TWI501302B - Barrier removal method and device - Google Patents
Barrier removal method and device Download PDFInfo
- Publication number
- TWI501302B TWI501302B TW097131982A TW97131982A TWI501302B TW I501302 B TWI501302 B TW I501302B TW 097131982 A TW097131982 A TW 097131982A TW 97131982 A TW97131982 A TW 97131982A TW I501302 B TWI501302 B TW I501302B
- Authority
- TW
- Taiwan
- Prior art keywords
- barrier layer
- layer
- titanium
- oxide film
- ruthenium
- Prior art date
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Weting (AREA)
Description
本發明是關於半導體加工方法和裝置的。確切地說,是關於無應力銅抛光和阻擋層的選擇性去除的。更確切地說,本發明涉及的工藝可以用於積體器件製造中選擇性地抛光銅和鉭/氮化鉭阻擋層的無應力去除。This invention relates to semiconductor processing methods and apparatus. Specifically, it relates to the selective removal of stress-free copper polishing and barrier layers. More specifically, the process of the present invention can be used to selectively polish the stress-free removal of copper and tantalum/tantalum nitride barrier layers in the fabrication of integrated devices.
半導體器件是在半導體矽片上經過一系列不同的加工步驟形成電晶體和互連線而成的。為了電晶體終端能和矽片連在一起,需要在矽片的介質材料上做出導電的(例如金屬)槽、孔及其他類似的東西作為器件的一部分。槽和孔可以在電晶體之間、內部電路以及外部電路傳遞電信號和能量。Semiconductor devices are formed on a semiconductor wafer through a series of different processing steps to form transistors and interconnects. In order for the transistor termination to be attached to the cymbal, it is desirable to make conductive (e.g., metal) slots, holes, and the like on the dielectric material of the cymbal as part of the device. Slots and holes can transfer electrical signals and energy between transistors, internal circuits, and external circuits.
在形成互連元件時,半導體矽片可能需要掩膜、刻蝕和沈積等工藝來形成電晶體和連接電晶體終端所需要的回路。特別是多層掩膜、離子注入、退火、等離子刻蝕和物理及化學氣相沈積等工藝,可以用於淺槽和電晶體的阱、閘還有多晶矽線和互連新結構。In forming interconnect elements, semiconductor dies may require processes such as masking, etching, and deposition to form the transistors and the loops needed to connect the terminals of the transistors. In particular, multilayer masking, ion implantation, annealing, plasma etching, and physical and chemical vapor deposition processes can be used for wells, gates, and polysilicon lines and interconnect new structures in shallow trenches and transistors.
去除沈積在半導體矽片上電介質材料非凹陷區域的金屬薄膜,傳統的方法包括化學機械抛光(CMP)。化學機械抛光在半導體工業中應用廣泛,可以抛光和平坦化在介質材料的非凹陷區域上形成的槽和孔內的金屬層,從而形成互連線。在CMP中被加工的矽片放在平坦的抛光墊上。 被加工的矽片的介質基層內包含一層或多層互連元件層或者其他功能層,然後用壓力把矽片壓在抛光墊上。在矽片表面由於所施加的壓力進行抛光時抛光墊和矽片進行著相互運動。在抛光墊上加一種常被稱之為磨料的液體使抛光更容易進行。磨料的典型成分包含研磨劑,它可以有選擇的進行化學反應,從而把想要抛光的部分去除,比如,它可以只把金屬層抛光而對電介質層沒有影響。A metal film deposited on a non-recessed region of the dielectric material on the semiconductor wafer is removed, and conventional methods include chemical mechanical polishing (CMP). Chemical mechanical polishing is widely used in the semiconductor industry to polish and planarize trenches and metal layers in holes formed in non-recessed regions of dielectric material to form interconnect lines. The ruthenium processed in the CMP is placed on a flat polishing pad. The dielectric substrate of the processed ruthenium contains one or more layers of interconnecting elements or other functional layers, and then the ruthenium is pressed against the polishing pad by pressure. The polishing pad and the cymbal are moved toward each other as the surface of the cymbal is polished by the applied pressure. The addition of a liquid, often referred to as an abrasive, to the polishing pad facilitates polishing. The typical composition of the abrasive contains an abrasive which selectively chemically removes the portion to be polished. For example, it can polish only the metal layer without affecting the dielectric layer.
由於其中的強機械作用力,CMP方法會對半導體結構帶來一些有害的影響。例如當互連線的尺寸減小到0.13微米及以下時的導電材料,由於銅和低k電介質材料的機械性能有很大差別。低k電介質材料的楊氏模量的值與銅和阻擋層材料的楊氏模量的值相差10倍以上。那麽CMP中相對較強的機械作用力可能會對低k電介質材料造成永久性的損壞。Due to the strong mechanical forces involved, the CMP process can have some deleterious effects on the semiconductor structure. For example, when the size of the interconnect is reduced to 0.13 micrometers and below, the conductive material is greatly different due to the mechanical properties of the copper and low-k dielectric materials. The value of the Young's modulus of the low-k dielectric material differs from the value of the Young's modulus of the copper and barrier material by more than 10 times. The relatively strong mechanical forces in the CMP may cause permanent damage to the low-k dielectric material.
另一種去除半導體介質材料非凹陷區域上沈積的金屬膜的方法是電化學抛光。電化學銅抛光系統可以很均勻地達成銅去除,並且對阻擋層鉭/氮化鉭材料有很高的選擇比。這是一種無機械應力的抛光方法,但是阻擋層由於其表面形成了氧化物鈍化層而不能用電抛光的方法去除。Another method of removing a metal film deposited on a non-recessed region of a semiconductor dielectric material is electrochemical polishing. Electrochemical copper polishing systems achieve copper removal very evenly and have a high selectivity to barrier tantalum/tantalum nitride materials. This is a mechanical stress-free polishing method, but the barrier layer cannot be removed by electropolishing due to the formation of an oxide passivation layer on its surface.
去除鉭和氮化鉭的一個方法是用氫氟酸濕法刻蝕,但是當阻擋層被去除以後,氫氟酸會損壞電介質層。One method of removing tantalum and tantalum nitride is wet etching with hydrofluoric acid, but hydrofluoric acid can damage the dielectric layer when the barrier layer is removed.
另外,Sood等,《基於NaOH和KOH溶液的鉭濺射層的濕法去除》,2007年,J Mater Sci揭示:Mater Electron期刊,第18卷,535-539頁,講述了用KOH/H2 O2 或NaOH/H2 O2 溶液去除鉭的方法.類似KOH 或者NaOH的強鹼溶液可以加速鉭的溶解。然而NaOH/H2 O2 和KOH/H2 O2 都一定程度上會刻蝕、損壞槽內的銅。In addition, Sood et al., "Damp Removal of Sputtered Layer of Strontium Based on NaOH and KOH Solutions", J Mater Sci, 2007, Mater Electron, Vol. 18, pp. 535-539, describes the use of KOH/H 2 A method of removing ruthenium from an O 2 or NaOH/H 2 O 2 solution. A strong alkaline solution like KOH or NaOH can accelerate the dissolution of ruthenium. However, both NaOH/H 2 O 2 and KOH/H 2 O 2 etch and damage the copper in the bath to some extent.
IBM的專利揭示:一種新的加工技術,即在銅的CMP工藝後用二氟化氙氣相刻蝕法來去除阻擋層材料,例如:鉭、氮化鉭、鈦和氮化鈦。The IBM patent reveals a new processing technique that removes barrier materials, such as tantalum, tantalum nitride, titanium, and titanium nitride, by vapor phase etching of germanium difluoride after the copper CMP process.
本發明是關於半導體晶片加工方法和裝置的。半導體晶片基底包括襯底、電介質層、位於電介質層上的阻擋層和阻擋層上的銅金屬層。更具體地說,本發明是關於下述工藝:銅的無應力電化學抛光工藝、在銅抛光過程中形成的鉭或鈦的氧化物的去除和阻擋層鉭/氮化鉭或鈦/氮化鈦用二氟化氙氣相刻蝕方法的去除工藝.This invention relates to semiconductor wafer processing methods and apparatus. The semiconductor wafer substrate includes a substrate, a dielectric layer, a barrier layer on the dielectric layer, and a copper metal layer on the barrier layer. More particularly, the present invention relates to a process of stress-free electrochemical polishing of copper, removal of oxides of tantalum or titanium formed during copper polishing, and barrier 钽/tantalum nitride or titanium/nitridation. 1. The removal process of titanium dioxide using a vapor phase etching method.
首先,用無應力抛光方法把電鍍銅中多餘的銅膜去除。本發明用無應力電化學抛光的方法代替了傳統的銅的化學機械抛光(CMP)方法,作為半導體製造後段中基本的“金屬抛光工藝”。這是一個電化學工藝過程:半導體矽片上的銅作為陽極,電解液噴嘴作為陰極。當兩極之間施加一定的電壓,銅就可以被與之接觸的電解液抛光。當覆在上面的銅被去除後,暴露出來的鉭或鈦表面會形成一層化學穩定性很高的氧化物鈍化膜。First, the excess copper film in the electroplated copper is removed by a stress-free polishing method. The present invention replaces the conventional copper chemical mechanical polishing (CMP) method with a stress-free electrochemical polishing method as a basic "metal polishing process" in the latter stage of semiconductor fabrication. This is an electrochemical process: copper on the semiconductor ruthenium as the anode and electrolyte nozzle as the cathode. When a certain voltage is applied between the two poles, the copper can be polished by the electrolyte in contact therewith. When the copper coated on the surface is removed, a surface of the exposed tantalum or titanium forms a highly chemically stable oxide passivation film.
鉭或鈦的氧化物具有很高的化學穩定性。在銅的無應力抛光過程中,它作為阻擋層材料的保護層,但是它也使後續工藝中阻擋層的去除更加困難。二氟化氙氣體可以有 效的刻蝕鉭/氮化鉭和鈦/氮化鈦,但是對氧化鉭或氧化鈦的刻蝕速率很慢。為了能更有效地去除阻擋層,避免氧化鉭或氧化鈦引起的阻擋效應,本發明在二氟化氙氣體去除鉭/氮化鉭或鈦/氮化鈦之前,用一種刻蝕劑先把阻擋層表面的氧化鉭或氧化鈦去掉。有多種刻蝕劑可以把氧化鉭或氧化鈦去掉,比如氫氟酸、緩衝氫氟酸、氫氧化鈉溶液、氫氧化鉀溶液、草酸和檸檬酸等。除了上面的幾個刻蝕劑的例子以外,CF4 /O2 等離子和氬氣濺射轟擊也可以用來去除阻擋層表面的氧化鉭或氧化鈦。The oxides of niobium or titanium have high chemical stability. It acts as a protective layer for the barrier material during the stress-free polishing of copper, but it also makes the removal of the barrier layer more difficult in subsequent processes. The xenon difluoride gas can effectively etch tantalum/niobium nitride and titanium/titanium nitride, but the etching rate for tantalum oxide or titanium oxide is very slow. In order to remove the barrier layer more effectively and avoid the barrier effect caused by yttrium oxide or titanium oxide, the present invention first blocks the yttrium oxide gas before removing yttrium/niobium nitride or titanium/titanium nitride with an etchant. The ruthenium oxide or titanium oxide on the surface of the layer is removed. A variety of etchants can be used to remove cerium oxide or titanium oxide, such as hydrofluoric acid, buffered hydrofluoric acid, sodium hydroxide solution, potassium hydroxide solution, oxalic acid, and citric acid. In addition to the above examples of etchants, CF 4 /O 2 plasma and argon sputtering can also be used to remove yttrium oxide or titanium oxide from the surface of the barrier layer.
最後用二氟化氙氣相刻蝕的方法把阻擋層鉭/氮化鉭或鈦/氮化鈦去除。本發明用二氟化氙氣相刻蝕來代替傳統的鉭/氮化鉭或鈦/氮化鈦化學機械抛光作為基本的阻擋層去除工藝。以上工藝都是沒有機械作用力的,因此對低k材料和器件結構不會有機械上的損壞。Finally, the barrier layer tantalum/niobium nitride or titanium/titanium nitride is removed by vapor phase etching of germanium difluoride. The present invention replaces conventional tantalum/niobium nitride or titanium/titanium nitride chemical mechanical polishing with a vapor phase etching of germanium difluoride as a basic barrier removal process. None of the above processes have mechanical forces, so there is no mechanical damage to the low-k material and device structure.
關於本發明的更多優點可以經由下面的詳細說明和附帶的示意圖得到體現。Further advantages of the invention will be apparent from the following detailed description and the accompanying drawings.
本發明是關於半導體器件加工方法和裝置的。更確切地說,本發明是關於去除或者刻蝕阻擋層例如鉭/氮化鉭的,該阻擋層適合於低k電介質材料。這樣有利於低k材料在半導體器件中的各種應用。The present invention relates to a semiconductor device processing method and apparatus. More specifically, the invention relates to the removal or etching of a barrier layer such as tantalum/niobium nitride which is suitable for low k dielectric materials. This facilitates various applications of low-k materials in semiconductor devices.
圖1到圖4所示為半導體加工中一些新工藝的結合:用無應力抛光的方法去除銅,用刻蝕劑去除銅抛光過程中 阻擋層表面所形成的鉭的氧化物,用具有選擇性的二氟化氙氣體刻蝕法去除阻擋層鉭/氮化鉭。其中無論電化學抛銅,還是氧化鉭的去除,還是二氟化氙刻蝕阻擋層都是沒有機械作用力的過程。因此這組工藝使半導體結構的機械損傷最小化、使氧化鉭的覆蓋效應最小化、半導體結構的化學改性最小化,同時使低k介質材料的損失最小化。Figure 1 to Figure 4 show the combination of some new processes in semiconductor processing: copper removal by stress-free polishing, and removal of copper during etching by etchant The oxide of ruthenium formed on the surface of the barrier layer is removed by a selective ruthenium difluoride gas etch to remove the barrier ruthenium/tantalum nitride. Among them, whether electrochemical copper or copper oxide is removed, or the antimony difluoride etch barrier is a process without mechanical force. This set of processes therefore minimizes mechanical damage to the semiconductor structure, minimizes the cerium oxide coverage, minimizes chemical modification of the semiconductor structure, and minimizes loss of low-k dielectric material.
圖1所示是銅的大馬士革結構的示意圖。該半導體結構包含了電介質層,通常是在矽片基底或者前面的已加工的半導體器件結構101上形成的低k電介質層102。根據具體實例,低k電介質的介電常數一般大於1.2,小於4.2。該結構還進一步包含有在低k電介質層102上面的阻擋層103,通常是鉭/氮化鉭或者其他材料。該結構包含被電介質層102分割開的槽和孔的圖案。在阻擋層103上的金屬或者銅膜104結構是藉由填充電介質層凹陷區域而成的。但是填充的凹陷區域的同時,非凹陷區域的電介質層也會被覆蓋。採用以下的方法,這些阻擋層103和電介質層102結構上所鍍銅或者金屬層104的形貌可以很平坦。專利PCT/US03/11417描述了一種方法,在電鍍的時候採用假結構。或者採用美國專利60/738250中介紹的方法,用接觸墊式噴嘴也可以達成銅或者金屬層表面的平坦化。Figure 1 is a schematic representation of the damascene structure of copper. The semiconductor structure includes a dielectric layer, typically a low-k dielectric layer 102 formed on a wafer substrate or a front processed semiconductor device structure 101. According to a specific example, the dielectric constant of a low-k dielectric is generally greater than 1.2 and less than 4.2. The structure further includes a barrier layer 103 over the low-k dielectric layer 102, typically tantalum/tantalum nitride or other materials. The structure includes a pattern of grooves and holes that are separated by dielectric layer 102. The metal or copper film 104 structure on the barrier layer 103 is formed by filling recessed regions of the dielectric layer. However, while the recessed regions are filled, the dielectric layers of the non-recessed regions are also covered. The morphology of the copper or metal layer 104 plated on the barrier layer 103 and dielectric layer 102 can be very flat using the following method. Patent PCT/US03/11417 describes a method for the use of dummy structures during electroplating. Alternatively, the surface of the copper or metal layer can be planarized by a contact pad nozzle using the method described in U.S. Patent No. 60/738,250.
對金屬層204進行無應力抛光(圖5中的步驟502),圖2所示的是矽片經過電抛光之後的結構的橫切面圖。金屬或者銅層204被抛光到了非凹陷區域的表面。因此凹陷區域裏填充的金屬、槽還有孔等相互之間就分開了。該過 程是一種電化學工藝:矽片上的銅作為陽極,電解液噴嘴是陰極。當兩極之間加上一定的正電壓之後,銅就會被電解液溶解。該過程是一個具有選擇性的無應力的銅去除過程。阻擋層鉭/氮化鉭203表面形成了一層氧化物薄膜205而被鈍化。該鈍化膜在銅的抛光過程中可以達到保護阻擋層的作用,不過阻擋層203上形成的氧化鉭薄膜205使得後續的阻擋層去除變得更加困難。The metal layer 204 is subjected to stress-free polishing (step 502 in Fig. 5), and Fig. 2 is a cross-sectional view of the structure after the wafer is electropolished. The metal or copper layer 204 is polished to the surface of the non-recessed area. Therefore, the metal, the groove, and the holes filled in the recessed area are separated from each other. The past The process is an electrochemical process: copper on the ruthenium plate serves as the anode and the electrolyte nozzle is the cathode. When a certain positive voltage is applied between the two poles, the copper is dissolved by the electrolyte. This process is a selective stress-free copper removal process. An oxide film 205 is formed on the surface of the barrier layer/cerium nitride 203 to be passivated. The passivation film can function to protect the barrier layer during the polishing of copper, but the yttrium oxide film 205 formed on the barrier layer 203 makes subsequent barrier removal more difficult.
在阻擋層的表面形成的氧化鉭薄膜205由兩部分組成:一部分是由於鉭在空氣中自然氧化造成的。當鉭位於空氣中時根據化合價的不同可以形成多種化合物,包括TaO,Ta2 O,TaO2 ,Ta2 O5 和Ta2 O7 。但是當有水存在的情況下只有Ta2 O5 是最穩定的。The ruthenium oxide film 205 formed on the surface of the barrier layer is composed of two parts: a part is caused by natural oxidation of ruthenium in the air. When the ruthenium is in the air, various compounds can be formed depending on the valence, including TaO, Ta 2 O, TaO 2 , Ta 2 O 5 and Ta 2 O 7 . However, only Ta 2 O 5 is the most stable when water is present.
另外一部分,也是更重要的一部分是由銅的無應力抛光過程中陽極氧化造成的。在銅的抛光過程中鉭被暴露以後,其表面的電極反應可以描述如下:2Ta+5H2 O=Ta2 O5 +10H+ +10e- 由於電解液中有水的存在,銅抛光完成以後,鉭表面的氧化物主要是五價氧化鉭即五氧化二鉭。五氧化二鉭具有很高的化學穩定性,在銅抛光的過程中它作為阻擋層的保護層。但它卻使後續的阻擋層去除更加困難。二氟化氙氣體可以用適當的速率刻蝕掉鉭和氮化鉭203,但是幾乎刻蝕不了氧化鉭205,在某些條件下甚至一點都刻蝕不掉。因此它可以阻止鉭和氮化鉭被去除。很長時間的二氟化氙刻蝕可以去除部分鉭和氮化鉭,但是只會引起針孔效應。如圖7所示,銅無應力抛光以後,在沒有經過氧化鉭薄膜 205去除的情況下,用二氟化氙氣體長時間刻蝕鉭/氮化鉭後的掃描電子顯微鏡的照片。可以看出在一定的時間以後,除了針孔周圍的鉭/氮化鉭部分被去除,其餘的阻擋層203根本沒有被刻蝕。為了更有效的去除阻擋層,必須首先去除鉭的氧化層205。The other part, and a more important part, is caused by anodizing during the stress-free polishing of copper. After the ruthenium is exposed during the polishing of copper, the electrode reaction on the surface can be described as follows: 2Ta+5H 2 O=Ta 2 O 5 +10H + +10e - After the copper polishing is completed due to the presence of water in the electrolyte, The oxide on the surface of the crucible is mainly pentavalent antimony oxide, namely antimony pentoxide. Antimony pentoxide has high chemical stability and acts as a protective layer for the barrier during copper polishing. But it makes subsequent barrier removal more difficult. The xenon difluoride gas can etch away the tantalum and tantalum nitride 203 at a suitable rate, but the tantalum oxide 205 can hardly be etched and can not be etched at all even under certain conditions. Therefore it can prevent bismuth and tantalum nitride from being removed. A long time bismuth difluoride etch can remove some of the tantalum and tantalum nitride, but only cause pinhole effects. As shown in FIG. 7, after copper is subjected to stress-free polishing, a photograph of a scanning electron microscope after ruthenium/tantalum nitride is etched for a long time with a ruthenium difluoride gas without being removed by the ruthenium oxide film 205. It can be seen that after a certain time, except for the tantalum/tantalum nitride portion around the pinhole, the remaining barrier layer 203 is not etched at all. In order to remove the barrier layer more effectively, the oxide layer 205 of tantalum must first be removed.
因而,在圖5中的第二步就是把鉭的氧化層去除(步驟504)。下面是為了說明本方法而舉的幾個實例,本發明並不局限於此。Thus, the second step in Figure 5 is to remove the oxide layer of germanium (step 504). The following are a few examples for the purpose of illustrating the method, and the invention is not limited thereto.
去除鉭氧化層的第一種方法是用含有F-離子的溶液處理矽片的表面,其中氫氟酸(HF)和氫氟酸的緩衝溶液(BHF)更好。HF/BHF可以跟氧化鉭反應,化學反應方程式以五氧化二鉭為例,可以表示如下:Ta2 O5 +14F- +10 H+ =2TaF7 2- +5H2 O HF/BHF的濃度可以從0.1w%到30w%,而濃度介於0.5%--4%之間更好。處理時溶液的溫度從0℃到50℃,而室溫更好。處理時間的長短跟溫度和溶液的濃度都有關係。該溶液可以刻蝕氧化鉭薄膜205以及部分鉭阻擋層203並且對銅膜204沒有任何影響。但是如果刻蝕時間太長或者溶液的濃度太高,阻擋層鉭/氮化鉭也將被去除。如圖8所示,在方塊結構周圍的鉭/氮化鉭側壁已經至少部分地被破壞。從而低k電介質層202也將被該溶液損壞。圖9所示是一個銅204抛光之後鉭氧化層205正確處理的例子。與圖7和8比較可以看出,阻擋層鉭/氮化鉭去除效果非常好。The first method of removing the tantalum oxide layer is to treat the surface of the tantalum sheet with a solution containing F-ion, wherein hydrofluoric acid (HF) and hydrofluoric acid buffer solution (BHF) are better. HF/BHF can react with yttrium oxide. The chemical reaction equation is exemplified by bismuth pentoxide. It can be expressed as follows: Ta 2 O 5 +14F - +10 H + =2TaF 7 2- +5H 2 O HF/BHF concentration can be From 0.1w% to 30w%, and the concentration is preferably between 0.5% and -4%. The temperature of the solution at the time of treatment is from 0 ° C to 50 ° C, and room temperature is better. The length of the treatment time is related to the temperature and the concentration of the solution. This solution can etch the hafnium oxide film 205 and a portion of the antimony barrier layer 203 and have no effect on the copper film 204. However, if the etching time is too long or the concentration of the solution is too high, the barrier 钽/tantalum nitride will also be removed. As shown in Figure 8, the tantalum/tantalum nitride sidewalls around the block structure have been at least partially destroyed. Thus the low k dielectric layer 202 will also be damaged by the solution. Figure 9 shows an example of the correct treatment of the tantalum oxide layer 205 after the copper 204 is polished. As can be seen from comparison with Figures 7 and 8, the barrier enthalpy/tantalum nitride removal effect is very good.
含F-離子的溶液不只局限於HF和BHF.溶液中含有 F- ,pH值小於7並且對銅沒有損壞都可以用作鉭氧化物薄膜205的刻蝕劑。例如含有硫酸或者鹽酸的NH4 F溶液。並且在溶液中加入其他的酸,可以使氧化鉭的去除更加有效,因為有更低的pH值。氧化鉭薄膜205的去除效果可以藉由調節F- 濃度和pH值來控制。A solution containing F- ions is not limited to a solution containing HF and BHF F -., PH of less than 7 and no damage to copper may be used as a tantalum oxide film 205 of etchant. For example, a solution of NH 4 F containing sulfuric acid or hydrochloric acid. And the addition of other acids to the solution can make the removal of cerium oxide more efficient because of the lower pH. The removal effect of the ruthenium oxide film 205 can be controlled by adjusting the F - concentration and pH.
去除氧化鉭薄膜的第二種方法是使用強鹼溶液作為刻蝕劑。氧化鉭薄膜205可以溶解於強鹼溶液,因為在鹼溶液中可以形成鉭的礦物酸。在本發明所述的情況下是鉭酸(H2 Ta2 O6 )。五氧化二鉭在高pH值的溶液或者高溫度的溶液中可以加快溶解。例如氫氧化鉀溶液在室溫下飽和溶液的pH值大於10,濃度從0.1%到50%,而10%~40%更好。溫度從0℃到90℃,而40℃到80℃更好。強鹼溶液對氧化鉭薄膜205和銅薄膜204的刻蝕速率選擇比也很高。A second method of removing the hafnium oxide film is to use a strong alkali solution as an etchant. The cerium oxide film 205 can be dissolved in a strong alkali solution because a mineral acid of cerium can be formed in the alkali solution. In the case of the present invention is citric acid (H 2 Ta 2 O 6 ). Bismuth pentoxide can accelerate dissolution in high pH solutions or high temperature solutions. For example, the potassium hydroxide solution has a pH of greater than 10 in a saturated solution at room temperature, a concentration of from 0.1% to 50%, and more preferably from 10% to 40%. The temperature is from 0 ° C to 90 ° C, and more preferably from 40 ° C to 80 ° C. The etch rate selection ratio of the strong alkali solution to the yttrium oxide film 205 and the copper film 204 is also high.
第三種去除氧化鉭薄膜205的方法是用一種刻蝕氣體混合物,包括大約300sccm到400sccm的CF4 和大約200sccm到600sccm的氧氣,溫度從大約100℃到150℃,壓強從1torr到1.5torr。刻蝕氣體跟鉭的氧化層接觸是以等離子的形式進行的。等離子可以藉由反應離子刻蝕裝置(RIE)或者電子迴旋共振(ECR)等離子發生器,RIE和ECR都是廣泛商業應用的,而平行板RIE更好。用刻蝕氣體去除鉭的氧化層是各向同性的,具有很好的均勻性。A third method of removing the hafnium oxide film 205 is to use an etching gas mixture comprising about 300 sccm to 400 sccm of CF 4 and about 200 sccm to 600 sccm of oxygen, at a temperature of from about 100 ° C to 150 ° C, and a pressure of from 1 torr to 1.5 torr. The contact of the etching gas with the oxide layer of the crucible is carried out in the form of a plasma. Plasma can be used by reactive ion etching (RIE) or electron cyclotron resonance (ECR) plasma generators, RIE and ECR are widely used commercially, and parallel plate RIE is better. The oxide layer removed by etching gas is isotropic and has good uniformity.
去除氧化鉭薄膜205的第四種方法是用氣體濺射轟擊法。比如氬氣濺射轟擊就像薄膜沈積的反過程,靠高速 的粒子把表面的氧化鉭逐步剝離。濺射用的稀有氣體是選自下面氣體中的一種或幾種:氦氣、氖氣、氬氣、氪氣和氙氣,其中氬氣更好。濺射用的設備是目前商業上廣泛應用的。A fourth method of removing the hafnium oxide film 205 is by gas sputtering bombardment. For example, argon sputtering is like a reverse process of thin film deposition, relying on high speed. The particles gradually peel off the surface cerium oxide. The rare gas for sputtering is one or more selected from the group consisting of helium, neon, argon, helium and neon, of which argon is more preferred. Sputtering equipment is currently widely used commercially.
去除氧化鉭薄膜205的第五種方法是用草酸或者檸檬酸做刻蝕劑。草酸或者檸檬酸溶液至少可以去除部分氧化鉭薄膜層205,使阻擋層203的去除更有效。酸的濃度從0.1%到10%,而5%~8%更好。刻蝕的溫度從0℃到80℃,而20℃~60℃更好。A fifth method of removing the hafnium oxide film 205 is to use oxalic acid or citric acid as an etchant. The oxalic acid or citric acid solution removes at least a portion of the yttrium oxide thin film layer 205, making the removal of the barrier layer 203 more efficient. The acid concentration is from 0.1% to 10%, and 5% to 8% is more preferred. The etching temperature is from 0 ° C to 80 ° C, and more preferably from 20 ° C to 60 ° C.
所有以上的示例方法均可以用來去除鉭的氧化物層但是HF/BHF更好。前面也曾提到,這裏列舉的例子是為了說明步驟504去除鉭氧化物薄膜205甚至部分阻擋層鉭203的工藝。如圖3所示,在鉭的氧化物薄膜205去除之後,阻擋層303鉭/氮化鉭和銅層304就露出來了。All of the above example methods can be used to remove the oxide layer of germanium but HF/BHF is better. As previously mentioned, the examples listed herein are for the purpose of illustrating the process of removing the tantalum oxide film 205 or even the portion of the barrier layer 203 in step 504. As shown in FIG. 3, after the ruthenium oxide film 205 is removed, the barrier layer 303 钽/tantalum nitride and copper layer 304 are exposed.
在表面的氧化鉭薄膜205被去除以後,二氟化氙氣體把在矽片表面剩餘的阻擋層303鉭/氮化鉭去除(圖5中的步驟506)。二氟化氙氣體在一定的溫度和壓強下可以和阻擋層303鉭/氮化鉭自發地發生化學反應。二氟化氙氣體對銅404和電介質材料402都有很好的選擇性,比如SiO2 ,SiLK,和基於Si-C-O-H的低k材料,k值從1.2到4.2,而1.3~2.4更好。在整個工藝過程中不會對阻擋層403或電介質層402產生任何直接的機械應力,因而對銅404和低k電介質材料402不會產生物理損壞。襯底的溫度從0℃到300℃,而25℃~200℃更好。二氟化氙氣體的壓強從0.1Torr到100Torr,而0.5Torr~20Torr更 好。After the surface of the yttrium oxide film 205 is removed, the xenon difluoride gas removes the remaining barrier layer 303 钽/tantalum nitride on the surface of the ruthenium (step 506 in Fig. 5). The xenon difluoride gas spontaneously reacts with the barrier layer 303 钽/niobium nitride at a certain temperature and pressure. The xenon difluoride gas has good selectivity for copper 404 and dielectric material 402, such as SiO 2 , SiLK, and Si-COH based low k materials, with k values ranging from 1.2 to 4.2, and more preferably 1.3 to 2.4. No direct mechanical stress is applied to barrier layer 403 or dielectric layer 402 throughout the process, and thus physical damage to copper 404 and low-k dielectric material 402 is not caused. The temperature of the substrate is from 0 ° C to 300 ° C, and more preferably from 25 ° C to 200 ° C. The pressure of the xenon difluoride gas is from 0.1 Torr to 100 Torr, and more preferably 0.5 Torr to 20 Torr.
二氟化氙與阻擋層303鉭/氮化鉭反應的產物是氣相的(氙氣和氧氣)或者在該工藝條件下是可以昇華的(氟化鉭)。因此在矽片表面上不會有殘留物。The product of the reaction of ruthenium difluoride with the barrier layer 303 钽/niobium nitride is gas phase (helium and oxygen) or sublimable (yttrium fluoride) under the process conditions. Therefore, there is no residue on the surface of the cymbal.
如圖4所示,當表面上的阻擋層用二氟化氙氣相刻蝕法506完全去除乾淨以後,槽和孔在電學上完全分開了。金屬層或銅層404、阻擋層403徹底被電介質材料402隔離開了。As shown in FIG. 4, after the barrier layer on the surface is completely removed by the ruthenium difluoride vapor phase etching method 506, the grooves and holes are electrically completely separated. The metal or copper layer 404, barrier layer 403 are completely isolated by the dielectric material 402.
圖6是本發明中裝置的示意方塊圖。該裝置包括:無應力的電化學銅抛光系統(SFP)602,鉭的氧化物層去除系統604和二氟化氙氣相刻蝕系統(即阻檔層刻蝕系統)606。上述子系統602-606分別對應著圖5中的502-506工藝步驟。Figure 6 is a schematic block diagram of the apparatus of the present invention. The apparatus includes a stress free electrochemical copper polishing system (SFP) 602, a tantalum oxide layer removal system 604, and a xenon difluoride vapor phase etching system (ie, a barrier layer etching system) 606. The above subsystems 602-606 correspond to the 502-506 process steps in FIG. 5, respectively.
一個典型的例子,電抛光系統包含一個電解液噴嘴,電解液就是經由該噴嘴噴到矽片不同半徑的地方。一個電源負極接到噴嘴上,經由噴嘴為電解液提供負電壓。電源的正極與矽片相連接為矽片提供正電壓。因而在電化學抛光過程中噴嘴作為陰極,而矽片作為陽極。當電解液不斷地流到矽片上的金屬層時,由於兩者之間的電勢差,矽片表面的金屬層被抛光。雖然這裏提到矽片是直接與電源的正極相連的,但需要注意的是電源的正極和矽片之間可以插入任意數量的連接件。例如,電源可以跟矽片夾相連,而矽片夾再與矽片相連,更確切地說是與矽片上的金屬層相連。關於更詳細的電化學抛光系統的描述可以參考美國專利號為09/497,894,專利標題是《半導體器件互連金 屬的抛光方法和裝置》,發表於2000年2月4日。這裏把整個專利作為參考文獻。In a typical example, an electropolishing system consists of an electrolyte nozzle through which the electrolyte is sprayed to different radii of the cymbal. A negative pole of the power supply is connected to the nozzle to provide a negative voltage to the electrolyte via the nozzle. The positive side of the power supply is connected to the cymbal to provide a positive voltage to the cymbal. Thus the nozzle acts as a cathode during the electrochemical polishing process and the crucible acts as the anode. When the electrolyte continuously flows to the metal layer on the ruthenium, the metal layer on the surface of the ruthenium is polished due to the potential difference between the two. Although it is mentioned here that the cymbal is directly connected to the positive pole of the power supply, it should be noted that any number of connectors can be inserted between the positive pole and the cymbal of the power supply. For example, the power supply can be connected to the cymbal clip, which in turn is connected to the cymbal, more specifically to the metal layer on the cymbal. For a more detailed description of the electrochemical polishing system, reference is made to U.S. Patent No. 09/497,894, entitled "Semiconductor Device Interconnect Gold" The polishing method and device of the genus, published on February 4, 2000. The entire patent is hereby incorporated by reference.
一個典型例子,阻擋層氧化物薄膜去除系統包括一個可以旋轉的矽片夾來固定矽片,其中旋轉是指驅動該矽片夾圍繞著一個軸轉動;一個把刻蝕劑噴到矽片表面的噴嘴;一個腔體和刻蝕劑輸送系統。在銅的無應力抛光之後,矽片就被放到上述的矽片夾內。當矽片夾開始轉動後,刻蝕劑均勻地噴灑到矽片的表面。經過一定時間以後,阻擋層的氧化物薄膜就被去除乾淨。In a typical example, the barrier oxide film removal system includes a rotatable cymbal clip to secure the cymbal, wherein rotation refers to driving the cymbal clip to rotate about an axis; and an etchant is sprayed onto the surface of the cymbal Nozzle; a cavity and etchant delivery system. After the stress-free polishing of the copper, the crepe is placed in the crepe clip described above. When the cymbal clip starts to rotate, the etchant is evenly sprayed onto the surface of the cymbal. After a certain period of time, the oxide film of the barrier layer is removed.
一個典型的例子,本發明的二氟化氙刻蝕系統與現在商業上應用的矽的微系統加工(MEMS)系統較為相似,包括:至少一個真空泵,一個刻蝕腔,一個擴散腔,一個固體二氟化氙源腔、溫度控制系統和自動化控制系統。每個腔之間都用氣動節流閥控制。並且在擴散腔和刻蝕腔內還有真空計或壓力錶。該系統既可以工作在脈衝模式下也可以在恒流模式下工作。在恒流模式下,刻蝕腔和擴散腔內的壓力保持恒定,以便控制刻蝕速率。在脈衝模式下,兩個腔首先用高純氮氣淨化,然後抽成真空。把二氟化氙瓶子的開關打開,氣體就可以填充到擴散腔。然後把二氟化氙瓶子開關關閉,把擴散腔和刻蝕腔之間的節流閥打開,當刻蝕腔內的壓強達到一定數值後就可以把節流閥關閉。當矽片跟二氟化氙氣體接觸一定時間後,比如3-30秒,把刻蝕腔抽成真空,反應的副產物被排出腔體。到此便完成了脈衝模式下的一個“循環”。並且可以根據需要重復若干次該循環,直到矽片表面的阻擋層的鉭/氮化鉭 被去除乾淨露出電介質層。本發明中的二氟化氙刻蝕系統也是沒有應力的。A typical example, the ruthenium difluoride etch system of the present invention is similar to the currently commercially available ruthenium microsystem processing (MEMS) system, including: at least one vacuum pump, one etch chamber, one diffusion chamber, one solid Bismuth difluoride source chamber, temperature control system and automatic control system. Each chamber is controlled by a pneumatic throttle valve. There is also a vacuum gauge or a pressure gauge in the diffusion chamber and the etching chamber. The system can operate in both pulse mode and constant current mode. In the constant current mode, the pressure in the etch chamber and the diffusion chamber is kept constant to control the etch rate. In pulse mode, the two chambers are first purged with high purity nitrogen and then evacuated. When the switch of the bismuth difluoride bottle is opened, the gas can be filled into the diffusion chamber. Then, the switch of the bismuth difluoride bottle is closed, and the throttle valve between the diffusion chamber and the etching chamber is opened, and the throttle valve can be closed when the pressure in the etching chamber reaches a certain value. When the ruthenium is contacted with the ruthenium difluoride gas for a certain period of time, such as 3-30 seconds, the etch chamber is evacuated and the by-products of the reaction are discharged into the chamber. This completes a "loop" in pulse mode. And the cycle can be repeated as many times as needed until the barrier layer of the ruthenium sheet is tantalum/nitridium It is removed to expose the dielectric layer. The ruthenium difluoride etch system of the present invention is also unstressed.
儘管本發明的描述中提到了大量的具體的實物、方法和應用的例子,但是本發明並不局限於此。Although a large number of specific examples of objects, methods, and applications are mentioned in the description of the present invention, the present invention is not limited thereto.
101、201、301、401‧‧‧半導體基底101, 201, 301, 401‧‧ ‧ semiconductor substrate
102、202、302、402‧‧‧電介質層102, 202, 302, 402‧‧‧ dielectric layers
103、203、303、403‧‧‧阻擋層103, 203, 303, 403‧‧ ‧ barrier
104、204、304、404‧‧‧金屬層104, 204, 304, 404‧‧‧ metal layers
205‧‧‧氧化鉭薄膜205‧‧‧Oxide film
602‧‧‧無應力電化學拋光系統602‧‧‧Unstressed electrochemical polishing system
604‧‧‧氧化薄膜去除系統604‧‧‧Oxidized film removal system
606‧‧‧阻擋層刻蝕系統606‧‧‧Block etching system
圖1是在銅無應力電化學抛光之前,半導體矽片上互連結構的橫切面示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic cross-sectional view of an interconnect structure on a semiconductor wafer prior to copper stress free electrochemical polishing.
圖2是在銅無應力電化學抛光之後,半導體矽片上互連結構的橫切面示意圖。在抛光過程中阻擋層的表面形成了一層氧化鉭或氧化鈦薄膜。2 is a schematic cross-sectional view of an interconnect structure on a semiconductor wafer after copper stressless electrochemical polishing. A film of ruthenium oxide or titanium oxide is formed on the surface of the barrier layer during polishing.
圖3是半導體矽片上氧化鉭或氧化鈦薄膜被去除以後互連結構的橫切面示意圖。Figure 3 is a cross-sectional view of the interconnect structure after the yttrium oxide or titanium oxide film on the semiconductor wafer is removed.
圖4是半導體矽片阻擋層鉭/氮化鉭或鈦/氮化鈦用二氟化氙氣相刻蝕掉之後的橫切面示意圖。4 is a schematic cross-sectional view of a semiconductor germanium barrier layer of tantalum/niobium nitride or titanium/titanium nitride after vapor phase etching of germanium difluoride.
圖5是本發明中的一個工藝流程圖示例。Figure 5 is an illustration of a process flow diagram in the present invention.
圖6是本發明中裝置的方塊的示例圖。Figure 6 is a diagram showing an example of a block of the apparatus of the present invention.
圖7是樣品在無應力抛光之後掃描電子顯微鏡(SEM)的俯視圖片。該樣品用二氟化氙直接刻蝕而沒有把阻擋層表面的氧化鉭提前去除。Figure 7 is a top view of a scanning electron microscope (SEM) of a sample after stress free polishing. The sample was directly etched with germanium difluoride without removing the cerium oxide on the surface of the barrier layer in advance.
圖8是樣品在無應力抛光之後掃描電子顯微鏡(SEM)的俯視圖片。該樣品用較強的氧化鉭刻蝕劑處理過。Figure 8 is a top view of a scanning electron microscope (SEM) of a sample after stress free polishing. The sample was treated with a strong cerium oxide etchant.
圖9是樣品在無應力抛光之後掃描電子顯微鏡(SEM)的俯視圖片,該樣品是先把氧化鉭去除然後用二氟化氙氣 體把阻擋層去除。Figure 9 is a top view of a scanning electron microscope (SEM) of a sample after stress-free polishing, which is first removed with yttrium oxide and then with xenon difluoride. The body removes the barrier layer.
201‧‧‧半導體基底201‧‧‧Semiconductor substrate
202‧‧‧電介質層202‧‧‧ dielectric layer
203‧‧‧阻擋層203‧‧‧Block
204‧‧‧金屬層204‧‧‧metal layer
205‧‧‧氧化鉭薄膜205‧‧‧Oxide film
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW097131982A TWI501302B (en) | 2008-08-21 | 2008-08-21 | Barrier removal method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW097131982A TWI501302B (en) | 2008-08-21 | 2008-08-21 | Barrier removal method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201009912A TW201009912A (en) | 2010-03-01 |
TWI501302B true TWI501302B (en) | 2015-09-21 |
Family
ID=44828014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097131982A TWI501302B (en) | 2008-08-21 | 2008-08-21 | Barrier removal method and device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI501302B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9881833B1 (en) | 2016-10-26 | 2018-01-30 | International Business Machines Corporation | Barrier planarization for interconnect metallization |
CN110459468A (en) * | 2019-08-29 | 2019-11-15 | 上海华力集成电路制造有限公司 | The lithographic method of TiAlN thin film |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI697983B (en) * | 2016-01-05 | 2020-07-01 | 大陸商盛美半導體設備(上海)股份有限公司 | Method for forming metal interconnection structure |
CN112242299B (en) * | 2019-07-18 | 2024-10-22 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method for forming the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020030286A1 (en) * | 2000-04-28 | 2002-03-14 | Tongbi Jiang | Resistance-reducing conductive adhesives for attachment of electronic components |
US20040152301A1 (en) * | 1998-07-31 | 2004-08-05 | Imran Hashim | Method and apparatus for forming improved metal interconnects |
-
2008
- 2008-08-21 TW TW097131982A patent/TWI501302B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040152301A1 (en) * | 1998-07-31 | 2004-08-05 | Imran Hashim | Method and apparatus for forming improved metal interconnects |
US20020030286A1 (en) * | 2000-04-28 | 2002-03-14 | Tongbi Jiang | Resistance-reducing conductive adhesives for attachment of electronic components |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9881833B1 (en) | 2016-10-26 | 2018-01-30 | International Business Machines Corporation | Barrier planarization for interconnect metallization |
CN110459468A (en) * | 2019-08-29 | 2019-11-15 | 上海华力集成电路制造有限公司 | The lithographic method of TiAlN thin film |
Also Published As
Publication number | Publication date |
---|---|
TW201009912A (en) | 2010-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101882595B (en) | Method and device for removing barrier layer | |
JP5412517B2 (en) | Barrier layer removal method and apparatus | |
US5849639A (en) | Method for removing etching residues and contaminants | |
US5919311A (en) | Control of SiO2 etch rate using dilute chemical etchants in the presence of a megasonic field | |
EP3501032B1 (en) | Preclean methodology for superconductor interconnect fabrication | |
TWI501302B (en) | Barrier removal method and device | |
TW201903828A (en) | Oxide film removing method oxide film removing apparatus contact forming method and contact forming system | |
US20040253809A1 (en) | Forming a semiconductor structure using a combination of planarizing methods and electropolishing | |
WO2008004591A1 (en) | Method for producing bonded wafer | |
JP4584592B2 (en) | Improved method for etching vias | |
CN103985670B (en) | The minimizing technology and device on barrier layer | |
US6117350A (en) | Adjustable selectivity etching solutions and methods of etching semiconductor devices using the same | |
US20040115926A1 (en) | Method of wet etching an inorganic antireflection layer | |
JP2000340544A (en) | Manufacture of semiconductor device | |
CN106298504A (en) | The method of thinning grid oxic horizon and the manufacture method of MOS device | |
US20230108117A1 (en) | Method for Etching of Metal | |
CN118280818A (en) | Method for etching Si-based GaN pattern array structure by composite mask | |
TW451349B (en) | Planarization process of film layer in semiconductor process | |
US20070105324A1 (en) | Removing silicon nano-crystals | |
JP3320379B2 (en) | Manufacturing method of bonded substrate | |
JPH0353532A (en) | Formation of multilayer wiring | |
JP2556373B2 (en) | Dry etching method | |
JPH06338499A (en) | Manufacture of semiconductor device | |
JPH04294533A (en) | Manufacturing method of semiconductor device | |
JPH0414825A (en) | Manufacture of semiconductor device |