[go: up one dir, main page]

TWI498705B - Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system - Google Patents

Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system Download PDF

Info

Publication number
TWI498705B
TWI498705B TW098115860A TW98115860A TWI498705B TW I498705 B TWI498705 B TW I498705B TW 098115860 A TW098115860 A TW 098115860A TW 98115860 A TW98115860 A TW 98115860A TW I498705 B TWI498705 B TW I498705B
Authority
TW
Taiwan
Prior art keywords
energy generating
panel
generating devices
local
mode
Prior art date
Application number
TW098115860A
Other languages
Chinese (zh)
Other versions
TW201009534A (en
Inventor
Jianhui Zhang
Ali Djabbari
Gianpaolo Lisi
Original Assignee
Nat Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/152,566 external-priority patent/US7991511B2/en
Priority claimed from US12/152,478 external-priority patent/US9077206B2/en
Application filed by Nat Semiconductor Corp filed Critical Nat Semiconductor Corp
Publication of TW201009534A publication Critical patent/TW201009534A/en
Application granted granted Critical
Publication of TWI498705B publication Critical patent/TWI498705B/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

在能量產生系統中之集中式與分散式最大功率點追蹤間作選擇的方法與系統Method and system for selecting between centralized and decentralized maximum power point tracking in an energy generating system 交互參照之相關申請案Cross-reference related application

本發明係有關於同時提出申請的以下申請案:名稱為「METHOD AND SYSTEM FOR PROVIDING CENTRAL CONTROL IN AN ENERGY GENERATING SYSTEM」的美國專利申請案第___號(代理人案號第P07166號),名稱為「METHOD AND SYSTEM FOR PROVIDING LOCAL CONVERTERS TO PROVIDE MAXIMUM POWER POINT TRACKING IN AN ENERGY GENERATING SYSTEM」的美國專利申請案第___號(代理人案號第P07168號),及名稱為「METHOD AND SYSTEM FOR ACTIVATING AND DEACTIVATING AN ENERGY GENERATING SYSTEM」的美國專利申請案第___號(代理人案號第P07169號)。在該等專利申請案之各者中所揭示的標的物以參考方式與本揭示內容合倂,如同在此完整提出。The present invention is related to the following application: "METHOD AND SYSTEM FOR PROVIDING CENTRAL CONTROL IN AN ENERGY GENERATING SYSTEM", US Patent Application No. ___ (Attorney Docket No. P07166), name US Patent Application No. ___ (Attorney Docket No. P07168) of "METHOD AND SYSTEM FOR PROVIDING LOCAL CONVERTERS TO PROVIDE MAXIMUM POWER POINT TRACKING IN AN ENERGY GENERATING SYSTEM", and the name "METHOD AND SYSTEM FOR ACTIVATING" US Patent Application No. ___ (Attorney Docket No. P07169) of AND DEACTIVATING AN ENERGY GENERATING SYSTEM. The subject matter disclosed in each of these patent applications is hereby incorporated by reference in its entirety in its entirety in its entirety herein in its entirety herein.

揭示內容大致上係有關於能量產生系統。更明確而言,揭示內容係有關於用以在能量產生系統中之集中式及分散式最大功率點追蹤之間作選擇的方法及系統。The disclosure is broadly related to energy production systems. More specifically, the disclosure relates to methods and systems for selecting between centralized and decentralized maximum power point tracking in an energy generating system.

相對於習知的非再生、會污染的能量來源(離如煤或是石油)而言,太陽能及風力提供可再生且不會污染的能量來源。因此,太陽能及風力已成為日益重要的可轉換為電能的能量來源。對於太陽能而言,排列成陣列的光伏打面板通常提供用以轉換太陽能為電能的裝置。類似的陣列可用於收集風力或是其他自然的能量來源。Solar and wind provide a renewable and non-polluting source of energy relative to conventional non-renewable, polluting sources of energy (such as coal or oil). Therefore, solar energy and wind power have become an increasingly important source of energy that can be converted into electrical energy. For solar energy, photovoltaic panels arranged in an array typically provide means for converting solar energy into electrical energy. Similar arrays can be used to collect wind or other natural sources of energy.

在操作光伏打陣列時,通常使用最大功率點追蹤(MPPT)以自動地判定應在何種電壓或是電流操作該陣列,以在特定溫度及太陽輻射產生最大功率輸出。儘管當陣列在理想條件(亦即,對於陣列中之各個面板有相同的輻射、溫度及電性特徵)時,對於整體陣列而言,實施MPPT相當簡單,但當有不匹配或是部份被遮蔽的情況下,對於整體陣列之MPPT則更為複雜。在此情況中,因為不匹配的陣列的多峰功率對電壓特徵的相對最佳條件,MPPT技術不能提供精確的結果。因此,該陣列面板中僅有一些能理想地操作。因為對於包含數排面板的陣列而言,最無效率的面板會決定整體面板的電流及效率,如此則造成產生功率的劇烈下降。When operating a photovoltaic array, maximum power point tracking (MPPT) is typically used to automatically determine at which voltage or current the array should be operated to produce maximum power output at a particular temperature and solar radiation. Although the MPPT is fairly simple for the overall array when the array is in ideal conditions (i.e., for the same radiation, temperature, and electrical characteristics of the various panels in the array), when there is a mismatch or a partial In the case of shadowing, the MPPT for the overall array is more complicated. In this case, the MPPT technique does not provide accurate results because of the relatively optimal conditions of the multi-peak power versus voltage characteristics of the unmatched array. Therefore, only some of the array panels are ideal for operation. Because for an array containing rows of panels, the most inefficient panel determines the current and efficiency of the overall panel, which results in a dramatic drop in power generation.

因此,某些光伏打系統對陣列中的各面板提供一DC-DC轉換器。各該DC-DC轉換器執行MPPT以搜尋其之對應面板的最大功率點。然而,在此系統中的DC-DC轉換器有可能被矇蔽而選擇局部最大點來操作其面板,而非選擇面板的實際最大功率點。此外,在此系統中使用多個DC-DC轉換器會造成操作轉換器引起的電損失,如此則降低整體系統的效能。Therefore, some photovoltaic systems provide a DC-DC converter for each panel in the array. Each of the DC-DC converters performs MPPT to find the maximum power point of its corresponding panel. However, the DC-DC converter in this system may be blinded to select a local maximum point to operate its panel instead of selecting the actual maximum power point of the panel. In addition, the use of multiple DC-DC converters in this system can result in electrical losses caused by operating the converter, thus reducing the overall system performance.

在此專利文件中,以下將討論的圖1到12及用於說明本發明原理的各種實施例僅為說明性的,不應解釋為限制本發明之範圍。熟知本技藝者當可了解,本發明的原理可用於任何種類的適當設置的裝置或是系統。In this patent document, FIGS. 1 through 12, which are discussed below, and various embodiments for illustrating the principles of the present invention are merely illustrative and are not intended to limit the scope of the invention. It will be apparent to those skilled in the art that the principles of the present invention can be applied to any type of suitably arranged device or system.

圖1為根據揭示內容之一實施例,顯示能為集中式控制的能量產生系統100。能量產生系統100包含多數個能量產生裝置(EGD)102,其各耦接至對應的一局部轉換器104,並一起形成能量產生陣列106。對於一特定實施例而言,如揭示內容所述,能量產生系統100可包含光伏打系統,且能量產生裝置102可包含光伏打(PV)面板。然而,應了解者為,能量產生系統100可包含任何合適類型的能量產生系統,例如風力渦輪系統、燃料電池等。對於此等實施例而言,能量產生裝置102可包含風力渦輪、燃料電池等。1 is an energy generating system 100 that can be centrally controlled, in accordance with an embodiment of the disclosure. The energy generating system 100 includes a plurality of energy generating devices (EGDs) 102, each coupled to a corresponding one of the local converters 104, and together forming an energy generating array 106. For a particular embodiment, as disclosed, the energy generating system 100 can include a photovoltaic system, and the energy generating device 102 can include a photovoltaic (PV) panel. However, it should be appreciated that the energy generating system 100 can include any suitable type of energy generating system, such as a wind turbine system, a fuel cell, and the like. For such embodiments, the energy generating device 102 can include a wind turbine, a fuel cell, and the like.

所述的光伏打系統100包含中央陣列控制器110,且亦可包含DC-AC轉換器112載是其他合適的負載,以因應系統100操作為倂聯型系統的情況。然而,應了解者為,系統100可藉由將陣列106耦接至電池充電器或是其他合適的能量儲存裝置而非DC-AC轉換器112,而操作為獨立型系統。The photovoltaic system 100 includes a central array controller 110 and may also include DC-AC converters 112 that are other suitable loads in response to the operation of system 100 as a cascading system. However, it should be appreciated that system 100 can operate as a stand-alone system by coupling array 106 to a battery charger or other suitable energy storage device instead of DC-AC converter 112.

陣列106中的PV面板102係設置於串114中。對於所述實施例而言,陣列106包含兩個串114,各串114包含三個面板102。然而,應了解者為,陣列106可包含任意合適數目的串114,且各串114可包含任意合適數目的面板102。且對於所述之實施例而言,各串114中之面板102設置為串聯連接。因此,各個局部轉換器104之輸出電壓仍然相近於其輸入電壓,而供給高電壓至DC-AC轉換器112之輸入埠,對於某些實施例而言,其可操作在輸入電壓為150V到500V之間。因此,不需要以變壓器為基礎的轉換器(例如在並聯構造串中所使用者),產生實現高效率及低成本的局部轉換器104的能力。The PV panels 102 in the array 106 are disposed in the string 114. For the illustrated embodiment, array 106 includes two strings 114, each string 114 including three panels 102. However, it should be appreciated that array 106 can include any suitable number of strings 114, and each string 114 can include any suitable number of panels 102. And for the illustrated embodiment, the panels 102 in each string 114 are arranged in series. Thus, the output voltage of each local converter 104 is still close to its input voltage, while the high voltage is supplied to the input port of the DC-AC converter 112, which for some embodiments is operable at an input voltage of 150V to 500V. between. Thus, transformer-based converters (e.g., users in a parallel configuration string) are not required, creating the ability to achieve high efficiency and low cost local converters 104.

各PV面板102能將太陽能轉換為電能。各局部轉換器104耦接至其所對應的面板102,且能重新塑造由面板103提供的輸入的電壓對電流關係,使面板102所產生的電能可為陣列106的負載(未顯示於圖1中)利用。DC-AC轉換器112耦接至陣列106,且能將局部轉換器104所產生的直流(DC)轉換為用於負載的交流(AC),負載可耦接至DC-AC轉換器112。Each PV panel 102 is capable of converting solar energy into electrical energy. Each local converter 104 is coupled to its corresponding panel 102 and can reshape the voltage versus current relationship of the input provided by panel 103 such that the electrical energy generated by panel 102 can be the load of array 106 (not shown in Figure 1). Use). The DC-AC converter 112 is coupled to the array 106 and is capable of converting direct current (DC) generated by the local converter 104 to alternating current (AC) for the load, which may be coupled to the DC-AC converter 112.

最大功率點追蹤(MPPT)自動判定面板102應操作之電壓或是電流,以在特定溫度及太陽輻射產生最大的功率輸出。當陣列在理想條件(亦即,對於陣列中之各個面板有相同的輻射、溫度及電性特徵)時,對於整體陣列而言,執行集中式MPPT相當簡單。然而,當有例如不匹配或是部份被遮蔽的情形時,對於整體的陣列106執行MPPT則更為複雜。在此情況中,因為不匹配的陣列106的多峰功率對電壓特性的相對最佳條件,MPPT技術不能提供精確的結果。因此,該陣列106中僅有一些面板102能理想地操作,使得產生能量急遽下降。因此,為了解決此問題,各個局部轉換器104可對其對應的面板102提供局部MPPT。在此方式中,不論在理想的或是不匹配或是被遮蔽的情況下,各個面板102皆可操作在其自有的最大能量點(MPP)。對於其中能量產生裝置102包含風力渦輪的實施例而言,MPPT可用於調整風力渦輪的葉片間距。亦應了解者為,MPPT可用於最佳化包含其他種類的能量產生裝置102的系統100。Maximum Power Point Tracking (MPPT) automatically determines the voltage or current that panel 102 should operate to produce maximum power output at a particular temperature and solar radiation. Performing a centralized MPPT is fairly straightforward for an overall array when the array is under ideal conditions (i.e., having the same radiation, temperature, and electrical characteristics for each panel in the array). However, performing MPPT for the overall array 106 is more complicated when there is, for example, a mismatch or a partial obscuration. In this case, the MPPT technique does not provide accurate results because of the relatively optimal conditions of the multi-peak power versus voltage characteristics of the mismatched array 106. Thus, only some of the panels 102 in the array 106 are ideally operated, resulting in a sharp drop in energy production. Therefore, to address this issue, each local converter 104 can provide a local MPPT to its corresponding panel 102. In this manner, each panel 102 can operate at its own maximum energy point (MPP), whether ideal or not matched or obscured. For embodiments in which the energy generating device 102 includes a wind turbine, the MPPT can be used to adjust the blade pitch of the wind turbine. It should also be appreciated that the MPPT can be used to optimize the system 100 including other types of energy generating devices 102.

中央陣列控制器110耦接至陣列106,且能與陣列106透過有線連接(例如串聯或是並聯匯流排)或是無線連接通訊。中央陣列控制器110可包含診斷模組120及/或控制模組125。診斷模組120能監控光伏打系統100,控制模組125能控制光伏打系統100。The central array controller 110 is coupled to the array 106 and is capable of communicating with the array 106 via a wired connection (eg, a series or parallel bus bar) or a wireless connection. The central array controller 110 can include a diagnostic module 120 and/or a control module 125. The diagnostic module 120 can monitor the photovoltaic system 100, and the control module 125 can control the photovoltaic system 100.

診斷模組120能從陣列106中之各個局部轉換器104接收用於局部轉換器104的局部轉換器資料及用於局部轉換器104對應的面板102的裝置資料。此處所使用之「裝置資料」表示面板102之輸出電壓、輸出電流、溫度、輻射、輸出功率等。相似地,「局部轉換器資料」表示局部轉換器輸出電壓、局部轉換器輸出電流、局部轉換器輸出功率等。Diagnostic module 120 can receive local converter data for local converter 104 and device data for panel 102 corresponding to local converter 104 from respective local converters 104 in array 106. The "device data" used herein means the output voltage, output current, temperature, radiation, output power, and the like of the panel 102. Similarly, "local converter data" indicates local converter output voltage, local converter output current, local converter output power, and the like.

診斷模組120亦能夠在系統100上產生報告,且提供報告予操作者。舉例而言,診斷模組120能夠顯示裝置資料及局部轉換器資料其中一些或是全部予操作者查看。此外,診斷模組120能夠提供裝置資料及局部轉換器資料其中一些或是全部予控制模組125。診斷模組120亦能夠以任何合適的方式分析資料,並提供分析結果予操作者及/或控制模組125。例如,診斷模組120能夠根據任何合適的時限,例如每小時、每天、每星期、或是每個月,判定各個面板102的統計資料。The diagnostic module 120 is also capable of generating reports on the system 100 and providing reports to the operator. For example, the diagnostic module 120 can display some or all of the device data and local converter data for viewing by the operator. In addition, the diagnostic module 120 can provide some or all of the device data and local converter data to the control module 125. The diagnostic module 120 can also analyze the data in any suitable manner and provide the results of the analysis to the operator and/or control module 125. For example, the diagnostic module 120 can determine the statistics for each panel 102 based on any suitable time frame, such as hourly, daily, weekly, or monthly.

診斷模組120亦能夠對陣列106提供錯誤監控。根據從局部轉換器104所接收的資料,診斷模組120可辨識一個或更多個具有瑕疵的面板102,例如失敗的面板102、失效的面板102、被遮蔽的面板102、髒污的面板102等。當應更換、修復、或是清潔具有瑕疵的面板102時,診斷模組120亦可通知操作者。The diagnostic module 120 is also capable of providing error monitoring to the array 106. Based on the information received from the local converter 104, the diagnostic module 120 can identify one or more panels 102 having defects, such as a failed panel 102, a failed panel 102, a shaded panel 102, a dirty panel 102. Wait. The diagnostic module 120 can also notify the operator when the defective panel 102 should be replaced, repaired, or cleaned.

控制模組125能夠藉由傳送控制信號至一個或更多個局部轉換器104而實際控制陣列106。例如,控制模組125可傳送繞行控制信號至對應的面板102失效的特定局部轉換器104。繞行控制信號使局部轉換器104繞過其之面板102,有效地自陣列106移去面板102而不會影響在相同串114中之其他面板102(如同被繞過的面板102)的操作。Control module 125 can actually control array 106 by transmitting control signals to one or more local converters 104. For example, control module 125 can transmit a detour control signal to a particular local converter 104 that corresponds to panel 102 failure. The bypass control signal causes local converter 104 to bypass panel 102 thereof, effectively removing panel 102 from array 106 without affecting the operation of other panels 102 (like bypassed panel 102) in the same string 114.

此外,控制模組125能夠傳送控制信號至一個或更多個局部轉換器104,其引導局部轉換器104調整其之輸出電壓或是電流。對於某些實施例而言,局部轉換器104的MPPT功能可移至中央陣列控制器110。對於該等實施例而言,控制模組125亦可校準各個面板102之MPP,及根據校準而傳送轉換比例命令至各個局部轉換器104,以使各個面板102操作於其自有的MPP,如控制模組125所判定者。In addition, control module 125 can transmit control signals to one or more local converters 104 that direct local converters 104 to adjust their output voltages or currents. For some embodiments, the MPPT function of local converter 104 can be moved to central array controller 110. For the embodiments, the control module 125 can also calibrate the MPP of each panel 102 and transmit a conversion ratio command to each local converter 104 according to the calibration so that each panel 102 operates on its own MPP, such as The person determined by the control module 125.

控制模組125亦可自操作者接收指令並啟動指令。例如,操作者可引導控制模組125系統100為倂聯型或是獨立型,且控制模組125可藉由將系統100設為倂聯型或是將該系統100獨立而回應操作者。The control module 125 can also receive commands from the operator and initiate commands. For example, the operator can direct the control module 125 system 100 to be inline or stand-alone, and the control module 125 can respond to the operator by setting the system 100 to be connected or independent of the system 100.

因此,藉由利用中央陣列控制器110,光伏打系統100以每個面板為基礎可提供更佳的利用。且,系統100藉由可混合不同來源而增加彈性。中央陣列控制器110亦對整個系統100提供較佳的保護及資料收集。Thus, by utilizing the central array controller 110, the photovoltaic system 100 can provide better utilization on a per panel basis. Moreover, system 100 increases flexibility by mixing different sources. The central array controller 110 also provides better protection and data collection for the entire system 100.

圖2為根據揭示內容之一實施例,顯示局部轉換器204。局部轉換器204可表示圖1中之局部轉換器104其中之一個,然而,應了解者為,局部轉換器204能在不脫離揭示內容的範圍中,以任何合適的方式設於能量產生系統中。此外,儘管所示者為耦接至稱為PV面板的能量產生裝置202,應了解者為,局部轉換器204可耦接至PV面板的單一電池或是光伏打陣列的面板子組合,或是耦接至另一能量產生裝置202,例如風力渦輪、燃料電池等。2 is a diagram showing a local converter 204, in accordance with an embodiment of the disclosure. The local converter 204 can represent one of the local converters 104 of FIG. 1, however, it should be appreciated that the local converter 204 can be placed in the energy generating system in any suitable manner without departing from the scope of the disclosure. . In addition, although shown as being coupled to an energy generating device 202, referred to as a PV panel, it should be understood that the local converter 204 can be coupled to a single battery of a PV panel or a panel combination of photovoltaic arrays, or It is coupled to another energy generating device 202, such as a wind turbine, a fuel cell, or the like.

局部轉換器204包含功率級206及局部控制器208,其更包含MPPT模組210及選用的通訊介面212。功率級206可包含DC-DC轉換器,其能從PV面板202接收面板電壓及電流做為輸入,並重新塑造輸入的電壓對電流關係,以產生輸出電壓及電流。The local converter 204 includes a power stage 206 and a local controller 208, which further includes an MPPT module 210 and an optional communication interface 212. Power stage 206 can include a DC-DC converter that can receive panel voltage and current from PV panel 202 as an input and reshape the input voltage versus current relationship to produce an output voltage and current.

局部控制器208的通訊介面212能提供局部轉換器204及中央陣列控制器(例如圖1中之中央陣列控制器110)之間的通訊通道。然而,對於局部轉換器204不與中央陣列控制器通訊的實施例而言,可以省略通訊介面212。The communication interface 212 of the local controller 208 can provide a communication path between the local converter 204 and a central array controller (e.g., the central array controller 110 of FIG. 1). However, for embodiments in which local converter 204 is not in communication with the central array controller, communication interface 212 may be omitted.

MPPT模組210能從面板202接收面板電壓及電流作為輸入,且若所使用的演算法有需要,可從功率級206接收輸出電壓及電流。根據該等輸入,MPPT模組210能提供信號以控制功率級206。在此方式中,局部控制器208之MPPT模組210能對於PV面板202提供MPPT。The MPPT module 210 can receive panel voltages and currents from the panel 202 as inputs, and can receive output voltages and currents from the power stage 206 if needed by the algorithm used. Based on the inputs, the MPPT module 210 can provide signals to control the power stage 206. In this manner, the MPPT module 210 of the local controller 208 can provide an MPPT for the PV panel 202.

藉由提供MPPT,MPPT模組210將對應的面板202保持於作用在實質上固定的操作點(亦即,對應於面板202之最大功率點的固定電壓Vpan 及電流Ipan )。因此,對於給定的固定太陽輻射而言,在穩定狀態中,若局部轉換器204對應於面板202之相對或是絕對最大功率點,則局部轉換器204之輸入功率是固定的(亦即,Ppan =Vpan Ipan )。此外,局部轉換器204具有相對高的效能,因此,輸出功率幾乎等於輸入功率(亦即,Pout ≒Ppan )。By providing an MPPT, the MPPT module 210 maintains the corresponding panel 202 at a substantially fixed operating point (i.e., a fixed voltage Vpan and current Ipan corresponding to the maximum power point of the panel 202). Thus, for a given fixed solar radiation, in the steady state, if the local converter 204 corresponds to the relative or absolute maximum power point of the panel 202, the input power of the local converter 204 is fixed (ie, P pan =V pan I pan ). In addition, the local converter 204 has a relatively high performance, and therefore, the output power is almost equal to the input power (i.e., P out ≒ P pan ).

圖3為根據揭示內容之一實施例,顯示局部轉換器204之細部。對於此實施例而言,功率級206實現為單一電感、四開關同步升降切換調節器,且MPPT模組210包含功率級調節器302、MPPT控制區塊304、及兩個類比到數位轉換器(ADC)306及308。FIG. 3 is a diagram showing details of local converter 204, in accordance with an embodiment of the disclosure. For this embodiment, the power stage 206 is implemented as a single inductor, four-switch synchronous lift switching regulator, and the MPPT module 210 includes a power stage regulator 302, an MPPT control block 304, and two analog to digital converters ( ADC) 306 and 308.

ADC 306能夠縮放及量子化類比面板電壓Vpan 及類比面板電流Ipan ,以分別產生數位面板電壓及數位面板電流。應了解者為,儘管所述為面板電壓及面板電流,對於任何合適的能量產生裝置202(例如風力渦輪、燃料電池等)而言,Vpan 可為輸出裝置電壓且Ipan 可為輸出裝置電流。耦接至MPPT控制區塊304及通訊介面212的ADC 306亦能夠提供數位面板電壓及電流至MPPT控制區塊304及通訊介面212。相似地,ADC 308能夠縮放及量子化類比輸出電壓及類比輸出電流,以分別產生數位輸出電壓及數位輸出電流。亦耦接至MPPT控制區塊304及通訊介面212的ADC 308能提供數位輸出電壓及電流信號至MPPT控制區塊304及通訊介面212。通訊介面212能提供ADC 306所產生的數位面板電壓及電流信號及ADC 308所產生的數位輸出電壓及電流信號至中央陣列控制器。The ADC 306 is capable of scaling and quantizing the analog panel voltage Vpan and the analog panel current Ipan to produce a digital panel voltage and a digital panel current, respectively. It should be appreciated that although the panel voltage and panel current are, for any suitable energy generating device 202 (eg, wind turbine, fuel cell, etc.), V pan can be the output device voltage and I pan can be the output device current . The ADC 306 coupled to the MPPT control block 304 and the communication interface 212 can also provide digital panel voltage and current to the MPPT control block 304 and the communication interface 212. Similarly, the ADC 308 can scale and quantize the analog output voltage and the analog output current to produce a digital output voltage and a digital output current, respectively. The ADC 308, which is also coupled to the MPPT control block 304 and the communication interface 212, can provide digital output voltage and current signals to the MPPT control block 304 and the communication interface 212. The communication interface 212 can provide the digital panel voltage and current signals generated by the ADC 306 and the digital output voltage and current signals generated by the ADC 308 to the central array controller.

耦接至功率級調節器302的MPPT控制區塊304能從ADC 306接收數位面板電壓及電流,並從ADC 308接收數位輸出電壓及電流。根據該等數位信號其中至少一些。MPPT控制區塊304能產生用於功率級調節器302的轉換比例命令。轉換比例命令包含用於功率級調節器302的轉換比例,以在操作功率級206時使用。對於其中MPPT控制區塊304能根據數位面板電壓及電流(而非根據數位輸出電壓及電流)而產生轉換命令的實施例而言,ADC 308僅提供數位輸出電壓及電流至通訊介面212,而不會至MPPT控制區塊304。The MPPT control block 304 coupled to the power stage regulator 302 can receive the digital panel voltage and current from the ADC 306 and receive the digital output voltage and current from the ADC 308. Based on at least some of the digital signals. The MPPT control block 304 can generate a conversion ratio command for the power stage regulator 302. The conversion ratio command includes a conversion ratio for the power stage regulator 302 for use in operating the power stage 206. For embodiments in which the MPPT control block 304 can generate a conversion command based on the digital panel voltage and current (rather than the digital output voltage and current), the ADC 308 only provides the digital output voltage and current to the communication interface 212 instead of The MPPT control block 304 is reached.

對於某些實施例而言,功率級調節器302包含升降模式控制邏輯及數位脈衝寬度調節器。此功率級調節器302能藉由根據MPPT控制區塊304所提供的轉換比例產生脈衝寬度調變(PWM)信號,而在不同模式中操作功率級206,MPPT控制區塊304可校準用於功率級206之PWM信號的轉換比例。For certain embodiments, power stage regulator 302 includes lift mode control logic and a digital pulse width adjuster. The power stage regulator 302 can operate the power stage 206 in different modes by generating a pulse width modulation (PWM) signal according to the conversion ratio provided by the MPPT control block 304, which can be calibrated for power. The conversion ratio of the PWM signal of stage 206.

功率級調節器302耦接至功率級206,且能藉由使用工作週期及一模式來操作功率級206,而根據MPPT控制區塊304所產生的轉換比例操作功率級206,工作週期及一模式係根據轉換比例而判定。對於其中功率級206實現為升降轉換器之實施例而言,功率級206之可能模式包含降級模式、升級模式、升降模式、旁通模式及停止模式。The power stage regulator 302 is coupled to the power stage 206 and can operate the power stage 206 by using the duty cycle and a mode, and operates the power stage 206, the duty cycle, and a mode according to the conversion ratio generated by the MPPT control block 304. It is determined according to the conversion ratio. For embodiments in which power stage 206 is implemented as a buck converter, the possible modes of power stage 206 include a degraded mode, an upgrade mode, a lift mode, a bypass mode, and a stop mode.

對於此實施例而言,當轉換比例CR落在升降範圍內時,功率級調節器302能在升降模式中操作功率級206;當轉換比例CR小於升降範圍時,功率級調節器302能在降級模式中操作功率級206;當轉換比例CR大於升降範圍時,功率級調節器302能在升級模式中操作功率級206。升降範圍包含實質上等於1的值。例如,對於一特定實施例而言,升降範圍包含0.95到1.05。當功率級206為降級模式時,若CR小於最大降級轉換比例CRbuck,max ,功率級調節器302能完全以降級構造操作功率級206。相似地,若CR大於最小升級轉換比例CRboost,min ,功率級調節器302能完全以升級構造操作功率級206。For this embodiment, when the conversion ratio CR falls within the lift range, the power stage regulator 302 can operate the power stage 206 in the lift mode; when the conversion ratio CR is less than the lift range, the power stage adjuster 302 can be degraded The power stage 206 is operated in mode; when the conversion ratio CR is greater than the lift range, the power stage regulator 302 can operate the power stage 206 in the upgrade mode. The lift range contains a value substantially equal to one. For example, for a particular embodiment, the lift range includes 0.95 to 1.05. When the power stage 206 is in the degraded mode, if the CR is less than the maximum degraded conversion ratio CR buck,max , the power stage regulator 302 can fully operate the power stage 206 in a degraded configuration. Similarly, if CR is greater than the minimum upgrade conversion ratio CR boost,min , power stage regulator 302 can operate power stage 206 entirely in an upgrade configuration.

最後,當轉換比例大於CRbuck,max 且小於CRboost,min 時,功率級調節器302能交替地在降級構成及升級構成中操作功率級206。在此情況中,功率級調節器302可實施分時多工,以在降級構成及升級構成之間交替。因此,當轉換比例較接近CRbuck,max 時,功率級調節器302在降級構成中操作功率級206較在升級構成中操作功率級206為頻繁。相似地,當轉換比例較接近CRboost,min 時,功率級調節器302在升級構成中操作功率級206較在降級構成中操作功率級206為頻繁。當轉換比例靠近CRbuck,max 及CRboost,min 之間的中間點時,功率級調節器302在降級構成中操作功率級206與在升級構成中操作功率級206的頻率不相上下。例如,當功率級206為在升降模式中時,功率級調節器302可平均地在降級構成及升級構成中交替操作功率級206。Finally, when the conversion ratio is greater than CR buck,max and less than CR boost,min , the power stage regulator 302 can alternately operate the power stage 206 in the degraded configuration and upgrade configuration. In this case, the power stage regulator 302 can implement time division multiplexing to alternate between the degraded configuration and the upgrade configuration. Therefore, when the conversion ratio is closer to CR buck,max , the power stage regulator 302 operates the power stage 206 in the degraded configuration more frequently than the operating power level 206 in the upgrade configuration. Similarly, when the conversion ratio is closer to CR boost,min , the power stage regulator 302 operates the power stage 206 in the upgrade configuration more frequently than the operational power level 206 in the degraded configuration. When the conversion ratio is near the intermediate point between CR buck,max and CR boost,min , the power stage regulator 302 operates in a degraded configuration with the power level 206 being comparable to the frequency of operating the power stage 206 in the upgrade configuration. For example, when the power stage 206 is in the hoist mode, the power stage regulator 302 can alternately operate the power stage 206 in a degraded configuration and upgrade configuration.

對於所述實施例而言,功率級206包含四個開關310a-d,及電感L及電容C。對於某些實施例而言,開關310可包含N-通道功率MOSFET。對於一特定實施例而言,該等電晶體可包含矽上的氮化鎵裝置。然而,應了解者為,在不脫離揭示內容範圍之內,開關310可為其他適合的方式實現。此外,功率級206可包含一個或更多個驅動器(未顯示於圖3中),以驅動開關310(例如電晶體之閘極)。例如,對於一特定實施例而言,第一驅動器可耦接至功率級調節器302與電晶體310a及310b之間,以驅動電晶體310a及310b之閘極,第二驅動器可耦接至功率級調節器302與電晶體310c及310d之間,以驅動電晶體310c及310d之閘極。對此實施例而言,功率級調節器302所產生之PWM信號供應至驅動器,根據該等信號,分別驅動其個別的電晶體310之閘極。For the described embodiment, power stage 206 includes four switches 310a-d, and an inductor L and a capacitor C. For some embodiments, switch 310 can include an N-channel power MOSFET. For a particular embodiment, the transistors can include a gallium nitride device on the crucible. However, it should be understood that switch 310 can be implemented in other suitable manners without departing from the scope of the disclosure. Additionally, power stage 206 can include one or more drivers (not shown in FIG. 3) to drive switch 310 (eg, a gate of a transistor). For example, for a particular embodiment, the first driver can be coupled between the power stage regulator 302 and the transistors 310a and 310b to drive the gates of the transistors 310a and 310b, and the second driver can be coupled to the power. The stage regulator 302 is coupled between the transistors 310c and 310d to drive the gates of the transistors 310c and 310d. For this embodiment, the PWM signal generated by power stage regulator 302 is supplied to the driver, and the gates of its individual transistors 310 are driven in accordance with the signals.

對於所述之實施例而言,在操作功率級206中,功率級調節器302能產生數位脈衝,以控制功率級206的開關310。對於下述實施例而言,開關包含電晶體。對於降級構成而言,功率級調節器302關閉電晶體310c並開啟電晶體310d。然後,脈衝交替地開啟及關閉電晶體310a及電晶體310b,使功率級206操作為降級調節器。對此實施例而言,電晶體310a之工作週期等於工作週期D,其係包含於MPPT控制區塊304所產生的轉換比例命令中。對於升級模式而言,功率級調節器302開啟電晶體310a及關閉電晶體310b。脈衝交替地開啟及關閉電晶體310c及電晶體310d,以使功率級206操作為升級調節器。對此實施例而言,電晶體310之工作週期等於1-D。For the described embodiment, in operating power stage 206, power stage regulator 302 can generate digital pulses to control switch 310 of power stage 206. For the embodiments described below, the switch comprises a transistor. For the degraded configuration, the power stage regulator 302 turns off the transistor 310c and turns on the transistor 310d. Then, the pulses alternately turn on and off the transistor 310a and the transistor 310b, causing the power stage 206 to operate as a degrading regulator. For this embodiment, the duty cycle of transistor 310a is equal to duty cycle D, which is included in the conversion ratio command generated by MPPT control block 304. For the upgrade mode, the power stage regulator 302 turns on the transistor 310a and turns off the transistor 310b. The pulses alternately turn on and off transistor 310c and transistor 310d to operate power stage 206 as an upgrade regulator. For this embodiment, the duty cycle of transistor 310 is equal to 1-D.

對於升降模式而言,功率級調節器302在降級及升級構成之間執行分時多工,如上述。功率級調節器302產生用於電晶體310a及310b的降級開關對的控制信號,及用於電晶體310c及310d的升級開關對的控制信號。電晶體310a的工作週期固定於對應CRbuck,max 的工作週期,電晶體310c的工作週期固定於對應CRboost,min 的工作週期。經過一段指定時間期間的降級構成及升級構成操作之間的比例為與D呈線性比例。For the lift mode, the power stage regulator 302 performs time division multiplexing between the downgrade and upgrade configurations, as described above. Power stage regulator 302 generates control signals for the degraded switch pairs of transistors 310a and 310b, and control signals for the upgrade switch pairs of transistors 310c and 310d. The duty cycle of the transistor 310a is fixed to the duty cycle corresponding to CR buck,max , and the duty cycle of the transistor 310c is fixed to the duty cycle corresponding to CR boost,min . The ratio between the degraded composition and the upgrade constituent operations over a specified period of time is linearly proportional to D.

當輸出電壓接近面板電壓時,功率級206係操作於升降模式中。在此情況中,對於所述實施例而言,電感電流漣波及電壓切換造成的應力遠小於SEPIC及習知的升降轉換器所具有者。且,相較於習知的升降轉換器,所述的功率級206可達到更高的效能。When the output voltage approaches the panel voltage, the power stage 206 operates in the lift mode. In this case, for the described embodiment, the stress caused by the inductor current chopping and voltage switching is much less than that of the SEPIC and conventional buck converters. Moreover, the power stage 206 can achieve higher performance than conventional lift converters.

對於某些實施例而言,如以下將與圖4一同詳細敘述者,MPPT控制區塊304能操作在以下四個模式其中之一個:休眠模式、追蹤模式、保持模式、及旁通模式。當面板電壓少於預定的初級臨限電壓時,MPPT控制區塊304可操作於休眠模式中。在休眠模式中,MPPT控制區塊304使電晶體310a-d關閉。例如,對於某些實施例而言,當MPPT控制區塊304為休眠模式時,MPPT控制區塊304能產生轉換比例命令,其促使功率級調節器302關閉電晶體310a-d。因此,功率級206係在停止模式,且面板202被繞過,如此則能有效地避免從使用面板202的光伏打系統中之面板202。For certain embodiments, as will be described in greater detail below with respect to FIG. 4, MPPT control block 304 can operate in one of four modes: sleep mode, tracking mode, hold mode, and bypass mode. When the panel voltage is less than a predetermined primary threshold voltage, the MPPT control block 304 can operate in a sleep mode. In sleep mode, MPPT control block 304 turns transistors 310a-d off. For example, for some embodiments, when MPPT control block 304 is in sleep mode, MPPT control block 304 can generate a conversion ratio command that causes power stage regulator 302 to turn off transistors 310a-d. Thus, power stage 206 is in stop mode and panel 202 is bypassed, thus effectively avoiding panel 202 from the photovoltaic system using panel 202.

當面板電壓升高到高於初級臨限電壓時,MPPT控制區塊304操作於追蹤模式。在此模式中,MPPT控制區塊304對面板202執行最大功率點追蹤,以判定功率級調節器302之最佳轉換比例。且在此模式中,功率級調節器302會取決於目前產生的轉換比例命令,而將功率級206置於降級模式、升級模式、或是升降模式中。When the panel voltage rises above the primary threshold voltage, the MPPT control block 304 operates in the tracking mode. In this mode, MPPT control block 304 performs maximum power point tracking on panel 202 to determine the optimal conversion ratio of power stage regulator 302. And in this mode, the power stage regulator 302 will place the power stage 206 in a degraded mode, an upgrade mode, or a lift mode depending on the currently generated conversion ratio command.

此外,對於某些實施例而言,MPPT控制區塊304亦可包含停止暫存器,其可藉由系統之操作者或是任何合適的控制程式(例如設於中央陣列控制器中之控制程式)修改,以強制MPPT控制區塊304保持功率級206為停止模式。對於此實施例而言,除非(i)面板電壓超出初級臨限電壓,及(ii)停止暫存器表示MPPT控制區塊304會將功率級206移出停止模式,否則MPPT控制區塊304不會開始操作於追蹤模式中。In addition, for some embodiments, the MPPT control block 304 may also include a stop register, which may be operated by a system operator or any suitable control program (eg, a control program located in the central array controller). The modification is to force the MPPT control block 304 to maintain the power stage 206 in the stop mode. For this embodiment, unless (i) the panel voltage exceeds the primary threshold voltage, and (ii) the stop register indicates that the MPPT control block 304 will move the power stage 206 out of the stop mode, the MPPT control block 304 will not Start working in tracking mode.

當MPPT控制區塊304找出最佳轉換比例時,MPPT控制區塊304可操作於保持模式一段預定期間的時間。在此模式中,MPPT控制區塊304可繼續提供與在追蹤模式中被判定為最佳轉換比例相同的轉換比例予功率級調節器302。且在此模式中,如在追蹤模式中,功率級206係取決於轉換比例命令所提供的最佳轉換比例,而處於降級模式、升級模式、或是升降模式中。在經過預定期間的時間之後,MPPT控制區塊304可恢復為追蹤模式,以確保最佳的轉換比例不會改變,或是若面板202之條件改變,可找出新的最佳轉換比例。When the MPPT control block 304 finds the optimal conversion ratio, the MPPT control block 304 can operate in the hold mode for a predetermined period of time. In this mode, MPPT control block 304 may continue to provide the same conversion ratio to power stage adjuster 302 as determined in the tracking mode. And in this mode, as in the tracking mode, the power stage 206 is in the degraded mode, the upgrade mode, or the lift mode depending on the optimal conversion ratio provided by the conversion ratio command. After a predetermined period of time has elapsed, the MPPT control block 304 can be restored to the tracking mode to ensure that the optimal conversion ratio does not change, or if the conditions of the panel 202 change, a new optimal conversion ratio can be found.

如連同圖5-8之以下更詳盡的說明,當光伏打陣列中之各個面板(例如面板202)被均勻照亮,且面板202之間沒有不匹配時,中央陣列控制器可設置MPPT控制區塊304與功率級206為旁通模式。在旁通模式中,對於某些實施例而言,電晶體310a及310d為開啟,電晶體310b及310c為關閉,以使面板電壓等於輸出電壓。對於其他實施例而言,功率級206可包含選用的開關312,功率級206可耦接輸入埠至輸出埠,以使輸出電壓等於面板電壓。在此方式中,當不需要局部MPPT時,實質上可自系統移除局部轉換器204,藉此藉由減少有關局部轉換器204之損失,而最大化效能,並增加壽命。As explained in more detail below with respect to Figures 5-8, the central array controller can set the MPPT control area when the various panels in the photovoltaic array (e.g., panel 202) are uniformly illuminated and there is no mismatch between the panels 202. Block 304 and power stage 206 are in a bypass mode. In the bypass mode, for some embodiments, transistors 310a and 310d are on, and transistors 310b and 310c are off so that the panel voltage is equal to the output voltage. For other embodiments, power stage 206 can include an optional switch 312 that can couple input 埠 to output 以 such that the output voltage is equal to the panel voltage. In this manner, local converter 204 can be substantially removed from the system when local MPPT is not required, thereby maximizing performance and increasing lifetime by reducing losses associated with local converter 204.

因此,如上述,MPPT控制區塊304能操作於休眠模式中,且將功率級206置於繞過面板202的停止模式中。MPPT控制區塊304亦能操作於追蹤模式或是保持模式。不論在何種模式中,MPPT控制區塊304能將功率級206置於降級模式、升級模式、及升降模式其中一個模式中。最後,MPPT控制區塊304能操作於旁通模式中,且將功率級206置於旁通模式中,在旁通模式中,會繞過局部轉換器204,容許面板202直接耦接至陣列中的其他面板202。Thus, as described above, MPPT control block 304 can operate in a sleep mode and place power stage 206 in a stop mode that bypasses panel 202. The MPPT control block 304 can also operate in either a tracking mode or a hold mode. Regardless of the mode, the MPPT control block 304 can place the power stage 206 in one of the degraded mode, the upgrade mode, and the elevating mode. Finally, the MPPT control block 304 can operate in the bypass mode and place the power stage 206 in the bypass mode. In the bypass mode, the local converter 204 is bypassed, allowing the panel 202 to be directly coupled into the array. Other panels 202.

藉由以此種方式操作局部轉換器204,包含面板202之該排面板的串電流與個別的面板電流無關。反之,係藉由串電壓及總串功率來設定串電流。此外,沒有被遮蔽的面板202可繼續操作於最高功率點,不用考慮串中之其他面板的部份被遮蔽的條件。By operating the local converter 204 in this manner, the string current of the row of panels comprising the panel 202 is independent of the individual panel currents. Conversely, the string current is set by the string voltage and the total string power. In addition, the unmasked panel 202 can continue to operate at the highest power point without regard to the condition that portions of other panels in the string are obscured.

對於一替換性實施例而言,當MPPT控制區塊304找出最佳轉換比例時,當該最佳轉換比例對應於功率級206的升降模式時,MPPT控制區塊304可不操作於保持模式而是操作於旁通模式中。在升降模式中,輸出電壓接近面板電壓。因此,面板202可藉由繞過局部轉換器204而操作於接近其最大功率點,如此則增加效能。如前述之實施例,MPPT控制區塊304定期地自旁通模式恢復為追蹤模式,以驗證最佳轉換比例是否落於升降模式範圍之內。For an alternative embodiment, when the MPPT control block 304 finds the optimal conversion ratio, the MPPT control block 304 may not operate in the hold mode when the optimal conversion ratio corresponds to the lift mode of the power stage 206. It is operated in the bypass mode. In the lift mode, the output voltage is close to the panel voltage. Thus, panel 202 can operate close to its maximum power point by bypassing local converter 204, thus increasing performance. As with the previous embodiment, the MPPT control block 304 periodically reverts from the bypass mode to the tracking mode to verify that the optimal conversion ratio falls within the lift mode range.

對於某些實施例而言,MPPT控制區塊304能逐漸調整用於功率級調節器302之轉換比例,而非一般的階梯式變化,以避免加諸於功率級206之電晶體、電感、及電容的應力。對於某些實施例而言,MPPT控制區塊304能實現不同的MPPT技術,以調整面板電壓或是傳導率,而非調整轉換比例。此外,MPPT控制區塊304可調整參考電壓,而非調整轉換比例,以用於動態的輸入電壓調節。For some embodiments, the MPPT control block 304 can gradually adjust the conversion ratio for the power stage regulator 302 instead of the general stepwise variation to avoid the transistors, inductors, and The stress of the capacitor. For some embodiments, the MPPT control block 304 can implement different MPPT techniques to adjust the panel voltage or conductivity rather than adjusting the conversion ratio. In addition, the MPPT control block 304 can adjust the reference voltage instead of adjusting the conversion ratio for dynamic input voltage regulation.

此外,MPPT控制區塊304可致能功率級206之停止模式及其他模式之間的相對快速及順暢的轉換。MPPT控制區塊304可包含非揮發性記憶體,其能儲存先前的最大功率點狀態,例如轉換比例等。對於此實施例而言,當MPPT控制區塊304轉換到休眠模式時,最大功率點狀態係儲存於此非揮發性記憶體中。當MPPT控制區塊304其後回歸到追蹤模式時,所儲存的最大功率點狀態可用作為初始的最大功率點狀態。在此方式中,對功率級206而言,停止及其他模式之間的轉換時間可明顯減少。In addition, MPPT control block 304 can enable relatively fast and smooth transitions between the stop mode of power stage 206 and other modes. The MPPT control block 304 can include non-volatile memory that can store previous maximum power point states, such as conversion ratios and the like. For this embodiment, when the MPPT control block 304 transitions to the sleep mode, the maximum power point state is stored in this non-volatile memory. When the MPPT control block 304 subsequently returns to the tracking mode, the stored maximum power point state can be used as the initial maximum power point state. In this manner, for power stage 206, the transition time between stop and other modes can be significantly reduced.

對於某些實施例而言,MPPT控制區塊304亦能對局部轉換器204提供過功率且/或過電壓保護。因為信號Vpan 及Ipan 經由ADC 306前向饋入MPPT控制區塊304,MPPT控制方塊304嘗試擷取最大功率。若功率級206輸出為開路電路,則局部轉換器204之輸出電壓達到最大值。因此,對於過功率保護而言,局部轉換器204之輸出電流可用作為開啟及關閉MPPT控制區塊304的信號。對此實施例而言,若輸出電流下降到太低,則可由MPPT控制區塊304設定轉換比例,以使面板電壓幾乎等於輸出電壓。For some embodiments, MPPT control block 304 can also provide over-power and/or over-voltage protection to local converter 204. Because signals Vpan and Ipan are forwarded to MPPT control block 304 via ADC 306, MPPT control block 304 attempts to draw maximum power. If the power stage 206 is output as an open circuit, the output voltage of the local converter 204 reaches a maximum value. Thus, for over power protection, the output current of local converter 204 can be used as a signal to turn MPPT control block 304 on and off. For this embodiment, if the output current drops too low, the conversion ratio can be set by the MPPT control block 304 such that the panel voltage is nearly equal to the output voltage.

對於過電壓保護而言,MPPT控制區塊304可對轉換比例命令具有MPPT控制區塊304不會超過的最大轉換比例。因此,若轉換比例持續高於最大轉換比例,則MPPT控制區塊304將轉換比例限制於最大值。如此則能確保輸出電壓不會增加到超過對應的最大值。最大轉換比例的值可為固定性的或是適應性的。舉例而言,可藉由感應面板電壓及根據功率級206的轉換比例來計算對應於轉換比例的次一程式化值的輸出電壓的估計值,而達成適應性的轉換比例限制。For overvoltage protection, the MPPT control block 304 can have a maximum conversion ratio for the conversion ratio command that the MPPT control block 304 does not exceed. Therefore, if the conversion ratio continues to be higher than the maximum conversion ratio, the MPPT control block 304 limits the conversion ratio to the maximum value. This ensures that the output voltage does not increase beyond the corresponding maximum. The value of the maximum conversion ratio can be fixed or adaptive. For example, an adaptive conversion ratio limit can be achieved by sensing the panel voltage and calculating the estimated value of the output voltage corresponding to the next stylized value of the conversion ratio according to the conversion ratio of the power stage 206.

此外,對於所述的實施例而言,功率級206包含選用的單向開關314。當功率級206為在停止模式中時,可包含選用的開關314以容許面板202被繞過,藉此從陣列移除面板202,並容許其他面板202繼續操作。對於特定的實施例而言,單向開關314可包含二極體。然而,應了解者為,在不脫離揭示內容的範圍之內,單向開關314可包含任何其他合適類型的單向開關。Moreover, for the described embodiment, power stage 206 includes an optional one-way switch 314. When the power stage 206 is in the stop mode, an optional switch 314 can be included to allow the panel 202 to be bypassed, thereby removing the panel 202 from the array and allowing the other panels 202 to continue operating. For a particular embodiment, the unidirectional switch 314 can include a diode. However, it should be understood that the unidirectional switch 314 can include any other suitable type of unidirectional switch, without departing from the scope of the disclosure.

圖4為根據揭示內容之一實施例,顯示在局部轉換器204中實現MPPT之方法400。方法400之實施例僅為說明性。可在不脫離揭示內容的範圍之內,實現方法400的其他實施例。4 is a diagram showing a method 400 of implementing MPPT in local converter 204, in accordance with an embodiment of the disclosure. The embodiment of method 400 is merely illustrative. Other embodiments of method 400 may be implemented without departing from the scope of the disclosure.

方法400以MPPT控制區塊304操作在休眠模式中作為開始(步驟401)。例如,MPPT控制區塊304可產生轉換比例命令,以促使功率級調節器302關閉功率級206之電晶體310a-d,藉此將功率級206置於停止模式,且繞過面板202。The method 400 begins with the MPPT control block 304 operating in the sleep mode (step 401). For example, MPPT control block 304 may generate a conversion ratio command to cause power stage regulator 302 to turn off transistors 310a-d of power stage 206, thereby placing power stage 206 in a stop mode and bypassing panel 202.

當在休眠模式中時,MPPT控制區塊304監控面板電壓Vpan ,並比較面板電壓與初級臨限電壓Vth (步驟402)。例如,ADC 306可將面板電壓從類比信號轉換為數位信號,並將數位面板電壓提供至MPPT控制區塊304,其儲存有初級臨限電壓,以與數位面板電壓作比較。While in the sleep mode, the MPPT control block 304 monitors the panel voltage Vpan and compares the panel voltage to the primary threshold voltage Vth (step 402). For example, ADC 306 can convert the panel voltage from an analog signal to a digital signal and provide the digital panel voltage to MPPT control block 304, which stores a primary threshold voltage for comparison with the digital panel voltage.

只要面板電壓保持在初級臨限電壓之下(步驟402),MPPT控制區塊304就持續操作於休眠模式中。此外,如上述,當停止暫存器表示功率級206保持為停止模式時,MPPT控制區塊304保持於休眠模式中。然而,一但面板電壓超出初級臨限電壓(步驟402),MPPT控制區塊304產生用以操作功率級206的轉換比例命令,轉換比例命令包含初始的轉換比例(步驟403)。例如,對於一實施例而言,MPPT控制區塊304以轉換比例1作為開始。或者,MPPT控制區塊304能儲存在先前的追蹤模式中所判定的最佳轉換比例。對於此實施例而言,MPPT控制區塊304可將轉換比例初始化為與先前判定的最佳轉換比例相同。且,MPPT控制區塊304所產生的轉換比例命令供應至功率級調節器302,其使用初始轉換比例操作功率級206。As long as the panel voltage remains below the primary threshold voltage (step 402), the MPPT control block 304 continues to operate in the sleep mode. Further, as described above, when the stop register indicates that the power stage 206 remains in the stop mode, the MPPT control block 304 remains in the sleep mode. However, once the panel voltage exceeds the primary threshold voltage (step 402), the MPPT control block 304 generates a conversion ratio command to operate the power stage 206, the conversion ratio command including the initial conversion ratio (step 403). For example, for an embodiment, MPPT control block 304 begins with a conversion ratio of one. Alternatively, the MPPT control block 304 can store the optimal conversion ratio determined in the previous tracking mode. For this embodiment, MPPT control block 304 may initialize the conversion ratio to be the same as the previously determined optimal conversion ratio. Moreover, the conversion ratio command generated by the MPPT control block 304 is supplied to the power stage regulator 302, which operates the power stage 206 using the initial conversion ratio.

此時,MPPT控制區塊304監控面板電流Ipan 及輸出電流Iout ,並比較面板電流及輸出電流與臨限電流Ith (步驟404)。例如,ADC 306可將面板電流從類比信號轉換為數位信號,並將數位面板電流供應至MPPT控制區塊304,ADC 308可將輸出電流從類比信號轉換為數位信號,且供應數位輸出電流至MPPT控制區塊304,其儲存用以與數位面板電流及數位輸出電流作比較的臨限電流。只要電流Ipan 及Iout 其中至少之一個仍維持低於臨限電流(步驟404),MPPT控制區塊304就會持續監控電流位準。然而,一但該等電流皆超出臨限電流(步驟404),則MPPT控制區塊304開始操作於追蹤模式中,其包含初始化設定追蹤變數T為1,且初始化一計數器(步驟406)。At this time, the MPPT control block 304 monitors the panel current I pan and the output current I out and compares the panel current and the output current with the threshold current I th (step 404). For example, the ADC 306 can convert the panel current from an analog signal to a digital signal and supply the digital panel current to the MPPT control block 304. The ADC 308 can convert the output current from an analog signal to a digital signal and supply the digital output current to the MPPT. Control block 304 stores a threshold current for comparison with the digital panel current and the digital output current. As long as at least one of the currents Ipan and Iout remains below the threshold current (step 404), the MPPT control block 304 continuously monitors the current level. However, once the currents exceed the threshold current (step 404), the MPPT control block 304 begins operating in the tracking mode, which includes initializing the set tracking variable T to one and initializing a counter (step 406).

儘管未示於圖4的方法400中,應了解者為,在追蹤模式中時,MPPT控制區塊304可繼續監控面板電壓,及比較面板電壓與少於初級臨限電壓的次級臨限電壓。若面板電壓減少到低於次級臨限電壓,則MPPT控制區塊304恢復為休眠模式。藉由使用少於初級臨限電壓的次級臨限電壓,MPPT控制區塊304對雜訊免疫,如此則能避免MPPT控制區塊304經常在休眠及追蹤模式之間切換。Although not shown in the method 400 of FIG. 4, it should be appreciated that in the tracking mode, the MPPT control block 304 can continue to monitor the panel voltage and compare the panel voltage to a secondary threshold voltage that is less than the primary threshold voltage. . If the panel voltage is reduced below the secondary threshold voltage, the MPPT control block 304 reverts to the sleep mode. By using a secondary threshold voltage that is less than the primary threshold voltage, the MPPT control block 304 is immune to noise, thus preventing the MPPT control block 304 from frequently switching between sleep and tracking modes.

在設定追蹤變數之值及初始化計數器之後,MPPT控制區塊304計算面板202之初始功率(步驟408)。例如,ADC 306可提供數位面板電流及面板電壓信號(Ipan 及Vpan )至MPPT控制區塊304,其後,MPPT控制區塊304將此等信號相乘,以判定裝置(或是面板)功率(Ipan Vpan )的初始值。After setting the value of the tracking variable and initializing the counter, MPPT control block 304 calculates the initial power of panel 202 (step 408). For example, the ADC 306 can provide digital panel current and panel voltage signals ( Ipan and Vpan ) to the MPPT control block 304, after which the MPPT control block 304 multiplies the signals to determine the device (or panel). The initial value of power (I pan . V pan ).

在計算初始功率之後,MPPT控制區塊304以第一方向修改轉換比例,並產生包含修改過的轉換比例的轉換比例命令(步驟410)。例如,對於某些實施例而言,MPPT控制區塊304可增加轉換比例。對於其他實施例而言,MPPT控制區塊304可減少轉換比例。在經過一段時間使系統穩定之後,MPPT控制區塊304計算面板202的目前功率(步驟412)。舉例而言,ADC 306可提供數位面板電流及面板電壓信號至MPPT控制區塊304,其後,MPPT控制區塊304將此等信號相乘,以判定面板功率之目前值。After calculating the initial power, the MPPT control block 304 modifies the conversion ratio in a first direction and generates a conversion ratio command including the modified conversion ratio (step 410). For example, for certain embodiments, MPPT control block 304 may increase the conversion ratio. For other embodiments, MPPT control block 304 may reduce the conversion ratio. After the system has stabilized over time, the MPPT control block 304 calculates the current power of the panel 202 (step 412). For example, ADC 306 can provide digital panel current and panel voltage signals to MPPT control block 304, after which MPPT control block 304 multiplies these signals to determine the current value of panel power.

然後,MPPT控制區塊304比較現在計算的功率與先前計算的功率,其為初始功率(步驟414)。若目前功率大於先前功率(步驟414),則MPPT控制區塊304以與先前修改的相同方向修改轉換比例,並產生更新的轉換比例命令(步驟416)。對於某些實施例而言,以等量增加將轉換比例修改得更高或是更低。對於其他實施例而言,轉換比例能以線性或是非線性增量而修改得更高或是更低,以最佳化系統響應。例如,對於某些系統而言,若轉換比例與最佳值差距甚大,則隨著愈益靠近最佳值,較佳者為先使用較大的增量,然後再使用較小的增量。MPPT control block 304 then compares the now calculated power with the previously calculated power, which is the initial power (step 414). If the current power is greater than the previous power (step 414), the MPPT control block 304 modifies the conversion ratio in the same direction as the previous modification and generates an updated conversion ratio command (step 416). For some embodiments, the conversion ratio is modified to be higher or lower with an equal increase. For other embodiments, the conversion ratio can be modified to be higher or lower in linear or non-linear increments to optimize system response. For example, for some systems, if the conversion ratio is very different from the optimal value, then as you get closer to the optimal value, it is better to use a larger increment first, and then use a smaller increment.

MPPT控制區塊304亦判定追蹤變數T是否等於1,表示因為轉換比例在先前計算之前已經改變過,轉換比例以與先前計算相同的方向改變(步驟418)。因此,當T等於1時,面板功率增加,其與轉換比例的先前改變是相同方向。在此情況中,在給系統一段時間使其穩定之後,MPPT控制區塊304再次計算面板202之目前功率(步驟412),並比較目前功率與先前功率(步驟414)。然而,若MPPT控制區塊304判定T不等於1,表示因為轉換比例在先前計算之前已經改變過,轉換比例以與先前計算相反的方向改變(步驟418),則MPPT控制區塊304設定T為1,並增加計數器(步驟420)。The MPPT control block 304 also determines if the tracking variable T is equal to 1, indicating that the conversion ratio has changed in the same direction as the previous calculation because the conversion ratio has changed before the previous calculation (step 418). Therefore, when T is equal to 1, the panel power increases, which is the same direction as the previous change in the conversion ratio. In this case, after the system has been stabilized for a period of time, the MPPT control block 304 again calculates the current power of the panel 202 (step 412) and compares the current power with the previous power (step 414). However, if MPPT control block 304 determines that T is not equal to 1, indicating that the conversion ratio has changed in the opposite direction to the previous calculation (step 418) because the conversion ratio has changed before the previous calculation (step 418), then MPPT control block 304 sets T to 1, and increment the counter (step 420).

然後,MPPT控制區塊304判定計數器是否超出計數器臨限值Cth (步驟422)。若目前計數器之值未超出計數器臨限值(步驟422),在給系統一段時間使其穩定之後,MPPT控制區塊304再次計算面板202之目前功率(步驟412),並比較目前功率與先前功率(步驟414),以判定面板功率是增加中或是減少中。MPPT control block 304 then determines if the counter exceeds counter threshold Cth (step 422). If the current counter value does not exceed the counter threshold (step 422), after the system is stabilized for a period of time, the MPPT control block 304 again calculates the current power of the panel 202 (step 412) and compares the current power with the previous power. (Step 414) to determine if the panel power is increasing or decreasing.

若MPPT控制區塊304判定目前功率並未大於先前功率(步驟414),則MPPT控制區塊304以與先前修改相反的方向修改轉換比例,並產生更新的轉換比例命令(步驟424)。MPPT控制區塊304亦判定追蹤變數T是否等於2,T若等於2則表示因為轉換比例在先前計算之前已經改變過,以與先前計算相反的方向修改轉換比例(步驟426)。在此情況中,在給系統一段時間使其穩定之後,MPPT控制區塊304再次計算面板202之目前功率(步驟412),並比較目前功率與先前功率(步驟414)。If the MPPT control block 304 determines that the current power is not greater than the previous power (step 414), the MPPT control block 304 modifies the conversion ratio in the opposite direction to the previous modification and generates an updated conversion ratio command (step 424). The MPPT control block 304 also determines if the tracking variable T is equal to 2, and a T equal to 2 indicates that the conversion ratio has been modified in the opposite direction to the previous calculation because the conversion ratio has changed before the previous calculation (step 426). In this case, after the system has been stabilized for a period of time, the MPPT control block 304 again calculates the current power of the panel 202 (step 412) and compares the current power with the previous power (step 414).

然而,若MPPT控制區塊304判定T不等於2,表示因為轉換比例在先前計算之前已經改變過,以與先前計算相同的方向修改轉換比例(步驟426),則MPPT控制區塊設定T為2,並增加計數器(步驟428)。然後MPPT控制區塊304判定計數器是否超出計數器臨限值Cth (步驟422),如上述。However, if the MPPT control block 304 determines that T is not equal to 2, indicating that the conversion ratio has been changed in the same direction as the previous calculation (step 426) because the conversion ratio has been changed before the previous calculation, the MPPT control block sets T to 2. And increment the counter (step 428). The MPPT control block 304 then determines if the counter exceeds the counter threshold Cth (step 422), as described above.

若計數器未超出計數器臨限值(步驟422),表示轉換比例在第一方向及第二方向中已交替地改變數次,此次數大於計數器臨限值,MPPT控制區塊304找出對應於面板202之最大功率點的最佳轉換比例,且MPPT控制區塊304開始操作於保持模式(步驟430)。If the counter does not exceed the counter threshold (step 422), it indicates that the conversion ratio has been changed several times in the first direction and the second direction, the number of times is greater than the counter threshold, and the MPPT control block 304 finds the corresponding panel. The optimal conversion ratio of the maximum power point of 202, and the MPPT control block 304 begins operating in the hold mode (step 430).

在保持模式中時,MPPT控制區塊304可設定計時器並重新初始化計數器(步驟432)。當計時器屆期(步驟434),MPPT控制區塊304可恢復為追蹤模式(步驟436),並計算目前功率(步驟412),以比較目前功率與MPPT控制區塊304在追蹤模式中最後計算的功率(步驟414)。以此方式,MPPT控制區塊304可確保不會改變最佳轉換比例,或當面板202之條件改變時,可找出不同的最佳轉換比例。While in the hold mode, MPPT control block 304 can set a timer and reinitialize the counter (step 432). When the timer expires (step 434), the MPPT control block 304 can revert to the tracking mode (step 436) and calculate the current power (step 412) to compare the current power with the MPPT control block 304 in the tracking mode. Power (step 414). In this manner, MPPT control block 304 can ensure that the optimal conversion ratio is not changed, or that different optimal conversion ratios can be found when the conditions of panel 202 change.

儘管圖4顯示用於追蹤能量產生裝置202之最大功率點的方法400的範例,但可對方法400作出各種變更。例如,儘管係參考光伏打面板而描述方法400,但方法400可用於其他能量產生裝置202,例如風力渦輪、燃料電池等。更進一步,儘管係參照圖3之MPPT控制區塊304而描述方法400,但應了解者為,在不脫離揭示內容的範圍之內,方法400可用於任何合適地設置的MPPT控制區塊。此外,對於某些實施例而言,在步驟430中,若MPPT控制區塊304判定最佳轉換比例相當於功率級206的升降模式,MPPT控制區塊304可操作於休眠模式而非保持模式。對於該等實施例而言,休眠模式之後,計時器屆期的時間與保持模式的計時器的時間可以相同或是不同。且,儘管係以一連串的步驟顯示,但方法400中之步驟可以重疊、平行發生、發生多次、或是以不同順序發生。Although FIG. 4 shows an example of a method 400 for tracking the maximum power point of the energy generating device 202, various changes can be made to the method 400. For example, although method 400 is described with reference to a photovoltaic panel, method 400 can be used with other energy generating devices 202, such as wind turbines, fuel cells, and the like. Still further, although the method 400 is described with reference to the MPPT control block 304 of FIG. 3, it should be appreciated that the method 400 can be used with any suitably arranged MPPT control block without departing from the scope of the disclosure. Moreover, for some embodiments, in step 430, if MPPT control block 304 determines that the optimal conversion ratio is equivalent to the lift mode of power stage 206, MPPT control block 304 can operate in a sleep mode rather than a hold mode. For these embodiments, after the sleep mode, the time of the timer period may be the same as or different from the time of the timer of the hold mode. Moreover, although shown in a series of steps, the steps in method 400 may overlap, occur in parallel, occur multiple times, or occur in a different order.

圖5為根據揭示內容之一實施例,顯示能量產生系統500,能量產生系統500包含多數個能量產生裝置502及中央陣列控制器510,中央陣列控制器510能對於能量產生系統100選擇集中式或是分散式MPPT。對所述之實施例而言,能量產生系統指的是光伏打系統500,光伏打系統500包含光伏打面板502組成之陣列,光伏打面板502各耦接至一對應的局部轉換器504。5 is a display energy generation system 500 that includes a plurality of energy generating devices 502 and a central array controller 510 that can be centralized or integrated with the energy generating system 100, in accordance with an embodiment of the disclosure. It is a decentralized MPPT. For the illustrated embodiment, the energy generating system is referred to as a photovoltaic system 500, and the photovoltaic system 500 includes an array of photovoltaic panels 502 each coupled to a corresponding local converter 504.

各個局部轉換器504包含一功率級506及一局部控制器508。此外,對於某些實施例而言,可經由選用的內部開關(例如開關312)繞過各個局部轉換器504。被繞過時,局部轉換器504之輸出電壓實質上等於其輸入電壓。以此方式,有關局部轉換器504之操作的損失可被最小化甚至被消除(當不需要局部轉換器504時)。Each local converter 504 includes a power stage 506 and a local controller 508. Moreover, for some embodiments, each local converter 504 can be bypassed via an optional internal switch (e.g., switch 312). When bypassed, the output voltage of local converter 504 is substantially equal to its input voltage. In this manner, the loss associated with the operation of local converter 504 can be minimized or even eliminated (when local converter 504 is not needed).

除了中央陣列控制器510之外,系統500之實施例亦包含轉換級512、方格514、及資料匯流排516。中央陣列控制器510包含一診斷模組520、一控制模組525及一選用的轉換級(CS)最佳化器530。此外,所述的實施例對轉換級512設置全域控制器540。然而,應了解者為,全域控制器540可設於中央陣列控制器510中,而非設於轉換級512中。且,CS最佳化器530可設於轉換級512中,而非設於中央陣列控制器510中。In addition to the central array controller 510, embodiments of the system 500 also include a conversion stage 512, a square 514, and a data bus 516. The central array controller 510 includes a diagnostic module 520, a control module 525, and an optional conversion stage (CS) optimizer 530. Moreover, the described embodiment sets the global domain controller 540 to the conversion stage 512. However, it should be appreciated that the global controller 540 can be located in the central array controller 510 rather than in the conversion stage 512. Moreover, the CS optimizer 530 can be disposed in the conversion stage 512 instead of being disposed in the central array controller 510.

對於某些實施例而言,面板502及局部轉換器504代表圖1之面板102及局部轉換器104且/或代表圖2或3的面板202及局部轉換器204,中央陣列控制器510可代表圖1之中央陣列控制器110,且/或轉換級512可代表圖1之DC-AC轉換器112。此外,診斷模組520及控制模組525可分別代表圖1之診斷模組120及控制模組125。然而,應了解者為,系統500之構件能以任何合適的方式實現。轉換級512可包含DC-AC轉換器、電池充電器、或其他能量儲存裝置,或任何其他合適的構件。方格514可包含能夠根據光伏打系統500產生的能量而操作的任何合適的負載。For some embodiments, panel 502 and local converter 504 represent panel 102 and local converter 104 of FIG. 1 and/or represent panel 202 and local converter 204 of FIG. 2 or 3, central array controller 510 can represent The central array controller 110 of FIG. 1 and/or the conversion stage 512 can represent the DC-to-AC converter 112 of FIG. In addition, the diagnostic module 520 and the control module 525 can respectively represent the diagnostic module 120 and the control module 125 of FIG. 1 . However, it should be appreciated that the components of system 500 can be implemented in any suitable manner. The conversion stage 512 can include a DC-AC converter, a battery charger, or other energy storage device, or any other suitable component. The grid 514 can include any suitable load that can operate in accordance with the energy produced by the photovoltaic system 500.

各個局部控制器508能經由資料匯流排516或者經由無線連接,提供對應的面板裝置之資料及局部轉換器資料予中央陣列控制器510。根據該資料,診斷模組520能判定面板502是否操作在準理想的條件下,亦即,面板502不會不匹配,且被實質上均勻地照亮。在此情況中,診斷模組520能促使控制模組525將系統500置於集中式MPPT(CMPPT)模式中。為了要完成此種狀態,控制模組525能經由資料匯流排516傳送停止信號至各個局部控制器508,以藉由操作局部轉換器504於旁通模式中,停止局部轉換器504。控制模組525亦能傳送致能信號至全域控制器540。Each local controller 508 can provide data and local converter data for the corresponding panel device to the central array controller 510 via the data bus 516 or via a wireless connection. Based on this information, the diagnostic module 520 can determine whether the panel 502 is operating under quasi-ideal conditions, i.e., the panel 502 does not mismatch and is substantially uniformly illuminated. In this case, the diagnostic module 520 can cause the control module 525 to place the system 500 in a centralized MPPT (CMPPT) mode. To accomplish this state, control module 525 can transmit a stop signal to each local controller 508 via data bus 516 to stop local converter 504 by operating local converter 504 in a bypass mode. The control module 525 can also transmit an enable signal to the global controller 540.

在旁通模式中,局部控制器508不再實施MPPT,且功率級506的輸出電壓實質上等於面板502之面板電壓。因此,可以最小化有關於操作局部轉換器504之損失,並能最大化系統500之效能。當局部轉換器504為操作在旁通模式中時,全域控制器540能對面板502組成的陣列實施CMPPT。In the bypass mode, the local controller 508 no longer implements the MPPT, and the output voltage of the power stage 506 is substantially equal to the panel voltage of the panel 502. Thus, the loss associated with operating the local converter 504 can be minimized and the performance of the system 500 can be maximized. When the local converter 504 is operating in the bypass mode, the global controller 540 can implement CMPPT on the array of panels 502.

診斷模組520亦能判定某些面板502是否被遮蔽或是不匹配(亦即,與陣列中的其他面板502相比,某些面板502具有不同特徵)。在此情況中,診斷模組520能促使控制模組525將系統500置於分散式MPPT(DMPPT)模式中。為了要完成此狀態,控制模組525能經由資料匯流排516傳送致能信號至各個局部控制器508,以藉由容許局部轉換器504之正規操作,而致能局部轉換器504。控制模組525亦能傳送停止信號至全域控制器540。The diagnostic module 520 can also determine if certain panels 502 are obscured or mismatched (i.e., certain panels 502 have different characteristics than other panels 502 in the array). In this case, the diagnostic module 520 can cause the control module 525 to place the system 500 in a decentralized MPPT (DMPPT) mode. To accomplish this, control module 525 can transmit an enable signal to each local controller 508 via data bus 516 to enable local converter 504 by allowing normal operation of local converter 504. Control module 525 can also transmit a stop signal to global controller 540.

當某些面板502被遮蔽時,診斷模組520亦能判定某些被遮蔽的面板502為部份被遮蔽。在此情況中,除了促使控制模組525將系統500置於DMPPT模式中之外,診斷模組410亦能對系統500實施完全診斷掃描,以確保部份被遮蔽的面板502之局部控制器508可找到真正的最大功率點,而非局部最大值。對於其中能量產生裝置502包含風力渦輪的實施例而言,診斷模組520能判定是否因為改變風力圖案、丘陵、或是其他阻擋風的構造,或是其他影響風力條件而造成某些風力渦輪「被遮蔽」。When some of the panels 502 are obscured, the diagnostic module 520 can also determine that some of the shaded panels 502 are partially obscured. In this case, in addition to causing the control module 525 to place the system 500 in the DMPPT mode, the diagnostic module 410 can also perform a full diagnostic scan of the system 500 to ensure a partial controller 508 of the partially shielded panel 502. The true maximum power point can be found instead of the local maximum. For embodiments in which the energy generating device 502 includes a wind turbine, the diagnostic module 520 can determine whether certain wind turbines are caused by changing wind patterns, hills, or other wind blocking structures, or other conditions that affect wind conditions. Be obscured."

在圖6及7A-C中說明光伏打系統500被部份遮蔽的情況。圖6顯示在部份被遮蔽的情況下的光伏打陣列600。圖7A-C為顯示對應於圖6之三個光伏打面板的電壓對功率特性的圖700、705、及710。The case where the photovoltaic system 500 is partially shielded is illustrated in Figures 6 and 7A-C. Figure 6 shows a photovoltaic array 600 with portions partially obscured. 7A-C are graphs 700, 705, and 710 showing voltage versus power characteristics corresponding to the three photovoltaic panels of FIG.

所述的陣列具有三個設有光伏打面板的串610。在串610c中的三個面板被標示為面板A、面板B、及面板C。應了解者為,此等面板可代表圖5之面板502或是在其他任何合適地設置的光伏打系統中的面板。某些面板被遮蔽區域620完全覆蓋或是部份覆蓋。The array has three strings 610 provided with photovoltaic panels. The three panels in string 610c are labeled Panel A, Panel B, and Panel C. It should be understood that such panels may represent panels 502 of Figure 5 or panels in any other suitably arranged photovoltaic system. Some of the panels are completely covered or partially covered by the obscured area 620.

在所述之範例中,面板A被完全照亮,而面板B被遮蔽區域620部份遮蔽,面板C被遮蔽區域620完全遮蔽。圖7A中之圖700中的電壓對功率特性對應於面板A,圖7B中之圖705的電壓對功率特性對應於面板B,且圖7C中之圖710的電壓對功率特性對應於面板C。In the illustrated example, panel A is fully illuminated, panel B is partially obscured by masked area 620, and panel C is completely obscured by masked area 620. The voltage versus power characteristics in graph 700 in FIG. 7A correspond to panel A, the voltage versus power characteristics of graph 705 in FIG. 7B correspond to panel B, and the voltage versus power characteristics of graph 710 in FIG. 7C correspond to panel C.

因此,如圖705所示,被部份遮蔽的面板B具有與實際最大功率點725不同的局部最大值720。中央陣列控制器510之診斷模組520能判定面板B被部份遮蔽,並實施完全診斷掃描,以確保面板B係為其之局部控制器508在其實際最大功率點725操作,而非局部最大點720。取代操作在實際最大功率點(例如點725),而操作在局部最大功率點(例如點720)的面板502被稱為「不足實施」的面板502。Thus, as shown in FIG. 705, the partially masked panel B has a local maximum 720 that is different from the actual maximum power point 725. The diagnostic module 520 of the central array controller 510 can determine that the panel B is partially obscured and perform a full diagnostic scan to ensure that panel B is operating at its actual maximum power point 725 for its local controller 508 rather than local maximum Point 720. Instead of operating at the actual maximum power point (e.g., point 725), panel 502 operating at a local maximum power point (e.g., point 720) is referred to as a "under-implemented" panel 502.

對於一特定實施例而言,診斷模組520可如下辨識被部份遮蔽的面板502。首先,診斷模組520假設面板1、...、N為所考慮陣列中之面板502之子組合,其具有相同的特性,並假設Ppan,i 為屬於組合[1、...、N]的第i個面板502的輸出功率。因此,For a particular embodiment, the diagnostic module 520 can identify the partially obscured panel 502 as follows. First, the diagnostic module 520 assumes that the panels 1, ..., N are sub-combinations of the panels 502 in the array under consideration, which have the same characteristics, and assume that Ppan,i belongs to the combination [1,...,N] The output power of the i-th panel 502. therefore,

其中Ppan,max 為最佳實施面板502之輸出功率,Ppan,min 為最差實施面板502之輸出功率。Where P pan,max is the output power of the best implementation panel 502, and P pan,min is the output power of the worst implementation panel 502.

診斷模組520亦藉由下式定義一變數ψiThe diagnostic module 520 also defines a variable ψ i by :

第i個面板502全部或是部份被遮蔽的機率可由下式表示:The probability that all or part of the i-th panel 502 is obscured can be expressed by the following formula:

其中,k為少於或是等於1的常數。接著是:Where k is a constant less than or equal to 1. Then is:

.

診斷模組520亦定義ρDMPPT 為機率函數ρmax 之最小值,使DMPPT為必須。因此,若ρmax 大於ρDMPPT ,則會致能DMPPT。此外,將ρdiag 定義為機率函數ρmax 之最小值,以使診斷函數為必須,其係用以判定未操作於MPP之被部份遮蔽的任何面板502。因此,若ρmax 大於ρdiag ,則診斷模組520將面板502辨識為被部份遮蔽,且會對於辨識出的面板502實施掃描。The diagnostic module 520 also defines ρ DMPPT as the minimum of the probability function ρ max , making DMPPT necessary. Therefore, if ρ max is greater than ρ DMPPT , DMPPT will be enabled. In addition, ρ diag is defined as the minimum of the probability function ρ max such that a diagnostic function is necessary to determine any panel 502 that is not partially obscured by the MPP. Therefore, if ρ max is greater than ρ diag , the diagnostic module 520 recognizes the panel 502 as partially obscured and performs a scan on the identified panel 502 .

對於相對很小的面板502的不匹配而言,診斷模組520依然可致能DMPPT,但對於更大的不匹配,診斷模組520亦能實施完全診斷掃描。就本身而言,ρDMPPT 之值通常小於ρdiag 之值。Diagnostic module 520 can still enable DMPPT for a relatively small mismatch of panel 502, but for larger mismatches, diagnostic module 520 can also perform a full diagnostic scan. For its part, the value of ρ DMPPT is usually less than the value of ρ diag .

因此,對於某些實施例而言,當ρmax <ρDMPPT 時,診斷模組520能判定系統500應操作於CMPPT模式,當ρDMPPT <ρmax <ρdiag 時,系統500應操作於DMPPT模式中,且當ρmax >ρdiag 時,系統500應連同完全診斷掃描操作於DMPPT模式中。Thus, for certain embodiments, when ρ maxDMPPT , the diagnostic module 520 can determine that the system 500 should operate in the CMPPT mode, and when ρ DMPPTmaxdiag , the system 500 should operate in the DMPPT mode. Medium, and when ρ max > ρ diag , system 500 should operate in DMPPT mode along with a full diagnostic scan.

對於該等實施例而言,全診斷掃描可包含對於ρjdiag 的各面板j的電壓對功率特性的完整掃描。診斷模組520可個別地根據中央陣列控制器510所給定的時序而掃描各面板502之特性。在此方式中,轉換級512可持續正常地操作。For such embodiments, the full diagnostic scan may include a complete scan of the voltage versus power characteristics of each panel j for ρ j > ρ diag . The diagnostic module 520 can individually scan the characteristics of each panel 502 according to the timing given by the central array controller 510. In this manner, the conversion stage 512 can continue to operate normally.

當系統500操作於DMPPT模式中時,CS最佳化器530能最佳化轉換級512的操作點。對於一實施例而言,轉換級512的操作點可設定為常數。然而,對於使用CS最佳化器530的實施例而言,可藉由CS最佳化器530最佳化轉換級512的操作點。The CS optimizer 530 can optimize the operating point of the conversion stage 512 when the system 500 is operating in the DMPPT mode. For an embodiment, the operating point of the conversion stage 512 can be set to a constant. However, for embodiments using CS optimizer 530, the operating point of conversion stage 512 can be optimized by CS optimizer 530.

對於一特定實施例而言,CS最佳化器530能如下述判定轉換級512之最佳化操作點。對於第i個功率級506而言,將其工作週期定義為Di ,並將其轉換比例定義為M(Di )。功率級506設計成具有標稱轉換比例M0 。因此,盡可能地接近於M0 而操作功率級506能夠提供較高的效率,減少壓力,並減少輸出電壓飽和的可能性。對於包含階式升降轉換器的功率級506而言,M0 可為1。For a particular embodiment, CS optimizer 530 can determine the optimized operating point of conversion stage 512 as follows. For the ith power stage 506, its duty cycle is defined as D i and its conversion ratio is defined as M(D i ). Power stage 506 is designed to have a nominal conversion ratio M 0 . Thus, M 0 as close as possible to operate the power stage 506 can provide higher efficiency, reduced pressure, and to reduce the possibility of output voltage saturation. For power stage 506 that includes a step-up converter, M 0 can be one.

因此,最佳化的原理可定義如下:Therefore, the principle of optimization can be defined as follows:

其中,Ipan,i 是第i個功率級506的輸入電流,Iout,i 是第i個功率級506的輸出電流,ηi 是第i個功率級506的效率,ILOAD 是轉換級512的輸入電流。因此,最佳化的原理可重新撰寫如下:Where Ipan,i is the input current of the i-th power stage 506, I out,i is the output current of the i-th power stage 506, η i is the efficiency of the i-th power stage 506, and I LOAD is the conversion stage 512 Input current. Therefore, the principle of optimization can be rewritten as follows:

CS最佳化器530可藉由在轉換級512的輸入埠使用標準電流模式控制技術而達成最佳化,使轉換級512的輸入電流設定為ILOADThe CS optimizer 530 can be optimized by using standard current mode control techniques at the input of the conversion stage 512, setting the input current of the conversion stage 512 to I LOAD .

圖8為根據揭示內容之一實施例,顯示對於能量產生系統500選擇集中式MPPT或分散式MPPT的方法800。方法800之實施例僅為說明性。可在不脫離揭示內容的範圍之內實現方法800的其他實施例。FIG. 8 is a diagram showing a method 800 of selecting a centralized MPPT or a decentralized MPPT for an energy generating system 500, in accordance with an embodiment of the disclosure. The embodiment of method 800 is merely illustrative. Other embodiments of method 800 may be implemented without departing from the scope of the disclosure.

方法800以診斷模組520設定計時器作為開始(步驟802)。診斷模組520可使用計時器以循環方式而觸發方法800的初始化。然後,診斷模組520分析系統500中的能量產生裝置,例如面板502(步驟804)。例如,對於某些實施例而言,診斷模組520可藉由計算各個面板502的面板功率Ppan 而分析面板502,然後根據Ppan 的該等計算值判定數個其他值,如以上有關圖5所述。舉例而言,診斷模組520可判定計算值Ppan 的最大值及最小值(分別為Ppan,max 及Ppan,min ),接著使用該等最大值及最小值以計算各面板502被完全遮蔽或是被部份遮蔽的機率(ρ)。診斷模組520亦可判定所計算的機率的最大值ρmaxThe method 800 begins with the diagnostic module 520 setting a timer (step 802). Diagnostic module 520 can trigger initialization of method 800 in a round-robin fashion using a timer. The diagnostic module 520 then analyzes the energy generating devices in system 500, such as panel 502 (step 804). For example, for some embodiments, the diagnostic module 520 can analyze the panel 502 by calculating the panel power P pan of each panel 502, and then determine a number of other values based on the calculated values of P pan , as described above. 5 stated. For example, the diagnostic module 520 can determine the maximum and minimum values of the calculated value P pan (P pan, max and P pan, min respectively ), and then use the maximum and minimum values to calculate that each panel 502 is completely The probability of being covered or partially obscured (ρ). The diagnostic module 520 can also determine the maximum value ρ max of the calculated probability.

在分析面板502(步驟804)之後,診斷模組520可判定光伏打系統500是否操作於準理想的條件下(步驟806)。例如,對於某些實施例而言,診斷模組520可將計算出的面板502被遮蔽的機率之最大值(ρmax )及預定DMPP(ρDMPPT )予以比較。若ρmax 小於,ρDMPPT ,則面板502之最大輸出功率及最小輸出功率夠接近,因此,可將面板502之間的不匹配視為極小,且系統500可視為操作於準理想條件下。若ρmax 不小於ρDMPPT ,則面板502的最大輸出功率及最小輸出功率相差夠大,使得面板502之間的不匹配不能視為極小,且系統500視為沒有在準理想條件下操作。After analyzing panel 502 (step 804), diagnostic module 520 can determine whether photovoltaic system 500 is operating under quasi-ideal conditions (step 806). For example, for some embodiments, the diagnostic module 520 can compare the calculated maximum probability (p max ) of the panel 502 to be masked with a predetermined DMPP (ρ DMPPT ). If ρ max is less than ρ DMPPT , the maximum output power and minimum output power of panel 502 are close enough so that the mismatch between panels 502 can be considered to be minimal and system 500 can be considered to operate under quasi-ideal conditions. If ρ max is not less than ρ DMPPT , the maximum output power and minimum output power of panel 502 are sufficiently different that the mismatch between panels 502 cannot be considered to be extremely small, and system 500 is deemed not to operate under quasi-ideal conditions.

若診斷模組520判定系統500沒有操作於準理想條件下(步驟806),則控制模組525致能局部控制器508(步驟808),並停止全域控制器540(步驟810),藉此將系統500設於DMPPT模式中。因此,在此情況中,局部控制器508對各個面板502實施MPPT。If the diagnostic module 520 determines that the system 500 is not operating under a quasi-ideal condition (step 806), the control module 525 enables the local controller 508 (step 808) and stops the global controller 540 (step 810), thereby System 500 is located in DMPPT mode. Therefore, in this case, the local controller 508 implements MPPT for each panel 502.

因為是對於面板502之間具有相對很小不匹配情況而使用DMPPT模式,則即使當被遮蔽的面板502的機率為低(但不是極低)時,診斷模組520可判定系統500為沒有操作於準理想條件下。因此,在進入DMPPT模式之後,診斷模組520判定被遮蔽的面板502的機率是否為高(步驟812)。例如,診斷模組520可將面板502被遮蔽的最大機率(ρmax )及預定的診斷臨限值(ρdiag )予以比較。若ρmax 大於ρdiag ,則面板502的最大輸出功率及最小輸出功率相差夠大,使面板502之間的不匹配的機率視為相對之下極高,因此,至少一個面板502被遮蔽的機率很高。Because the DMPPT mode is used for relatively small mismatches between the panels 502, the diagnostic module 520 can determine that the system 500 is inoperative even when the probability of the masked panel 502 is low (but not very low). Under quasi-ideal conditions. Therefore, after entering the DMPPT mode, the diagnostic module 520 determines if the probability of the shaded panel 502 is high (step 812). For example, the diagnostic module 520 can compare the maximum probability (p max ) at which the panel 502 is obscured with a predetermined diagnostic threshold (ρ diag ). If ρ max is greater than ρ diag , the maximum output power and the minimum output power of the panel 502 are sufficiently different, so that the probability of mismatch between the panels 502 is considered to be extremely high, and therefore, the probability that at least one panel 502 is shielded Very high.

若面板502被遮蔽的機率很高(步驟812),則診斷模組520對於有可能被遮蔽的任何一個面板502實施全特性掃描(步驟814)。例如,診斷模組520可藉由對於各個面板502比較面板被遮蔽的機率(ρ)與診斷臨限值(ρdiag ),而辨識出可能被遮蔽的面板502。若特定面板的ρ大於ρdiag ,則特定面板502的輸出功率與系統500中之一面板502之最大輸出功率相差夠大,則特定面板502至少被部份遮蔽的機率相對很高。If the probability of panel 502 being masked is high (step 812), diagnostic module 520 performs a full-feature scan for any panel 502 that may be obscured (step 814). For example, the diagnostic module 520 can identify the panel 502 that may be obscured by comparing the probability (p) and diagnostic threshold (ρ diag ) that the panel is obscured for each panel 502. If the ρ of the particular panel is greater than ρ diag , then the output power of the particular panel 502 is sufficiently different from the maximum output power of one of the panels 502 in the system 500, the probability that the particular panel 502 is at least partially shielded is relatively high.

在實施完全特性掃描時,診斷模組520可根據中央陣列控制器510所提供之時序,對於有可能被遮蔽的各個面板502個別地實施電壓對功率特性掃描。在此方式中,轉換級512可繼續在掃描期間正常地操作。When performing a full characteristic scan, the diagnostic module 520 can individually perform voltage versus power characteristic scans for each panel 502 that is likely to be masked according to the timing provided by the central array controller 510. In this manner, the conversion stage 512 can continue to operate normally during the scan.

若在實施任何完全特性掃描的期間中,診斷模組520判定任一面板502為不足實施(即,操作於局部最大功率點(MPP),例如局部MPP 720,而非實際的MPP,例如MPP725),則控制模組525可對於該等不足實施的面板502提供校正(步驟816)。If during the implementation of any full-feature scan, the diagnostic module 520 determines that any of the panels 502 are under-implemented (ie, operating at a local maximum power point (MPP), such as a local MPP 720, rather than an actual MPP, such as MPP725). The control module 525 can provide corrections for the less than implemented panels 502 (step 816).

在此時,或是若面板502被遮蔽的機率不高(步驟812),診斷模組520判定計時器是否屆期(步驟818),表示方法800必須再次被初始化。一但計時器屆期(步驟818),診斷模組520即重設計時器(步驟820),並開始再次分析面板502(步驟804)。At this time, or if the probability of the panel 502 being masked is not high (step 812), the diagnostic module 520 determines if the timer has expired (step 818), indicating that the method 800 must be initialized again. Once the timer expires (step 818), the diagnostic module 520 resets the timer (step 820) and begins analyzing the panel 502 again (step 804).

若診斷模組520判定系統500操作於準理想條件下(步驟806),則控制模組525停止局部控制器508(步驟822)並致能全域控制器540(步驟824),藉此將系統500設於CMPPT模式中。因此,在此情況中,全域控制器540對整個系統500實施MPPT。If the diagnostic module 520 determines that the system 500 is operating under a quasi-ideal condition (step 806), the control module 525 stops the local controller 508 (step 822) and enables the global controller 540 (step 824), thereby causing the system 500 Set in CMPPT mode. Thus, in this case, global controller 540 implements MPPT for the entire system 500.

且在此時,診斷模組520判定計時器是否屆期(步驟818),表示方法800必須再次被初始化。一但計時器屆期(步驟818),診斷模組520即重設計時器(步驟820),並開始再次分析面板502(步驟804)。At this point, the diagnostic module 520 determines if the timer has expired (step 818), indicating that the method 800 must be initialized again. Once the timer expires (step 818), the diagnostic module 520 resets the timer (step 820) and begins analyzing the panel 502 again (step 804).

儘管圖8已顯示在集中式及分散式MPPT之間作選擇的方法800的範例,但可對於方法800作出各種變更。例如,儘管係配合光伏打系統而描述方法800,但方法800仍可用於其他能量產生系統500,例如風力渦輪系統、燃料電池系統。更進一步,儘管係配合圖5之系統500而描述方法800,應了解者為,在不脫離揭示內容的範圍之內,方法800可用於任何合適地設置的能量產生系統。此外,儘管所示者為一連串步驟,但方法800中之步驟可重疊、平行發生、發生多次或是以不同順序發生。Although FIG. 8 has shown an example of a method 800 of selecting between centralized and decentralized MPPTs, various changes can be made to method 800. For example, although method 800 is described in conjunction with a photovoltaic system, method 800 can be used with other energy production systems 500, such as wind turbine systems, fuel cell systems. Still further, although the method 800 is described in conjunction with the system 500 of FIG. 5, it should be appreciated that the method 800 can be used with any suitably arranged energy generating system without departing from the scope of the disclosure. Moreover, although shown as a series of steps, the steps in method 800 may overlap, occur in parallel, occur multiple times, or occur in a different order.

圖9為根據揭示內容之一實施例,顯示用以在能量產生系統中啟動及停止一局部轉換器904之局部控制器908之系統900。系統900包含能量產生裝置902(被稱為光伏打面板902),及局部轉換器904。局部轉換器904包含功率級906、局部控制器908及啟動器910。9 is a system 900 showing a local controller 908 for activating and deactivating a local converter 904 in an energy generating system, in accordance with an embodiment of the disclosure. System 900 includes an energy generating device 902 (referred to as a photovoltaic panel 902), and a local converter 904. Local converter 904 includes power stage 906, local controller 908, and initiator 910.

局部轉換器904可表示圖1中之局部轉換器104、圖2或3中之局部轉換器204其中之一個,且/或圖5之局部轉換器504其中之一個,然而,應了解者為,在不脫離揭示內容的範圍之內,局部轉換器904可實現在任何合適設置能量產生系統中。因此,應了解者為,系統900可串聯耦接且/或是並聯耦接至其他類似的系統900,以形成能量產生陣列。Local converter 904 may represent one of local converter 104 of FIG. 1, one of local converters 204 of FIG. 2 or 3, and/or one of local converters 504 of FIG. 5, however, it should be understood that Local converter 904 can be implemented in any suitable set of energy generating systems without departing from the scope of the disclosure. Accordingly, it should be appreciated that system 900 can be coupled in series and/or coupled in parallel to other similar systems 900 to form an energy generating array.

對於所述實施例而言,啟動器910係耦接於面板902及局部控制器908之間。對於某些實施例而言,啟動器910能根據面板902的輸出電壓而啟動及停止局部控制器908。當面板902的輸出電壓太低時,啟動器910能提供實質上為零的供給電壓至局部控制器908,藉此關閉局部控制器908。當面板902的輸出電壓較高時,啟動器910能提供非零的供給電壓至局部控制器908,以使局部控制器908為運作。For the embodiment, the initiator 910 is coupled between the panel 902 and the local controller 908. For some embodiments, the initiator 910 can activate and deactivate the local controller 908 based on the output voltage of the panel 902. When the output voltage of panel 902 is too low, initiator 910 can provide a substantially zero supply voltage to local controller 908, thereby turning off local controller 908. When the output voltage of panel 902 is high, initiator 910 can provide a non-zero supply voltage to local controller 908 to cause local controller 908 to operate.

應了解者為,除了提供供給電壓至局部控制器908之外,啟動器910能以任何合適的方式啟動及停止局部控制器908。例如,對於一替換性實施例而言,啟動器910可設定局部控制器908的一個或更多個接腳,以啟動及停止局部控制器908。對於另一替換性實施例而言,啟動器910能將第一個預定值寫入局部控制器908中的第一個暫存器,以啟動局部控制器908,並將第二個預定值(根據特定實施手段而可與第一個預定值相同或是不同)寫入局部控制器908中的第一個暫存器或是第二個暫存器,以停止局部控制器908。It should be appreciated that in addition to providing a supply voltage to the local controller 908, the initiator 910 can activate and deactivate the local controller 908 in any suitable manner. For example, for an alternative embodiment, the launcher 910 can set one or more pins of the local controller 908 to activate and deactivate the local controller 908. For another alternative embodiment, the initiator 910 can write the first predetermined value to the first register in the local controller 908 to activate the local controller 908 and the second predetermined value ( The first register or the second register in the local controller 908 can be written to the local register 908 to stop the local controller 908, depending on the particular implementation.

因此,系統900不使用電池或是外部電源就能使局部轉換器904自發性操作。當太陽輻射夠高時,輸出面板電壓Vpan 增加到使啟動器910開始產生非零的供給電壓VCC 的位準。此時,局部控制器908且/或中央陣列控制器(未顯示於圖9中)可開始實施啟動程序,例如暫存器的初始化,面板902之間的初步電壓比較,類比到數位轉換器校準,時脈同步或是時脈插入,功率級906的同步啟動等。相似地,在停止系統900之前,可實施停止程序,例如在單獨應用情況中,與備份單元的同步化,與功率級906的同步停止等。在該等停止程序期間中,啟動器910仍能保持本身為啟動的。Thus, system 900 can cause local converter 904 to operate autonomously without the use of a battery or an external power source. When the solar radiation is high enough, the output panel voltage Vpan is increased to a level that causes the starter 910 to begin generating a non-zero supply voltage Vcc . At this point, the local controller 908 and/or the central array controller (not shown in Figure 9) can begin to implement the boot process, such as initialization of the scratchpad, preliminary voltage comparison between the panels 902, analog to digital converter calibration. , clock synchronization or clock insertion, synchronous start of power stage 906, and the like. Similarly, the stop procedure can be implemented prior to stopping the system 900, such as in a separate application scenario, synchronization with the backup unit, synchronization with the power stage 906, and the like. During these stop procedures, the initiator 910 can still keep itself activated.

此外,對於某些實施例而言,啟動器910能夠對局部轉換器904提供過功率保護。如上述與圖3相關之說明,為局部控制器208的一部份的MPPT控制區塊304可提供過功率保護。然而,作為包含啟動器910之系統之替換性實施例,反而是啟動器910能提供此種保護功能。因此,對於此替換性實施例而言,若輸出電流下降到太低,則啟動器910可能會關閉局部控制器908的MPPT功能,使面板電壓Vpan 幾乎等於輸出電壓VoutMoreover, for certain embodiments, the initiator 910 can provide over power protection to the local converter 904. As described above in connection with FIG. 3, the MPPT control block 304, which is part of the local controller 208, can provide overpower protection. However, as an alternative embodiment of the system including the initiator 910, instead the initiator 910 can provide such a protection function. Thus, for this alternative embodiment, if the output current drops too low, the activator 910 may be closed MPPT function local controller 908 so that the panel voltage equals the output voltage V pan nearly V out.

圖10為根據揭示內容之一實施例,顯示系統900之裝置電壓隨著時間而改變的圖920。對於光伏打面板902而言,在太陽輻射位準在啟動器910的電壓啟動位準(Vt-on )附近震盪的情況中,使用相同的電壓啟動位準作為電壓停止位準(Vt-off )會產生不想要的系統900多次啟動及停止。因此,如圖920所示,使用較低的電壓停止位準,以避免此種現象。藉由使用較低的電壓停止位準,系統900可維持一致的啟動,直到太陽輻射位準充分下降使得面板電壓下降到低於電壓啟動位準為止。因此,可避免頻繁的啟動及停止,而對系統900提供雜訊免疫。10 is a diagram 920 of device voltage of display system 900 as a function of time, in accordance with an embodiment of the disclosure. For the photovoltaic panel 902, in the case where the solar radiation level oscillates near the voltage activation level (Vt -on ) of the initiator 910, the same voltage activation level is used as the voltage stop level ( Vt- Off ) will cause unwanted system 900 to start and stop multiple times. Therefore, as shown in FIG. 920, a lower voltage stop level is used to avoid this phenomenon. By using a lower voltage stop level, system 900 can maintain a consistent start until the solar radiation level is sufficiently lowered such that the panel voltage drops below the voltage start level. Therefore, frequent startup and stop can be avoided, and the system 900 is provided with noise immunity.

對於某些實施例而言,在面板電壓超出使局部控制器908啟動的電壓啟動位準之後,若面板電壓下降至低於電壓啟動位準,則局部控制器908開始停止程序,以能夠比面板電壓持續下降到低於電壓停止位準時更快速地停止。此外,對於某些實施例而言,在到達電壓停止位準之前,在某些情況中,局部控制器908能關閉啟動器910及其本身。For some embodiments, after the panel voltage exceeds the voltage enable level at which the local controller 908 is activated, if the panel voltage drops below the voltage enable level, the local controller 908 begins to stop the program to be able to compare the panel. The voltage stops more quickly when it continues to fall below the voltage stop level. Moreover, for some embodiments, prior to reaching the voltage stop level, in some cases, local controller 908 can turn off initiator 910 and itself.

圖11為根據揭示內容之一實施例,顯示啟動器910。對此實施例而言,啟動器910包含電源930、多數個電阻R1、R2、R3及二極體D。電阻R1及R2串聯耦接至電源930的輸入節點(IN)及地面之間。二極體及電阻R3串聯耦接至電源930的輸出節點(OUT)及節點940之間,電阻器R1及R2在節點940耦接。此外,電源930的停止節點(SD)亦耦接至節點940。11 is a display launcher 910, in accordance with an embodiment of the disclosure. For this embodiment, the initiator 910 includes a power supply 930, a plurality of resistors R1, R2, R3, and a diode D. Resistors R1 and R2 are coupled in series between the input node (IN) of power supply 930 and the ground. The diode and the resistor R3 are coupled in series between the output node (OUT) of the power supply 930 and the node 940, and the resistors R1 and R2 are coupled at the node 940. In addition, the stop node (SD) of the power supply 930 is also coupled to the node 940.

電源930能在輸入節點接收面板電壓Vpan ,並在輸出節點產生對於局部控制器908之供應電壓VCC 。若電源930之控制電路所判定的停止節點的電壓位準超出規定的電壓V0 ,則電源930的停止節點致能電源930的操作,且若停止節點的電壓位準下降到低於規定的電壓V0 ,則停止節點停止電源930的操作。The power supply 930 can receive the panel voltage Vpan at the input node and generate a supply voltage Vcc for the local controller 908 at the output node. If the voltage level of the stop node determined by the control circuit of the power supply 930 exceeds the specified voltage V 0 , the stop node of the power supply 930 enables the operation of the power supply 930, and if the voltage level of the stop node falls below the specified voltage. V 0 stops the operation of the node to stop the power supply 930.

當電源930關閉時,二極體不會導通,且停止節點的電壓以下式表示:When the power supply 930 is turned off, the diode does not conduct, and the voltage of the stop node is expressed by the following equation:

當電壓VSDt-on 超出值V0 時,二極體開始導通,且停止節點的電壓變成:When the voltage V SDt-on exceeds the value V 0 , the diode begins to conduct and the voltage at the stop node becomes:

其中,Vd 為二極體壓降,且。當電壓VSD,t-off 下降到低於V0 時,電源930被關閉。因此可根據電阻R1、R2及R3的電阻值判定開啟及關閉電壓臨限值。Where V d is the diode voltage drop, and . When the voltage V SD, t-off falls below V 0 , the power supply 930 is turned off. Therefore, the voltage threshold can be determined based on the resistance values of the resistors R1, R2, and R3.

圖12為根據揭示內容之一實施例,顯示用以啟動及停止局部轉換器904之方法1200。方法1200之實施例僅為說明性。可在不脫離揭示內容的範圍內實現方法1200的其他實施例。FIG. 12 illustrates a method 1200 for activating and deactivating a local converter 904, in accordance with an embodiment of the disclosure. The embodiment of method 1200 is merely illustrative. Other embodiments of method 1200 can be implemented without departing from the scope of the disclosure.

方法1200以能量產生裝置或是面板902操作於開路條件作為開始(步驟1202)。在此條件中,因為面板902輸出的面板電壓太低,所以啟動器910並未啟動局部轉換器908。啟動器910監控面板電壓(Vpan )直到面板電壓超出電壓啟動位準(Vt-on )為止(步驟1204)。The method 1200 begins with the energy generating device or panel 902 operating on an open circuit condition (step 1202). In this condition, the initiator 910 does not activate the local converter 908 because the panel voltage output by the panel 902 is too low. The initiator 910 monitors the panel voltage ( Vpan ) until the panel voltage exceeds the voltage enable level (Vt -on ) (step 1204).

一但啟動器910判定面板電壓已超出電壓啟動位準(步驟1204),則啟動器910藉由開啟局部控制器908開始啟動局部轉換器904(步驟1206)。例如,啟動器910可藉由對於局部控制器908產生非零的供給電壓VCC ,而開始啟動局部轉換器904。對其他實施例而言,啟動器910可藉由設定局部控制器908的一個或更多個接腳,或是藉由將第一個預定值寫入局部控制器908之第一個暫存器中,而開始啟動局部轉換器904。然後局部控制器908及/或中央陣列控制器對局部轉換器904實施啟動程序(步驟1208)。例如,啟動程序可包含暫存器的初始化,面板902之間的初步電壓比較,類比到數位轉換器校準,時脈同步化或是插入,包含功率級906的一連串面板的同步啟動等。Once the initiator 910 determines that the panel voltage has exceeded the voltage enable level (step 1204), the initiator 910 begins to activate the local converter 904 by turning on the local controller 908 (step 1206). For example, the initiator 910 can begin to activate the local converter 904 by generating a non-zero supply voltage Vcc for the local controller 908. For other embodiments, the initiator 910 can be configured by setting one or more pins of the local controller 908, or by writing the first predetermined value to the first register of the local controller 908. In the middle, the local converter 904 is started. The local controller 908 and/or the central array controller then implement a boot procedure for the local converter 904 (step 1208). For example, the boot process may include initialization of the scratchpad, preliminary voltage comparison between panel 902, analog to digital converter calibration, clock synchronization or insertion, synchronous start of a series of panels including power stage 906, and the like.

局部控制器908以預定的轉換比例操作功率級906(步驟1210),直到操作串中的其他功率級906為止(步驟1212)。一但串中的各個面板902具有一操作中的功率級906(步驟1212),局部控制器908將面板電流(Ipan )及啟動電流位準(Imin )予以比較(步驟1214)。若面板電流大於啟動電流位準(步驟1214),則局部控制器908開始正常地操作(步驟1216)。因此,局部控制器908開始對於功率級906實施MPPT。The local controller 908 operates the power stage 906 at a predetermined conversion ratio (step 1210) until the other power levels 906 in the string are operated (step 1212). Once the string each panel 902 having a power stage 906 (step 1212) an operation, the local controller 908 to the panel current (I pan) and the starting current level (I min) to be compared (step 1214). If the panel current is greater than the startup current level (step 1214), the local controller 908 begins normal operation (step 1216). Thus, local controller 908 begins to implement MPPT for power stage 906.

在此方式中,可自動同步化能量產生系統中的全部局部控制器908的啟動。此外,若僅有光伏打系統中的面板902之子組合產生高得足以啟動該啟動器910的電壓,則可在各功率級906中包含單向開關(例如開關314),以容許操作其餘的面板902。In this manner, the activation of all local controllers 908 in the energy generating system can be automatically synchronized. Moreover, if only a sub-combination of panels 902 in the photovoltaic system produces a voltage high enough to activate the initiator 910, a unidirectional switch (eg, switch 314) can be included in each power stage 906 to allow operation of the remaining panels. 902.

局部控制器908持續比較面板電流與啟動電流位準(步驟1218)。若面板電流少於啟動電流位準(步驟1218),則局部控制器908設定一停止計時器(步驟1220)。然後,局部控制器908重新以預定的轉換比例操作功率級906(步驟1222)。然後局部控制器908及/或是中央陣列控制器對於局部轉換器904實施停止程序(步驟1224)。例如,停止程序可包含在單獨應用的情況中,與備份單元的同步化,與功率級906之同步停止等。The local controller 908 continues to compare the panel current to the startup current level (step 1218). If the panel current is less than the startup current level (step 1218), the local controller 908 sets a stop timer (step 1220). The local controller 908 then operates the power stage 906 again at a predetermined conversion ratio (step 1222). The local controller 908 and/or the central array controller then implement a stop procedure for the local converter 904 (step 1224). For example, the stop procedure can be included in the case of a separate application, synchronization with the backup unit, synchronization with the power stage 906, and the like.

然後局部控制器908判定停止計時器是否屆期(步驟1226)。如此則容許面板電流上升到超過啟動電流位準的時間。因此,局部控制器908為停止預作準備,但等待以確保應實際執行停止。The local controller 908 then determines if the stop timer has expired (step 1226). This allows the panel current to rise above the start current level. Therefore, the local controller 908 prepares for the stop, but waits to ensure that the stop should actually be performed.

因此,只要停止計時器尚未屆期(步驟1226),局部控制器908仍會將面板電流與啟動電流位準予以比較(步驟1228)。若面板電流持續保持在少於啟動電流位準(步驟1228),則局部控制器908繼續等待停止計時器屆期(步驟1226)。若在計時器屆期(步驟1226)之前,面板電流變成大於啟動電流位準(步驟1228),則局部控制器908藉由對功率級906實施MPPT而能再次正常地操作(步驟1216)。Thus, as long as the stop timer has not expired (step 1226), local controller 908 will still compare the panel current to the startup current level (step 1228). If the panel current continues to remain below the startup current level (step 1228), the local controller 908 continues to wait for the stop timer to expire (step 1226). If the panel current becomes greater than the startup current level prior to the timer period (step 1226) (step 1228), the local controller 908 can again operate normally by performing an MPPT on the power stage 906 (step 1216).

然而,若在面板電流少於啟動電流位準時(步驟1228),停止計時器屆期(步驟1226),則局部控制器908關閉功率級906及局部控制器908,且再次在開路條件之下操作面板902(步驟1230)。對於某些實施例而言,啟動器910可藉由產生零供應電壓VCC 予局部控制器908而完成局部轉換器904的停止。對於其他實施例而言,啟動器910可藉由設定局部控制器908的一個或更多個接腳,或是藉由將第二個預定值寫入局部控制器908中的第一個暫存器或是第二個暫存器,而完成局部轉換器904的停止。在此時,啟動器910再次監控面板電壓,直到面板電壓超出電壓啟動位準為止(步驟1204),重新初始化啟動處理。However, if the panel current is less than the startup current level (step 1228), the timer period is stopped (step 1226), then the local controller 908 turns off the power stage 906 and the local controller 908 and operates again under open conditions. Panel 902 (step 1230). For some embodiments, the initiator 910 can complete the stop of the local converter 904 by generating a zero supply voltage V CC to the local controller 908. For other embodiments, the initiator 910 can be set by writing one or more pins of the local controller 908, or by writing a second predetermined value to the first temporary storage in the local controller 908. The device is either the second register and the local converter 904 is stopped. At this time, the initiator 910 monitors the panel voltage again until the panel voltage exceeds the voltage enable level (step 1204), and reinitializes the startup process.

儘管圖12顯示者為用以啟動及停止局部轉換器904的方法1200的範例,但可對方法1200作出各種變更。例如,儘管係以光伏打面板來說明方法1200,但方法1200可用於其他能量產生裝置902,例如風力渦輪、燃料電池等。更進一步,儘管係參照圖9之局部控制器908及啟動器910來說明方法1200,應了解者為,在不脫離揭示內容的範圍內,局部控制器908及啟動器910可用於任何合適地配置的能量產生系統。且,儘管如圖所示者為一連串的步驟,但方法1200中之步驟可以重疊,平行發生,發生多次,或是以不同順序發生。Although FIG. 12 shows an example of a method 1200 for starting and stopping local converter 904, various changes can be made to method 1200. For example, although the method 1200 is illustrated with a photovoltaic panel, the method 1200 can be used with other energy generating devices 902, such as wind turbines, fuel cells, and the like. Still further, although the method 1200 is described with respect to the local controller 908 and the initiator 910 of FIG. 9, it is understood that the local controller 908 and the initiator 910 can be used for any suitable configuration without departing from the scope of the disclosure. Energy generation system. Also, although a series of steps are shown, the steps in method 1200 may overlap, occur in parallel, occur multiple times, or occur in a different order.

儘管上述說明係參照特定實施例,但應了解者為,所述之某些構件、系統及方法可用於水平電泳槽(sub-cell)、單一電池、面板(亦即,電池陣列)、面板陣列及/或是面板陣列組成的系統。舉例而言,儘管上述之局部轉換器各連接於一面板,但相似的系統可實施為一局部轉換器連接於面板中之各個電池,或是一局部轉換器連接於各排面板。此外,上述之某些構件、系統及方法可用於除了光伏打裝置之外的其他能量產生裝置,例如風力渦輪、燃料電池等。Although the above description refers to a particular embodiment, it should be appreciated that certain of the components, systems, and methods described herein can be used in horizontal sub-cells, single cells, panels (ie, battery arrays), panel arrays. And / or a system of panel arrays. For example, although the local converters described above are each connected to a panel, a similar system can be implemented as a local converter connected to each battery in the panel, or a local converter connected to each row of panels. Moreover, some of the components, systems, and methods described above can be used with other energy generating devices other than photovoltaic devices, such as wind turbines, fuel cells, and the like.

有益者為提出用於此份專利文件中之某些字詞及片語的定義。「耦接」的術語及其衍生物指的是兩個或更多個構件之間的直接或是間接通訊,無論該等構件是否為彼此實際接觸。「傳送」、「接收」、及「通訊」的術語及其衍生物包含直接及間接通訊。「包括」及「包含」的術語及其衍生物表示包含但不限於。「或是」的術語是包含性的,表示及/或是。「各個」的術語表示所指的項目中之至少一個子組合的其中每一個。「相關於」及「與其相關」的片語及其衍生物表示用以包含、包含在內、與之互聯、包含、包含在內、連接至或連接於、耦接至或耦接於、與其通訊、與其協同合作、插入、並列、接近於、接合至或接合於、具有、具有某種特性等。The beneficial person is to propose a definition of certain words and phrases used in this patent document. The term "coupled" and its derivatives refer to either direct or indirect communication between two or more components, whether or not such components are in actual contact with each other. The terms "transfer", "receive", and "communication" and their derivatives include both direct and indirect communication. The terms "including" and "comprising" and their derivatives are intended to include, without limitation. The term "or" is inclusive, expressed and / or. The term "each" means each of at least one of the sub-combinations of the indicated items. The phrase "related to" and "related to" and its derivatives are intended to be included, included, interconnected, included, included, connected to or connected to, coupled to, or coupled to, Communication, cooperation with it, insertion, juxtaposition, proximity, bonding to or bonding, having, having certain characteristics, and the like.

儘管已利用特定實施例及相關的方法說明揭示內容,但熟知本技藝者當可輕易了解對此等實施例及方法的代換及組合。因此,上述例示性實施例之說明並不是用以界定或是限制揭示內容。可在不脫離揭示內容的精神及範圍內,其他變更、取代、及輪替亦有可能,如後附之申請專利範圍所定義。Although the disclosure has been described in terms of specific embodiments and related methods, those skilled in the art can readily appreciate the substitution and combinations of the embodiments and methods. Therefore, the above description of the exemplary embodiments is not intended to define or limit the disclosure. Other changes, substitutions, and rotations are possible without departing from the spirit and scope of the disclosure, as defined by the scope of the appended claims.

100...能量產生系統100. . . Energy generation system

102...能量產生裝置102. . . Energy generating device

104...局部轉換器104. . . Local converter

106...能量產生陣列106. . . Energy generation array

110...中央陣列控制器110. . . Central array controller

112...DC-AC轉換器112. . . DC-AC converter

120...診斷模組120. . . Diagnostic module

125...控制模組125. . . Control module

202...能量產生裝置202. . . Energy generating device

204...局部轉換器204. . . Local converter

206...功率級206. . . Power level

208...局部控制器208. . . Local controller

210...MPPT模組210. . . MPPT module

212...通訊介面212. . . Communication interface

302...功率級調節器302. . . Power stage regulator

304...MPPT控制區塊304. . . MPPT control block

306...類比到數位轉換器306. . . Analog to digital converter

308...類比到數位轉換器308. . . Analog to digital converter

310、310a-d...開關310, 310a-d. . . switch

314...單向開關314. . . One-way switch

400...方法400. . . method

500...能量產生系統500. . . Energy generation system

502、502a~502d...能量產生裝置502, 502a~502d. . . Energy generating device

504、504a~504d...局部轉換器504, 504a~504d. . . Local converter

506、506a~506d...能量產生陣列506, 506a~506d. . . Energy generation array

508、508a~508d...局部控制器508, 508a~508d. . . Local controller

510...中央陣列控制器510. . . Central array controller

512...轉換級512. . . Conversion level

514...方格514. . . Square

516...資料匯流排516. . . Data bus

520...診斷模組520. . . Diagnostic module

525...控制模組525. . . Control module

530...轉換級最佳化器530. . . Conversion level optimizer

540...全域控制器540. . . Global controller

600...陣列600. . . Array

610...串610. . . string

620...遮蔽區域620. . . Masked area

800...方法800. . . method

900...能量產生系統900. . . Energy generation system

902...能量產生裝置902. . . Energy generating device

904...局部轉換器904. . . Local converter

906...功率級906. . . Power level

908...局部控制器908. . . Local controller

910...啟動器910. . . Launcher

930...電源930. . . power supply

940...節點940. . . node

1200...方法1200. . . method

為了提供對揭示內容及其特徵之更透徹的了解,參考伴隨附圖的以下說明,在附圖中:In order to provide a more complete understanding of the disclosure and its features, reference is made to the following description of the accompanying drawings in which:

圖1為根據揭示內容之一實施例,顯示可為集中式控制的能量產生系統;1 is a diagram showing an energy generating system that can be centralized control, in accordance with an embodiment of the disclosure;

圖2為根據揭示內容之一實施例,顯示圖1之局部轉換器;2 is a partial converter of FIG. 1 in accordance with an embodiment of the disclosure;

圖3為根據揭示內容之一實施例,顯示圖2之局部轉換器之細部;3 is a detail showing the local converter of FIG. 2 in accordance with an embodiment of the disclosure;

圖4為根據揭示內容之一實施例,顯示在圖2的局部轉換器中實現最大功率點追蹤(MPPT)的方法;4 is a diagram showing a method of implementing maximum power point tracking (MPPT) in the local converter of FIG. 2, in accordance with an embodiment of the disclosure;

圖5為根據揭示內容之一實施例,顯示包含一中央陣列控制器之能量產生系統,該中央陣列控制器能在能量產生系統中之集中式及分散式MPPT之間作選擇;5 is a diagram showing an energy generating system including a central array controller capable of selecting between a centralized and decentralized MPPT in an energy generating system, in accordance with an embodiment of the disclosure;

圖6為根據揭示內容之一實施例,顯示圖5之陣列被部份遮蔽的情形;6 is a diagram showing a case where the array of FIG. 5 is partially shielded according to an embodiment of the disclosure;

圖7A-C為根據揭示內容之一實施例,顯示對應於圖6的三個光伏打面板的電壓對功率特性;7A-C are diagrams showing voltage versus power characteristics corresponding to the three photovoltaic panels of FIG. 6 in accordance with an embodiment of the disclosure;

圖8為根據揭示內容之一實施例,顯示用以在圖5之能量產生系統之集中式及分散式MPPT之間作選擇的方法;8 is a diagram showing a method for selecting between a centralized and decentralized MPPT of the energy generating system of FIG. 5, in accordance with an embodiment of the disclosure;

圖9為根據揭示內容之一實施例,顯示用以啟動及停止局部轉換器的系統;9 is a diagram showing a system for starting and stopping a local converter, in accordance with an embodiment of the disclosure;

圖10為根據揭示內容之一實施例,顯示圖9之系統的裝置電壓隨著時間變異的範例;10 is an illustration showing an example of device voltage variation over time in the system of FIG. 9 in accordance with an embodiment of the disclosure;

圖11為根據揭示內容之一實施例,顯示圖9之啟動器;及Figure 11 is a diagram showing the actuator of Figure 9 in accordance with an embodiment of the disclosure;

圖12為根據揭示內容之一實施例,顯示用以啟動及停止圖9之局部轉換器的方法。12 is a diagram showing a method for starting and stopping the local converter of FIG. 9 in accordance with an embodiment of the disclosure.

500...能量產生系統500. . . Energy generation system

502、502a~502d...能量產生裝置502, 502a~502d. . . Energy generating device

504、504a~504d...局部轉換器504, 504a~504d. . . Local converter

506、506a~506d...能量產生陣列506, 506a~506d. . . Energy generation array

508、508a~508d...局部控制器508, 508a~508d. . . Local controller

510...中央陣列控制器510. . . Central array controller

512...轉換級512. . . Conversion level

514...方格514. . . Square

516...資料匯流排516. . . Data bus

520...診斷模組520. . . Diagnostic module

525...控制模組525. . . Control module

530...轉換級最佳化器530. . . Conversion level optimizer

540...全域控制器540. . . Global controller

Claims (23)

一種在能量產生系統中之集中式與分散式最大功率點追蹤間作選擇的方法,該能量產生系統包含多數個能量產生裝置,各該等能量產生裝置耦接至一對應的局部轉換器,各個該局部轉換器包含用於該對應的能量產生裝置的一局部控制器,該方法包含:判定該等能量產生裝置是否操作於準理想條件下;當該等能量產生裝置操作於準理想條件下時,將該能量產生系統設於一集中式最大功率點追蹤(CMPPT)模式中;及當該等能量產生裝置並非操作於準理想條件下時,將該能量產生系統設於一分散式最大功率點追蹤(DMPPT)模式中。 A method for selecting between centralized and decentralized maximum power point tracking in an energy generating system, the energy generating system comprising a plurality of energy generating devices, each of the energy generating devices being coupled to a corresponding local converter, each The local converter includes a local controller for the corresponding energy generating device, the method comprising: determining whether the energy generating devices are operating under quasi-ideal conditions; and operating the energy generating devices under quasi-ideal conditions Setting the energy generation system in a centralized maximum power point tracking (CMPPT) mode; and setting the energy generation system to a decentralized maximum power point when the energy generating devices are not operating under quasi-ideal conditions Tracking (DMPPT) mode. 如申請專利範圍第1項的方法,將該系統設於該CMPPT模式中包含去能該等局部控制器及致能一全域控制器。 In the method of claim 1, the system is provided in the CMPPT mode to include the local controllers and enable a global controller. 如申請專利範圍第1項的方法,將該系統設於該DMPPT模式中包含致能該等局部控制器及去能一全域控制器。 For example, in the method of claim 1, the system is provided in the DMPPT mode, including enabling the local controllers and disabling a global controller. 如申請專利範圍第1項的方法,更包含當該系統為在該DMPPT模式中時,判定至少一個該等能量產生裝置被遮蔽的機率是否高於一預定臨限值。 The method of claim 1, further comprising determining whether the probability of at least one of the energy generating devices being masked is greater than a predetermined threshold when the system is in the DMPPT mode. 如申請專利範圍第4項的方法,更包含當判定至少一個該等能量產生裝置被遮蔽的該機率高於該預定臨限值 時:辨識至少一個有可能被遮蔽的能量產生裝置;及對各個被辨識為有可能被遮蔽的能量產生裝置執行一完整特性掃描。 The method of claim 4, further comprising determining that the probability that at least one of the energy generating devices is obscured is higher than the predetermined threshold Time: identifying at least one energy generating device that is likely to be obscured; and performing a full characteristic scan on each of the energy generating devices that are identified as likely to be obscured. 如申請專利範圍第5項的方法,更包含:根據該完整特性掃描辨識至少一個表現不足的能量產生裝置;及對各個被辨識為表現不足的能量產生裝置提供一校正。 The method of claim 5, further comprising: identifying at least one insufficiently performing energy generating device based on the complete characteristic scan; and providing a correction to each of the energy generating devices identified as being underexpressed. 如申請專利範圍第1項的方法,判定該等能量產生裝置是否操作於準理想條件下包含:對各個該能量產生裝置而言,根據相關聯於各該等能量產生裝置的一輸出功率值,計算該能量產生裝置被遮蔽的一機率;辨識該計算出的機率的一最大值;比較該計算出的機率的該最大值與一DMPPT臨限值;及當該計算出的機率的該最大值少於該DMPPT臨限值時,判定該等能量產生裝置為操作於準理想條件下。 The method of claim 1, wherein determining whether the energy generating devices operate under quasi-ideal conditions comprises: for each of the energy generating devices, according to an output power value associated with each of the energy generating devices, Calculating a probability that the energy generating device is obscured; identifying a maximum value of the calculated probability; comparing the maximum value of the calculated probability with a DMPPT threshold; and when the calculated probability is the maximum value When less than the DMPPT threshold, it is determined that the energy generating devices are operated under quasi-ideal conditions. 如申請專利範圍第7項的方法,更包含當該系統為在該DMPPT模式中時,比較該計算出的機率的該最大值與一診斷臨限值。 The method of claim 7, further comprising comparing the calculated maximum value to a diagnostic threshold when the system is in the DMPPT mode. 如申請專利範圍第8項的方法,更包含當該計算出的機率的該最大值大於該診斷臨限值時,(i)將各該等 具有該能量產生裝置被遮蔽之一計算出的機率大於該診斷臨限值的能量產生裝置辨識為一有可能被遮蔽的能量產生裝置,及(ii)對於各個該被辨識為有可能被遮蔽的能量產生裝置執行一完整特性掃描。 The method of claim 8, further comprising: (i) each of the calculated probability is greater than the diagnostic threshold An energy generating device having a probability that the energy generating device is obscured by one of the occlusions greater than the diagnostic threshold is identified as an energy generating device that is likely to be obscured, and (ii) is identified as potentially obscured for each The energy generating device performs a full characteristic scan. 如申請專利範圍第9項的方法,更包含(i)根據該完整特性掃描辨識至少一個表現不足的能量產生裝置,及(ii)對各個該被辨識為表現不足的能量產生裝置提供一校正。 The method of claim 9, further comprising (i) identifying at least one under-performing energy generating device based on the full characteristic scan, and (ii) providing a correction to each of the energy generating devices identified as underexpressing. 如申請專利範圍第1項的方法,該等能量產生裝置包含光伏打面板。 The method of claim 1, wherein the energy generating device comprises a photovoltaic panel. 一種在能量產生系統中之集中式與分散式最大功率點追蹤間作選擇的方法,該能量產生系統包含多數個能量產生裝置,各該等能量產生裝置耦接至一對應的局部轉換器,各個該局部轉換器包含用於該對應的能量產生裝置的一局部控制器,該方法包含:計算各該等能量產生裝置的一輸出功率值;對各個該能量產生裝置而言,根據該等能量產生裝置的該等輸出功率值計算該能量產生裝置被遮蔽的一機率;辨識該計算出的機率的一最大值;比較該計算出的機率的該最大值與一分散式最大功率點追蹤(DMPPT)臨限值;當該計算出的機率的該最大值少於該DMPPT臨限值時,將該能量產生系統設於一集中式最大功率點追蹤(CMPPT)模式中;及 當該計算出的機率的該最大值等於或是大於該DMPPT臨限值時,將該能量產生系統設於一DMPPT模式中。 A method for selecting between centralized and decentralized maximum power point tracking in an energy generating system, the energy generating system comprising a plurality of energy generating devices, each of the energy generating devices being coupled to a corresponding local converter, each The local converter includes a local controller for the corresponding energy generating device, the method comprising: calculating an output power value of each of the energy generating devices; for each of the energy generating devices, generating the energy according to the energy The output power values of the device calculate a probability that the energy generating device is obscured; identify a maximum value of the calculated probability; compare the maximum value of the calculated probability with a decentralized maximum power point tracking (DMPPT) a threshold value; when the calculated maximum value of the probability is less than the DMPPT threshold, the energy generating system is set in a centralized maximum power point tracking (CMPPT) mode; When the calculated maximum value of the probability is equal to or greater than the DMPPT threshold, the energy generating system is set in a DMPPT mode. 如申請專利範圍第12項的方法,更包含當該系統為設於該DMPPT模式中時,判定至少一個該等能量產生裝置被遮蔽的一機率是否高於一預定臨限值。 The method of claim 12, further comprising determining whether a probability that at least one of the energy generating devices is obscured is greater than a predetermined threshold when the system is set in the DMPPT mode. 如申請專利範圍第13項的方法,判定至少一個該等能量產生裝置被遮蔽的該機率是否高於該預定臨限值包含比較該計算出的機率的該最大值與一診斷臨限值。 In the method of claim 13, the determining whether the probability that at least one of the energy generating devices is obscured is greater than the predetermined threshold includes comparing the maximum of the calculated probability with a diagnostic threshold. 如申請專利範圍第14項的方法,更包含當該計算出的機率的該最大值大於該診斷臨限值時,(i)將各該等具有能量產生裝置被遮蔽之一計算出的機率大於該診斷臨限值之能量產生裝置辨識為一有可能被遮蔽的能量產生裝置,(ii)對各個該被辨識為有可能被遮蔽的能量產生裝置執行一完整特性掃描,(iii)根據該完整特性掃描辨識至少一個表現不足的能量產生裝置,及(iv)對各個該被辨識為表現不足的能量產生裝置提供一校正。 The method of claim 14, further comprising: (i) calculating a probability that each of the energy generating devices is shaded is greater than when the calculated maximum value is greater than the diagnostic threshold. The diagnostic threshold energy generating device is identified as an energy generating device that is likely to be obscured, (ii) performing a complete characteristic scan on each of the energy generating devices that are identified as likely to be obscured, (iii) according to the integrity The characteristic scan identifies at least one under-performing energy generating device, and (iv) provides a correction to each of the energy generating devices that are identified as underexpressing. 如申請專利範圍第12項的方法,該等能量產生裝置包含光伏打面板。 The method of claim 12, wherein the energy generating device comprises a photovoltaic panel. 一種中央陣列控制器,能在能量產生系統之集中式與分散式最大功率點追蹤之間作選擇,該能量產生系統包含多數個能量產生裝置,各該等能量產生裝置耦接至一對應的局部轉換器,各個該局部轉換器包含用於該對應的能量產生裝置的一局部控制器,該中央陣列控制器包含: 一診斷模組,能判定該等能量產生裝置是否操作於準理想條件下;及一控制模組,當該等能量產生裝置操作於準理想條件下時,能將該能量產生系統設於一集中式最大功率點追蹤(CMPPT)模式中,及當該等能量產生裝置並非操作於準理想條件下時,將該能量產生系統設於一分散式最大功率點追蹤(DMPPT)模式中。 A central array controller capable of selecting between a centralized and decentralized maximum power point tracking of an energy generating system, the energy generating system including a plurality of energy generating devices, each of the energy generating devices coupled to a corresponding portion a converter, each of the local converters including a local controller for the corresponding energy generating device, the central array controller comprising: a diagnostic module capable of determining whether the energy generating devices are operated under quasi-ideal conditions; and a control module capable of setting the energy generating system in a concentration when the energy generating devices are operated under quasi-ideal conditions In the maximum power point tracking (CMPPT) mode, and when the energy generating devices are not operating under quasi-ideal conditions, the energy generating system is placed in a decentralized maximum power point tracking (DMPPT) mode. 如申請專利範圍第17項的中央陣列控制器,該控制模組藉由去能該等局部控制器並致能一全域控制器而能將該系統設於該CMPPT模式中。 The central array controller of claim 17, wherein the control module is capable of setting the system in the CMPPT mode by deactivating the local controllers and enabling a global controller. 如申請專利範圍第17項的中央陣列控制器,該控制模組藉由致能該等局部控制器及去能一全域控制器而能將該系統設於該DMPPT模式中。 For example, in the central array controller of claim 17, the control module can set the system in the DMPPT mode by enabling the local controllers and disabling a global controller. 如申請專利範圍第17項的中央陣列控制器,當該系統為於該DMPPT模式中時,該診斷模組能更進一步判定至少一個該等能量產生裝置被遮蔽的一機率是否高於一預定臨限值。 For example, in the central array controller of claim 17, when the system is in the DMPPT mode, the diagnostic module can further determine whether a probability that at least one of the energy generating devices is obscured is higher than a predetermined probability. Limit. 如申請專利範圍第20項的中央陣列控制器,當判定至少一個該等能量產生裝置被遮蔽的該機率高於該預定臨限值時,該診斷模組能更進一步(i)辨識至少一個有可能被遮蔽的能量產生裝置,及(ii)對各個該被辨識為有可能被遮蔽的能量產生裝置執行一完整特性掃描。 The central array controller of claim 20, wherein the diagnostic module can further (i) identify at least one when determining that the probability that at least one of the energy generating devices is obscured is higher than the predetermined threshold An energy generating device that may be obscured, and (ii) performing a full characteristic scan of each of the energy generating devices that are identified as likely to be obscured. 如申請專利範圍第21項的中央陣列控制器,該診斷模組能更進一步(i)根據該完整特性掃描辨識至少一 個表現不足的能量產生裝置,及(ii)對各個該被辨識為表現不足的能量產生裝置提供一校正。 For example, in the central array controller of claim 21, the diagnostic module can further (i) identify at least one according to the complete characteristic scan. An insufficiently performing energy generating device, and (ii) providing a correction to each of the energy generating devices that are identified as underexpressing. 如申請專利範圍第17項的中央陣列控制器,該等能量產生裝置包含光伏打面板。A central array controller as claimed in claim 17, wherein the energy generating device comprises a photovoltaic panel.
TW098115860A 2008-05-14 2009-05-13 Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system TWI498705B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/152,566 US7991511B2 (en) 2008-05-14 2008-05-14 Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US12/152,478 US9077206B2 (en) 2008-05-14 2008-05-14 Method and system for activating and deactivating an energy generating system

Publications (2)

Publication Number Publication Date
TW201009534A TW201009534A (en) 2010-03-01
TWI498705B true TWI498705B (en) 2015-09-01

Family

ID=41319349

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098115860A TWI498705B (en) 2008-05-14 2009-05-13 Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system

Country Status (6)

Country Link
EP (1) EP2291899A4 (en)
JP (1) JP5526333B2 (en)
KR (1) KR20110019742A (en)
CN (1) CN102067437B (en)
TW (1) TWI498705B (en)
WO (1) WO2009140551A2 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
JP5498388B2 (en) 2007-10-15 2014-05-21 エーエムピーティー, エルエルシー System for high efficiency solar power
US7919953B2 (en) 2007-10-23 2011-04-05 Ampt, Llc Solar power capacitor alternative switch circuitry system for enhanced capacitor life
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
WO2009072076A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Current sensing on a mosfet
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
SG175717A1 (en) 2009-04-17 2011-12-29 Ampt Llc Methods and apparatus for adaptive operation of solar power systems
US9466737B2 (en) 2009-10-19 2016-10-11 Ampt, Llc Solar panel string converter topology
EP2537223A2 (en) * 2010-02-16 2012-12-26 Danfoss Solar Inverters A/s A method of operating a maximum power point tracker
US20130241298A1 (en) * 2010-05-12 2013-09-19 Omron Corporation Voltage converter, voltage converting method, power adjuster, power adjusting method, photovoltaic system, and management device
CN102253682B (en) * 2010-05-18 2013-07-24 沈阳工程学院 Maximum power point tracking (MPPT) control method of photovoltaic battery
DE102010036966B4 (en) * 2010-08-12 2013-02-28 Sma Solar Technology Ag Method for operating a photovoltaic generator at a maximum power operating point
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
EP2684218B1 (en) * 2011-03-09 2018-05-02 Solantro Semiconductor Corp. Self mapping photovoltaic array system
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
CN103166239B (en) * 2011-12-09 2015-07-08 上海康威特吉能源技术有限公司 Centralized-distributed mixed novel energy power generation system and maximum power point tracking control method
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
CN103378602A (en) * 2012-04-20 2013-10-30 上海康威特吉能源技术有限公司 Distributed type tandem photovoltaic grid connected power generation system and current sampling correcting method
JP5988208B2 (en) * 2012-09-26 2016-09-07 パナソニックIpマネジメント株式会社 Inverter
US20140103892A1 (en) * 2012-10-16 2014-04-17 Volterra Semiconductor Corporation Scalable maximum power point tracking controllers and associated methods
US10333299B2 (en) * 2013-03-05 2019-06-25 Abb Schweiz Ag Power converter and methods for increasing power delivery of soft alternating current power source
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9397497B2 (en) 2013-03-15 2016-07-19 Ampt, Llc High efficiency interleaved solar power supply system
US9667100B2 (en) * 2013-06-26 2017-05-30 Mitsubishi Electric Corporation Voltage monitoring control device and voltage monitoring control method
AU2014383916B2 (en) * 2014-07-15 2017-02-02 Sungrow Power Supply Co., Ltd. Method for exiting or switching maximum power point tracking centralized modes and related applications
TWI514714B (en) * 2014-12-09 2015-12-21 Univ Nat Cheng Kung Distributed solar power system and controlling method thereof
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11843253B2 (en) * 2020-10-06 2023-12-12 Navia Energy Inc. Controlled energy system
GB2620330A (en) * 2021-04-12 2024-01-03 Enteligent Inc Solar rapid shutdown optimizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013455A1 (en) * 2003-08-05 2005-02-10 Matsushita Electric Industrial Co., Ltd. Direct-current power supply and battery-powered electronic apparatus equipped with the power supply
US20050105224A1 (en) * 2003-11-13 2005-05-19 Sharp Kabushiki Kaisha Inverter apparatus connected to a plurality of direct current power sources and dispersed-power-source system having inverter apparatus linked to commercial power system to operate
US20070164612A1 (en) * 2004-01-09 2007-07-19 Koninkijke Phillips Electronics N.V. Decentralized power generation system
TW200729662A (en) * 2006-01-18 2007-08-01 Univ Yuan Ze High-performance power conditioner for solar photovoltaic system
US20080013347A1 (en) * 2003-05-12 2008-01-17 Ballard Power Systems Corporation Method and apparatus for adjusting wakeup time in electrical power converter systems and transformer isolation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327071A (en) * 1991-11-05 1994-07-05 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays
CN1797892A (en) * 2004-12-30 2006-07-05 中国科学院电工研究所 Tracker for maximum power of light-volt electric-power production by solar energy, and control method
JP4776348B2 (en) * 2005-11-11 2011-09-21 シャープ株式会社 Inverter device
US8751053B2 (en) * 2006-10-19 2014-06-10 Tigo Energy, Inc. Method and system to provide a distributed local energy production system with high-voltage DC bus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080013347A1 (en) * 2003-05-12 2008-01-17 Ballard Power Systems Corporation Method and apparatus for adjusting wakeup time in electrical power converter systems and transformer isolation
WO2005013455A1 (en) * 2003-08-05 2005-02-10 Matsushita Electric Industrial Co., Ltd. Direct-current power supply and battery-powered electronic apparatus equipped with the power supply
US20050105224A1 (en) * 2003-11-13 2005-05-19 Sharp Kabushiki Kaisha Inverter apparatus connected to a plurality of direct current power sources and dispersed-power-source system having inverter apparatus linked to commercial power system to operate
US20070164612A1 (en) * 2004-01-09 2007-07-19 Koninkijke Phillips Electronics N.V. Decentralized power generation system
TW200729662A (en) * 2006-01-18 2007-08-01 Univ Yuan Ze High-performance power conditioner for solar photovoltaic system

Also Published As

Publication number Publication date
WO2009140551A3 (en) 2010-02-25
CN102067437B (en) 2014-07-02
JP2011521363A (en) 2011-07-21
EP2291899A2 (en) 2011-03-09
EP2291899A4 (en) 2015-03-04
TW201009534A (en) 2010-03-01
KR20110019742A (en) 2011-02-28
JP5526333B2 (en) 2014-06-18
WO2009140551A2 (en) 2009-11-19
CN102067437A (en) 2011-05-18

Similar Documents

Publication Publication Date Title
TWI498705B (en) Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
TWI494734B (en) Method and system for providing maximum power point tracking in an energy generating system
US7969133B2 (en) Method and system for providing local converters to provide maximum power point tracking in an energy generating system
US9077206B2 (en) Method and system for activating and deactivating an energy generating system
US7962249B1 (en) Method and system for providing central control in an energy generating system
US7991511B2 (en) Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US8279644B2 (en) Method and system for providing maximum power point tracking in an energy generating system
US8139382B2 (en) System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
JP2011522313A (en) System and method for incorporating local maximum power point tracking in an energy generation system with central maximum power point tracking
US8716999B2 (en) Dynamic frequency and pulse-width modulation of dual-mode switching power controllers in photovoltaic arrays
WO2005112551A2 (en) Method for compensating for partial shade in photovoltaic power system
US10303195B2 (en) Apparatus and method for voltage balancing and optimizing output power in power generation systems
US11081961B2 (en) Power convertor, power generation system, and power generation control method
KR20190120944A (en) A solar power conversion unit and operating method for the unit