TWI506650B - Silver paste and use thereof in production of photovoltaic device - Google Patents
Silver paste and use thereof in production of photovoltaic device Download PDFInfo
- Publication number
- TWI506650B TWI506650B TW102100821A TW102100821A TWI506650B TW I506650 B TWI506650 B TW I506650B TW 102100821 A TW102100821 A TW 102100821A TW 102100821 A TW102100821 A TW 102100821A TW I506650 B TWI506650 B TW I506650B
- Authority
- TW
- Taiwan
- Prior art keywords
- silver
- front surface
- silver paste
- electrode
- paste
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明關於一種銀漿(silver paste)及其用於製造光伏元件(photovoltaic device)之用途,並且特別地,關於用於製造光伏元件之正面電極時,可促進形成利於穿隧導電性(tunneling conductivity)的微結構之銀漿。The present invention relates to a silver paste and its use for the manufacture of a photovoltaic device, and in particular, for the manufacture of a front electrode for a photovoltaic element, facilitates formation of tunneling conductivity (tunneling conductivity) ) The microstructure of the silver paste.
光伏元件(photovoltaic device)因為其將發自光源(例如,太陽光)中容易取得的能量轉換成電力,以操控例如,計算機、電腦、加熱器…,等電子裝置,所以光伏元件已被廣泛地使用。最常見的光伏元件即為矽基太陽能電池。Photovoltaic devices have been widely used because they convert energy that is easily obtained from a light source (eg, sunlight) into electricity to manipulate electronic devices such as computers, computers, heaters, and the like. use. The most common photovoltaic component is a germanium based solar cell.
矽基太陽能電池係指利用取自單晶矽晶棒或多晶矽鑄錠之結晶矽基材所製作的太陽能電池。在矽基太陽能電池上形成電極的先前技術,先在矽基太陽能電池的正表面及背表面上利用網版印刷等製程塗佈金屬漿料後,需要執行兩次燒結程序,才能形成具有良好的歐姆接觸之金屬電極。典型的矽基太陽能電池,其正表面塗佈導電銀漿,其背表面塗佈導電鋁漿以及導電銀漿(或導電銀鋁漿)。A ruthenium-based solar cell refers to a solar cell fabricated using a crystalline ruthenium substrate obtained from a single crystal twin rod or a polycrystalline tantalum ingot. In the prior art for forming an electrode on a ruthenium-based solar cell, after the metal paste is coated on the front surface and the back surface of the ruthenium-based solar cell by a process such as screen printing, it is necessary to perform two sintering processes to form a good one. Ohmic contact metal electrode. A typical bismuth-based solar cell is coated with a conductive silver paste on its front surface and a conductive aluminum paste and a conductive silver paste (or conductive silver-aluminum paste) on its back surface.
已有共燒技術(co-firing)運用在矽基太陽能電池的電極之行程,共燒技術則只需執行一次燒結程序,即同時形成具有良好的歐姆接觸的正面電極以及供焊接用的匯流排電極(bus bar)、鋁形成的背面電極以及供焊接用的背面匯流排電極。正面電極包含線寬較細的網柵電極以及線寬較粗且供焊接用的正面匯流排電極。鋁局部擴散至矽基太陽能電池的 背表面裡,形成了背表面電場(back surface filed,BSF)。背表面電場反射少數載子並增加多數載子的收集再傳輸至銀或銀鋁形成的背面電極,進而提升矽基太陽能電池的整體效能。Co-firing technology has been applied to the electrode of the bismuth-based solar cell, and the co-firing technology only needs to perform a sintering process, that is, a front electrode having good ohmic contact and a bus bar for soldering are simultaneously formed. A bus bar, a back electrode formed of aluminum, and a back bus bar electrode for soldering. The front electrode includes a grid electrode having a thin line width and a front bus bar electrode having a thick line width and used for soldering. Partial diffusion of aluminum to cerium-based solar cells In the back surface, a back surface filed (BSF) is formed. The back surface electric field reflects minority carriers and increases the collection of most carriers to be transmitted to the back electrode formed of silver or silver aluminum, thereby improving the overall efficiency of the germanium-based solar cell.
請參閱圖1,為現有矽基太陽能電池1的局部截面視圖。圖1僅繪示矽晶圓10以及利用銀漿塗佈在矽晶圓10的正表面102上且燒結而成的正面電極12。在燒結製程後,一層介面玻璃層14會形成在矽晶圓10與正面電極12之間。顯見地,介面玻璃層14降低了載子傳輸至正面電極12的導電性。現有矽基太陽能電池1利用改變銀漿的成分,讓銀漿燒結成的正面電極12包含團塊電極122(或稱燒結的銀電極)、成長在介面玻璃層14與矽晶圓10之間介面處的銀微結晶(Ag crystallite)126及/或成長在介面玻璃層14內的奈米銀微粒(nano-Ag colloid)124。藉由銀微結晶126及/或奈米銀微粒124,可以提升正面電極12與矽晶圓10間的穿隧導電性。Please refer to FIG. 1, which is a partial cross-sectional view of a conventional germanium-based solar cell 1. 1 shows only the tantalum wafer 10 and the front electrode 12 which is coated on the front surface 102 of the tantalum wafer 10 by silver paste and sintered. After the sintering process, a layer of interface glass layer 14 is formed between the germanium wafer 10 and the front side electrode 12. Clearly, the interface glass layer 14 reduces the conductivity of the carrier transport to the front electrode 12. The conventional ruthenium-based solar cell 1 utilizes a composition that changes the composition of the silver paste, and the front electrode 12 from which the silver paste is sintered includes a bulk electrode 122 (or a sintered silver electrode) and grows between the interface between the interface glass layer 14 and the tantalum wafer 10. Ag crystallites 126 and/or nano-Ag colloids 124 grown in the interface glass layer 14. The tunneling conductivity between the front electrode 12 and the germanium wafer 10 can be improved by the silver microcrystals 126 and/or the nanosilver particles 124.
然而,目前尚未見到有效地促進形成利於穿隧導電性的微結構之銀漿被提出。However, no silver paste has been found to effectively promote the formation of microstructures that facilitate tunneling conductivity.
因此,本發明所欲解決的技術問題在於提供一種銀漿及其用於製造光伏元件之用途,並且本發明之銀漿用於製造光伏元件之正面電極時,可以促進利於穿隧導電性的微結構形成。Therefore, the technical problem to be solved by the present invention is to provide a silver paste and use thereof for manufacturing a photovoltaic element, and the silver paste of the present invention can be used to manufacture a microelectrode for facilitating tunneling conductivity when used for manufacturing a front electrode of a photovoltaic element. Structure formation.
本發明之一較佳具體實施例之一種銀漿,包含有機載體(organic vehicle)、玻璃粉末(glass frit)以及含銀材料粉末(material particle containing silver)。含銀材料粉末可以是銀粉末、有機金屬銀化合物粉末或氧化銀粉末。特別地,本發明之銀漿還包含重量百分比為約0.01~0.6之一銀微結晶析出促進劑。藉此,讓本發明之銀漿用於製造光伏元件之正面電極時,在介面玻璃層與矽晶圓之間介面處有不少銀微結晶析 出,在介面玻璃層內也有不少奈米銀微粒析出,以提升利用本發明之銀漿所製造的光伏元件的整體效能。A silver paste according to a preferred embodiment of the present invention comprises an organic vehicle, a glass frit, and a material particle containing silver. The silver-containing material powder may be a silver powder, an organometallic silver compound powder or a silver oxide powder. In particular, the silver paste of the present invention further comprises a silver microcrystalline precipitation promoter of about 0.01 to 0.6 weight percent. Therefore, when the silver paste of the present invention is used for manufacturing the front electrode of the photovoltaic element, there is a lot of silver microcrystallization at the interface between the interface glass layer and the germanium wafer. A large number of nano silver particles are also precipitated in the interface glass layer to enhance the overall efficiency of the photovoltaic element fabricated using the silver paste of the present invention.
於一具體實施例中,銀微結晶析出促進劑可以是Te或Bi2 Te3 。In one embodiment, the silver microcrystallization precipitation promoter may be Te or Bi 2 Te 3 .
於一具體實施例中,有機載體佔本發明之銀漿的重量百分比為約1~10,玻璃粉末佔本發明之銀漿的重量百分比為約1~5,銀微結晶析出促進劑佔本發明之銀漿的重量百分比為約0.01~0.6,以及含銀材料粉末佔本發明之銀漿的重量百分比的其餘部分。In one embodiment, the organic carrier accounts for about 1 to 10 by weight of the silver paste of the present invention, and the glass powder accounts for about 1 to 5 by weight of the silver paste of the present invention. The silver microcrystalline precipitation promoter accounts for the present invention. The silver paste has a weight percentage of about 0.01 to 0.6, and the remainder of the silver-containing material powder as a percentage by weight of the silver paste of the present invention.
於一具體實施例中,玻璃粉末可以是PbO-SiO玻璃粉末、PbO-B2 O3 玻璃粉末或PbO-SiO2 -B2 O3 玻璃粉末。In one embodiment, the glass powder may be PbO-SiO glass powder, PbO-B 2 O 3 glass powder or PbO-SiO 2 -B 2 O 3 glass powder.
於一具體實施例中,有機載體包含約10 wt.%的固態纖維素聚合物(solid cellulose polymer)、約0~20 wt.%的2,2,4-三甲基-1,3-戊二醇單異丁酸酯以及佔有機載體之重量百分比的其餘部分的松油醇(Terpineol)。In one embodiment, the organic vehicle comprises about 10 wt.% solid cellulose polymer, about 0-20 wt.% of 2,2,4-trimethyl-1,3-penta The diol monoisobutyrate and the remainder of the organic vehicle are terpineol (Terpineol).
本發明之一較佳具體實施例之一種製造光伏元件之方法首先係先製備半導體結構組合。半導體結構組合包含至少一p-n接面,並且具有正表面。接著,本發明之方法係選擇性塗佈並烘乾本發明揭示的銀漿於正表面上,以形成多條平行的第一導電條於正表面上。接著,本發明之方法係選擇性塗佈並烘乾金屬漿於正表面上,以形成至少一條與多條第一導電條垂直的第二導電條於正表面上。最後,本發明之方法係燒結多條第一導電條以及至少一條第二導電條,以形成正面電極於正表面上。A method of fabricating a photovoltaic element in a preferred embodiment of the invention begins with the preparation of a semiconductor structure combination. The semiconductor structure combination includes at least one p-n junction and has a positive surface. Next, the method of the present invention selectively coats and dries the silver paste disclosed in the present invention on the front surface to form a plurality of parallel first conductive strips on the front surface. Next, the method of the present invention selectively coats and dries the metal paste on the front surface to form at least one second conductive strip perpendicular to the plurality of first conductive strips on the front surface. Finally, the method of the present invention sinters a plurality of first conductive strips and at least one second conductive strip to form a front surface electrode on a front surface.
於一具體實施例中,於正面電極與正表面之間係形成介面玻璃層。正面電極包含形成在介面玻璃層上之團塊電極、在介面玻璃層與正表面之間之多個銀微結晶以及在介面玻璃層內之多個奈米銀微粒。In one embodiment, an interface glass layer is formed between the front electrode and the front surface. The front electrode includes a bulk electrode formed on the interface glass layer, a plurality of silver microcrystals between the interface glass layer and the front surface, and a plurality of nano silver particles in the interface glass layer.
於一具體實施例中,半導體結構組合並且包含抗反射層。反射層提供半導體結構組合的正表面。In a specific embodiment, the semiconductor structures are combined and comprise an anti-reflective layer. The reflective layer provides a positive surface for the combination of semiconductor structures.
於一具體實施例中,半導體結構組合還包含鈍化層。鈍化層提供半導體結構組合的正表面。In a specific embodiment, the semiconductor structure combination further includes a passivation layer. The passivation layer provides a positive surface for the combination of semiconductor structures.
於一具體實施例中,金屬漿係本發明揭示的銀漿。In one embodiment, the metal paste is the silver paste disclosed herein.
與先前技術相較,根據本發明之銀漿料用於製造光伏元件之正面電極時,在介面玻璃層與矽晶圓之間介面處有不少銀微結晶析出,在介面玻璃層內也有不少奈米銀微粒析出,讓利用本發明之銀漿所製造的光伏元件的整體效能有明顯地提升。Compared with the prior art, when the silver paste according to the present invention is used to manufacture the front electrode of the photovoltaic element, a large amount of silver microcrystals are precipitated at the interface between the interface glass layer and the germanium wafer, and there is also no in the interface glass layer. The precipitation of the nano-silver particles allows the overall performance of the photovoltaic element manufactured by using the silver paste of the present invention to be significantly improved.
關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.
1‧‧‧光伏元件1‧‧‧Photovoltaic components
10‧‧‧矽晶圓10‧‧‧矽 wafer
102‧‧‧正表面102‧‧‧ front surface
12‧‧‧正面電極12‧‧‧Front electrode
122‧‧‧團塊電極122‧‧‧Block electrode
124‧‧‧奈米銀微粒124‧‧‧Nano silver particles
126‧‧‧銀微結晶126‧‧‧Silver microcrystallization
14‧‧‧介面玻璃層14‧‧‧Interface glass layer
2‧‧‧光伏元件2‧‧‧Photovoltaic components
20‧‧‧半導體結構組合20‧‧‧Semiconductor structure combination
201‧‧‧結晶矽基材201‧‧‧ Crystalline substrate
202‧‧‧正表面202‧‧‧ front surface
204‧‧‧背表面204‧‧‧Back surface
206‧‧‧p-n接面206‧‧‧p-n junction
208‧‧‧鈍化層208‧‧‧passivation layer
22‧‧‧正面電極22‧‧‧Front electrode
222‧‧‧網柵電極222‧‧‧ grid electrode
221‧‧‧第一導電條221‧‧‧First Conductive Strip
224‧‧‧正面匯流排電極224‧‧‧ Positive bus bar electrode
223‧‧‧第二導電條223‧‧‧Second strip
226‧‧‧團塊電極226‧‧‧Block electrode
227‧‧‧奈米銀微粒227‧‧‧Nano silver particles
228‧‧‧銀微結晶228‧‧‧Silver microcrystals
229‧‧‧介面玻璃層229‧‧‧Interface glass layer
24‧‧‧背面電極24‧‧‧Back electrode
242‧‧‧導電層242‧‧‧ Conductive layer
26a、26b‧‧‧背面匯流排電極26a, 26b‧‧‧ backside bus electrodes
262、264‧‧‧第三導電條262, 264‧‧‧ third conductive strip
28‧‧‧抗反射層28‧‧‧Anti-reflective layer
圖1係現有矽基太陽能電池的局部截面視圖。1 is a partial cross-sectional view of a conventional germanium based solar cell.
圖2係根據本發明之方法所製造之光伏元件的頂視圖。Figure 2 is a top plan view of a photovoltaic element fabricated in accordance with the method of the present invention.
圖3係根據本發明之方法所製造之光伏元件的底視圖。Figure 3 is a bottom plan view of a photovoltaic element fabricated in accordance with the method of the present invention.
圖4A至圖4D係示意地繪示根據本發明之一較佳具體實施例之製造如圖2沿A-A線的剖面視圖所示之光伏元件的方法。4A through 4D are schematic views of a method of fabricating a photovoltaic element as shown in cross-sectional view along line A-A of Fig. 2, in accordance with a preferred embodiment of the present invention.
圖4E係圖4D中正面電極與鈍化層之介面處的局部放大圖。4E is a partial enlarged view of the interface between the front electrode and the passivation layer in FIG. 4D.
圖5係對照組、電池A、電池B之正面電極未經燒結的SEM照片。Fig. 5 is a SEM photograph showing the unsintered front electrode of the control group, the battery A, and the battery B.
圖6係對照組、電池A、電池B之正面電極經630℃燒結後的SEM照片。Fig. 6 is a SEM photograph of the front electrode of the control group, the battery A, and the battery B after sintering at 630 °C.
圖7係對照組、電池A、電池B之正面電極經810℃燒結後的SEM照片。Fig. 7 is a SEM photograph of the front electrode of the control group, Battery A, and Battery B after sintering at 810 °C.
本發明之一較佳具體實施例之一種銀漿,包含有機載體、玻璃粉末以及含銀材料粉末。含銀材料粉末可以是銀粉末、有機金屬銀化合物粉末或氧化銀粉末。特別地,本發明之銀漿還包含重量百分比為約0.01~0.6之一銀微結晶析出促進劑。藉此,讓本發明之銀漿用於製造光伏元件之正面電極時,在介面玻璃層與矽晶圓之間介面處有不少銀微結晶析出,在介面玻璃層內也有不少奈米銀微粒析出,以提升利用本發明之銀漿所製造的光伏元件的整體效能。A silver paste according to a preferred embodiment of the present invention comprises an organic vehicle, a glass powder, and a powder of a silver-containing material. The silver-containing material powder may be a silver powder, an organometallic silver compound powder or a silver oxide powder. In particular, the silver paste of the present invention further comprises a silver microcrystalline precipitation promoter of about 0.01 to 0.6 weight percent. Therefore, when the silver paste of the present invention is used to manufacture the front electrode of the photovoltaic element, a large amount of silver microcrystals are precipitated at the interface between the interface glass layer and the germanium wafer, and a plurality of nano silver are also present in the interface glass layer. The particles are precipitated to enhance the overall effectiveness of the photovoltaic element fabricated using the silver paste of the present invention.
於一具體實施例中,銀微結晶析出促進劑可以是Te或Bi2 Te3 。In one embodiment, the silver microcrystallization precipitation promoter may be Te or Bi 2 Te 3 .
於一具體實施例中,有機載體佔本發明之銀漿的重量百分比為約1~10,玻璃粉末佔本發明之銀漿的重量百分比為約1~5,銀微結晶析出促進劑佔本發明之銀漿的重量百分比為約0.01~0.6,以及含銀材料粉末佔本發明之銀漿的重量百分比的其餘部分。In one embodiment, the organic carrier accounts for about 1 to 10 by weight of the silver paste of the present invention, and the glass powder accounts for about 1 to 5 by weight of the silver paste of the present invention. The silver microcrystalline precipitation promoter accounts for the present invention. The silver paste has a weight percentage of about 0.01 to 0.6, and the remainder of the silver-containing material powder as a percentage by weight of the silver paste of the present invention.
於一具體實施例中,玻璃粉末可以是PbO-SiO玻璃粉末、PbO-B2 O3 玻璃粉末或PbO-SiO2 -B2 O3 玻璃粉末。In one embodiment, the glass powder may be PbO-SiO glass powder, PbO-B 2 O 3 glass powder or PbO-SiO 2 -B 2 O 3 glass powder.
於一具體實施例中,有機載體包含約10 wt.%的固態纖維素聚合物、約0~20 wt.%的2,2,4-三甲基-1,3-戊二醇單異丁酸酯以及佔有機載體之重量百分比的其餘部分的松油醇。In one embodiment, the organic vehicle comprises about 10 wt.% solid cellulosic polymer, about 0-20 wt.% of 2,2,4-trimethyl-1,3-pentanediol monoisobutylene. The acid ester and the rest of the terpineol which is the weight percent of the organic vehicle.
請參閱圖2、圖3及圖4A至圖4D,圖2係根據 本發明之方法所製造光伏元件2(例如,矽基太陽能電池)的頂視圖。圖3係根據本發明之方法所製造光伏元件2的底視圖。圖4A至圖4D係以截面視圖繪示本發明之方法之一較佳具體實施例來製造如圖2沿A-A線的剖面視圖所示之光伏元件2。Please refer to FIG. 2, FIG. 3 and FIG. 4A to FIG. 4D. FIG. 2 is based on A top view of a photovoltaic element 2 (e.g., a germanium based solar cell) fabricated by the method of the present invention. Figure 3 is a bottom plan view of a photovoltaic element 2 made in accordance with the method of the present invention. 4A through 4D are cross-sectional views showing a preferred embodiment of the method of the present invention for fabricating the photovoltaic element 2 of the cross-sectional view taken along line A-A of Fig. 2.
如圖2及圖3所示,根據本發明之方法所製造光伏元件2包含半導體結構組合20、正面電極22、背面電極24以及至少一背面匯流排電極(26a、26b)。半導體結構組合20具有正表面202以及背表面204。As shown in Figures 2 and 3, the photovoltaic element 2 fabricated in accordance with the method of the present invention comprises a semiconductor structure combination 20, a front side electrode 22, a back side electrode 24, and at least one back side bus bar electrode (26a, 26b). The semiconductor structure assembly 20 has a front surface 202 and a back surface 204.
正面電極22係形成在半導體結構組合20之正表面202上。如圖2所示,正面電極22包含線寬較細的網柵電極(grid)222以及線寬較粗的至少一正面匯流排電極224。至少一正面匯流排電極224係沿圖2中Y方向排列,並且供光伏元件2串聯時焊接之用。一般光伏元件2(例如,矽基太陽能電池)會有兩條或三條正面匯流排電極224。Front electrode 22 is formed on front surface 202 of semiconductor structure assembly 20. As shown in FIG. 2, the front electrode 22 includes a grid 222 having a thin line width and at least one front bus bar electrode 224 having a thick line width. At least one front bus bar electrode 224 is arranged in the Y direction of FIG. 2 and is used for soldering when the photovoltaic elements 2 are connected in series. Typically photovoltaic elements 2 (eg, germanium based solar cells) will have two or three front bus bar electrodes 224.
至少一背面匯流排電極(26a、26b)係形成在半導體結構組合20之該背表面204上,並且供光伏元件1串聯時焊接之用。於如圖3所示的案例中,兩條平行的背面匯流排電極(26a、26b)成對稱排列,且沿圖3中Y方向排列。At least one back bus bar electrode (26a, 26b) is formed on the back surface 204 of the semiconductor structure assembly 20 and is used for soldering the photovoltaic elements 1 in series. In the case shown in FIG. 3, the two parallel back side bus electrodes (26a, 26b) are arranged symmetrically and arranged in the Y direction in FIG.
背電極24係形成在半導體結構組合20之背表面204上,並且覆蓋背表面204上形成至少一背面匯流排電極(26a、26b)以外的區域。The back electrode 24 is formed on the back surface 204 of the semiconductor structure assembly 20 and covers a region on the back surface 204 that forms at least one of the back bus bar electrodes (26a, 26b).
如圖4A所示,本發明之方法,首先,係製備半導體結構組合20。半導體結構組合20包含至少一p-n接面206並且具有正表面202以及背表面204。根據本發明之方法所製造的光伏元件2在使用過程,正表面202朝上,將面向太陽。為降低入射太陽光的反射率,如圖4A所示,正表面202經粗紋化處理成粗糙表面為佳。As shown in FIG. 4A, the method of the present invention, first, produces a semiconductor structure combination 20. The semiconductor structure assembly 20 includes at least one p-n junction 206 and has a front surface 202 and a back surface 204. The photovoltaic element 2 produced in accordance with the method of the present invention, during use, has a front surface 202 facing upwards that will face the sun. In order to reduce the reflectance of incident sunlight, as shown in FIG. 4A, the front surface 202 is roughened to a rough surface.
接著,如圖4B所示,本發明之方法係選擇性塗 佈並烘乾本發明揭示的銀漿於半導體結構組合20的正表面202上,以形成多條平行的第一導電條221於正表面202上。接著,本發明之方法再次選擇性塗佈並烘乾第一金屬漿於正表面202上,以形成至少一條與多條第一導電條221垂直的第二導電條223。Next, as shown in FIG. 4B, the method of the present invention is selectively coated. The silver paste disclosed in the present invention is clothed and dried on the front surface 202 of the semiconductor structure assembly 20 to form a plurality of parallel first conductive strips 221 on the front surface 202. Next, the method of the present invention again selectively coats and dries the first metal paste on the front surface 202 to form at least one second conductive strip 223 that is perpendicular to the plurality of first conductive strips 221 .
同樣示於圖4B,本發明之方法係在半導體結構組合20之背表面204上,塗佈並烘乾第二金屬漿,以形成導電層242。Also shown in FIG. 4B, the method of the present invention is applied to the back surface 204 of the semiconductor structure assembly 20 to coat and dry the second metal paste to form a conductive layer 242.
於一具體實施例中,第二金屬漿可以是由鋁、銀、銅、金、鉑、鈀、鋁合金、銀合金、銅合金、金合金、鉑合金、鈀合金或其混合物形成之粉末混合成的導電漿,或其他商用導電金屬漿料。實務上,第二金屬漿係由鋁粉末混合成的導電漿料為佳。In a specific embodiment, the second metal paste may be a powder mixture formed of aluminum, silver, copper, gold, platinum, palladium, aluminum alloy, silver alloy, copper alloy, gold alloy, platinum alloy, palladium alloy or a mixture thereof. A conductive paste, or other commercially available conductive metal paste. In practice, the second metal paste is preferably a conductive paste in which aluminum powder is mixed.
同樣示於圖4B,本發明之方法係在半導體結構組合20之背表面204上,選擇性塗佈並烘乾第三金屬漿,以形成至少一條平行的第三導電條(262、264)於背表面204上。Also shown in FIG. 4B, the method of the present invention is applied to the back surface 204 of the semiconductor structure assembly 20 to selectively coat and dry the third metal paste to form at least one parallel third conductive strip (262, 264). On the back surface 204.
於一具體實施例中,第三金屬漿可以由鋁、銀、銅、金、鉑、鈀、鋁合金、銀合金、銅合金、金合金、鉑合金、鈀合金或其混合物形成之粉末混合成的導電漿,或其他商用導電金屬漿料。實務上,第三金屬漿係由銀粉末與鋁粉末混合成的導電漿為佳。In one embodiment, the third metal paste may be a mixture of powders of aluminum, silver, copper, gold, platinum, palladium, aluminum alloy, silver alloy, copper alloy, gold alloy, platinum alloy, palladium alloy or a mixture thereof. Conductive paste, or other commercially available conductive metal paste. In practice, the third metal paste is preferably a conductive paste in which silver powder and aluminum powder are mixed.
最後,如圖4C所示,本發明之方法係燒結多條第一導電條221以及至少一條第二導電條223,以形成正面電極22於正表面202上。也就是說,正面電極22是由第一導電條221燒結成的網柵電極222以及由第二導電條223燒結成的正面匯流排電極224所構成。本發明之方法並且燒結導電層242,即燒結成背面電極24,並且燒結至少一條第三導電條(262、264),即燒結成至少一背面匯流排電極(26a、26b)。正 面電極22與背面電極24、至少一背面匯流排電極(26a、26b)可以藉由不同的燒結製程分別形成,也可以藉由共燒製程一次形成。Finally, as shown in FIG. 4C, the method of the present invention sinters a plurality of first conductive strips 221 and at least one second conductive strip 223 to form front surface 22 on front surface 202. That is, the front surface electrode 22 is composed of a mesh electrode 222 sintered by the first conductive strip 221 and a front bus bar electrode 224 sintered by the second conductive strip 223. The method of the present invention also sinters the conductive layer 242, i.e., is sintered into the back electrode 24, and sinters at least one third conductive strip (262, 264), i.e., sintered into at least one backside bus electrode (26a, 26b). positive The surface electrode 22 and the back surface electrode 24 and the at least one back bus bar electrode (26a, 26b) may be formed separately by different sintering processes, or may be formed once by a co-firing process.
於一具體實施例中,半導體結構組合20包含p型態結晶矽基材201,並且在p型態結晶矽基材201的表面植佈n型態摻雜以形成n型態區域。如圖4A所示,本發明之方法形成鈍化層208覆蓋該n型態區域,鈍化層208提供正表面202。如圖4D所示,本發明之方法進一步形成抗反射層28,抗反射層28覆蓋鈍化層208。於另一具體實施例中,反射層28提供正表面202。In one embodiment, the semiconductor structure assembly 20 comprises a p-type crystalline germanium substrate 201, and an n-type doped region is implanted on the surface of the p-type crystalline germanium substrate 201 to form an n-type region. As shown in FIG. 4A, the method of the present invention forms a passivation layer 208 overlying the n-type region, and a passivation layer 208 provides a front surface 202. As shown in FIG. 4D, the method of the present invention further forms an anti-reflective layer 28 that covers the passivation layer 208. In another embodiment, the reflective layer 28 provides a front surface 202.
於另一具體實施例中,半導體結構組合20包含n型態結晶矽基材201,並且在n型態結晶矽基材201的表面植佈p型態摻雜以形成p型態區域。如圖4A所示,本發明之方法形成鈍化層208覆蓋該p型態區域,鈍化層208提供正表面202。如圖4D所示,本發明之方法進一步形成抗反射層28,抗反射層28覆蓋鈍化層208。於另一具體實施例中,抗反射層28提供正表面202。In another embodiment, the semiconductor structure assembly 20 comprises an n-type crystalline germanium substrate 201, and a p-type doping is implanted on the surface of the n-type crystalline germanium substrate 201 to form a p-type region. As shown in FIG. 4A, the method of the present invention forms a passivation layer 208 overlying the p-type region and a passivation layer 208 provides a positive surface 202. As shown in FIG. 4D, the method of the present invention further forms an anti-reflective layer 28 that covers the passivation layer 208. In another embodiment, the anti-reflective layer 28 provides a front surface 202.
於另一具體實施例中,半導體結構組合20即為如美國專利公告號第5,935,344號所揭示的矽異質接面太陽能電池(silicon heterojunction solar cell)其結構。矽異質接面太陽能電池的結構請參考美國專利公告號第5,935,344號,在此不再贅述。In another embodiment, the semiconductor structure assembly 20 is the structure of a silicon heterojunction solar cell as disclosed in U.S. Patent No. 5,935,344. For the structure of the heterojunction solar cell, please refer to U.S. Patent No. 5,935,344, which is not described here.
請參閱圖4D及圖4E,係以截面視圖繪示本發明之一較佳具體實施例的光伏元件2。圖4E為圖4D中正面電極22與鈍化層208之介面處的局部放大圖。如圖4E所示,本發明揭示的導電漿料塗佈在正表面202上且經燒結後,於正面電極22與鈍化層208之正表面202之間係形成介面玻璃層229。正面電極22包含形成在介面玻璃層229上之團塊電 極226、在介面玻璃層229與正表面202之間之多個銀微結晶228以及在介面玻璃層229內之多個奈米銀微粒227。Referring to Figures 4D and 4E, a photovoltaic element 2 in accordance with a preferred embodiment of the present invention is shown in cross-section. 4E is a partial enlarged view of the interface between the front electrode 22 and the passivation layer 208 in FIG. 4D. As shown in FIG. 4E, the conductive paste disclosed in the present invention is coated on the front surface 202 and sintered to form an interface glass layer 229 between the front surface electrode 22 and the front surface 202 of the passivation layer 208. The front electrode 22 includes a briquette formed on the interface glass layer 229 A pole 226, a plurality of silver microcrystals 228 between the interface glass layer 229 and the front surface 202, and a plurality of nanosilver particles 227 in the interface glass layer 229.
請參閱表1,為兩種根據本發明揭示的銀漿(銀微結晶析出促進劑不同)以及不含銀微結晶析出促進劑的銀漿的成份列表。這些銀漿用於製造矽基太陽能電池(對照組、電池A、電池B)的正面電極且在810℃、840℃下燒結成正面電極。電池A所採用的銀漿包含0.5wt.% Te做為銀微結晶析出促進劑。電池B所採用的銀漿包含0.5wt.% Bi2 Te3 做為銀微結晶析出促進劑。製成的該等太陽能電池測得的光電轉換效率(η)以及綜合性評估指標-填充因子(fill factor,FF)也列於表1。該等太陽能電池的背面電極是使用市售的鋁漿塗佈、燒結製成,其背面匯流排電極是使用市售的銀漿塗佈、燒結製成。Please refer to Table 1, which is a list of the components of the silver paste (different silver microcrystallization precipitation promoter) and the silver paste containing no silver microcrystallization precipitation promoter according to the present invention. These silver pastes were used to fabricate the front electrodes of the ruthenium-based solar cells (control, battery A, battery B) and were sintered to a front electrode at 810 ° C and 840 ° C. The silver paste used in Battery A contained 0.5 wt.% Te as a silver microcrystal precipitation promoter. The silver paste used in Battery B contained 0.5 wt.% of Bi 2 Te 3 as a silver microcrystal precipitation promoter. The photoelectric conversion efficiency (η) measured by the prepared solar cells and the comprehensive evaluation index-fill factor (FF) are also shown in Table 1. The back electrode of these solar cells was coated and sintered using a commercially available aluminum paste, and the back bus bar electrodes were coated and sintered using a commercially available silver paste.
對照組、電池A、電池B塗佈製成正面電極的銀漿在未燒結、經630℃燒結後、經810℃燒結後,其正面電極利用掃描式電子顯微鏡(SEM)觀察,觀察結果的照片,請見圖 5、圖6及圖7。於圖5中,(a)為對照組,(b)為電池A,(c)為電池B。於圖6中,(a)為對照組,(b)為電池A,(c)為電池B。於圖7中,(a)為對照組,(b)為電池A,(c)為電池B。The control electrode, battery A, and battery B were coated with a silver paste prepared as a front electrode. After sintering at 630 ° C and sintering at 810 ° C, the front electrode was observed by scanning electron microscopy (SEM). Please see the picture 5. Figure 6 and Figure 7. In Fig. 5, (a) is a control group, (b) is a battery A, and (c) is a battery B. In Fig. 6, (a) is a control group, (b) is a battery A, and (c) is a battery B. In Fig. 7, (a) is a control group, (b) is a battery A, and (c) is a battery B.
圖5、圖6及圖7所示照片證實,添加Te與Bi2 Te3 此類銀微結晶析出促進劑會與銀反應,溶解銀並向半導體結構組合的正表面擴散流動,經燒結、降溫後會析出銀微結晶以及奈米銀微粒。The photographs shown in Fig. 5, Fig. 6 and Fig. 7 confirm that the addition of Te and Bi 2 Te 3 such silver microcrystal precipitation promoter reacts with silver, dissolves silver and diffuses and flows to the positive surface of the semiconductor structure combination, and is sintered and cooled. Silver microcrystals and nano silver particles are precipitated.
從表1的測試數據與圖5、圖6及圖7所示照片,可以清楚看出本發明之銀漿用於電池A、電池B的正面電極,會析出銀微結晶以及奈米銀微粒,可以提升正面電極與矽晶圓間的穿隧導電性,這也反映在光電轉換效率及填充因子的增加。From the test data of Table 1 and the photographs shown in FIG. 5, FIG. 6 and FIG. 7, it can be clearly seen that the silver paste of the present invention is used for the front electrode of Battery A and Battery B, and silver microcrystals and nano silver particles are precipitated. The tunneling conductivity between the front electrode and the germanium wafer can be improved, which is also reflected in the increase in photoelectric conversion efficiency and fill factor.
藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之面向加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的面向內。因此,本發明所申請之專利範圍的面向應該根據上述的說明作最寬廣的解釋,以致使其涵蓋所有可能的改變以及具相等性的安排。The features and spirit of the present invention are intended to be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents that are within the scope of the invention as claimed. Therefore, the scope of the patent application of the present invention should be construed broadly in the light of the above description, so that it covers all possible changes and arrangements.
202‧‧‧正表面202‧‧‧ front surface
208‧‧‧鈍化層208‧‧‧passivation layer
22‧‧‧正面電極22‧‧‧Front electrode
226‧‧‧團塊電極226‧‧‧Block electrode
227‧‧‧奈米銀微粒227‧‧‧Nano silver particles
228‧‧‧銀微結晶228‧‧‧Silver microcrystals
229‧‧‧介面玻璃層229‧‧‧Interface glass layer
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102100821A TWI506650B (en) | 2013-01-10 | 2013-01-10 | Silver paste and use thereof in production of photovoltaic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102100821A TWI506650B (en) | 2013-01-10 | 2013-01-10 | Silver paste and use thereof in production of photovoltaic device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201428772A TW201428772A (en) | 2014-07-16 |
TWI506650B true TWI506650B (en) | 2015-11-01 |
Family
ID=51726158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102100821A TWI506650B (en) | 2013-01-10 | 2013-01-10 | Silver paste and use thereof in production of photovoltaic device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI506650B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200915581A (en) * | 2007-08-29 | 2009-04-01 | Ferro Corp | Thick film pastes for fire through applications in solar cells |
TW201013702A (en) * | 2008-04-09 | 2010-04-01 | Du Pont | Conductive compositions and processes for use in the manufacture of semiconductor devices |
TW201246229A (en) * | 2011-04-21 | 2012-11-16 | Shoei Chemical Ind Co | Electro-conductive paste |
-
2013
- 2013-01-10 TW TW102100821A patent/TWI506650B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200915581A (en) * | 2007-08-29 | 2009-04-01 | Ferro Corp | Thick film pastes for fire through applications in solar cells |
TW201013702A (en) * | 2008-04-09 | 2010-04-01 | Du Pont | Conductive compositions and processes for use in the manufacture of semiconductor devices |
TW201246229A (en) * | 2011-04-21 | 2012-11-16 | Shoei Chemical Ind Co | Electro-conductive paste |
Also Published As
Publication number | Publication date |
---|---|
TW201428772A (en) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102544223B (en) | Method for preparing transparent electrode of crystalline silicon solar cell | |
TWI628804B (en) | Conductive adhesive and method for producing crystalline solar battery | |
CN101952904A (en) | Conductor pastes and grids for silicon solar cells | |
TW201409488A (en) | Low-metal content electroconductive paste composition | |
TW201737502A (en) | Conductive paste and solar cell | |
JP4714634B2 (en) | Conductive paste for solar cell electrode | |
JP2008010527A (en) | Conductive paste for solar cell electrode | |
TWI525642B (en) | Conductive paste and use thereof in production of photovoltaic device | |
Kim et al. | Enhanced absorption and short circuit current density of selective emitter solar cell using double textured structure | |
US11746957B2 (en) | Interdigitated back contact metal-insulator-semiconductor solar cell with printed oxide tunnel junctions | |
TWI474342B (en) | Aluminum paste, method for manufacturing back electrode of solar cell and solar cell | |
CN103151096B (en) | Silver slurry and the purposes for the manufacture of photovoltaic module thereof | |
TWI506650B (en) | Silver paste and use thereof in production of photovoltaic device | |
TWI518709B (en) | Silver paste including fined glass particles and use thereof in production of photovoltaic device | |
CN109496370B (en) | Light absorbing layer and photovoltaic device including light absorbing layer | |
TWI518708B (en) | Silver paste including nano-sized silver particles and use thereof in production of photovoltaic device | |
JP6176783B2 (en) | Crystalline silicon solar cell and manufacturing method thereof | |
TW201407635A (en) | Silver paste and use thereof in production of photovoltaic device | |
US20190198707A1 (en) | Method of forming an electrode structure and method of manufacturing a photovoltaic cell using the same | |
TWI470815B (en) | Silicon-based solar cell and method of fabricating the same | |
CN115132859A (en) | Solar cell production method and solar cell | |
TW201336093A (en) | Solar cell and its manufacturing method | |
CN103311348A (en) | Solar cell and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |