TWI490097B - Distributed manipulator control system - Google Patents
Distributed manipulator control system Download PDFInfo
- Publication number
- TWI490097B TWI490097B TW101102749A TW101102749A TWI490097B TW I490097 B TWI490097 B TW I490097B TW 101102749 A TW101102749 A TW 101102749A TW 101102749 A TW101102749 A TW 101102749A TW I490097 B TWI490097 B TW I490097B
- Authority
- TW
- Taiwan
- Prior art keywords
- control system
- machine controller
- module
- node
- robot
- Prior art date
Links
Landscapes
- Manipulator (AREA)
- Programmable Controllers (AREA)
- Numerical Control (AREA)
Description
本發明是有關於一種機械手控制設備,且特別是有關於一種分散式機械手控制系統。 This invention relates to a robotic control device and, more particularly, to a decentralized robotic control system.
隨著科技日新月異的進步,自動化設備在許多工廠內已越來越普及。在這些自動化設備中,機械手尤其重要,因為其可代替工人完成許多繁重的勞動,提高生產效率,甚至避免施工中所發生的危險。 With the rapid advancement of technology, automation equipment has become more and more popular in many factories. Among these automated devices, the robot is particularly important because it can replace the heavy labor of the workers, increase production efficiency, and even avoid the dangers that occur during construction.
由於加工行業對於精密度的要求日益提升,故對機械手的控制精度要求也越來越高。一般而言,目前用於工業取料的機械手之控制模式主要分為兩種。 As the processing industry is increasingly demanding precision, the control accuracy requirements for robots are also increasing. In general, the control modes of robots currently used for industrial reclaiming are mainly divided into two types.
第一種係採用液壓或氣壓來進行驅動控制,其優點在於結構簡單,系統易於控制,但缺點在於定位精度低,此外一但用戶要求改變取料工作類型或路徑,必須重新調節各液壓或氣壓缸的定位開關,以適應新的工作任務,不利於生產過程的自動化。 The first type uses hydraulic or pneumatic pressure for drive control. The advantage is that the structure is simple and the system is easy to control, but the disadvantage is that the positioning accuracy is low. In addition, once the user requests to change the type or path of the reclaiming work, the hydraulic pressure or air pressure must be readjusted. The positioning switch of the cylinder is adapted to the new work task and is not conducive to the automation of the production process.
第二種係採用全電動控制方式,其係利用一手持示教盒來控制伺服控制器,進而命令其操控機械手。這類系統採用脈衝的方式由手持示教盒來控制伺服控制器,其精度有所提高。然而,這種系統最大的隱憂在於其伺服控制器外接的配線過於複雜,導致系統的穩定性不佳,且過多的配線亦會造成成本上的負擔。 The second type uses an all-electric control method that uses a hand-held teaching box to control the servo controller and instructs it to manipulate the robot. This type of system uses a hand-held teaching box to control the servo controller in a pulsed manner, and its accuracy is improved. However, the biggest worry of this kind of system is that the wiring of the external connection of the servo controller is too complicated, resulting in poor stability of the system, and excessive wiring will also cause a cost burden.
由上述可知,在現有的機械手控制系統中,仍存在部 分困難,以待克服。 As can be seen from the above, in the existing robot control system, there is still a part It is difficult to overcome.
有鑑於此,本發明之一技術態樣在於提供一種分散式機械手控制系統。 In view of this, one aspect of the present invention provides a distributed robot control system.
本發明之目的在於提供一種分散式機械手控制系統,其係利用總線來通訊連接一人機控制器、一多合一伺服驅動器及一輸出入(Input/Output,I/O)介面。因此,人機控制器僅需通訊連接至總線即可進行機械手的控制,故可省卻複雜的配線,從而克服以上先前技術所遭遇到的困難。 It is an object of the present invention to provide a distributed robot control system that uses a bus to communicatively connect a human machine controller, an all-in-one servo driver, and an input/output (I/O) interface. Therefore, the man-machine controller only needs to communicate with the bus to control the robot, so that complicated wiring can be eliminated, thereby overcoming the difficulties encountered in the prior art.
依據本發明之一實施方式,一種分散式機械手控制系統包含一總線、一人機控制器、一多合一伺服驅動器、複數伺服馬達、一輸出入介面、複數傳感器、及一手爪驅動器。於本實施方式中,總線具有一第一節點、一第二節點及一第三節點。人機控制器係通訊連接至第一節點。多合一伺服驅動器係通訊連接至第二節點。輸出入介面係通訊連接至第三節點。伺服馬達係由多合一伺服驅動器控制以移動一機械手。複數傳感器係通訊連接至輸出入介面。手爪驅動器係通訊連接至輸出入介面。 According to an embodiment of the present invention, a distributed robot control system includes a bus, a human machine controller, an all-in-one servo driver, a plurality of servo motors, an input/output interface, a plurality of sensors, and a one-handed jaw driver. In this embodiment, the bus has a first node, a second node, and a third node. The man-machine controller is communicatively connected to the first node. The all-in-one servo drive is communicatively coupled to the second node. The input and output interface is connected to the third node. The servo motor is controlled by an all-in-one servo drive to move a robot. The complex sensor system is connected to the input and output interface. The gripper driver is communicatively connected to the input and output interface.
依據本發明之一或多個實施方式,分散式機械手控制系統包含一可程式邏輯控制器(Programmable Logic Controller,PLC)及一觸控顯示面板。可程式邏輯控制器係設置於人機控制器之內部。觸控顯示面板係形成於人機控制器之表面。 According to one or more embodiments of the present invention, a distributed robot control system includes a programmable logic controller (PLC) and a touch display panel. The programmable logic controller is set inside the human machine controller. The touch display panel is formed on the surface of the human machine controller.
依據本發明之一或多個實施方式,多合一伺服驅動器 包含一位置反饋模組,用以將機械手之即時位置資料透過總線傳送至人機控制器,並由觸控顯示面板呈現。 One-in-one servo driver according to one or more embodiments of the present invention A position feedback module is included for transmitting the instantaneous position data of the robot to the human machine controller through the bus and presented by the touch display panel.
依據本發明之一或多個實施方式,人機控制器包含一路徑紀錄模組,用以記錄使用者操作觸控顯示面板所造成機械手移動之一運動路徑。 According to one or more embodiments of the present invention, the human-machine controller includes a path recording module for recording a movement path of the robot movement caused by the user operating the touch display panel.
依據本發明之一或多個實施方式,人機控制器包含一路徑紀錄模組,用以記錄使用者操作觸控顯示面板所造成機械手移動之一運動路徑。 According to one or more embodiments of the present invention, the human-machine controller includes a path recording module for recording a movement path of the robot movement caused by the user operating the touch display panel.
依據本發明之一或多個實施方式,分散式機械手控制系統進一步包含一串列周邊介面(Serial Peripheral Interface,SPI),通訊連接可程式邏輯控制器及觸控顯示面板。 According to one or more embodiments of the present invention, the distributed robot control system further includes a Serial Peripheral Interface (SPI), a communication connection programmable logic controller, and a touch display panel.
依據本發明之一或多個實施方式,多合一伺服驅動器包含一運動控制模組,其包含一運動路徑資料庫、一指令接收模組、以及一指令下達模組。運動路徑資料庫係用以儲存複數運動路徑,每一運動路徑標記一專屬代碼。指令接收模組係用以供人機控制器指定專屬代碼。指令下達模組係用以根據專屬代碼命令伺服馬達驅使機械手沿著上述專屬代碼所對應的運動路徑移動。 According to one or more embodiments of the present invention, an all-in-one servo driver includes a motion control module including a motion path database, an instruction receiving module, and an instruction delivery module. The motion path database is used to store complex motion paths, each of which marks a proprietary code. The command receiving module is used for the human machine controller to specify the exclusive code. The command release module is configured to command the servo motor to move the robot along the motion path corresponding to the exclusive code according to the exclusive code.
依據本發明之一或多個實施方式,運動控制模組進一步包含一同步命令模組,用以控制複數伺服馬達同步運作。 According to one or more embodiments of the present invention, the motion control module further includes a synchronization command module for controlling the synchronous operation of the plurality of servo motors.
依據本發明之一或多個實施方式,總線為一超五類遮罩乙太網路纜線(CAT-5e STP Ethernet cable)。 According to one or more embodiments of the present invention, the bus is a CAT-5e STP Ethernet cable.
依據本發明之一或多個實施方式,總線之速度約為20Mbps。 In accordance with one or more embodiments of the present invention, the speed of the bus is approximately 20 Mbps.
依據本發明之一或多個實施方式,總線具有兩條通信 通道,分別具有不同的循環冗餘檢查碼(cycle redundancy check,CRC)。 According to one or more embodiments of the present invention, the bus has two communications Channels have different cyclic redundancy check (CRC).
藉由上述技術手段,本發明不僅可有效解決配線複雜的問題,更具有至少下列優勢。1.本發明將可程式邏輯控制器及觸控顯示面板整合於人機控制器中,可直接由觸控顯示面板規劃機械手之運動路徑,並可顯示機械手之即時位置。2.本發明所提供之多合一伺服驅動器具有一運動控制模組,其運動路徑資料庫中儲存有複數運動路徑,人機控制器僅需指定特定路徑之編號,多合一伺服驅動器即可自其運動路徑資料庫中獲知所欲執行之運動路徑,而無須由人機控制器去控制運動路徑,故可降低人機控制器之運算負擔。 With the above technical means, the present invention not only can effectively solve the problem of complicated wiring, but also has at least the following advantages. 1. The invention integrates the programmable logic controller and the touch display panel into the man-machine controller, and can directly plan the movement path of the manipulator by the touch display panel, and can display the instantaneous position of the manipulator. 2. The all-in-one servo driver provided by the invention has a motion control module, and a plurality of motion paths are stored in the motion path database, and the human-machine controller only needs to specify the number of the specific path, and the multi-in-one servo driver can be used. The motion path to be executed is known from the motion path database, and the human machine controller does not need to control the motion path, thereby reducing the computational burden of the human machine controller.
以上所述僅係用以闡明本發明之目的、達成此目的之技術手段、其所產生的功效以及本發明之其他優點等等,本發明之具體細節將於下文中的實施方式及相關圖式中詳細介紹。 The above description is only for clarifying the object of the present invention, the technical means for achieving the object, the effects thereof, and other advantages of the present invention, etc. The specific details of the present invention will be hereinafter described in the following embodiments and related drawings. Detailed in the introduction.
以下將以圖式揭露本發明之複數實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。換言之,在本發明部分實施方式中,這些細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。 The embodiments of the present invention are disclosed in the following drawings, and for the purpose of clarity However, it should be understood that these practical details are not intended to limit the invention. In other words, these details are not necessary in some embodiments of the invention. In addition, some of the conventional structures and elements are shown in the drawings in a simplified schematic manner in order to simplify the drawings.
第1圖繪示依據本發明一實施方式之分散式機械手控 制系統之示意圖。如圖所示,於本實施方式中,分散式機械手控制系統包含一總線400、一人機控制器100、一多合一伺服驅動器200、三個伺服馬達500a、500b及500c、一輸出入介面300、兩個傳感器600a及600b以及一手爪驅動器620。於本實施方式中,總線400具有一第一節點420、一第二節點440及一第三節點460。人機控制器100係通訊連接至第一節點420。多合一伺服驅動器200係通訊連接至第二節點440。輸出入介面300係通訊連接至第三節點460。伺服馬達500a、500b、及500c係由多合一伺服驅動器200控制以移動一機械手(未示於圖中)。複數傳感器600a及600b係通訊連接至輸出入介面300。手爪驅動器620係通訊連接至該輸出入介面300。 FIG. 1 is a diagram showing a distributed robot control according to an embodiment of the present invention. Schematic diagram of the system. As shown in the figure, in the present embodiment, the distributed robot control system includes a bus 400, a human machine controller 100, an all-in-one servo driver 200, three servo motors 500a, 500b, and 500c, and an input/output interface. 300, two sensors 600a and 600b and a hand driver 620. In this embodiment, the bus 400 has a first node 420, a second node 440, and a third node 460. The human machine controller 100 is communicatively coupled to the first node 420. The all-in-one servo driver 200 is communicatively coupled to the second node 440. The input/output interface 300 is communicatively coupled to the third node 460. The servo motors 500a, 500b, and 500c are controlled by the all-in-one servo driver 200 to move a robot (not shown). The plurality of sensors 600a and 600b are communicatively coupled to the input and output interface 300. A gripper driver 620 is communicatively coupled to the input and output interface 300.
藉由上述技術手段,本發明可利用總線400以通訊連接人機控制器100、多合一伺服驅動器200、及輸出入介面300。換言之,人機控制器100僅需連接到總線400,再透過總線400分別連接到多合一伺服驅動器200及輸出入介面300,即可控制機械手的運作,故人機控制器100無須連接任何其他的線路,藉此克服配線複雜的問題。 Through the above technical means, the present invention can utilize the bus 400 to communicatively connect the human machine controller 100, the all-in-one servo driver 200, and the input/output interface 300. In other words, the human-machine controller 100 only needs to be connected to the bus 400, and then connected to the all-in-one servo driver 200 and the input/output interface 300 through the bus 400, respectively, to control the operation of the robot, so the human-machine controller 100 does not need to be connected to any other. The line, thereby overcoming the complicated wiring problem.
第2圖繪示第1圖所示之人機控制器之功能方塊圖。如圖所示,人機控制器100包含一可程式邏輯控制器(Programmable Logic Controller,PLC)120、一觸控顯示面板140、一串列周邊介面(Serial Peripheral Interface,SPI)160、及一路徑紀錄模組180。於本實施方式中,可程式邏輯控制器120係設置於人機控制器100之內部,而觸控顯示面板140係設置於人機控制器100之表面,兩者係以串 列周邊介面160進行通訊連接。藉此,本發明之實施方式可將觸控顯示面板140與可程式邏輯控制器120整合於人機控制器100中,以達到一體化的效果。於本實施方式中,路徑紀錄模組180係用以記錄使用者操作觸控顯示面板140所造成機械手移動之一運動路徑。舉例而言,使用者可使用一指向件(例如:使用者之手指或觸控筆)在觸控顯示面板140上滑動以對應移動機械手,而路徑紀錄模組180則可儲存機械手之運動路徑。因此,當欲輸入一新的運動路徑時,可直接利用人機控制器100之觸控顯示面板140來實現,易於使用者操作。 FIG. 2 is a functional block diagram of the human-machine controller shown in FIG. 1. As shown, the human machine controller 100 includes a programmable logic controller (PLC) 120, a touch display panel 140, a Serial Peripheral Interface (SPI) 160, and a path. Recording module 180. In the embodiment, the programmable logic controller 120 is disposed inside the human-machine controller 100, and the touch display panel 140 is disposed on the surface of the human-machine controller 100. The column peripheral interface 160 is in communication connection. Therefore, the touch display panel 140 and the programmable logic controller 120 can be integrated into the human machine controller 100 to achieve an integrated effect. In the embodiment, the path record module 180 is used to record a movement path of the robot movement caused by the user operating the touch display panel 140. For example, the user can use a pointing member (for example, a user's finger or a stylus) to slide on the touch display panel 140 to correspond to the moving robot, and the path recording module 180 can store the movement of the robot. path. Therefore, when a new motion path is to be input, the touch display panel 140 of the human machine controller 100 can be directly used for implementation, which is easy for the user to operate.
於本實施方式中,串列周邊介面160為一種同步序列資料協定之介面,一般具有四條線路,用以傳輸四種邏輯訊號,分別為SCLK(Serial Clock)訊號、MOSI/SIMO(Master Output,Slave Input)訊號、MISO/SOMI(Master Input,Slave Output)訊號、及SS(Slave Select)訊號,其中SCLK訊號係從串列周邊介面所連接之主要(master)裝置輸出至從屬(slave)裝置;MOSI/SIMO訊號係從串列周邊介面所連接之主要裝置輸出至從屬裝置:MISO/SOMI訊號係從串列周邊介面所連接之從屬裝置輸出至主要裝置;SS訊號係由串列周邊介面所連接之主要裝置輸出至從屬裝置。 In the present embodiment, the serial peripheral interface 160 is a synchronous data protocol interface, and generally has four lines for transmitting four kinds of logic signals, namely SCLK (Serial Clock) signal, MOSI/SIMO (Master Output, Slave). Input) signal, MISO/SOMI (Master Input, Slave Output) signal, and SS (Slave Select) signal, wherein the SCLK signal is output from the master device connected to the serial peripheral interface to the slave device; MOSI The /SIMO signal is output from the main device connected to the serial peripheral interface to the slave device: the MISO/SOMI signal is output from the slave device connected to the serial peripheral interface to the main device; the SS signal is connected by the serial peripheral interface. The main device is output to the slave device.
於本實施方式中,人機控制器100可採用FPGA-EP4CP6為可程式邏輯控制器120之晶片,並可採用由埃貝赫公司(ALTERA®)所製造的FlexCC MFR4310為晶片,RJ45為通訊連接埠,並可採用靜態存取記憶體(Static Random Access Memory,SRAM)與鐵電隨機存取記憶體 (Ferroelectric Random Access Memory,FRAM)來進行數據的儲存。 In the present embodiment, the human-machine controller 100 can use the FPGA-EP4CP6 as the chip of the programmable logic controller 120, and can use the FlexCC MFR4310 manufactured by ALTERA® as the chip, and the RJ45 is the communication connection.埠, and can use static random access memory (SRAM) and ferroelectric random access memory (Ferroelectric Random Access Memory, FRAM) for data storage.
第3圖繪示第1圖所示之多合一伺服驅動器之功能方塊圖。如圖所示,多合一伺服驅動器200包含一運動控制模組220,其包含一運動路徑資料庫226、一指令接收模組222、一指令下達模組224、及一同步命令模組228。運動路徑資料庫226係用以儲存複數運動路徑,每一運動路徑標記一專屬代碼。指令接收模組222係用以供人機控制器100指定專屬代碼。指令下達模組224係用以根據專屬代碼命令伺服馬達500a、500b、及/或500c驅使機械手沿著該專屬代碼所對應的運動路徑移動。 FIG. 3 is a functional block diagram of the all-in-one servo driver shown in FIG. 1. As shown, the all-in-one servo driver 200 includes a motion control module 220 that includes a motion path database 226, an instruction receiving module 222, an instruction delivery module 224, and a synchronization command module 228. The motion path database 226 is used to store complex motion paths, each of which marks a proprietary code. The command receiving module 222 is configured to allow the human machine controller 100 to specify a proprietary code. The command release module 224 is configured to command the servo motor 500a, 500b, and/or 500c to drive the robot to move along the motion path corresponding to the exclusive code according to the exclusive code.
更具體而言,運動路徑資料庫226中可儲存有多條運動路徑之資料,且每一運動路徑標記一專屬代碼。於上文中所謂的『專屬』代碼表示每一條運動路徑均標記一代碼,且每一條運動路徑之代碼互不相同。人機控制器100可指定某一專屬代碼至指令接收模組222,接著由指令下達模組224根據指令接收模組222所接收到的專屬代碼命令伺服馬達500a、500b、及/或500c驅使機械手延著該專屬代碼所對應的運動路徑進行移動。藉由以上技術手段,人機控制器100僅需指定單一或複數個專屬代碼,多合一伺服驅動器200即可驅動伺服馬達500a、500b、及/或500c以驅動機械手沿著人機控制器100指定的專屬代碼所對應之運動路徑移動。藉此,本實施方式得以降低人機控制器100之運算負擔。 More specifically, the motion path database 226 can store data of a plurality of motion paths, and each motion path marks a dedicated code. The so-called "exclusive" code in the above indicates that each motion path is marked with a code, and the codes of each motion path are different from each other. The human machine controller 100 can designate a specific code to the command receiving module 222, and then the command release module 224 drives the mechanical motor 500a, 500b, and/or 500c according to the exclusive code received by the command receiving module 222. The hand moves along the motion path corresponding to the exclusive code. With the above technical means, the human-machine controller 100 only needs to specify a single or a plurality of exclusive codes, and the multi-in-one servo driver 200 can drive the servo motors 500a, 500b, and/or 500c to drive the robot along the human-machine controller. 100 specifies the movement path corresponding to the exclusive code. Thereby, the present embodiment can reduce the computational load of the human machine controller 100.
於本實施方式中,多合一伺服驅動器200進一步包含 一位置反饋模組240,其係用以將機械手之即時位置資料透過總線400傳送至人機控制器100(請參閱第1圖),並由其觸控顯示面板140(請參閱第2圖)來呈現。具體而言,位置反饋模組240可透過運動控制模組220獲知機械手之即時位置,並透過總線400傳送至人機控制器100(請參閱第1圖)。 In the embodiment, the all-in-one servo driver 200 further includes A position feedback module 240 is configured to transmit the instantaneous position data of the robot to the human machine controller 100 via the bus 400 (see FIG. 1), and the touch display panel 140 thereof (see FIG. 2) ) to present. Specifically, the position feedback module 240 can know the instantaneous position of the robot through the motion control module 220 and transmit it to the human machine controller 100 via the bus 400 (refer to FIG. 1).
於本實施方式中,多合一伺服驅動器200之運動控制模組220可進一步包含一同步命令模組228,其係用以控制伺服馬達500a、500b、及500c同步運作。更具體而言,同步命令模組228會要求指令下達模組224同時提供命令給伺服馬達500a、500b、及500c進行運作,以提升伺服馬達500a、500b、及500c之間的同步性。 In this embodiment, the motion control module 220 of the all-in-one servo driver 200 may further include a synchronization command module 228 for controlling the synchronous operation of the servo motors 500a, 500b, and 500c. More specifically, the synchronization command module 228 will request the command release module 224 to simultaneously provide commands to the servo motors 500a, 500b, and 500c to operate to improve synchronism between the servo motors 500a, 500b, and 500c.
第4圖繪示第1圖所示之總線之局部示意圖。如圖所示,本實施方式之總線400可提供兩條通信通道,分別為第一通信通道412與第二通信通道414,兩者均為雙向傳輸,並分別具有不同的循環冗餘檢查碼(cycle redundancy check,CRC)。於部分實施方式中,總線400為一超五類遮罩乙太網路纜線(CAT-5e STP Ethernet cable),速度約為20Mbps,且通訊距離約可達30公尺。藉此,本實施方式之總線400可提供高速且穩定之數據傳輸。 Figure 4 is a partial schematic view of the bus shown in Figure 1. As shown in the figure, the bus 400 of the present embodiment can provide two communication channels, which are a first communication channel 412 and a second communication channel 414, both of which are bidirectionally transmitted, and have different cyclic redundancy check codes respectively. Cycle redundancy check, CRC). In some embodiments, the bus 400 is a CAT-5e STP Ethernet cable with a speed of approximately 20 Mbps and a communication distance of approximately 30 meters. Thereby, the bus 400 of the present embodiment can provide high speed and stable data transmission.
於本發明之一或多個實施方式中,伺服馬達500a、500b、及500c係由多合一伺服驅動器200控制以沿著三維方向移動機械手。舉例而言,伺服馬達500a、500b、及500c分別係用以沿著三個互相正交的方向移動機械手,例如:直角座標系中的x、y及z軸。 In one or more embodiments of the invention, servo motors 500a, 500b, and 500c are controlled by an all-in-one servo drive 200 to move the robot in three dimensions. For example, servo motors 500a, 500b, and 500c are respectively used to move a robot in three mutually orthogonal directions, such as x, y, and z axes in a Cartesian coordinate system.
於本發明之一或多個實施方式中,手爪驅動器620可用以驅動手爪之握、或放等動作,以達到取料、放料之功能。於部分實施方式中,手爪驅動器620可由液壓缸或氣壓缸來控制。 In one or more embodiments of the present invention, the gripper driver 620 can be used to drive the gripping or releasing action of the gripper to achieve the functions of reclaiming and discharging. In some embodiments, the pawl driver 620 can be controlled by a hydraulic or pneumatic cylinder.
於本發明之一或多個實施方式中,傳感器600a及600b可用於檢測機械手與料件之間的相對位置,以幫助機械手取得料件。 In one or more embodiments of the invention, sensors 600a and 600b can be used to detect the relative position between the robot and the item to assist the robot in obtaining the item.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.
100‧‧‧人機控制器 100‧‧‧human machine controller
120‧‧‧可程式邏輯控制器 120‧‧‧Programmable Logic Controller
140‧‧‧觸控顯示面板 140‧‧‧Touch display panel
160‧‧‧串列周邊介面 160‧‧‧Listing peripheral interfaces
180‧‧‧路徑紀錄模組 180‧‧‧Path Recording Module
200‧‧‧多合一伺服驅動器 200‧‧‧All-in-one servo drive
220‧‧‧運動控制模組 220‧‧‧motion control module
222‧‧‧指令接收模組 222‧‧‧Instruction Receiver Module
224‧‧‧指令下達模組 224‧‧‧Command Release Module
226‧‧‧運動路徑資料庫 226‧‧‧Sports Path Database
228‧‧‧同步命令模組 228‧‧‧Synchronous Command Module
240‧‧‧位置反饋模組 240‧‧‧Location feedback module
300‧‧‧輸出入介面 300‧‧‧Output interface
400‧‧‧總線 400‧‧‧ bus
412‧‧‧第一通信通道 412‧‧‧First communication channel
414‧‧‧第二通信通道 414‧‧‧Second communication channel
420‧‧‧第一節點 420‧‧‧ first node
440‧‧‧第二節點 440‧‧‧second node
460‧‧‧第三節點 460‧‧‧ third node
500a‧‧‧伺服服達 500a‧‧‧Servo service
500b‧‧‧伺服馬達 500b‧‧‧Servo motor
500c‧‧‧伺服馬達 500c‧‧‧Servo motor
600a‧‧‧傳感器 600a‧‧‧ sensor
600b‧‧‧傳感器 600b‧‧‧ sensor
620‧‧‧手爪驅動器 620‧‧‧Hand Drive
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖繪示依據本發明一實施方式之分散式機械手控制系統之示意圖。 The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; .
第2圖繪示第1圖所示之人機控制器之功能方塊圖。 FIG. 2 is a functional block diagram of the human-machine controller shown in FIG. 1.
第3圖繪示第1圖所示之多合一伺服驅動器之功能方塊圖。 FIG. 3 is a functional block diagram of the all-in-one servo driver shown in FIG. 1.
第4圖繪示第1圖所示之總線之局部示意圖。 Figure 4 is a partial schematic view of the bus shown in Figure 1.
100‧‧‧人機控制器 100‧‧‧human machine controller
200‧‧‧多合一伺服驅動器 200‧‧‧All-in-one servo drive
300‧‧‧輸出入介面 300‧‧‧Output interface
400‧‧‧總線 400‧‧‧ bus
420‧‧‧第一節點 420‧‧‧ first node
440‧‧‧第二節點 440‧‧‧second node
460‧‧‧第三節點 460‧‧‧ third node
500a、500b、500c‧‧‧伺服馬達 500a, 500b, 500c‧‧‧ servo motor
600a、600b‧‧‧傳感器 600a, 600b‧‧‧ sensors
620‧‧‧手爪驅動器 620‧‧‧Hand Drive
Claims (9)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110383837.5A CN102431035B (en) | 2011-11-28 | 2011-11-28 | Distributed manipulator control system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201321145A TW201321145A (en) | 2013-06-01 |
TWI490097B true TWI490097B (en) | 2015-07-01 |
Family
ID=45979566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101102749A TWI490097B (en) | 2011-11-28 | 2012-01-20 | Distributed manipulator control system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102431035B (en) |
TW (1) | TWI490097B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI699841B (en) * | 2016-07-21 | 2020-07-21 | 創新服務股份有限公司 | Clamping mechanism of precision assembly machine |
US12028642B2 (en) | 2022-10-25 | 2024-07-02 | Industrial Technology Research Institute | Target tracking system and target tracking method using the same |
US12023565B2 (en) | 2021-08-26 | 2024-07-02 | Industrial Technology Research Institute | Projection system and projection calibration method using the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170073615A (en) * | 2014-10-17 | 2017-06-28 | 젠썸 인코포레이티드 | Climate control systems and methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6711468B2 (en) * | 2001-06-08 | 2004-03-23 | Comau S.P.A. | Control system for robots |
TWI306330B (en) * | 2005-12-28 | 2009-02-11 | Delta Electronics Inc | Ac servo system with distributed movement control and method for the same |
US20110071672A1 (en) * | 2009-09-22 | 2011-03-24 | Gm Global Technology Operations, Inc. | Framework and method for controlling a robotic system using a distributed computer network |
TWM414034U (en) * | 2011-05-24 | 2011-10-11 | Teco Elec & Machinery Co Ltd | Servo drive device having distributed control machanism and servo drive network architecture using the same |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004038855A (en) * | 2002-07-08 | 2004-02-05 | Olympus Corp | Shaft operation device, method, and program |
CN1554518A (en) * | 2003-12-23 | 2004-12-15 | 北京航空航天大学 | Control system of self-climbing cleaning robot |
CN100401218C (en) * | 2005-12-13 | 2008-07-09 | 天津大学 | Open motion control card and control method for parallel equipment based on two-level DSP |
CN100484645C (en) * | 2006-01-23 | 2009-05-06 | 湖南大学 | Defective goods automatic sorting method and equipment for high-speed automated production line |
EP1844909A1 (en) * | 2006-04-11 | 2007-10-17 | Abb Ab | Multi-input control of an industrial robot system |
JP2009297810A (en) * | 2008-06-11 | 2009-12-24 | Panasonic Corp | Posture control device of manipulator and posture control method thereof |
CN101612733B (en) * | 2008-06-25 | 2013-07-31 | 中国科学院自动化研究所 | Distributed multi-sensor mobile robot system |
WO2010115444A1 (en) * | 2009-04-11 | 2010-10-14 | Abb Ag | Robot system |
CN201471699U (en) * | 2009-08-06 | 2010-05-19 | 杭州通灵自动化股份有限公司 | Manipulator control system of full-servo injection molding machine |
CN102139486B (en) * | 2011-04-14 | 2013-02-27 | 上海交通大学 | Palletizing robot control system with self-maintenance function |
-
2011
- 2011-11-28 CN CN201110383837.5A patent/CN102431035B/en active Active
-
2012
- 2012-01-20 TW TW101102749A patent/TWI490097B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6711468B2 (en) * | 2001-06-08 | 2004-03-23 | Comau S.P.A. | Control system for robots |
TWI306330B (en) * | 2005-12-28 | 2009-02-11 | Delta Electronics Inc | Ac servo system with distributed movement control and method for the same |
US20110071672A1 (en) * | 2009-09-22 | 2011-03-24 | Gm Global Technology Operations, Inc. | Framework and method for controlling a robotic system using a distributed computer network |
TWM414034U (en) * | 2011-05-24 | 2011-10-11 | Teco Elec & Machinery Co Ltd | Servo drive device having distributed control machanism and servo drive network architecture using the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI699841B (en) * | 2016-07-21 | 2020-07-21 | 創新服務股份有限公司 | Clamping mechanism of precision assembly machine |
US12023565B2 (en) | 2021-08-26 | 2024-07-02 | Industrial Technology Research Institute | Projection system and projection calibration method using the same |
US12028642B2 (en) | 2022-10-25 | 2024-07-02 | Industrial Technology Research Institute | Target tracking system and target tracking method using the same |
Also Published As
Publication number | Publication date |
---|---|
CN102431035A (en) | 2012-05-02 |
TW201321145A (en) | 2013-06-01 |
CN102431035B (en) | 2015-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104440864B (en) | A kind of master-slave mode remote operating industrial robot system and its control method | |
US10509392B2 (en) | Runtime controller for robotic manufacturing system | |
EP3126101B1 (en) | Software interface for authoring robotic manufacturing process | |
CN104339354B (en) | A kind of special motion controller hardware platform for 6DOF parallel robot | |
CN104708517A (en) | Industrial robot automatic grinding and polishing system based on ROS | |
TWI490097B (en) | Distributed manipulator control system | |
CN107717981A (en) | control device of mechanical arm and teaching system and method thereof | |
CN104699122A (en) | A robot motion control system | |
CN203765607U (en) | Combined double-arm multifunctional robot | |
CN202480102U (en) | Three-dimensional sensing and controlling mechanical arm | |
CN204308953U (en) | A kind of special motion controller hardware platform for six-degree-of-freedom parallel robot | |
CN107908191A (en) | The kinetic control system and method for a kind of series-parallel robot | |
CN103753584A (en) | Mechanical arm control system | |
JP5291727B2 (en) | Program conversion module and program conversion method for multi-axis synchronous machine | |
CN103056883B (en) | Double-manipulator coordination control system and double-manipulator coordination control method | |
CN108375979A (en) | Self-navigation robot general-purpose control system based on ROS | |
CN203109951U (en) | Loading and discharging mechanical arm motion control device | |
CN103454966A (en) | Parallel coordinate measuring machine controller | |
CN103543677B (en) | A kind of implementation method of back to zero control system of the robot that makes up a prescription | |
CN102211389A (en) | Control method for injection molding manipulator | |
CN105302031A (en) | Control device and control method for piling carrying robot | |
CN205325689U (en) | Two real time kinematic of robot keep away barrier device | |
CN107272614A (en) | A kind of control system for processing type intelligence manufacture integrating device of imparting knowledge to students | |
CN105082152A (en) | Novel multifunctional robot for production line | |
CN207696540U (en) | A kind of robot control system being conveniently operated |