2 (en) 2012-12-10 2015-05-12 LuxVue Technology Corporation Active matrix display panel with ground tie lines
US9105714B2 (en) 2012-12-11 2015-08-11 LuxVue Technology Corporation Stabilization structure including sacrificial release layer and staging bollards
US9166114B2 (en) 2012-12-11 2015-10-20 LuxVue Technology Corporation Stabilization structure including sacrificial release layer and staging cavity
US9314930B2 (en) 2012-12-14 2016-04-19 LuxVue Technology Corporation Micro pick up array with integrated pivot mount
US9391042B2 (en) 2012-12-14 2016-07-12 Apple Inc. Micro device transfer system with pivot mount
US9153171B2 (en) 2012-12-17 2015-10-06 LuxVue Technology Corporation Smart pixel lighting and display microcontroller
US9095980B2 (en) 2013-02-25 2015-08-04 LuxVue Technology Corporation Micro pick up array mount with integrated displacement sensor
US9308649B2 (en) 2013-02-25 2016-04-12 LuxVue Techonology Corporation Mass transfer tool manipulator assembly
US8791474B1 (en) 2013-03-15 2014-07-29 LuxVue Technology Corporation Light emitting diode display with redundancy scheme
US9252375B2 (en) 2013-03-15 2016-02-02 LuxVue Technology Corporation Method of fabricating a light emitting diode display with integrated defect detection test
CN104124313B (en) * 2013-04-27 2017-12-26 新世纪光电股份有限公司 Light emitting diode structure
US9217541B2 (en) 2013-05-14 2015-12-22 LuxVue Technology Corporation Stabilization structure including shear release posts
US9484504B2 (en) * 2013-05-14 2016-11-01 Apple Inc. Micro LED with wavelength conversion layer
US9136161B2 (en) 2013-06-04 2015-09-15 LuxVue Technology Corporation Micro pick up array with compliant contact
WO2014201187A2 (en) 2013-06-12 2014-12-18 Rohinni, Inc. Keyboard backlighting with deposited light-generating sources
US8987765B2 (en) 2013-06-17 2015-03-24 LuxVue Technology Corporation Reflective bank structure and method for integrating a light emitting device
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US8928021B1 (en) 2013-06-18 2015-01-06 LuxVue Technology Corporation LED light pipe
US9035279B2 (en) 2013-07-08 2015-05-19 LuxVue Technology Corporation Micro device with stabilization post
US9296111B2 (en) 2013-07-22 2016-03-29 LuxVue Technology Corporation Micro pick up array alignment encoder
US9087764B2 (en) 2013-07-26 2015-07-21 LuxVue Technology Corporation Adhesive wafer bonding with controlled thickness variation
US9153548B2 (en) 2013-09-16 2015-10-06 Lux Vue Technology Corporation Adhesive wafer bonding with sacrificial spacers for controlled thickness variation
US9367094B2 (en) 2013-12-17 2016-06-14 Apple Inc. Display module and system applications
US9768345B2 (en) 2013-12-20 2017-09-19 Apple Inc. LED with current injection confinement trench
US9583466B2 (en) 2013-12-27 2017-02-28 Apple Inc. Etch removal of current distribution layer for LED current confinement
US9450147B2 (en) 2013-12-27 2016-09-20 Apple Inc. LED with internally confined current injection area
US9542638B2 (en) 2014-02-18 2017-01-10 Apple Inc. RFID tag and micro chip integration design
US9583533B2 (en) 2014-03-13 2017-02-28 Apple Inc. LED device with embedded nanowire LEDs
US9522468B2 (en) 2014-05-08 2016-12-20 Apple Inc. Mass transfer tool manipulator assembly with remote center of compliance
US9318475B2 (en) 2014-05-15 2016-04-19 LuxVue Technology Corporation Flexible display and method of formation with sacrificial release layer
US9741286B2 (en) 2014-06-03 2017-08-22 Apple Inc. Interactive display panel with emitting and sensing diodes
US9624100B2 (en) 2014-06-12 2017-04-18 Apple Inc. Micro pick up array pivot mount with integrated strain sensing elements
US9425151B2 (en) 2014-06-17 2016-08-23 Apple Inc. Compliant electrostatic transfer head with spring support layer
US9570002B2 (en) 2014-06-17 2017-02-14 Apple Inc. Interactive display panel with IR diodes
US9705432B2 (en) 2014-09-30 2017-07-11 Apple Inc. Micro pick up array pivot mount design for strain amplification
US9828244B2 (en) 2014-09-30 2017-11-28 Apple Inc. Compliant electrostatic transfer head with defined cavity
US9478583B2 (en) 2014-12-08 2016-10-25 Apple Inc. Wearable display having an array of LEDs on a conformable silicon substrate
US20160351548A1 (en) * 2015-05-28 2016-12-01 Mikro Mesa Technology Co., Ltd. Light emitting diode display device and manufacturing method thereof
KR102298484B1 (en) 2016-01-15 2021-09-03 로히니, 엘엘씨. Apparatus and method for backlighting through a cover on the device
CN107623060B (en) * 2017-09-06 2019-10-25 佛山市国星半导体技术有限公司 A kind of production method removing DBR film layer
CN107581841B (en) * 2017-10-19 2023-07-18 浙江朵纳家居股份有限公司 LED mirror base and preparation method thereof
TWI846193B (en) * 2017-12-07 2024-06-21 晶元光電股份有限公司 Semiconductor device
TWI759441B (en) * 2018-03-07 2022-04-01 優顯科技股份有限公司 Manufacturing method of photovoltaic semiconductor device
JP7331833B2 (en) * 2018-03-19 2023-08-23 ソニーグループ株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
CN108899272A (en) * 2018-07-06 2018-11-27 德淮半导体有限公司 Method for manufacturing semiconductor device
TWI806275B (en) * 2021-12-08 2023-06-21 欣興電子股份有限公司 Light-emitting diode package and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100003904A1 (en) * 2000-11-17 2010-01-07 Duescher Wayne O High speed flat lapping platen, raised islands and abrasive beads
TW201005828A (en) * 2008-07-21 2010-02-01 Taiwan Semiconductor Mfg Method of forming a semiconductor structure
US20100062611A1 (en) * 2008-09-05 2010-03-11 Taiwan Semiconductor Manufacturing Company, Ltd. Method and Apparatus for Thinning a Substrate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180422A (en) * 1969-02-03 1979-12-25 Raytheon Company Method of making semiconductor diodes
CN101383393B (en) * 2002-01-28 2013-03-20 日亚化学工业株式会社 Nitride semiconductor element with a supporting substrate and a method for producing a nitride semiconductor element
US6841802B2 (en) * 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
US7344903B2 (en) * 2003-09-17 2008-03-18 Luminus Devices, Inc. Light emitting device processes
JP2005150675A (en) * 2003-11-18 2005-06-09 Itswell Co Ltd Semiconductor light emitting diode and manufacturing method thereof
US7679381B2 (en) * 2006-01-23 2010-03-16 Maxmile Technologies, Llc Method and apparatus for nondestructively evaluating light-emitting materials
US8242484B2 (en) * 2006-10-18 2012-08-14 Nitek, Inc. Vertical deep ultraviolet light emitting diodes
US7683398B2 (en) * 2007-03-02 2010-03-23 Mitsubishi Electric Corporation Nitride semiconductor device having a silicon-containing connection layer and manufacturing method thereof
JP2008306021A (en) * 2007-06-08 2008-12-18 Ushio Inc LED chip manufacturing method
CN101345277B (en) * 2007-07-12 2011-08-24 台达电子工业股份有限公司 Manufacturing method of light emitting diode device
TWI353068B (en) * 2007-07-19 2011-11-21 Lite On Technology Corp Semiconductor light-emitting element and process f
US20090278233A1 (en) * 2007-07-26 2009-11-12 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
CN102017193B (en) * 2008-03-25 2012-05-30 晶能光电(江西)有限公司 Semiconductor light-emitting device with double-sided passivation
US20100013060A1 (en) * 2008-06-22 2010-01-21 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a conductive trench in a silicon wafer and silicon wafer comprising such trench
CN101494267B (en) * 2008-11-24 2010-09-29 厦门市三安光电科技有限公司 Preparation method for gallium nitride base light-emitting device based on substrate desquamation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100003904A1 (en) * 2000-11-17 2010-01-07 Duescher Wayne O High speed flat lapping platen, raised islands and abrasive beads
TW201005828A (en) * 2008-07-21 2010-02-01 Taiwan Semiconductor Mfg Method of forming a semiconductor structure
US20100062611A1 (en) * 2008-09-05 2010-03-11 Taiwan Semiconductor Manufacturing Company, Ltd. Method and Apparatus for Thinning a Substrate

Also Published As

Publication number Publication date
CN105845787A (en) 2016-08-10
US20120064642A1 (en) 2012-03-15
CN102403415B (en) 2016-03-23
CN102403415A (en) 2012-04-04
US8563334B2 (en) 2013-10-22
TW201214747A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
TWI506810B (en) Method for manufacturing light emitting diode
US9882084B2 (en) Vertical structure LEDs
CN102376840B (en) Light-emitting diode and method for manufacturing light-emitting diode
US20050104081A1 (en) Semiconductor light emitting diode and method for manufacturing the same
JP2012500479A (en) Method for manufacturing a semiconductor light-emitting device with double-sided passivation
KR20050089120A (en) Light emitting diode and manufacturing method of the same
US20080121908A1 (en) Fabrication of Reflective Layer on Semconductor Light Emitting Devices
KR100613273B1 (en) Light emitting diodes and manufacturing method thereof
US20150108424A1 (en) Method to Remove Sapphire Substrate
KR20050098213A (en) Light emitting diode with vertical electrode and manufacturing method of the same
CN102067337A (en) Semiconductor light-emitting device with silicone protective layer