[go: up one dir, main page]

TWI501774B - 神經性病症之治療 - Google Patents

神經性病症之治療 Download PDF

Info

Publication number
TWI501774B
TWI501774B TW096106578A TW96106578A TWI501774B TW I501774 B TWI501774 B TW I501774B TW 096106578 A TW096106578 A TW 096106578A TW 96106578 A TW96106578 A TW 96106578A TW I501774 B TWI501774 B TW I501774B
Authority
TW
Taiwan
Prior art keywords
polypeptide
nerve
amino acid
seq
injury
Prior art date
Application number
TW096106578A
Other languages
English (en)
Other versions
TW200744629A (en
Inventor
Anthony Rossomando
Frank Porreca
Dinah W Sah
Original Assignee
Biogen Idec Inc
Univ Arizona State
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biogen Idec Inc, Univ Arizona State filed Critical Biogen Idec Inc
Publication of TW200744629A publication Critical patent/TW200744629A/zh
Application granted granted Critical
Publication of TWI501774B publication Critical patent/TWI501774B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1883Neuregulins, e.g.. p185erbB2 ligands, glial growth factor, heregulin, ARIA, neu differentiation factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

神經性病症之治療
本發明係關於蛋白化學、分子生物學及神經生物學。
紐布拉斯丁(neublastin),亦稱作阿丁敏(artemin)及愛諾溫(enovin),係一種促進周邊及中樞神經系統之外生長及存活的24 kDa均二聚分泌蛋白(Baudet等人,2000,Development ,127:4335;Masure等人,1999,Eur.J.Biochem .,266:892;Rosenblad等人,2000,Mol.Cell Neurosci .,15(2):199)。紐布拉斯丁mRNA主要表現於胚腎及胚肺中且在成人體內於腦垂腺、氣管及胎盤中表現最高(Baudet等人,2000,Development ,127:4335)。
紐布拉斯丁為神經膠細胞株原性神經營養因子(GDNF)配位子家族之成員。GDNF配位子藉由嚙合膜結合c-RET受體酪胺酸激酶來活化Ras及磷脂醯肌醇-3-激酶信號轉導路徑。此c-RET介導之信號轉導需要賦予對c-RET之配位子特異性之額外共受體,一種糖基磷脂醯肌醇(GPI)固定GDNF家族受體α(GFRα)蛋白。已識別四種GFRα共受體蛋白(GFRα1-4)。紐布拉斯丁於活體外對GFRα3展示出最高親和力,然而在使用人類纖維母細胞之研究中,紐布拉斯丁可經由GFRα3或GFRα1刺激c-RET依賴性信號轉導(Baudet等人,2000,Development,127:4335;Masure等人,1999,Eur.J.Biochem .266:892;Rosenblad等人,2000,Mol.Cell Neurosci.,15(2):199)。
紐布拉斯丁及其他GDNF家族成員為轉化生長因子β(TGFβ)超家族之成員且因此其特徵為存在七個具有相似間距之保守性半胱胺酸殘基而形成半胱胺酸節結構(Saarma,1999,Microsc.Res.Tech., 45:292)。各單體含有兩個二硫鍵,其環繞第三二硫鍵形成封閉迴路結構而形成緊節結構。各單體內所含之第七半胱胺酸形成共價地連接單體之分子間二硫鍵而形成最終二聚體產物(Rattenholl等人,2000,J.Mol.Biol., 305:523)。
背根損傷由於感覺軸突明顯有限之再生能力以及阻礙軸突進入脊髓之抑制性障壁而導致顯著且通常不可逆之感覺功能喪失。本發明至少部分上係以驚奇發現全身投與紐布拉斯丁可恢復經受背根擠壓動物之感覺運動功能為基礎。除此功能恢復之外,亦發現全身投與紐布拉斯丁可促進多種初級傳入纖維經背根入區(DREZ)再進入脊髓且至腦幹核,致使再建立突觸功能。除促進自背根擠壓損傷恢復之外,亦發現全身投與紐布拉斯丁可促進經受背根神經節末端神經擠壓動物之周邊神經再生及機械及熱過敏之恢復。
在一態樣中,本發明提供一種藉由向展現本體感覺障礙之受檢者投與改善該受檢者之本體感覺有效量的多肽而改善本體感覺障礙之方法,其中該多肽含有與SEQ ID NO:1之胺基酸15-113至少80%相同之胺基酸序列,其中該多肽經二聚化時結合至含有GFRα3及RET之複合物。亦揭示該多肽用於製備改善展現本體感覺障礙之受檢者之本體感覺的醫藥組合物之用途。
本文所使用之"本體感覺"係指不依賴於視覺感覺身體及其部分之位置、方位及移動之能力。
在另一態樣中,本發明提供一種藉由向身受神經纖維(例如背根神經纖維或背根神經節末端之神經纖維)損壞或喪失之受檢者投與使神經纖維再生有效量之多肽而使神經纖維再生之方法,其中該多肽含有與SEQ ID NO:1之胺基酸15-113至少80%相同之胺基酸序列且其中該多肽經二聚化時結合至含有GFRα3及RET之複合物。亦揭示該多肽用於製備使身受神經纖維損壞或喪失之受檢者之神經纖維再生的醫藥組合物之用途。
本文所使用之"使神經纖維再生"係指使喪失或受損壞之神經纖維再生長。神經纖維可為大或小神經纖維。舉例而言,神經纖維可為皮膚神經纖維(其中向受檢者投與多肽導致皮膚神經支配恢復)。神經纖維之損壞或喪失可為(例如)神經擠壓損傷或神經切割損傷之結果。
在另一態樣中,本發明提供一種藉由向展現感覺神經反應障礙之受檢者投與改善反應障礙有效量之多肽而改善感覺神經反應障礙之方法,其中該多肽含有與SEQ ID NO:1之胺基酸15-113至少80%相同之胺基酸序列且其中該多肽經二聚化時結合至含有GFRα3及RET之複合物。亦揭示該多肽用於製備改善展現感覺神經反應障礙之受檢者之感覺神經反應的醫藥組合物之用途。
感覺神經反應障礙之特徵可為(例如)對有害機械或熱刺激之敏感性喪失。感覺神經反應障礙可為背根神經纖維或背根神經節末端之神經纖維損壞或喪失之結果。
在另一態樣中,本發明提供一種藉由向身受臂叢損傷之受檢者投與有效量之多肽而治療臂叢損傷之方法,該多肽含有與SEQ ID NO:1之胺基酸15-113至少80%相同之胺基酸序列,其中該多肽經二聚化時結合至含有GFRα3及RET之複合物。亦揭示該多肽用於製備治療具有臂叢損傷之受檢者的醫藥組合物之用途。
在另一態樣中,本發明提供一種藉由向身受由於背根神經損傷而喪失突觸功能之受檢者投與促進神經纖維經背根入區再進入脊髓有效量之多肽而治療背根神經損傷之方法,其中該多肽包含與SEQ ID NO:1之胺基酸15-113至少80%相同之胺基酸序列且其中該多肽經二聚化時結合至含有GFRα3及RET之複合物。亦揭示該多肽用於製備治療身受背根神經損傷之受檢者的醫藥組合物之用途。
在本文所述之方法之一些實施例中,在本體感覺障礙、神經纖維損壞或喪失、感覺神經反應障礙、臂叢損傷或背根神經損傷後(例如)1、2、3、4、5、6、7、8、9、10、11、12、13、14、21、28、35、42、49或56天內向受檢者投與該多肽。可向受檢者投與單一劑量或多個劑量(例如2、3、4、5、6、7或更多劑量)之多肽。視情況可將多肽在本體感覺障礙、神經纖維損壞或喪失、感覺神經反應障礙、臂叢損傷或背根神經損傷後(例如)1、2、3、4或更多週之時段內間歇地投與(例如每天一次、每2或3天一次或每週一次)受檢者。"有效量"之多肽可包含經延長時段(例如數天或數週)經由多個劑量(例如兩個或兩個以上劑量)將多肽投與受檢者。
視情況可在本體感覺障礙、神經纖維損壞或喪失、感覺神經反應障礙、臂叢損傷或背根神經損傷後在有限時段內及/或以有限劑量數將多肽投與受檢者。舉例而言,在一些實施例中,可在本體感覺障礙、神經纖維損壞或喪失、感覺神經反應障礙、臂叢損傷或背根神經損傷後(例如)一年、六個月、一個月或兩週內終止向受檢者投與多肽(亦即不再提供投藥)。在一些實施例中,治療受檢者需要投與50或更少總劑量之多肽(例如40或更少劑量、30或更少劑量、20或更少劑量、15或更少劑量、10或更少劑量、9或更少劑量、8或更少劑量、7或更少劑量、6或更少劑量、5或更少劑量、4或更少劑量、3或更少劑量或2或更少劑量)。
在本文所述之方法之一些實施例中,多肽係經由全身投藥(例如經由皮下或靜脈內投藥)而投與受檢者。
在本文所述之方法之一些實施例中,多肽係針對受損壞神經組織局部投與。
根據本文所述之方法治療之受檢者可為人類或諸如小鼠、大鼠、牛、豬、狗、貓或猴之另一種哺乳動物。
在另一態樣中,本發明提供一種藉由使經受神經纖維損壞或喪失之神經組織(例如背根神經節或背根神經節末端之神經纖維)與使神經纖維再生有效量之多肽接觸而使神經纖維再生之方法,其中該多肽含有與SEQ ID NO:1之胺基酸15-113至少80%相同之胺基酸序列且其中該多肽經二聚化時結合至含有GFRα3及RET之複合物。神經纖維可為大或小神經纖維。在一些實施例中,神經纖維為皮膚神經纖維。
在一些實施例中,神經纖維之損壞或喪失為神經擠壓損傷之結果。在一些實施例中,神經纖維之損壞或喪失為神經切割損傷之結果。
可(例如)在神經纖維損壞或喪失後(例如)1、2、3、4、5、6、7、8、9、10、11、12、13、14、21、28、35、42、49或56天內使神經組織與多肽接觸。可使神經組織與單一劑量或多個劑量(例如2、3、4、5、6、7或更多劑量)之多肽接觸。可在神經纖維損壞或喪失後(例如)1、2、3、4或更多週之時段內使神經組織與多肽間歇地(例如每天一次、每2或3天一次或每週一次)接觸。
在本文所述之方法之一些實施例中,多肽含有與SEQ ID NO:1之胺基酸15-113至少90%、95%或98%相同之胺基酸序列。
在本文所述之方法之一些實施例中,多肽含有與SEQ ID NO:1至少90%、95%或98%相同之胺基酸序列。
在本文所述之方法之一些實施例中,多肽含有SEQ ID NO:1之胺基酸15-113、SEQ ID NO:2之胺基酸15-113、SEQ ID NO:3之胺基酸15-113、SEQ ID NO:4之胺基酸15-113、SEQ ID NO:5之胺基酸15-113、SEQ ID NO:8之胺基酸15-113或SEQ ID NO:9之胺基酸15-113。
在本文所述之方法之一些實施例中,多肽含有SEQ ID NO:1之胺基酸10-113。
在本文所述之方法之一些實施例中,多肽含有SEQ ID NO:1之胺基酸序列、SEQ ID NO:2之胺基酸序列、SEQ ID NO:3之胺基酸序列、SEQ ID NO:4之胺基酸序列、SEQ ID NO:5之胺基酸序列、SEQ ID NO:8之胺基酸序列或SEQ ID NO:9之胺基酸序列。
本文所述之特定治療方法之優點為在有限次數之紐布拉斯丁全身注射後產生持續性軸突再生作用且恢復感覺功能,藉以避免對長期治療方案(或可能不定持續時間)及/或脊椎輸注(及其相關危險)之需要。
除非另外定義,否則本文所使用之所有技術及科學術語具有與本發明所屬領域之一般技術者通常所理解相同之含義。以下描述示範性方法及材料,但亦可將與本文所述相似或等效之方法及材料用於本發明之實踐或測試。本文所提及之所有公開案、專利申請案、專利及其他參考文獻均以全文引用的方式併入本文中。在出現矛盾之情況下,將以本申請案(包括定義)為準。材料、方法及實例僅為說明性且不意欲為限制性。
本發明之其他特徵及優點將自以下實施方式及申請專利範圍顯而易見。
本發明提供藉由投與紐布拉斯丁多肽改善受檢者之本體感覺障礙、治療臂叢損傷、使大及小神經纖維再生、治療背根神經損傷及改善感覺神經反應之方法。如所附實例所揭示,已發現全身投與紐布拉斯丁可恢復經受背根擠壓動物之感覺功能,促進神經纖維經DREZ再進入受損傷動物之脊髓中且促進經受背根神經節末端神經擠壓之動物之周邊神經再生及機械及熱過敏之恢復。
紐布拉斯丁多肽
成熟野生型人類紐布拉斯丁之長度為113個胺基酸且具有以下胺基酸序列:AGGPGSRARAAGARGCRLRSQLVPVRALGLGHRSDELVRFRFCSGSCRRARSPHDLSLASLLGAGALRPPPGSRPVSQPCCRPTRYEAVSFMDVNSTWRTVDRLSATACGCLG(SEQ ID NO:1)。本文所述之方法中可使用具有SEQ ID NO:1之胺基酸序列之多肽或其生物活性變異體。如以下部分所詳述,變異紐布拉斯丁多肽可含有一或多處添加、取代及/或缺失。野生型紐布拉斯丁多肽及其生物活性變異體在本文中共同稱作"紐布拉斯丁多肽"。
變異紐布拉斯丁多肽之長度可不同於對應之野生型多肽。儘管成熟人類紐布拉斯丁多肽(SEQ ID NO:1)由前初紐布拉斯丁(SEQ ID NO:10)之羧基端113個胺基酸組成,但達成有用之紐布拉斯丁生物活性並非需要所有113個胺基酸。胺基酸末端截斷係容許的。因此,變異紐布拉斯丁多肽可含有(例如)SEQ ID NO:1之羧基端99、100、101、102、103、104、105、106、107、108、109、110、111、112或113個胺基酸(亦即其長度可為99、100、101、102、103、104、105、106、107、108、109、110、111、112或113個胺基酸)。
變異紐布拉斯丁多肽之序列亦可不同於對應之野生型多肽。詳言之,可在無明顯紐布拉斯丁生物活性損失之情況下將特定胺基酸取代引入紐布拉斯丁序列中。在示範性實施例中,變異紐布拉斯丁多肽(i)含有一或多處胺基酸取代,且(ii)與SEQ ID NO:1至少70%、80%、85%、90%、95%、98%或99%相同(或與SEQ ID NO:1之胺基酸15-113 70%、80%、85%、90%、95%、98%或99%相同)。與SEQ ID NO:1序列不同(或與SEQ ID NO:1之胺基酸15-113序列不同)之變異紐布拉斯丁多肽可包括一或多處胺基酸取代(保守或非守性)、一或多處缺失及/或一或多處插入。
圖1為野生型人類、小鼠及大鼠前初紐布拉斯丁多肽之比對。圖1中之垂線表示紐布拉斯丁之成熟之113個胺基酸形式(左垂線)及104個胺基酸形式(右垂線)之起始。框架內為RRXR肝素結合基元。天然存在生物活性形式之紐布拉斯丁之此比對表明了可經取代而不消除生物活性之特定示範性殘基(亦即在人類、小鼠及大鼠形式之中為非保守性之殘基)。
可使用BLAST 2.0程式測定胺基酸序列之間之一致性百分比。可使用無間隙比對及使用預設參數(Blossom 62基質,間隙存在扣分(gap existence cost)為11,每個殘基間隙扣分(per residue gap cost)為1且λ比率為0.85)進行序列比較。用於BLAST程式之數學演算法描述於Altschul等人,1997,Nucleic Acids Research 25:3389-3402中。
保守性取代為用一種胺基酸取代具有相似特徵之另一種胺基酸。保守性取代包括以下群組內之取代:纈胺酸、丙胺酸及甘胺酸;白胺酸、纈胺酸及異白胺酸;天冬胺酸及麩胺酸;天冬醯胺酸及麩醯胺酸;絲胺酸、半胱胺酸及蘇胺酸;離胺酸及精胺酸;及苯丙胺酸及酪胺酸。非極性疏水性胺基酸包括丙胺酸、白胺酸、異白胺酸、纈胺酸、脯胺酸、苯丙胺酸、色氨酸及甲硫胺酸。極性中性胺基酸包括甘胺酸、絲胺酸、蘇胺酸、半胱胺酸、酪胺酸、天冬醯胺酸及麩醯胺酸。帶正電荷之(鹼性)胺基酸包括精胺酸、離胺酸及組胺酸。帶負電荷之(酸性)胺基酸包括天冬胺酸及麩胺酸。上述極性、鹼性或酸性群組中之一個成員經相同群組中之另一成員的任何取代均可視為保守性取代。
非保守性取代包括以下取代,其中(i)用具有正電性側鏈之殘基(例如Arg、His或Lys)取代負電性殘基(例如Glu或Asp)或經負電性殘基(例如Glu或Asp)取代;(ii)用親水性殘基(例如Ser或Thr)取代疏水性殘基(例如Ala、Leu、Ile、Phe或Val)或經疏水性殘基(例如Ala、Leu、Ile、Phe或Val)取代;(iii)用半胱胺酸或脯胺酸取代任何其他殘基或經任何其他殘基取代;或(iv)用具有龐大疏水性或芳族側鏈之殘基(例如Val、Ile、Phe或Trp)取代具有較小側鏈之殘基(例如Ala、Ser)或無側鏈之殘基(例如Gly)或經具有較小側鏈之殘基(例如Ala、Ser)或無側鏈之殘基(例如Gly)取代。
生物活性變異紐布拉斯丁多肽經二聚化時可結合至含有GFRα3及RET之三元複合物。用於偵測與此複合物結合之任何方法均可用以評估變異紐布拉斯丁多肽之生物活性。用於偵測變異紐布拉斯丁多肽之三元複合物結合能力之示範性檢定描述於WO 00/01815中,其內容係以引用的方式併入本文中。
亦可評定變異紐布拉斯丁多肽以評估其觸發紐布拉斯丁信號級聯之能力。舉例而言,可使用激酶受體活化(KIRA)檢定評定變異紐布拉斯丁多肽誘導RET自體磷酸化之能力(亦參見Sadick等人,1996,Anal.Biochem .,235(2):207)。
預期以下胺基酸殘基之一或多處取代將產生與野生型紐布拉斯丁相比具有降低或無肝素結合能力之變異紐布拉斯丁多肽:Arg 48、Arg 49、Arg 51、Ser 46、Ser 73、Gly 72、Arg 39、Gln 21、Ser 20、Arg 68、Arg 33、His 32、Val 94、Arg 7、Arg 9或Arg 14。以位置號碼所提及的紐布拉斯丁胺基酸殘基係與相對SEQ ID NO:1殘基的號碼有關。指定用於取代之紐布拉斯丁胺基酸殘基(例如位置48、49及/或51處之精胺酸殘基)可經非保守性胺基酸殘基(例如麩胺酸)或保守性胺基酸殘基取代。在本文所識別之殘基(例如位置48、49及/或51)處可經取代之示範性胺基酸包括麩胺酸、天冬胺酸及丙胺酸。
具有降低或無肝素結合能力之變異紐布拉斯丁多肽之實例揭示於表1中。與對應之野生型位置相比,突變之變異紐布拉斯丁多肽之胺基酸殘基係以粗體及底線顯示。此外,用作取代背景之紐布拉斯丁多肽(長度為113、99或104個胺基酸)亦描述於表1中。
視情況可將紐布拉斯丁多肽偶合至聚合物(例如聚伸烷二醇部分,諸如聚乙二醇部分)。在一些實施例中,將聚合物於N端之紐布拉斯丁多肽位點偶合至多肽。在一些實施例中,變異紐布拉斯丁多肽包括關於SEQ ID NO:1(或關於SEQ ID NO:1之胺基酸15-113)之至少一處胺基酸取代,其提供聚合物可結合之內部聚合物結合位點。在一些實施例中,將聚合物在選自由位置14、位置39、位置68及位置95組成之群之殘基(根據SEQ ID NO:1序列編號)處偶合至變異紐布拉斯丁多肽。提供內部聚合物結合位點之示範性紐布拉斯丁變異體描述於WO 02/060929及WO 04/069176中,其內容係以引用的方式併入本文中。
除紐布拉斯丁多肽之外,多肽亦可視情況含有異源胺基酸序列。在涉及胺基酸序列時所使用之"異源"係指源自對於特定宿主細胞而言為外來來源之序列,或若來自相同宿主細胞則為自其原始形式經修飾之形式。示範性異源序列包括異源信號序列(例如天然大鼠白蛋白信號序列、經修飾大鼠信號序列或人類生長激素信號序列)或用於紐布拉斯丁多肽之純化之序列(例如組胺酸標記)。
可使用此項技術中已知之方法分離紐布拉斯丁多肽。可使用標準蛋白純化技術將天然存在或重組產生之紐布拉斯丁多肽自細胞或組織源分離。或者,可使用標準肽合成技術化學合成突變紐布拉斯丁多肽。短胺基酸序列之合成已在肽技術中成功建立。例如參見Stewart等人,Solid Phase Peptide Synthesis(第2版,1984)。
在一些實施例中,紐布拉斯丁多肽係藉由重組DNA技術產生。舉例而言,可將編碼紐布拉斯丁多肽之核酸分子插入例如表現載體之載體中且可將核酸引入細胞中。合適之細胞包括(例如)哺乳動物細胞(諸如人類細胞或CHO細胞)、真菌細胞、酵母細胞、昆蟲細胞及細菌細胞(例如大腸桿菌(E.coli ))。當於重組細胞中表現時,較佳將細胞於允許紐布拉斯丁多肽表現之條件下培養。若需要可自細胞懸浮液回收紐布拉斯丁多肽。本文所使用之"回收"意謂將突變多肽自回收處理前多肽存在於其中之細胞或培養基之彼等組份中移除。回收處理可包括一或多個再折疊或純化步驟。用於誘導變性紐布拉斯丁多肽折疊之緩衝液及方法描述於(例如)PCT申請案號PCT/US 2005/029638中。
可使用此項技術中已知之數種方法中之任一種建構變異紐布拉斯丁多肽。一種此方法為定點突變,其中改變特定核苷酸(或若需要少量特定核苷酸)以改變經編碼變異紐布拉斯丁多肽中之單一胺基酸(或若需要少量預定胺基酸殘基)。許多定點突變套組為可購得的。一種此套組為Clontech Laboratories(Palo Alto,CA)出售之"Transformer定點突變套組"。
醫藥組合物
可將紐布拉斯丁多肽併入含有治療有效量之多肽及一或多種佐劑、賦形劑、載劑及/或稀釋劑之醫藥組合物中。可接受之稀釋劑、載劑及賦形劑通常不會不利影響接受者之內穩定(例如電解質平衡)。可接受之載劑包括生物相容性、惰性或生物可吸收性鹽、緩衝劑、寡醣或多醣、聚合物、黏度改善劑、防腐劑及其類似物。一種示範性載劑為生理食鹽水(0.15 M NaCl,pH值為7.0至7.4)。另一種示範性載劑為50 mM磷酸鈉、100 mM氯化鈉。關於調配及投與醫藥組合物之技術之其他詳細資料可見於(例如)REMINGTON'S PHARMACEUTICAL SCIENCES(Maack Publishing Co.,Easton,Pa.)中。
含有紐布拉斯丁多肽之醫藥組合物可全身或局部投藥。可將醫藥組合物成使其適用於非經腸及/或經腸投藥。特定投藥模式包括皮下、靜脈內、肌肉內、腹膜內、經皮、鞘內、口服、經直腸、經頰、局部、經鼻、經眼、關節內、動脈內、蛛網膜下、經支氣管、經淋巴、經陰道及子宮內投藥。可對周邊神經系統及/或中樞神經系統(CNS)投藥。
投藥可藉由定期快速注射醫藥組合物或可藉由自外部(例如IV袋)或內部(例如生物可蝕性植入物、生物人造器官或植入紐布拉斯丁產生細胞之群落)儲集器靜脈內或腹膜內投藥而更連續地進行。例如參見美國專利第4,407,957號、第5,798,113號及第5,800,828號,其各自以引用的方式併入本文中。
特定言之,醫藥組合物之投藥可使用諸如以下之合適傳遞方式達成:泵(例如參見Annals of Pharmacotherapy,27:912(1993);Cancer,41:1270(1993);Cancer Research,44:1698(1984),其以引用的方式併入本文中);微囊封(例如參見美國專利第4,352,883號、第4,353,888號及第5,084,350號,其以引用的方式併入本文中);連接釋放聚合物植入物(例如參見Sabel之美國專利第4,883,666號,其以引用的方式併入本文中);巨囊封(例如參見美國專利第5,284,761號、第5,158,881號、第4,976,859號及第4,968,733號及公開之PCT專利申請案WO 92/19195、WO 95/05452,其各自以引用的方式併入本文中);CNS之裸或未囊封之細胞移植物(例如參見美國專利第5,082,670號及第5,618,531號,其各自以引用的方式併入本文中);皮下、靜脈內、動脈內、肌肉內或對其他合適部位之注射;或以膠囊、液體、錠劑、丸劑或延遲釋放調配物之形式口服投藥。
在一實施例中,將醫藥組合物直接傳遞至CNS中(例如腦室、腦實質或硬膜腔內)。醫藥組合物可鞘內傳遞。
非經腸傳遞系統之實例包括乙烯-乙酸乙烯酯共聚物顆粒、滲透泵、可植入輸注系統、泵傳遞、囊封細胞傳遞、脂質體傳遞、針傳遞注射、無針注射、噴霧器、霧化器、電穿孔及經皮貼片。
可將含有紐布拉斯丁多肽之醫藥組合物視情況在神經組織損壞或損傷(例如背根擠壓或背根神經節末端神經擠壓)後之特定時間段內投與受檢者。舉例而言,可在損壞或損傷後(例如)1、2、3、4、5、6、7、8、9、10、11、12、13、14、21、28、35、42、49或56天內將醫藥組合物投與受檢者。可向受檢者投與單一劑量或多個劑量(例如2、3、4、5、6、7或更多劑量)之醫藥組合物。多個劑量之投藥可間隔數小時、數天、數週或數月之時間。
適用於非經腸投藥之調配物適宜地含有紐布拉斯丁多肽之無菌含水製劑,其較佳地與接受者之血液等張(例如生理食鹽水溶液)。調配物可以單劑或多劑形式存在。
示範性調配物含有本文所述之紐布拉斯丁多肽及以下緩衝液組份:琥珀酸鈉(例如10 mM)、NaCl(例如75 mM)及L-精胺酸(例如100 mM)。
適用於口服投藥之調配物可以各自含有預定量紐布拉斯丁多肽之離散單元(諸如膠囊、扁膠劑、錠劑或口含劑);或含水液體或不含水液體中之懸浮液(諸如糖漿、酏劑、乳液或頓服劑)之形式存在。
可以熟習此項技術者可確定之給藥方案向有此需要之受檢者投與治療有效量之醫藥組合物。舉例而言,可將組合物(例如)以每劑每公斤受檢者體重0.01 μg至1000 μg之劑量以全身方式投與向受檢者。在另一實例中,劑量為每劑每公斤受檢者體重1 μg至100 μg。在另一實例中,劑量為每劑每公斤受檢者體重1 μg至30 μg,例如每劑每公斤受檢者體重3 μg至10 μg。
為使治療功效達到最佳,首先以不同給藥方案投與紐布拉斯丁多肽。單位劑量及方案視多種因素而定,包括(例如)哺乳動物物種、其免疫狀態、哺乳動物之體重。通常,使用適當篩檢檢定作為臨床測試程序之部分監測組織中之蛋白含量(例如)以測定既定治療方案之功效。
紐布拉斯丁多肽之給藥頻率係基於醫師之經驗及臨床判斷。通常藉由可建立最佳投藥參數之臨床試驗建立投藥方案。然而,實踐者可根據受檢者年齡、健康狀況、體重、性別及醫療狀態改變化此等投藥方案。給藥頻率可視治療為預防性或治療性而不同。
治療方法
本文所述之紐布拉斯丁多肽可用於治療本體感覺障礙、治療臂叢損傷、使大及小神經纖維再生、促進神經纖維經DREZ再進入脊髓中及/或改善感覺神經反應。
1.本體感覺障礙之治療本文所揭示之紐布拉斯丁多肽(及包含其之醫藥組合物)可用於治療本體感覺障礙之方法。
本體感覺障礙抑制肌肉力量之適當協調且導致身體空間關係之感知改變。對於人類,本體感覺喪失通常係由於神經外傷或損壞(例如由損傷引起之損壞)而發生。可與隨後之本體感覺喪失或障礙相關之損傷包括(例如)與中風相關之神經損壞或其他與缺血相關之神經損傷、手術、鞭傷、震盪、頸椎脊髓病(例如由頸椎狹窄引起)及與脊柱側彎(例如特發性脊柱側彎)相關之損傷。障礙亦可由糖尿病或癌症之併發症(例如由侵襲性腫瘤引起之炎症或損傷)引起或可由因暴露於諸如化學療法之細胞毒性因子而產生之組織損傷引起。穩態本體感覺可在(例如)於手術程序期間使用周邊或中樞神經阻斷之後出現障礙。
本體感覺喪失或障礙亦可自不涉及直接組織損壞或損傷之病況發生。身受(例如)關節過動症或Ehlers-Danlos症候群(一種導致全身結締組織虛弱之遺傳病況)之患者可存在本體感覺障礙。本體感覺亦可因特定病毒感染而暫時或永久性存在障礙。在一些情況下,本體感覺之暫時喪失或障礙可週期性出現於諸如青春期生長之生長期間。可影響患者本體感覺之其他類型之生長包括(例如)由脂肪及肌肉含量波動引起之體重/身體尺寸之較大增益或降低。本體感覺喪失亦可存在於獲得新的撓曲、拉伸及扭彎程度之受檢者,例如在長期固定後經歷新的運動範圍之肢體。在極少之情況下,亦已知暫時本體感覺障礙可在過量服用維生素B6(吡哆醇及吡哆胺)後發生。
本體感覺之喪失或障礙視致病損傷或病況之位置及/或性質而定可影響上肢、下肢或兩者。舉例而言,下部脊柱損傷僅可影響下半身之本體感覺,而上部脊柱損傷可導致上肢及下肢兩者之本體感覺障礙。
向受檢者(例如人類)投與紐布拉斯丁之後,可藉由比較治療前後受檢者之本體感覺來評定對本體感覺障礙之治療功效(改善)。治療後評定可於治療後即刻或立刻(例如治療後6、12、18或24小時)進行及/或可於治療後數天、數週或數月進行。在評定一或多次紐布拉斯丁治療後之本體感覺障礙改善進程時,可於紐布拉斯丁治療後之多個時間點評估或量測受檢者之本體感覺(例如一天、兩天及一週評估;一週、一月及六月評估;一月、六月及一年評估)。
評估或量測受檢者本體感覺之合適方法在此項技術中係已知的。在評估上肢本體感覺時,此等評估方法之實例包括偵測關節運動(例如Cook等人(1986)Clin.Orthop.Relat.Res.213:118-24)及使用(例如)Swanik等人(1996)J Athl Train.31(2):119-24及Ulkar等人(2004)Br.J.Sports Med.38:549-52中所述之裝置之被動體位匹配測試。此外,可使用(例如)現場清醒測試(其中受檢者試圖在閉眼下觸摸鼻子)測試人類上肢本體感覺缺失。具有正常本體感覺之受檢者一般出現不超過2 cm之誤差。具有嚴重本體感覺障礙之受檢者無目視之情況下無法感知其手(或鼻子)之位置。
在評估下肢本體感覺(例如臀部或膝蓋本體感覺)時,本體感覺可根據患者關節位置感覺測試來評定(Takayama等人(2005)Spine 30(1):83-86)或使用手動量角器或電子量角器來量測(Mendelsohn等人(2004)Am.J.Phys.Med.Rehabil.83(8):624-32)。下肢本體感覺缺失亦可藉由量測靜態及動態平衡來測定。亦可量測脊柱之本體感覺。此等方法及裝置之實例描述於Christensen(1999)J Manipulative Physiol.Ther.22(1):10-14及美國專利第6,969,360號中。
患者本體感覺之量測或評估可為定量的或一般為定性的,例如如Klein等人(2003)Reg.Anesth.Pain Med.28(5):433-38所述之對患者進行對其感知改變之嚴重性或程度評級的測量。其他本體感覺測試描述於(例如)Lee等人(2003)Clin.Biomech.18(9):843-47及al-Othman等人(1998)Orthopedics 21(6):677-79中。
本文中所含之實例描述適用於量測非人類模型系統之本體感覺之數種檢定。本體感覺障礙之動物模型一般為損傷相關性本體感覺障礙模型。損傷可包括(例如)單側C4-T2背根擠壓(Ramer等人(2000)Nature 403:312-316)。其他合適之本體感覺動物模型描述於(例如)Gaviria等人(2002)J.Neurotrauma 19(2):205-221中。
2.臂叢損傷之治療如實例中所述,在臂叢神經損傷後向哺乳動物投與紐布拉斯丁可導致感覺運動功能恢復。臂叢損傷係由臂叢,自脊柱行進至肩、臂及手之周邊神經網路(人類C5、C6、C7、C8及T1神經)之損壞(損傷)引起。臂叢損傷之症狀可包括臂無力或癱瘓,缺乏臂、手或腕之肌肉控制及臂或手之知覺或感覺缺乏。本文所揭示之紐布拉斯丁多肽(及包含其之醫藥組合物)可用於治療受檢者(例如人類)臂叢損傷之方法。
臂叢神經可因施加於頸部之大量應力而拉伸、撕脫或斷裂。成人可由諸如汽車或機車事故之嚴重物理外傷(例如揮鞭樣損傷後)而身受臂叢損傷。許多臂叢損傷係在子宮內或在出生時當嬰兒肩部受到衝擊而引起臂叢神經拉伸或撕裂時發生。
存在四種類型之臂叢損傷:(i)神經傳導阻滯(拉伸),其中神已受損壞但未撕裂;(ii)撕脫,其中神經自脊柱撕出;(iii)斷裂,其中神經撕裂但並非於脊椎附著處撕裂;及(iv)神經瘤,其中神經試圖修復自身,但疤痕組織已生長於損傷周圍,對受損傷神經施加壓力且阻止神經傳導信號至肌肉。神經傳導阻滯為最常見類型之臂叢損傷,且可導致肩、臂及手內感覺功能永久及嚴重之障礙。
向受檢者(例如人類)投與紐布拉斯丁之後,可藉由比較治療前後受檢者損傷之程度或嚴重性來評定對臂叢損傷之治療功效(改善)。可評定作為單藥療法或作為多種療法方案之部分之臂叢損傷之紐布拉斯丁治療功效。舉例而言,可將紐布拉斯丁與臂叢損傷之其他臨床相關治療(包括神經松解術(以移除疤痕組織)、肌肉移植、神經移植或神經重建手術)一起投與。
可使用多種模式評定臂叢損傷之程度或嚴重性,包括臨床檢查、電診斷研究(例如肌電圖(EMG)、神經傳導速度(NCV)、感覺神經動作電位(SNAP)及體覺誘發電位(SSEP))及影像研究(例如電腦斷層攝影(CT)影像掃描、磁共振成像(MRI))(Harper(2005)Hand.Clin.21(1):39-46)。此等模式可單獨或組合使用,組合通常描繪已受損傷臂叢之特定元素及關於損傷嚴重性之更詳細資訊。臨床檢查可包括(但不限於)對兩個個別肌群計分之定性運動功能評估(使用五點英國研究委員會分級系統(British Research Council Grading System))及諸如功能肌群活動(包括外展、外轉及手至頭、手至背及手至口移動)之半定量或定量方法以及感覺及反射檢查。感覺檢查之實例包括(例如)Anand等人(2002)Brain 125:113-22中所述之熱臨限值測試系統(The Thermal Threshold Testing System)(Somedic,Stockholm,Sweden)。
單側C4-T2背根擠壓(如Ramer等人(2000)Nature 403:312-16所述)可損壞臂叢神經且為研究臂叢損傷之適用大鼠模型系統。其他合適之臂叢損傷動物模型亦描述於(例如)Quintao等人(2006)Neuropharmacology 50(5):624-20;Rodrigues-Filho等人(2003)Brain Res.982(2):186-94;及Rodrigues-Filho等人(2004)Brain Res.1018(2):159-70中。用以評估對臂叢損傷之治療(例如向受檢者投與紐布拉斯丁多肽)功效之方法與關於人類患者所述之方法相似且包括(例如)評估溫度臨限值之改變或神經電位之改變。
3.大及小神經纖維之再生及促進神經纖維經DREZ再進入脊髓如實例中所詳述,已發現全身投與紐布拉斯丁可促進神經纖維再生,包括穿過DREZ進入脊髓之軸突再生以及背根神經節(DRG)末端之受損傷神經纖維再生。因此,本文所揭示之紐布拉斯丁多肽(及含有其之醫藥組合物)可適用於使神經系統之喪失、損壞或損傷之大纖維(例如較大有髓鞘或無髓鞘之纖維)及/或小纖維(較小有髓鞘或無髓鞘之纖維)再生之方法。投與紐布拉斯丁多肽可適用於使中樞神經系統(例如腦或脊髓)以及周邊神經系統(例如肢體、指骨、面部、皮膚或舌之神經)之大及小纖維再生。
可受益於長及/或小神經纖維再生且可藉由投與紐布拉斯丁多肽治療之神經損壞之類型一般包括一或多條神受損傷(例如擠壓)或截斷之情況。神經損壞可由於神經損壞性感染(例如細菌或病毒性腦膜炎,細菌、病毒或原蟲性腦炎或脊髓灰質炎)或疾病(例如遺傳性、偶發性或特發性疾病),諸如多發性硬化症、古立安白瑞症候群(Gillain Barre syndrome)、糖尿病、腓骨肌萎縮症(Charcot-Marie-Tooth disease)、弗裏德裏希氏共濟失調(Friedrich's ataxia)、貝爾氏麻痹(Bell's palsy)或脊柱分裂而發生。可受益於紐布拉斯丁投藥之神經損傷亦包括由骨(或腱或韌帶)破裂、拉傷或斷裂、電擊、暴露於特定毒性化學物質(例如溶劑、重金屬或氧化亞氮)、特定類型之燒傷、皮膚或其他組織移植、急性壓迫(例如諸如尺神經卡壓之神經卡壓或腕隧道症候群)引起之神經損傷或由手術、其他醫療程序引起之神經損壞(例如拔牙後之舌神經損傷)。可使用任何本文所述之紐布拉斯丁組合物治療之其他神經損壞包括由於(例如)帕金森氏病(Parkinson's disease)、肌萎縮性側索硬化發生之損壞或與阿茲海默氏病(Alzheimer's disease)或其他tau蛋白病、亞急性硬化性泛腦炎、進行性多病灶白質腦病或任何朊病毒型海綿狀腦病相關之神經損壞性損傷或炎症。
向受檢者(例如人類)投與紐布拉斯丁之後,可藉由比較治療前後受檢者神經之狀態或功能來評定促進神經再生之治療功效。可評定作為單藥療法或作為多種療法方案之部分之神經再生之紐布拉斯丁治療功效。舉例而言,可將紐布拉斯丁與用於神經再生之其他臨床相關治療(包括(但不限於)物理療法、高壓氧治療、光活化神經再生(雷射或發光二極體)或諸如甲潑尼龍之藥劑)一起投與。
患者(例如人類)之大或小神經纖維之再生可藉由使用(例如)神經傳導速度記錄、Pressure-Specified Sensory DeviceTM (Sensory Management Services,LLC,Baltimore MD)或諸如上述彼等之影像技術直接分析一或多條神經來評定。在一些情況下,例如在中樞神經系統再生時,可使用(例如)磁共振光譜掃描根據特別是損壞或病症已導致神經萎縮處之白質體積(例如脊柱或腦之神經質量)的增加來評估神經再生。周邊神經再生可藉由如(例如)Polydefkis等人(2004)Brain 127(7):1606-15所述之活組織檢查及/或離體電生理學技術直接評定。
在皮膚神經受損壞(例如由於皮膚燒傷之損壞或移植皮膚之截斷神經)時,投與紐布拉斯丁多肽後之皮膚神經再生作用(例如神經支配恢復)可使用於此項技術中已知之各種方法來評定。舉例而言,可使用如(例如)Beneke等人(1980)J Neurol.223(4):231-39,Jazayeri等人(2003)Electromyogr.Clin.Neurophysiol.43(5):277-79,Huang等人(2004)Chin.Med.J(Engl)117(9):1317-20或Pan等人(2006)Arch.Phys.Med.Rehabil.87(9):1201-06中所述之感覺神經動作電位(SNAP)量測或交感神經皮膚反應(SSR)測試來量測一或多種感覺功能(例如皮膚敏感性)。投與紐布拉斯丁後患者之皮膚神經支配恢復亦可藉由監測對機械或熱刺激或對諸如Schmelz等人(1998)J Neurophysiol.79(4):1653-1660中所述彼等之交感神經反射激發測試之反應性的變化來評定。
或者(或此外),可(例如)藉由量測經由受損傷神經再生而達成之本體感覺障礙之改善而"在功能上"量測神經再生。神經再生之評定方法亦可包括本文所述之關於任何神經相關損傷之任何評估方法。
實例描述了適用於研究紐布拉斯丁治療對神經再生之作用的動物模型。動物模型中此治療之功效可藉由(例如)基於活組織檢查或組織切片以免疫組織化學技術直接分析神經來評估。或者,可根據神經再生後感覺或運動能力之恢復來偵測神經再生。研究治療對神經再生之作用的其他動物模型包括(例如)Oudega等人(1996)140(2):218-29,Frykman等人(1998)Orthop.Clin.North.Am.19(1):209-19,Zhang等人(2005)Adv.Biochem.Eng.Biotechnol.94:67-89及Pan等人(2003)J.Neurosci.23(36):11479-88中所述之動物模型。
4.感覺神經反應之改善如實例中所述,向患有神經損傷之哺乳動物投與紐布拉斯丁會導致喪失之感覺神經反應及感覺運動功能恢復。因此,向受檢者(例如人類)投與本文所述之紐布拉斯丁多肽可用於恢復受檢者之感覺及/或感覺運動功能。此等感覺神經反應可包括(例如)對壓力、溫度及振動感覺之反應(參見Toibana等人(2000)Industrial Health 38:366-371)。感覺運動功能控制(例如)平衡、均衡及協調(例如肢體運動協調)。
感覺神經反應/感覺運動功能之喪失係由一或多條神經之損壞或外傷引起,神經損壞或外傷之原因包括任何本文所述之原因。舉例而言,感覺反應之喪失或障礙可由糖尿病併發症或由暴露於強熱(例如燒傷)後之脫敏作用引起。向受檢者投與紐布拉斯丁之後,可藉由比較治療前後受檢者之感覺神經反應來評定改善感覺神經反應之治療功效。可如上所述評定作為單藥療法或以多種療法方案之部分之改善感覺神經反應的紐布拉斯丁治療功效。舉例而言,可將紐布拉斯丁與改善感覺神經反應之其他臨床相關治療或與本文所述之任何其他治療模式(例如神經損壞或損傷治療)一起投與。
治療後評定人類受檢者感覺神經反應改善之方法有許多種且包括(例如)肌電圖神經傳導(EMG-NCV)測試及感覺神經感知臨限值測試(亦稱作電流感知臨限值測試),感覺神經感知臨限值測試涉及量化對經皮電刺激之感覺臨限值(誘發受檢者感覺所需之最小經皮電刺激量)。評定人類受檢者感覺運動功能之其他方法包括(例如)指捏力及握力(Dellon等人(1997)Ann Plat.Surg.38(5):493-502)、角度重現測試(參見上文)、運動臨限值測試、等長肌力測試、隆柏氏測試(Romberg's Test)、屈曲反射(Hornby等人(2003)J Neurophysiol.89(1):416-26)及手眼協調測試。
觸覺可(例如)藉由於測試區域之皮膚表面上輕輕摩擦棉花球或對區域之各位置輕輕施加壓力來評定。此等類型之感覺神經感知臨限值評定適用於評估包括中樞及周邊神經性病變之廣泛範圍之臨床病況及偵測腕隧道症候群且可涉及使用諸如Neurometer Current Perception Threshold(Neurotron,Inc.,Baltimore,MD)或Medi-Dx 7000(Vax-D Medical Group,Tucson,AZ)之裝置。適用於評定感覺神經反應之臨床測試及裝置之其他描述可見於(例如)Shy等人(2003)Neurol.60:898-904及Siao等人(2003)Phys.Med.Rehabil.Clin.N.Am.14(2):261-86中。評定感覺神經或觸覺反應之方法亦包括感覺神經動作電位(SNAP)量測、交感神經皮膚反應(SSR)測試及對機械或熱刺激或對諸如上述彼等之交感神經反射激發測試之反應性。
實例描述了用於研究治療對改善感覺神經反應/感覺運動功能之作用的動物模型。舉例而言,神經損傷(例如背根擠壓或背根神經節末端神經擠壓)後,可藉由評定動物於穩定動作(stabilization maneuver)中之效能來評估經治療及未經治療(亦即以紐布拉斯丁多肽治療)之動物的感覺運動功能。其他適用於量測感覺神經反應及/或感覺運動功能之動物模型描述於(例如)Diamond等人(1992)J.Neurosci.12(4):1467-76,Brown等人(2005)J.Neurotrauma 22(5):559-74及Magnuson等人(2005)J.Neurotrauma 22(5):529-43中。
以下為實踐本發明之實例。不應將其解釋為以任何方式限制本發明之範疇。
實例 實例1:材料及方法
動物手術、紐布拉斯丁投藥及示蹤研究 對體重175-250公克之雄性Sprague-Dawley大鼠(Harlan,Indianapolis,IN)進行單側C4-T2背根擠壓(Ramer等人(2000)Nature 403:312-16)。在相同程序下進行無神經根損傷之假手術。手術後即刻以經2週總共6次注射按週一、週三及週五之時程皮下給予大鼠紐布拉斯丁(Gardell等人(2003)Nat Med 9:1383-89)或生理食鹽水媒劑。為達成跨神經節示蹤,於處死前5-7天將臂叢正中神經分支於無菌條件下暴露且將5 μl 0.5% CTB溶液(霍亂菌毒素B次單位,低鹽;List Labs)以多個注射部位壓力注射至神經中。
行為觀察 根據Ramer等人(2002)Mol Cell Neurosci 19:239-49及Ramer等人(2000)Nature 403:312-16所述之行為實驗程度進行量化避害、感覺運動及本體感覺功能恢復之行為檢定。對有害熱刺激之退縮潛時以49℃之水浴量測,亦即將損傷同側之前爪浸沒於49℃之水浴中直至大鼠將爪縮回或直至達到20秒鐘之截止時間。同側前爪對有害機械刺激之縮回使用具有250公克截止設定之Randall-Selitto有害夾壓裝置(Ugo-Basil)來測試。如先前所述對大鼠在接觸誘發抓握、橫桿行走、平梯及穩定置放中之效能進行計分(Ramer等人(2002)Mol Cell Neurosci 19:239-49及Ramer等人(2000)Nature 403:312-16)。
免疫組織化學 將大鼠經心臟灌注10%緩衝福馬林(Sigma)且將頸脊髓、DRG及腦幹移除,進行防凍處理(於20%蔗糖中),冷凍且於恆冷器上切片(對於DRG而言為10 μm,對於脊椎而言為20 μm)。將切片以針對CGRP(宿主兔/豚鼠,1:10,000,Peninsula)、P2X3 (宿主兔/豚鼠,1:10,000,Neuromics)、NF200(宿主小鼠,1:5,000,N52,Sigma)、GFRα3(R11、2 μg/ml;Orozco等人(2001)Eur J Neurosci 13:2177-82)、Ret(2 μg/ml;Orozco等人(2001)Eur J Neurosci 13:2177-82)、GFAP(宿主小鼠,1:5,000,Sigma)、ED1(宿主小鼠,1:2,000,Serotec)、FOS(宿主兔,1:5,000,Calbiochem)、CTB(宿主山羊,1:5,000,List Labs)及針對NK1R(宿主兔,1:5,000;Honore等人(1999)J.Neurosci.19:7670-78)之一次抗體培育。二次抗體為針對兔IgG之Cy3結合山羊抗體(1:1,000,Jackson),針對兔、小鼠或豚鼠IgG之Alex fluor 488/594結合山羊抗體(1:1,000,Molecular Probes)及針對山羊IgG之Alex fluor 594結合驢抗體(1:1,000,Molecular Probes)。在隨機選定之切片上計數免疫反應性細胞及總細胞(使用DAPI或溴化乙錠觀察;Guo等人(1999)Eur.J.Neurosci.11:946-58)。沿DREZ中心側之背根內之軸突密度以及脊椎背角內之免疫反應性密度的量化分析如先前所述來進行(Ramer等人(2000)Nature 403:312-16及Wang等人(2003)Neuroscience 121:815-24)。
福馬林誘導之炎症中之避害反應及FOS表現 如先前所述對覺醒、自由移動之大鼠體進行實驗(Presley等人(1990)J Neurosci 10:323-35)。在大鼠接受背根擠壓及紐布拉斯丁/媒劑治療之同側前爪之足底表面皮下注射100 μl 10%福馬林,且如先前所述記錄舔舐注射部位之時間(Abbadie等人(1992)Brain Res 578:17-25)。注射後三小時,對大鼠進行灌注且收集C4-T2脊髓用於免疫組織化學分析以檢測脊椎背角中福馬林誘導之FOS表現。對照大鼠接受相同量之生理食鹽水注射。
角叉菜膠誘導之炎症中之機械刺激及NK1R內化 藉由Mantyh及其同仁所述之經修改方法進行實驗(Honore等人J.Neurosci.19:7670-78)。將100 μl 2% λ-角叉菜膠(Sigma-Aldrich,St.Louis,MO)於生理食鹽水中之懸浮液(pH值為6.8)經皮下注射投與大鼠前爪足底表面。3小時後,使大鼠經受藉由以毛刷之木柄每秒種輕撫前爪背部歷經5分鐘而施加之無害機械刺激或經受以止血鉗施加至前爪遠端部分之30秒種夾壓而施加之有害機械刺激。將經麻醉之大鼠灌注磷酸鹽緩衝生理食鹽水歷經15分鐘,隨後灌注戊二醛固定劑以備以免疫組織化學方式觀察NK1受體於脊椎背角中之內化。
電生理學方法 將動物維持於外科標準之異氟烷麻醉下歷經所有末梢電生理學實驗之持續時間。實驗者對於治療為盲蔽的直至完成設定中之所有實驗。將C4至C8之頸脊髓暴露且在C2及T2上以脊椎夾鉗固定。將橈神經、正中神經及/或尺神經在兩個前肢之臂叢正下方暴露且懸掛於銀鉤上用於刺激。塗覆礦物油以保持神經及脊髓使其免於乾透。將暴露1 mm較大尖端之低阻抗金屬微電極(A-M Systems #563410)垂直定位於脊髓中線外側1 mm且手動推進至距腹側邊界(亦即腹角)大約0.5 mm之深度。將第二電極定位於圍繞脊髓之肌肉附近且進行差別記錄。資料擷取板(National Instruments,PCI-6036E)觸發電脈衝刺激器(A-M Systems Model 2100),電脈衝刺激器以1-11 Hz之速率傳遞0-8 V振幅之單一50 ms單相方波脈衝至周邊神經。除非另外指出,否則使用以2 Hz之平均速率傳遞之具有4 V振幅之脈衝刺激橈神經。將單一反應過濾(0.1 Hz-3 kHz)、數位化(16位元,20 kHz取樣速率)、平均化(通常,50道)且儲存用於離線分析。脊椎標本通常產生穩定可複製之神經元電位歷經數小時。回應個別臂神經之同側刺激,在脊髓兩側各層面(C4-C8)自腹角進行記錄。正常無病變大鼠之平均頸前根電位之最大振幅視個別動物、經刺激神經及記錄電極之喙尾軸位置(rostrocaudal location)而定通常在100-300 μV之範圍內(雜訊位準通常為~10 μV)。採用2-6 ms潛時之腹角場電位峰值振幅作為脊髓中既定位置之總短潛時單突觸反應的穩固生理學量度。單突觸反應估計之進一步改進將標準模型軌跡擬合成既定反應曲線(Mears等人(1994)Exp.Neurol.130:115-19)。模型軌跡具有代表Ia運動神經元突觸產生之激動性突觸後電流之特徵的潛時及指數衰減特徵。接著採用通常極接近原峰值振幅之擬合曲線之峰值作為刺激該層面及周邊神經的總群體單突觸反應之估算。將所有記錄部位中所觀察到之最大反應視為突觸功能之整體估算。若最大反應值大於雜訊位準3倍(通常為~30 μV),則認為此最大反應顯著大於零。為排除由脊髓生理狀態之衰退引起之可能的假陰性反應,首先於脊髓病變側且接著於無病變側進行記錄,其中正常反應之存在確保脊髓功能仍未受損壞。
統計分析 治療組之間之統計比較使用ANOVA,隨後使用費氏最小顯著差測試(Fisher Least Significant Difference test)來進行。以獨立t-檢驗(Student t-test)進行逐對比較。將顯著性設定於P=0.05。
實例2:紐布拉斯丁促進軸突再生進入脊髓
分別使用N52、CGRP及P2X3 免疫標記觀察有髓鞘、無髓鞘肽能纖維及無髓鞘"缺肽"纖維(Ramer等人(2000)Nature 403:312-16)。此等標記物共同標記幾乎所有DRG神經元(Bradbury等人(1998)Mol.Cell.Neurosci.12:256-68;Averill等人(1995)Eur.J.Neurosci.7:1484-94;及Bennett等人(1998)J.Neurosci.18:3059-72)。在臂叢背根擠壓(DRC)損傷之日起按週一-週三-週五之時程給予紐布拉斯丁(1 mg/kg,皮下投與)歷經連續兩週(用於實例2-8之時程)而引發有髓鞘及無髓鞘軸突穿過DREZ之再生長。假手術動物之切片展示自周邊穿過DREZ之軸突中N52、CGRP及P2X3 未中斷的免疫螢光標記。在DRC媒劑治療之大鼠中此等標記物之標記在DREZ處突然終止。對比而言,DRC紐布拉斯丁治療之大鼠之切片展示所有免疫組織化學標記物進入DREZ中心。紐布拉斯丁使DRC誘導之免疫標記軸突密度之降低正常化(圖2;Ramer等人(2000)Nature 403:312-16)。此外,在紐布拉斯丁DRC組織中,發現CGRP及P2X3 之免疫螢光主要處於背角之外層中,而CTB之免疫螢光分佈於整個外層及中間層中,從而對應於此等纖維之正常終止圖案。紐布拉斯丁於假手術動物中無可偵測作用。
實例3:全身紐布拉斯丁恢復避害功能
記錄對將DRC或假手術同側前爪浸沒於49℃之水浴中或對有害壓力之縮回反應。具有DRC損傷且以媒劑治療之動物在整個6週評估中(圖3A及3B)及在DRC後6個月(圖6A及6B)對有害熱或壓力所展示出之顯著不敏感性具有極小反應改變。紐布拉斯丁引起DRC大鼠之熱及機械臨限值進行性及快速恢復。對有害刺激之反應在DRC 4天內出現且在DRC 7天內接近正常值(圖3A及圖3B)。紐布拉斯丁治療在第11天終止不影響避害反應之恢復,因為其在整個42天之觀察時段內且亦在6個月之時間點保持完全正常(圖6A及6B)。紐布拉斯丁在任何時間點均未改變假手術組之反應臨限值(圖3A及3B及圖6A及6B)。
實例4:全身紐布拉斯丁恢復突觸後功能
有害刺激誘導之原癌基因產物FOS於脊椎背角中之表現表示突觸後細胞之神經元激勵(Presley等人(1990)J Neurosci 10:323-35;Hunt等人(1987)Nature 328:632-34;及Harris(1998)Brain Res Bull 45:1-8)。前爪福馬林注射產生定型化舔舐行為以及增加數量之FOS陽性脊髓細胞分佈(圖3C及3D)。以媒劑治療DRC損傷消除福馬林誘導之舔舐及所誘發之脊椎FOS(圖3C及3D)。對比而言,紐布拉斯丁於第14天(圖3C及3D)及6個月時間點(圖6C)保留福馬林誘發之行為及FOS反應。
在受損傷動物中以有害機械刺激或無害觸覺刺激誘發之NK1受體於脊椎背角中的內化表示背角神經元對由初級傳入纖維釋放之物質P之突觸後反應性(Honore等人J.Neurosci.19:7670-78)。在假手術動物之外層中,有害夾壓引發NK1受體以96±2.6%之NK1-R陽性背角分佈內化(圖3E)且在角叉菜膠注射後輕刷引起62±4.7%之NK1R陽性分佈之內化(圖3F)。DRC損傷使夾壓誘發(圖3E)及觸摸誘發(圖3F)之內化分別降低至NK1R表現分佈之16±3.0%及11±2.5%。DRC後之紐布拉斯丁治療保留突觸後背角神經元之反應;有害機械刺激導致NK1受體以NK1表現背角神經元之85±3.7%內化(圖3E)且輕刷引起NK1受體以NK1表現背角神經元之57±3.7%內化(圖3F),從而表示SP-NK-1受體突觸反應之顯著恢復。在此等研究中,紐布拉斯丁治療不改變假手術動物之反應。
刺激DRC或假手術同側之正中神經在1 ms刺激內產生脊髓場電位(圖4,上圖)。此等場電位係由背根中較大有髓鞘皮膚及本體感覺軸突中之連串動作電位產生,而於2至10 ms後出現之電位表示由神經刺激誘發之單突觸激動性突觸後電位(EPSP)(圖4,下圖)。在DRC及媒劑治療後消除EPSP。6隻以紐布拉斯丁治療之大鼠中有5隻於擠壓側展示清晰的EPSP,從而表示病變神經根中之軸突已再生且形成功能突觸。對比而言,注射媒劑之8隻大鼠均未於擠壓側展示明顯的突觸電位恢復。在以紐布拉斯丁治療與以媒劑治療之動物之完好側記錄的最大反應之間未觀察到顯著差異。
實例5:全身紐布拉斯丁恢復感覺運動功能
藉由穩定動作評估感覺運動功能(Ramer等人(2002)Mol.Cell.Neurosci.19:239-49),其中將大鼠自後部輕推且大鼠藉由將前肢置於伸展位置、掌平放且趾展開作出反應。具有DRC之以媒劑治療之大鼠始終不能作出穩定動作之反應(圖5A)。對比而言,以紐布拉斯丁治療之大鼠於7天內展示穩定動作之進行性恢復,於第14天達成幾乎正常之反應且6週後完全恢復(儘管為更加逐漸地)(圖5A)且於6個月之觀察點保持正常值(圖6D)。
由對於治療為盲蔽之觀察者將由異常前肢運動、異常或不當目標定位、不能負載重量或在3 cm狹窄橫桿上行走時不能完全使用前爪所指示之感覺功能障礙(Ramer等人(2002)Mol.Cell.Neurosci.19:239-49)分級為0(無肢體使用)至5(正常)。具有DRC損傷之動物展示出肢體使用完全破壞且計分在整個42天之測試時段內始終小於1(圖5B)。紐布拉斯丁於前14天期間產生橫桿行走能力之逐漸進行性改善且於紐布拉斯丁注射終止(第11天)後記錄到持續改善,在42天觀察時段之剩餘天數中以較緩慢之速率進展(圖5B)且於6個月後正常(圖6E)。藉由使大鼠橫穿水平定向之梯子且計數前爪自梯子滑落之發生率來進一步測試前肢感覺缺陷(Ramer等人(2002)Mol.Cell.Neurosci.19:239-49)。假手術動物在橫穿梯子時極少記錄到"失足"而具有DRC損傷之大鼠展示每次試驗平均發生14次(圖5C)。紐布拉斯丁治療導致大鼠橫穿梯子行走能力之逐漸進行性改善(圖5C)。
感覺運動功能之改善展示出明顯的兩相模式,其中在前14天時段中為快速且極具實質性之改善隨後在剩餘42天中為持續但較緩慢之功能改善(圖5A、5C),在6個月之觀察點達到正常值(圖6D-6F)。紐布拉斯丁治療對假手術大鼠不產生任何行為改變(圖5A-5C及圖6D-6F)。
使用接觸誘發抓握作為以脊上水平組織之高度複雜感覺運動反應之量度(Ramer等人(2002)Mol.Cell.Neurosci.19:239-49)。向籠子放下之假手術大鼠始終抓握蓋子。DRC損傷後此反應完全消除(圖5D)且此等大鼠會做出前肢向前之波樣移動,但從不完成抓握(Ramer等人(2002)Mol.Cell.Neurosci.19:239-49)。以全身紐布拉斯丁治療在整個42天之觀察時段中產生單相的接觸誘發抓握之逐漸但始終進行性之恢復(圖5D)。接觸誘發抓握在6個月之觀察點達到正常值(圖6G)。
實例6:全身紐布拉斯丁產生自背根損傷之長時間持續之功能恢復
在以媒劑治療之動物中,上述對避害刺激之反應大體上因DRC而消除且於損傷後6個月仍保持不存在(圖6A-6C)。由紐布拉斯丁治療產生之對有害熱、機械及化學刺激之反應的實質上完全之恢復於DRC後6個月仍存在(圖6A-6C),從而表示紐布拉斯丁治療對正常避害功能之持續性恢復作用。如上所述,藉由置放/穩定、橫桿行走、平梯及抓握測試評定之由紐布拉斯丁誘導之感覺運動功能恢復於DRC後維持6個月(圖6D-6G)。在相同時間段中紐布拉斯丁不改變假手術大鼠之行為反應。此等資料表明有限時程之紐布拉斯丁治療產生感覺運動功能以及對有害刺激之反應之持續性恢復。
與感覺運動行為功能之持續性改善相一致,如脊椎背角中福馬林誘發之FOS表現之恢復所示在此等稍後時間突觸功能亦得以維持(圖6H)。此外,於病變後7-8個月以電生理學方式評定3隻以紐布拉斯丁治療之大鼠,且所有3隻均於脊髓中展示出清晰之感覺誘發EPSP跡象。對比而言,在此時間點測試之3隻以媒劑治療之大鼠均無可測得之突觸輸出(圖4)。
軸突穿過DREZ之再生之神經化學指標與損傷後6個月所觀察到之行為相一致。在以紐布拉斯丁治療之動物中,CGRP、P2X3 及CTB進入脊椎背角之免疫螢光標記之恢復於DRC後6個月仍為明顯的,但在來自具有DRC之以媒劑治療之大鼠之脊椎切片中完全不存在。更引人注意的是在以紐布拉斯丁治療而非媒劑治療之大鼠中,在DRC後6個月在楔狀核(n.cuneatus)中出現CTB標記。此標記物於損傷後14天不存在於楔狀核中,從而表明有髓鞘傳入纖維進入此脊上核之再生係於損傷後及紐布拉斯丁治療後之延長之時程內發生,此與由接觸誘發抓握指示之複雜感覺運動行為之緩慢恢復速率相一致。
實例7:GFRα3於周邊神經中之差異表現與感覺模式之恢復相關
由於紐布拉斯丁經由偶合至RET信號蛋白之GFRα3受體發揮作用,因此不同類型之周邊神經中DRC誘導之GFRα3或RET表現之改變可影響其再生。紐布拉斯丁治療不改變假手術動物之任何纖維類型中的GFRα3或RET表現。當於假手術後14天量測時,媒劑治療及紐布拉斯丁治療組之表現GFRα3之DRG分佈的百分比分別為34±1.9及33±3.1且表現RET之百分比為59±2.8及61±1.5(圖7A)。具有DRC及媒劑治療之大鼠的表現GFRα3之DRG分佈百分比顯著增加至52±1.8,而表現RET之百分比降低至40±1.23(圖7B)。用紐布拉斯丁治療大體上使此等改變正常化,且對應的表現GFRα3之DRG分佈百分比為47±6.14且表現RET之百分比為49±2.72。檢測GFRα3或RET與N52、CGRP或P2X3 之共標記以識別有髓鞘周邊神經(N52)及無髓鞘肽能(CGRP)及非肽能(P2X3 )疼痛感受器之改變。14±0.5 %之共標記GFRα3及N52之假手術媒劑治療大鼠之DRG分佈及22±0.85%之共表現RET及N52之DRG分佈表示顯著比例之有髓鞘周邊神經經歷紐布拉斯丁之調節。紐布拉斯丁治療不改變假手術大鼠之此等比例(圖7A及7B)。標記GFRα3及N52之DRG分佈比例降低至5±1.2%且表現N52及RET之比例降低至5±0.9%(圖7A及7B)。對比而言,存在近雙倍之對CGRP或P2X3 且對GFRα3為免疫反應性之DRG分佈,而亦標記RET之分佈保持不變(圖7A及7B)。紐布拉斯丁治療導致表現此等標記物之DRG神經元群體之比例正常化(圖7A及7B)且大體上防止由DRC引起之N52與GFRα3或RET共標記之喪失。
實例8:紐布拉斯丁不改變DREZ之特徵
DRC顯著增加對識別星形膠質細胞之膠質纖維酸性蛋白(GFAP)及對標記活化微神經膠質細胞之ED1的免疫反應性。DRC損傷後用紐布拉斯丁治療不產生GFAP或ED1標記之任何改變。因此,由紐布拉斯丁誘導之軸突再生及感覺模式之功能恢復可能係歸因於軸突生長錐之存活及對再生之刺激增強,而非歸因於DREZ中抑制性障壁之破壞。
實例9:背根損傷後之定時紐布拉斯丁投藥促進功能恢復
在臨床上,並非總可獲得對背根損傷之即時治療。為模擬臨床條件且為檢測紐布拉斯丁有效治療背根損傷之時間窗,將紐布拉斯丁以延遲之時程投與。
當於背根損傷後第2天起皮下給予紐布拉斯丁時,紐布拉斯丁幾乎完全恢復熱及機械功能,於損傷後第10天達到最大恢復且接著保持於相似水平直至神經根損傷後第28天實驗結束。當於背根神經切斷術後第4天起皮下注射紐布拉斯丁時,紐布拉斯丁完全恢復熱功能且部分恢復機械功能。與媒劑治療相比,紐布拉斯丁治療於手術後第9天3次注射後仍顯著恢復機械反應。當於神經根損傷後第7天給予紐布拉斯丁時,紐布拉斯丁發揮顯著恢復對熱刺激之功能的能力,但喪失對機械刺激反應之能力。
與延遲紐布拉斯丁治療中之功能恢復之轉移相一致,脊椎背根中三種類型傳入神經之標記亦隨延遲紐布拉斯丁治療之時間而改變。儘管CGRP及P2X3 標記亦展現一些改變,但在CTB標記中可見顯著改變。當於神經根損傷後第2天起給予紐布拉斯丁時,背根損傷後第28天CTB標記之脊椎密度為正常值之約50%。當於神經根損傷後第4天給予紐布拉斯丁時,該數值為約25%,當於背根擠壓後第7天起注射紐布拉斯丁時,該數值為約5%。然而,對於延遲紐布拉斯丁治療而言,在神經根損傷後第28天CGRP及P2X3 標記維持於正常值之35%或35%以上。延遲媒劑治療不改變脊椎背角中三種類型感覺軸突之標記密度。
實例10:全身紐布拉斯丁促進經受背根神經節末端神經擠壓動物之周邊神經再生及機械及熱過敏性恢復
暴露經麻醉大鼠之L5脊神經且(i)將其根據Kim及Chung之程序(Kim等人(1992)Pain 50:355-63)以縫合術緊密接合("神經接合");(ii)如實例1所述擠壓("神經擠壓")或(iii)切割("神經切斷")。在相同程序下進行無神經損傷之假手術。手術後即刻以經2週總共6次注射按週一、週三及週五之時程皮下給予大鼠紐布拉斯丁或生理食鹽水媒劑。
使用Von Frey(Chaplan等人(1994)J.Neurosci.Meth.53:55-63)及Hargreaves(Hargreaves等人(1988)Pain 32:77-88)行為測試分別監測觸覺及熱疼痛反應。手術後5週,將神經元示蹤劑CTB及葡聚糖在股中部注射至坐骨神經中(神經損傷末端)。手術後6週,灌注大鼠進行組織學研究。
記錄以紐布拉斯丁或媒劑治療之受損傷及假損傷動物之觸摸痛覺過敏及熱痛覺過敏量測值。具有神經損傷且以媒劑治療之動物於整個6週評估中未展示出疼痛反應之改善,反應變化極少(圖8A-8D及9A-9D)。在神經切斷、神經接合及神經擠壓後急性全身紐布拉斯丁投藥引起觸摸痛覺過敏(圖8A-8D)及熱痛覺過敏(圖9A-9D)臨限值之提高。在神經擠壓大鼠中,在紐布拉斯丁投藥終止後觸摸痛覺過敏恢復繼續且在整個6週評估時段中均觀察到此恢復(圖8D)。
將葡聚糖(一種標記正常周邊神經系統中之小直徑感覺纖維之神經元示蹤劑)注射至坐骨神經中(股中部,神經損傷末端)且隨後檢測L5 DRG中之經標記神經元。發現全身紐布拉斯丁投藥促進L5神經擠壓大鼠中葡聚糖標記之感覺纖維的再生。
將CTB(一種標記正常周邊神經系統中之有髓鞘感覺纖維之神經元示蹤劑)注射至坐骨神經中(股中部,神經損傷末端)且隨後檢測L5 DRG中之經標記神經元。發現全身紐布拉斯丁投藥促進L5神經擠壓大鼠中CTB標記之感覺纖維的再生。
使用IB4、CGRP及N52免疫標記以分別觀察非肽能感覺纖維、肽能感覺纖維及有髓鞘感覺纖維(此等三種生物標記物共同標記所有感覺生物標記物群體)。發現全身紐布拉斯丁投藥促進L5脊神經(擠壓部位末端)中所有三種類型感覺纖維的再生。
其他實施例
儘管已聯繫本發明之實施方式描述本發明,但前述說明意欲說明而非限制由附屬申請專利範圍之範疇定義之本發明之範疇。其他態樣、優點及修改在以下申請專利範圍之範疇內。
<110> 美商生物基因艾迪克MA公司及美國亞利桑那州大學董事會
<120> 神經性病症之治療
<140> 096106578
<141> 2007-2-26
<150> US 60/777,493
<151> 2006-02-27
<150> US 60/863,852
<151> 2006-11-01
<160> 12
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 113
<212> PRT
<213> 智人
<400> 1
<210> 2
<211> 113
<212> PRT
<213> 人工序列
<220>
<223> 以合成方法產生之胜肽
<400> 2
<210> 3
<211> 113
<212> PRT
<213> 人工序列
<220>
<223> 以合成方法產生之胜肽
<400> 3
<210> 4
<211> 113
<212> PRT
<213> 人工序列
<220>
<223> 以合成方法產生之胜肽
<400> 4
<210> 5
<211> 113
<212> PRT
<213> 人工序列
<220>
<223> 以合成方法產生之胜肽
<400> 5
<210> 6
<211> 99
<212> PRT
<213> 人工序列
<220>
<223> 以合成方法產生之胜肽
<400> 6
<210> 7
<211> 104
<212> PRT
<213> 人工序列
<220>
<223> 以合成方法產生之胜肽
<400> 7
<210> 8
<211> 113
<212> PRT
<213> 人工序列
<220>
<223> 以合成方法產生之胜肽
<400> 8
<210> 9
<211> 113
<212> PRT
<213> 人工序列
<220>
<223> 以合成方法產生之胜肽
<400> 9
<210> 10
<211> 220
<212> PRT
<213> 智人
<400> 10
<210> 11
<211> 224
<212> PRT
<213> 小鼠
<400> 11
<210> 12
<211> 224
<212> PRT
<213> 大鼠
<400> 12
圖1為野生型人類(SEQ ID NO:10)、小鼠(SEQ ID NO:11)及大鼠(SEQ ID NO:12)前初紐布拉斯丁多肽之比對。左側及右側垂線分別表示成熟113胺基及104胺基酸形式之起始。框架內為RRXR肝素結合基元。
圖2為描述背根擠壓(DRC)後全身紐布拉斯丁(阿丁敏)投藥對背根入區中軸突密度之作用的圖表。星號表示與以媒劑治療之DRC大鼠相比之顯著差異。
圖3A及3B為描述DRC後全身紐布拉斯丁(阿丁敏)投藥對前爪暴露於熱水(圖3A)及有害機械刺激(圖3B)之反應之作用的圖表。箭頭表示每次進行紐布拉斯丁或媒劑注射時之時間。星號表示與DRC之前獲得之基線值顯著(p0.05)不同之行為反應。
圖3C為描述DRC後由舔舐注射福馬林(formalin)之前爪消耗之累積時間表示的全身紐布拉斯丁(阿丁敏)投藥對舔舐反應之作用的圖表。星號表示相對於具有DRC且以媒劑治療之組(DRC/媒劑)舔舐反應的顯著(p0.05)差異。
圖3D為描述DRC後全身紐布拉斯丁(阿丁敏)投藥對於第14天對前爪注射福馬林反應之同側背角中FOS表現之作用的圖表。如星號所表示,假手術組與接受DRC及紐布拉斯丁(阿丁敏)治療之組均表明福馬林誘導之FOS表現之顯著(p0.05)增加。
圖3E為描述在對經受DRC具有角叉菜膠誘導之炎症之大鼠施加有害機械夾壓後全身紐布拉斯丁(阿丁敏)投藥對NK1受體內化之作用的圖表。星號表示與未發炎(經生理食鹽水治療)組相比之顯著差異。
圖3F為描述DRC後全身紐布拉斯丁(阿丁敏)投藥對背角I/II層中NK1受體內化之作用的圖表。星號表示與注射生理食鹽水、未發炎之組相比之顯著(p0.05)差異。
圖4(上方)為描述對電刺激同側前肢之正中神經或橈神經反應而於腹側脊髓中細胞外記錄之場電位軌跡的圖表。在實驗動物之未無病變側(完好神經根),以媒劑治療及以阿丁敏治療之動物之突觸反應均於刺激後1.0至1.5 ms開始,上升時間為1.0至1.5 ms。在以阿丁敏治療之大鼠中,在DRC後1.4與7.5個月之間出現此等突觸輸入之實質恢復。在以媒劑治療之大鼠中,即使在DRC後7.5個月亦無突觸功能之顯著恢復。
圖4(下方)為在實驗動物中記錄之對正中神經或橈神經刺激之最大突觸反應的散佈圖。各符號表示DRC後或對於同一動物之對側無病變(完好)神經根而言,來自一隻動物之結果。各組之平均最大反應係以空白圓圈及垂線展示(平均值±1 S.E.)。於約1個月測試之組包括0.7至1.4個月之術後時間。以阿丁敏治療之所有9隻動物以正常反應1/4至1/3之平均振幅展示出DRC後之實質再生作用。8隻以媒劑治療之大鼠均未展示任何明顯的DRC後再生作用。
圖5A-5D為描述在DRC後42天之觀察時段中全身紐布拉斯丁(阿丁敏)投藥對以下感覺運動功能恢復之作用的圖表:置放/穩定(圖5A);在開闊區域沿橫桿行走之能力(圖5B);穿過平梯行走時之失足次數(圖5C);及接觸誘發抓握(圖5D)。箭頭表示紐布拉斯丁(阿丁敏)或媒劑之每次注射。星號表示相對於DRC或假手術後獲取之第一次量測的行為參數之顯著(p0.05)差異。
圖6A-6G為描述DRC後6個月紐布拉斯丁(阿丁敏)全身治療之大鼠之持續性功能恢復的圖表:對有害熱、機械及化學刺激之反應(分別為圖6A-6C);及在置放穩定、橫桿行走、平梯及接觸誘發抓握中之效能(分別為圖6D-6G)。星號表示以紐布拉斯丁治療之DRC組與以媒劑治療之DRC組相比時之行為反應的顯著差異。
圖6H為描述DRC後6個月在紐布拉斯丁(阿丁敏)全身治療之大鼠中同側背角中突觸後FOS表現之持續性恢復的圖表。星號表示與注射生理食鹽水之組相比之顯著(p0.05)差異。
圖7A及7B為描述DRC後14天全身紐布拉斯丁(阿丁敏)投藥對表現N52、CGRP或P2X3 且共表現GFRα3(圖7A)或RET(圖7B)之背根神經節神經元分佈之作用的圖表。
圖8A-8D為描述在假L5脊神經手術(圖8A)、L5脊神經切斷(圖8B)、L5脊神經接合(圖8C)及L5脊神經擠壓(圖8D)之後全身紐布拉斯丁(阿丁敏)投藥對觸覺疼痛反應之作用的圖表。箭頭表示每次進行紐布拉斯丁或媒劑注射時之時間。
圖9A-9D為描述在假L5脊神經手術(圖9A)、L5脊神經切斷(圖9B)、L5脊神經接合(圖9C)及L5脊神經擠壓(圖9D)之後全身紐布拉斯丁(阿丁敏)投藥對熱疼痛反應之作用的圖表。箭頭表示每次進行紐布拉斯丁或媒劑注射時之時間。

Claims (43)

  1. 一種多肽之用途,其係用於製造用以改善個體經受損本體感覺之藥劑,其中該多肽包含一與SEQ ID NO:1之胺基酸15-113至少80%相同之胺基酸序列,且其中該多肽當二聚化時可結合至含有GFRα3及RET之複合物。
  2. 一種多肽之用途,其係用於製造用以再生個體之神經纖維之藥劑,其中該多肽包含一與SEQ ID NO:1之胺基酸15-113至少80%相同之胺基酸序列,且其中該多肽當二聚化時可結合至含有GFRα3及RET之複合物。
  3. 如請求項2之用途,其中該等神經纖維為大神經纖維。
  4. 如請求項2之用途,其中該等神經纖維為小神經纖維。
  5. 如請求項2-4中任一項之用途,其中該個體身受背根神經纖維損壞或喪失。
  6. 如請求項2-4中任一項之用途,其中該個體身受背根神經節末端神經纖維損壞或喪失。
  7. 如請求項2-4中任一項之用途,其中該等神經纖維為皮膚神經纖維,且投與該多肽會導致皮膚神經再分佈。
  8. 如請求項2-4中任一項之用途,其中該多肽係於該神經纖維損壞或喪失後48小時內投與該個體。
  9. 如請求項2-4中任一項之用途,其中該多肽係於該神經纖維損壞或喪失後7天內投與該個體。
  10. 如請求項2-4中任一項之用途,其中該多肽係於該神經纖維損壞或喪失後1個月內投與該個體。
  11. 如請求項2-4中任一項之用途,其中該多肽係於該神經纖 維損壞或喪失後,以兩或多個劑量投與該個體。
  12. 如請求項2-4中任一項之用途,其中將該多肽投與該個體係於該神經纖維損壞或喪失後6個月內終止。
  13. 如請求項2-4中任一項之用途,其中將該多肽投與該個體係於該神經纖維損壞或喪失後1個月內終止。
  14. 如請求項2-4中任一項之用途,其中將該多肽投與該個體係於該神經纖維損壞或喪失後兩週內終止。
  15. 如請求項2-4中任一項之用途,其中該神經纖維經神經擠壓損傷導致損壞或喪失。
  16. 如請求項2-4中任一項之用途,其中該神經纖維經神經切割損傷導致損壞或喪失。
  17. 一種多肽之用途,其係用於製造用以治療個體臂叢損傷之藥劑,其中該多肽包含一與SEQ ID NO:1之胺基酸15-113至少80%相同之胺基酸序列,其中該多肽當二聚化時可結合至含有GFRα3及RET之複合物。
  18. 如請求項17之用途,其中該多肽係於該臂叢損傷後48小時內投與該個體。
  19. 如請求項17之用途,其中該多肽係於該臂叢損傷後7天內投與該個體。
  20. 如請求項17之用途,其中該多肽係於該臂叢損傷後1個月內投與該個體。
  21. 如請求項17-20中任一項之用途,其中該多肽係於該臂叢損傷後,以兩或多個劑量投與該個體。
  22. 如請求項17-20中任一項之用途,其中將該多肽投與該個 體係於該臂叢損傷後6個月內終止。
  23. 如請求項17-20中任一項之用途,其中將該多肽投與該個體係於該臂叢損傷後1個月內終止。
  24. 如請求項17-20中任一項之用途,其中將該多肽投與該個體係於該臂叢損傷後兩週內終止。
  25. 一種多肽之用途,其係用於製造用以治療個體背根神經損傷之藥劑,其中該多肽可有效促進神經纖維經由背根入區再進入脊髓,其中該多肽包含一與SEQ ID NO:1之胺基酸15-113至少80%相同之胺基酸序列,且其中該多肽當二聚化時可結合至含有GFRα3及RET之複合物。
  26. 如請求項25之用途,其中該多肽係於該背根神經損傷後48小時內投與該個體。
  27. 如請求項25之用途,其中該多肽係於該背根神經損傷後7天內投與該個體。
  28. 如請求項25之用途,其中該多肽係於該背根神經損傷後1個月內投與該個體。
  29. 如請求項25-28中任一項之用途,其中該多肽係於該背根神經損傷後,以兩或多個劑量投與該個體。
  30. 如請求項25-28中任一項之用途,其中將該多肽投與該個體係於該背根神經損傷後6個月內終止。
  31. 如請求項25-28中任一項之用途,其中將該多肽投與該個體係於該背根神經損傷後1個月內終止。
  32. 如請求項25-28中任一項之用途,其中將該多肽投與該個體係於該背根神經損傷後兩週內終止。
  33. 如請求項1-4、17-20及25-28中任一項之用途,其中該多肽係經由全身投藥投與該個體。
  34. 如請求項1-4、17-20及25-28中任一項之用途,其中該多肽係經由皮下投藥投與該個體。
  35. 如請求項1-4、17-20及25-28中任一項之用途,其中該多肽係經由靜脈內投藥投與該個體。
  36. 如請求項1-4、17-20及25-28中任一項之用途,其中該多肽係局部性地投與至受損壞神經組織。
  37. 如請求項1-4、1720及25-28中任一項之用途,其中該個體為人類。
  38. 如請求項1-4、17-20及25-28中任一項之用途,其中該胺基酸序列與SEQ ID NO:1之胺基酸15-113至少90%相同。
  39. 如請求項1-4、17-20及25-28中任一項之用途,其中該胺基酸序列與SEQ ID NO:1之胺基酸15-113至少95%相同。
  40. 如請求項1-4、17-20及25-28中任一項之用途,其中該胺基酸序列與SEQ ID NO:1之胺基酸15-113至少98%相同。
  41. 如請求項1-4、1720及25-28中任一項之用途,其中該多肽包含SEQ ID NO:1之胺基酸15-113、SEQ ID NO:2之胺基酸15-113、SEQ ID NO:3之胺基酸15-113、SEQ ID NO:4之胺基酸15-113、SEQ ID NO:5之胺基酸15-113、SEQ ID NO:8之胺基酸15-113或SEQ ID NO:9之胺基酸15-113。
  42. 如請求項1-4、17-20及25-28中任一項之用途,其中該多肽包含SEQ ID NO:1之胺基酸序列、SEQ ID NO:2之胺基 酸序列、SEQ ID NO:3之胺基酸序列、SEQ ID NO:4之胺基酸序列、SEQ ID NO:5之胺基酸序列、SEQ ID NO:8之胺基酸序列或SEQ ID NO:9之胺基酸序列。
  43. 如請求項1-4、17-20及25-28中任一項之用途,其中該多肽包含SEQ ID NO:1之胺基酸10-113。
TW096106578A 2006-02-27 2007-02-26 神經性病症之治療 TWI501774B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77749306P 2006-02-27 2006-02-27
US86385206P 2006-11-01 2006-11-01

Publications (2)

Publication Number Publication Date
TW200744629A TW200744629A (en) 2007-12-16
TWI501774B true TWI501774B (zh) 2015-10-01

Family

ID=38459674

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096106578A TWI501774B (zh) 2006-02-27 2007-02-26 神經性病症之治療

Country Status (10)

Country Link
US (1) US10328125B2 (zh)
EP (2) EP2609930A3 (zh)
DK (1) DK1993589T3 (zh)
ES (1) ES2439740T3 (zh)
HR (1) HRP20131188T1 (zh)
PL (1) PL1993589T3 (zh)
PT (1) PT1993589E (zh)
RS (1) RS53089B (zh)
TW (1) TWI501774B (zh)
WO (1) WO2007100898A2 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442370B2 (en) 2001-02-01 2008-10-28 Biogen Idec Ma Inc. Polymer conjugates of mutated neublastin
US7276580B2 (en) 2001-03-12 2007-10-02 Biogen Idec Ma Inc. Neurotrophic factors
JP4571776B2 (ja) * 2002-11-05 2010-10-27 Jx日鉱日石エネルギー株式会社 潤滑油組成物
US8163875B2 (en) 2003-04-18 2012-04-24 Biogen Idec Ma Inc. Polymer conjugated glycosylated neublastin
DE602005022082D1 (de) * 2004-08-19 2010-08-12 Biogen Idec Inc Rückfaltung von proteinen der transforming-growth-factor-beta-familie
JP4852545B2 (ja) * 2004-08-19 2012-01-11 バイオジェン・アイデック・エムエイ・インコーポレイテッド ニューブラスチン(Neublastin)変異体
TWI501774B (zh) 2006-02-27 2015-10-01 Biogen Idec Inc 神經性病症之治療
WO2007103182A2 (en) * 2006-03-01 2007-09-13 Biogen Idec Ma Inc. Compostions and methods for administering gdnf ligand family proteins
US8329655B2 (en) * 2007-05-01 2012-12-11 Biogen Idec Ma Inc. Methods for increasing vascularization
US20110135648A1 (en) * 2007-08-08 2011-06-09 Biogen Idec Ma Inc. Anti-neublastin antibodies and uses thereof
JP6149226B2 (ja) * 2010-10-01 2017-06-21 ホーバ セラピューティクス アンパルトセルスカブ アロディニア、痛覚過敏、自発痛及び幻肢痛の処置
US9474786B2 (en) 2011-09-05 2016-10-25 Nsgene A/S Treatment of allodynia
US20210312824A1 (en) * 2020-04-01 2021-10-07 Magicom Inc. Smart pen apparatus
JP2024518433A (ja) 2021-05-06 2024-05-01 ホバ セラピューティクス エーピーエス 化学療法誘発性神経障害性疼痛の予防及び治療
EP4444338A1 (en) 2021-12-10 2024-10-16 Hoba Therapeutics ApS Treatment of nociceptive pain

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040242472A1 (en) * 2000-12-22 2004-12-02 Shelton David L. Use of artemin, a member of the gdnf ligand family

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352883A (en) * 1979-03-28 1982-10-05 Damon Corporation Encapsulation of biological material
US4353888A (en) * 1980-12-23 1982-10-12 Sefton Michael V Encapsulation of live animal cells
US4407957A (en) * 1981-03-13 1983-10-04 Damon Corporation Reversible microencapsulation of a core material
US5525464A (en) * 1987-04-01 1996-06-11 Hyseq, Inc. Method of sequencing by hybridization of oligonucleotide probes
US4883666A (en) * 1987-04-29 1989-11-28 Massachusetts Institute Of Technology Controlled drug delivery system for treatment of neural disorders
US5158881A (en) * 1987-11-17 1992-10-27 Brown University Research Foundation Method and system for encapsulating cells in a tubular extrudate in separate cell compartments
US5283187A (en) 1987-11-17 1994-02-01 Brown University Research Foundation Cell culture-containing tubular capsule produced by co-extrusion
DE3829766A1 (de) * 1988-09-01 1990-03-22 Akzo Gmbh Verfahren zur herstellung von membranen
DE3829752A1 (de) 1988-09-01 1990-03-22 Akzo Gmbh Integrale asymmetrische polyaethersulfonmembran, verfahren zur herstellung und verwendung zur ultrafiltration und mikrofiltration
US5082670A (en) 1988-12-15 1992-01-21 The Regents Of The University Of California Method of grafting genetically modified cells to treat defects, disease or damage or the central nervous system
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5800992A (en) 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5194596A (en) * 1989-07-27 1993-03-16 California Biotechnology Inc. Production of vascular endothelial cell growth factor
US5350836A (en) * 1989-10-12 1994-09-27 Ohio University Growth hormone antagonists
GB8927546D0 (en) 1989-12-06 1990-02-07 Ciba Geigy Process for the production of biologically active tgf-beta
US5084350A (en) * 1990-02-16 1992-01-28 The Royal Institution For The Advance Of Learning (Mcgill University) Method for encapsulating biologically active material including cells
US5618531A (en) * 1990-10-19 1997-04-08 New York University Method for increasing the viability of cells which are administered to the brain or spinal cord
SG47470A1 (en) 1991-04-25 1998-04-17 Univ Brown Res Found Implantable biocompatible immunoisolatory vehicle for delivery of a selected therapeutic products
ATE189124T1 (de) 1991-07-02 2000-02-15 Inhale Inc Verfahren und vorrichtung zum abgeben von medikamenten in aerosolform
US7226758B1 (en) 1991-09-20 2007-06-05 Amgen Inc. Nucleic acids encoding glial cell line-derived neurotrophic factor (GDNF)
US5939524A (en) 1991-12-09 1999-08-17 The Scripps Research Institute Platelet GPIII P1A1 and P1A2 epitopes, their preparation and use
US5414135A (en) * 1991-12-30 1995-05-09 Sterling Winthrop Inc. Vinyl sulfone coupling of polyoxyalkylenes to proteins
US5785049A (en) 1994-09-21 1998-07-28 Inhale Therapeutic Systems Method and apparatus for dispersion of dry powder medicaments
DE69332105T2 (de) 1992-09-29 2003-03-06 Inhale Therapeutic Systems, San Carlos Pulmonale abgabe von aktiven fragmenten des parathormons
US6472178B1 (en) 1998-02-27 2002-10-29 Regeneron Pharmaceuticals, Inc. Nucleic acids encoding a modified ciliary neurotrophic factor and method of making thereof
US5349056A (en) 1992-10-09 1994-09-20 Regeneron Pharmaceuticals Modified ciliary neurotrophic factors
CA2092271C (en) * 1993-03-09 2009-10-13 Eddie Reed Use of g-csf for treating taxol side-effects
ATE218893T1 (de) 1993-08-12 2002-06-15 Neurotech Sa Biokompatible immunoisolatorische kapseln, die genetisch veränderte zellen enthalten
DE4339605A1 (de) 1993-11-20 1995-05-24 Beiersdorf Ag Desodorierende Wirkstoffkombinationen auf der Basis von alpha, omega-Alkandicarbonsäuren und Fettsäurepartialglyceriden
US5834029A (en) 1994-07-20 1998-11-10 Cytotherapeutics, Inc. Nerve guidance channel containing bioartificial three-dimensional hydrogel extracellular matrix derivatized with cell adhesive peptide fragment
US5824784A (en) 1994-10-12 1998-10-20 Amgen Inc. N-terminally chemically modified protein compositions and methods
US5795716A (en) 1994-10-21 1998-08-18 Chee; Mark S. Computer-aided visualization and analysis system for sequence evaluation
US5770577A (en) 1994-11-14 1998-06-23 Amgen Inc. BDNF and NT-3 polypeptides selectively linked to polyethylene glycol
US5780014A (en) 1995-04-14 1998-07-14 Inhale Therapeutic Systems Method and apparatus for pulmonary administration of dry powder alpha 1-antitrypsin
US5654007A (en) 1995-06-07 1997-08-05 Inhale Therapeutic Systems Methods and system for processing dispersible fine powders
US5739307A (en) 1995-08-28 1998-04-14 Washington University Polynucleotide encoding neurturin neurotrophic factor
US5733729A (en) 1995-09-14 1998-03-31 Affymetrix, Inc. Computer-aided probability base calling for arrays of nucleic acid probes on chips
US6184200B1 (en) 1995-09-28 2001-02-06 Amgen Inc. Truncated glial cell line-derived neurotrophic factor
WO1997019693A1 (en) 1995-11-29 1997-06-05 Amgen Inc. Method for treating sensory neuropathy using glial cell line-derived neurotrophic factor (gdnf) protein product
US5641749A (en) * 1995-11-29 1997-06-24 Amgen Inc. Method for treating retinal ganglion cell injury using glial cell line-derived neurothrophic factor (GDNF) protein product
US6063757A (en) 1995-11-29 2000-05-16 Urso; Richard G. Wound treatment method with nerve growth factor
WO1997023638A1 (fr) * 1995-12-21 1997-07-03 Ajinomoto Co., Inc. Procede pour replier l'activine a humaine
US6299895B1 (en) 1997-03-24 2001-10-09 Neurotech S.A. Device and method for treating ophthalmic diseases
US6677135B1 (en) 1996-05-08 2004-01-13 Biogen, Inc. Ret ligand (RetL) for stimulating neutral and renal growth
US5754524A (en) 1996-08-30 1998-05-19 Wark; Barry J. Computerized method and system for analysis of an electrophoresis gel test
US6083725A (en) 1996-09-13 2000-07-04 Transkaryotic Therapies, Inc. Tranfected human cells expressing human α-galactosidase A protein
JP2001501093A (ja) * 1996-09-26 2001-01-30 メディカル リサーチ カウンシル シャペロン断片
KR100195886B1 (ko) 1996-11-01 1999-06-15 김상조 당뇨병 치료용 의약조성물
WO2000073348A2 (en) 1999-06-02 2000-12-07 Genentech, Inc. Methods and compositions for inhibiting neoplastic cell growth
EP0961830A1 (en) 1997-01-29 1999-12-08 Neurosearch A/S EXPRESSION VECTORS AND METHODS FOR $i(IN VIVO) EXPRESSION OF THERAPEUTIC POLYPEPTIDES
CN1269805A (zh) 1997-07-14 2000-10-11 博尔德生物技术公司 生长激素和相关蛋白的衍生物
GB9718908D0 (en) 1997-09-05 1997-11-12 Rowett Research Services Limit Proteins
US6653098B1 (en) 1998-02-23 2003-11-25 G. D. Searle & Co. Method of producing mouse and human endostatin
JP4469935B2 (ja) 1998-03-23 2010-06-02 ジェネンテック, インコーポレイテッド GFRα3およびその使用
US6593133B1 (en) 1998-07-06 2003-07-15 Nsgene A/S Neurotrophic factors
US20020055467A1 (en) * 1998-07-06 2002-05-09 Johansen Teit E. Novel neurotrophic factors
US7067473B1 (en) 1998-07-14 2006-06-27 Janssen Pharmaceutica N.V. Neurotrophic growth factor
KR100712223B1 (ko) 1998-07-14 2007-04-27 얀센 파마슈티카 엔.브이. 신경친화성 성장 인자
WO2000015665A2 (en) 1998-09-14 2000-03-23 Pedersen Lars Oestergaard A method of producing a functional immunoglobulin superfamily protein
AU778998B2 (en) 1998-09-22 2004-12-23 University Of Maryland At Baltimore Cystine knot growth factor mutants
US20020002269A1 (en) * 1998-09-29 2002-01-03 Jeffrey D. Milbrandt Artemin, a neurotrophic factor
JP2002531128A (ja) 1998-12-09 2002-09-24 アムジエン・インコーポレーテツド 神経栄養因子grnf4
ATE377025T1 (de) 1999-03-08 2007-11-15 Genentech Inc Zusammensetzungen und verfahren zur diagnose von tumoren
US6361771B1 (en) 1999-04-06 2002-03-26 Neurotech S.A. ARPE-19 as a platform cell line for encapsulated cell-based delivery
CA2371462C (en) 1999-04-22 2009-09-15 Jason C. Schense Modified protein matrices
WO2001030375A2 (en) * 1999-10-29 2001-05-03 Biopharm Gesellschaft Zur Biotechnologischen Entwicklung Von Pharmaka Mbh Use of gdnf for treating corneal defects
US6866851B1 (en) 1999-12-28 2005-03-15 Washington University GFRα1-RET specific agonists and methods therefor
AU2001289307A1 (en) 2000-04-06 2001-10-23 Pharmacia Corporation Chemically-modified myelopoietin conjugates
CA2408851C (en) 2000-05-16 2011-07-12 Bolder Biotechnology, Inc. Methods for refolding proteins containing free cysteine residues
CA2327208A1 (en) * 2000-11-30 2002-05-30 The Government Of The United States Of America Methods of increasing distribution of therapeutic agents
IL140110A0 (en) 2000-12-05 2002-02-10 Applied Research Systems Improvement of homogeneity and secretion of recombinant proteins in mammalian systems
US7442370B2 (en) * 2001-02-01 2008-10-28 Biogen Idec Ma Inc. Polymer conjugates of mutated neublastin
EA009771B1 (ru) 2001-02-01 2008-04-28 Байоджен Айдек Ма, Инк. Полипептид нейбластина, способы его получения и применения
US6969360B1 (en) 2001-02-13 2005-11-29 Northwestern University Spinal proprioception methods and related systems
US7276580B2 (en) * 2001-03-12 2007-10-02 Biogen Idec Ma Inc. Neurotrophic factors
US20040077543A1 (en) * 2001-03-28 2004-04-22 Sah Dinah W. Y. Treatment using neublastin polypeptides
JP4499362B2 (ja) 2001-03-28 2010-07-07 バイオジェン・アイデック・エムエイ・インコーポレイテッド ニューロパシーの疼痛を処置するためのニューブラスチンポリペプチドの使用
NZ543953A (en) * 2001-04-24 2007-04-27 Univ Chicago Method and compositions for treating mammalian nerve tissue injuries
US20030100497A1 (en) * 2001-06-20 2003-05-29 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
US20040028613A1 (en) * 2001-06-25 2004-02-12 Nastech Pharmaceutical Company Inc Dopamine agonist formulations for enhanced central nervous system delivery
US7827106B2 (en) * 2001-07-10 2010-11-02 American Express Travel Related Services Company, Inc. System and method for manufacturing a punch-out RFID transaction device
US7129085B2 (en) * 2001-10-11 2006-10-31 Bristol-Myers Squibb Company Polynucleotides encoding a human leucine-rich repeat domain containing protein, HLLRCR-1
EP1314739A1 (en) 2001-11-22 2003-05-28 Bayer Ag Process for renaturation of recombinant, disulfide containing proteins at high protein concentrations in the presence of amines
GB0205022D0 (en) * 2002-03-04 2002-04-17 Univ Cambridge Tech Materials and methods for the treatment of cns damage
JP4310608B2 (ja) 2002-04-25 2009-08-12 東洋紡績株式会社 Hsp70ファミリータンパク質基質結合ドメインフラグメントの利用方法
DE10229175A1 (de) 2002-06-28 2004-01-15 Valeo Klimasysteme Gmbh Zylinderklappe mit strukturierter rauher Oberfläche
US8163875B2 (en) 2003-04-18 2012-04-24 Biogen Idec Ma Inc. Polymer conjugated glycosylated neublastin
NZ544263A (en) * 2003-06-10 2009-04-30 Nsgene As Improved secretion of neublastin
US7598059B2 (en) * 2003-10-02 2009-10-06 Biogen Idec Ma Inc. Neublastin expression constructs
RU2006117304A (ru) 2003-10-20 2007-12-10 Нсджин А/С (Dk) Генная терапия болезни паркинсона iv vivo
WO2005072764A2 (en) * 2004-01-16 2005-08-11 Novocell, Inc. Fibrin-bound angiogenic factors to stimulate vascularization of transplant site of encapsulated cells
KR100917403B1 (ko) * 2004-06-23 2009-09-14 티슈진, 인코포레이티드 신경 재생
US7598356B2 (en) * 2004-07-08 2009-10-06 Board of Regents of the University of Nebraska by and on behalf of the University of Nebraska Medical Center Method for purifying a protein of the cystine-knot superfamily
JP4852545B2 (ja) 2004-08-19 2012-01-11 バイオジェン・アイデック・エムエイ・インコーポレイテッド ニューブラスチン(Neublastin)変異体
DE602005022082D1 (de) 2004-08-19 2010-08-12 Biogen Idec Inc Rückfaltung von proteinen der transforming-growth-factor-beta-familie
US20080260702A1 (en) 2005-10-11 2008-10-23 Jesper Roland Jorgensen Treatment of Retinopathies Using Gfra3 Agonists
TWI501774B (zh) 2006-02-27 2015-10-01 Biogen Idec Inc 神經性病症之治療
WO2007103182A2 (en) 2006-03-01 2007-09-13 Biogen Idec Ma Inc. Compostions and methods for administering gdnf ligand family proteins
SI2019683T2 (sl) * 2006-04-25 2022-10-28 The Regents Of The University Of California Dajanje rastnih faktorjev za zdravljenje motenj CŽS
US8329655B2 (en) * 2007-05-01 2012-12-11 Biogen Idec Ma Inc. Methods for increasing vascularization
US20110135648A1 (en) 2007-08-08 2011-06-09 Biogen Idec Ma Inc. Anti-neublastin antibodies and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040242472A1 (en) * 2000-12-22 2004-12-02 Shelton David L. Use of artemin, a member of the gdnf ligand family

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Paveliev M, et al. "GDNF family ligands activate multiple events during axonal growth in mature sensory neurons" Molecular and Cellular Neuroscience; 2004 Mar;25(3):453-459. *

Also Published As

Publication number Publication date
EP1993589A2 (en) 2008-11-26
WO2007100898A2 (en) 2007-09-07
WO2007100898A3 (en) 2008-01-17
ES2439740T3 (es) 2014-01-24
US20090221495A1 (en) 2009-09-03
TW200744629A (en) 2007-12-16
EP1993589A4 (en) 2010-07-21
EP1993589B1 (en) 2013-09-25
DK1993589T3 (da) 2014-01-06
PT1993589E (pt) 2013-12-23
HRP20131188T1 (hr) 2014-01-17
EP2609930A3 (en) 2013-07-17
PL1993589T3 (pl) 2014-03-31
RS53089B (en) 2014-06-30
EP2609930A2 (en) 2013-07-03
US10328125B2 (en) 2019-06-25

Similar Documents

Publication Publication Date Title
TWI501774B (zh) 神經性病症之治療
Li et al. Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats
Roonprapunt et al. Soluble cell adhesion molecule L1-Fc promotes locomotor recovery in rats after spinal cord injury
US20220306704A1 (en) Neurotoxins for use in inhibiting cgrp
ES2757648T3 (es) Agentes de quimiodenervación dirigida postsinápticamente y sus procedimientos de uso
US20080279896A1 (en) Treatment of movement disorders by a combined use of chemodenervating agent and automated movement therapy
KR20190067219A (ko) 통증 예방, 경감 또는 치료에서의 신경 흥분성 상해 관련 폴리펩타이드의 용도
KR102075881B1 (ko) 이질통, 통각과민증, 자발통 및 환상통의 치료
JP2022521237A (ja) 振戦治療のためのボツリヌス神経毒素の新規用途
US10160791B2 (en) Protamine in treatment of neuronal injuries
AU754982B2 (en) Compositions for promoting nerve regeneration
EP0981353B1 (en) Facilitation of repair of neural injury with cm101/gbs toxin
KR20210054542A (ko) 신경 가소성을 유도하기 위한 방법 및 조성물
Jeffrey-Gauthier et al. Chapitre IV: Article 3-Locomotor deficits induced by inflammation involve spinal microglia and are independent of KCC2 expression in a mouse model of complete spinal transection.
US20190083588A1 (en) Method for treating axons with botulinum toxin
Harvey Functional regeneration of sensory afferents in a model of brachial plexus injury
TW200846360A (en) Methods and compositions for repairing common peroneal nerve lesions
DE10317369A1 (de) proNGF als pharmazeutisch wirksames Mittel zur Behandlung demyelinisierender Erkrankungen
AU2015252036A1 (en) Methods and compositions for treating CNS injury

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees