TWI487131B - Apparatus and method for making solar cell - Google Patents
Apparatus and method for making solar cell Download PDFInfo
- Publication number
- TWI487131B TWI487131B TW096134443A TW96134443A TWI487131B TW I487131 B TWI487131 B TW I487131B TW 096134443 A TW096134443 A TW 096134443A TW 96134443 A TW96134443 A TW 96134443A TW I487131 B TWI487131 B TW I487131B
- Authority
- TW
- Taiwan
- Prior art keywords
- sputtering
- region
- reel
- zone
- deposition
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 11
- 238000004544 sputter deposition Methods 0.000 claims description 84
- 239000004065 semiconductor Substances 0.000 claims description 43
- 239000000758 substrate Substances 0.000 claims description 34
- 238000000151 deposition Methods 0.000 claims description 30
- 230000008021 deposition Effects 0.000 claims description 28
- 229920000307 polymer substrate Polymers 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000004804 winding Methods 0.000 claims description 14
- 238000005229 chemical vapour deposition Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 229920005570 flexible polymer Polymers 0.000 claims description 5
- 239000000463 material Substances 0.000 description 31
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 12
- 229910052732 germanium Inorganic materials 0.000 description 11
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 3
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- WUUZKBJEUBFVMV-UHFFFAOYSA-N copper molybdenum Chemical compound [Cu].[Mo] WUUZKBJEUBFVMV-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910017767 Cu—Al Inorganic materials 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000005477 sputtering target Methods 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- HVMJUDPAXRRVQO-UHFFFAOYSA-N copper indium Chemical compound [Cu].[In] HVMJUDPAXRRVQO-UHFFFAOYSA-N 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920005787 opaque polymer Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明涉及用於製造太陽能電池的設備及方法,尤其涉及一種用於製造具有可撓曲基板的太陽能電池的設備及方法。 The present invention relates to an apparatus and method for fabricating a solar cell, and more particularly to an apparatus and method for fabricating a solar cell having a flexible substrate.
太陽能電池主要係應用光電轉換原理,其一種典型結構主要包括基板以及設置在基板上的P型半導體材料層和N型半導體材料層。 The solar cell mainly uses the photoelectric conversion principle, and a typical structure thereof mainly includes a substrate and a P-type semiconductor material layer and an N-type semiconductor material layer disposed on the substrate.
光電轉換係指太陽的輻射能光子通過半導體物質轉變為電能的過程(請參見“Grown junction GaAs solar cell”,Shen,C.C.;Pearson,G.L.;Proceedings of the IEEE,Volume 64,Issue 3,March 1976 Page(s):384-385)。當太陽光照射到半導體上時,其中一部分被表面反射掉,其餘部分被半導體吸收或透過。被吸收的光,當然有一些變成熱能,另一些光子則同組成半導體的原子價電子碰撞,於係產生電子-空穴對。這樣,光能就以產生電子-空穴對的形式轉變為電能,並在P型和N型交界面兩邊形成勢壘電場,將電子驅向N區,空穴驅向P區,從而使得N區有過剩的電子,P區有過剩的空穴,在P-N結附近形成與勢壘電場方向相反的光生電場。光生電場的一部分除抵消勢壘電場外,還使P型層帶正電,N型半導體層帶負電,在N區與P區之間的薄層產生所謂光生伏打電動勢。若分別在P型層和N型半導體層焊上金屬引線,接通負載,則外電路便有電流通過。如此形成的 一個個電池元件,把它們串聯、並聯起來,就能產生一定的電壓和電流,輸出功率。 Photoelectric conversion refers to the process by which the radiant energy photons of the sun are converted into electrical energy by semiconductor materials (see "Grown junction GaAs solar cell", Shen, CC; Pearson, GL; Proceedings of the IEEE, Volume 64, Issue 3, March 1976 Page. (s): 384-385). When sunlight hits the semiconductor, a portion of it is reflected off the surface and the remainder is absorbed or transmitted by the semiconductor. Some of the absorbed light, of course, becomes thermal energy, while other photons collide with the valence electrons that make up the semiconductor, producing electron-hole pairs. Thus, the light energy is converted into electrical energy in the form of electron-hole pairs, and a barrier electric field is formed on both sides of the P-type and N-type interfaces, driving electrons to the N region, and holes are driven toward the P region, thereby making N There is excess electrons in the region, and there are excess holes in the P region, and a photo-generated electric field opposite to the electric field of the barrier is formed in the vicinity of the PN junction. A portion of the photogenerated electric field, in addition to offsetting the barrier electric field, also positively charges the P-type layer, the N-type semiconductor layer is negatively charged, and a thin layer between the N region and the P region produces a so-called photovoltaic electromotive force. If metal leads are soldered to the P-type layer and the N-type semiconductor layer, respectively, and the load is turned on, the external circuit passes current. So formed One battery element, connected in series and in parallel, can generate a certain voltage and current, and output power.
近年來,太陽能電池已經廣泛應用於航天、工業、氣象等領域,如何將太陽能電池應用於日常生活,以解決能源短缺、環境污染等問題已成為一個熱點問題。這其中,將太陽能電池與建築材料相結合,使得未來的大型建築或家庭房屋實現電力自給,係未來一大發展方向,德國、美國等國家更提出光伏屋頂計畫。 In recent years, solar cells have been widely used in aerospace, industrial, meteorological and other fields. How to apply solar cells to daily life to solve problems such as energy shortage and environmental pollution has become a hot issue. Among them, the combination of solar cells and building materials, so that the future of large buildings or family houses to achieve self-sufficiency in electricity, is a major development direction in the future, Germany, the United States and other countries have proposed photovoltaic roofing plans.
然而一般的太陽能電池的基板都採用單晶矽、多晶矽或玻璃等材料,這些材料不易撓曲,難以固定在一個彎曲的表面上,限制了太陽能電池面板的形狀及安裝位置,尤其當希望把其應用於與建築材料結合的模件中時,往往會受到許多限制。 However, the substrates of general solar cells are made of single crystal germanium, polycrystalline germanium or glass. These materials are not easily deflected and are difficult to fix on a curved surface, which limits the shape and mounting position of the solar cell panel, especially when it is desired to There are often many limitations when applied to modules that are combined with building materials.
有鑒於此,有必要提供一種具有可撓曲基板的太陽能電池的設備及其製造方法。 In view of the above, it is necessary to provide an apparatus for a solar cell having a flexible substrate and a method of fabricating the same.
一種用於製造太陽能電池的設備,其包括一個纏繞室及一個鍍膜室。該纏繞室內設置有一個放捲軸和一個收捲軸,該放捲軸用於纏繞可以撓曲的聚合物基板並且將該聚合物基板從該放捲軸放出,該收捲軸用於將鍍膜後的該聚合物基板捲起。一個鍍膜室依次設置有第一濺射區、第一沈積區、第二濺射區、第二沈積區、第三濺射區及第四濺射區,每個區分別設置有至少一個滾軸,可以撓曲的聚合物基板的第一端纏繞在放捲軸上,該聚合物基板的第二端依次通過各滾軸纏繞在收捲軸上,從而該聚合物基板可以從放捲軸出發依次經過第一濺射區、第一沈積區、第二濺射區、第二沈積區、第三濺射區及第四濺射區,從而纏繞在該收捲軸上。 該第一濺射區用於通過濺射法在該聚合物基板的一個表面上形成該背電極,該第一沈積區用於通過化學氣相沈積法在該背電極上形成該P型半導體層,該第二濺射區用於通過濺射法在該P型半導體層上形成該P-N結層,該第二沈積區用於通過化學氣相沈積法在該P-N結層上形成該N型半導體層,該第三濺射區用於通過濺射法在該N型半導體層上形成該透明導電層,該第四濺射區用於通過濺射法在該透明導電層上形成該前電極,從而得到該太陽能電池。 An apparatus for manufacturing a solar cell, comprising a winding chamber and a coating chamber. The winding chamber is provided with a take-up reel for winding a flexible polymer substrate and for discharging the polymer substrate from the discharge reel, and a take-up reel for the coated polymer The substrate is rolled up. a coating chamber is sequentially provided with a first sputtering region, a first deposition region, a second sputtering region, a second deposition region, a third sputtering region and a fourth sputtering region, each of which is provided with at least one roller The first end of the deflectable polymer substrate is wound on the take-up reel, and the second end of the polymer substrate is sequentially wound on the take-up reel through the rollers, so that the polymer substrate can pass through the reel A sputtering zone, a first deposition zone, a second sputtering zone, a second deposition zone, a third sputtering zone, and a fourth sputtering zone are wound around the take-up reel. The first sputtering region is configured to form the back electrode on one surface of the polymer substrate by a sputtering method, and the first deposition region is configured to form the P-type semiconductor layer on the back electrode by chemical vapor deposition a second sputtering region for forming the PN junction layer on the P-type semiconductor layer by a sputtering method, the second deposition region for forming the N-type semiconductor on the PN junction layer by chemical vapor deposition a layer, the third sputtering region is configured to form the transparent conductive layer on the N-type semiconductor layer by a sputtering method, and the fourth sputtering region is configured to form the front electrode on the transparent conductive layer by a sputtering method, Thereby the solar cell is obtained.
一種採用上述設備製造太陽能電池的製造方法,該方法包括以下步驟:將聚合物基板的一端纏繞於放捲軸,將該聚合物基板的另一端聚合物基板由放捲軸出發,依次經由第一導向軸、經過滾軸及第二導向軸,捲繞在收捲軸上;從該放捲軸釋放該聚合物基板,在該放捲過程中,使該聚合物基板依次經過第一濺射區、第一沈積區、第二濺射區、第二沈積區、第三濺射區及第四濺射區,其中,在該第一濺射區通過濺射法在該聚合物基板的一個表面上形成該背電極,在該第一沈積區通過化學氣相沈積法在該背電極上形成該P型半導體層,在該第二濺射區通過濺射法在該P型半導體層上形成該P-N結層,在該第二沈積區通過化學氣相沈積法在該P-N結層上形成該N型半導體層,在該第三濺射區通過濺射法在該N型半導體層上形成該透明導電層,在該第四濺射區通過濺射法在該透明導電層上形成該前電極,從而得到該太陽能電池。 A manufacturing method for manufacturing a solar cell using the above apparatus, the method comprising the steps of: winding one end of a polymer substrate on a take-up reel, starting from a reel of the other end of the polymer substrate, and sequentially passing the first guide shaft Winding on the take-up reel through the roller and the second guide shaft; releasing the polymer substrate from the reel, in the unwinding process, the polymer substrate is sequentially passed through the first sputtering zone, the first deposition a second sputtering region, a second deposition region, a third sputtering region, and a fourth sputtering region, wherein the back is formed on one surface of the polymer substrate by sputtering in the first sputtering region An electrode, wherein the P-type semiconductor layer is formed on the back electrode by chemical vapor deposition in the first deposition region, and the PN junction layer is formed on the P-type semiconductor layer by sputtering in the second sputtering region, Forming the N-type semiconductor layer on the PN junction layer by chemical vapor deposition in the second deposition region, and forming the transparent conductive layer on the N-type semiconductor layer by sputtering in the third sputtering region, The fourth sputtering zone is sputtered The front electrode is formed on the transparent conductive layer to obtain the solar cell.
相對於先前技術,本發明太陽能電池的基板係可撓曲的聚合物基 板,故太陽能電池可撓曲,將其應用於建築領域時,更容易配合建築物本身的形狀設計成不同幾何形狀的太陽能電池,使設計更有彈性。 The substrate of the solar cell of the present invention is a flexible polymer base relative to the prior art The solar cell can be flexed. When it is applied to the construction field, it is easier to design the solar cells with different geometric shapes in accordance with the shape of the building itself, so that the design is more flexible.
10‧‧‧太陽能電池 10‧‧‧ solar cells
101‧‧‧基板 101‧‧‧Substrate
102‧‧‧背電極 102‧‧‧ Back electrode
103‧‧‧P型半導體層 103‧‧‧P type semiconductor layer
104‧‧‧P-N結層 104‧‧‧P-N layer
105‧‧‧N型半導體層 105‧‧‧N type semiconductor layer
106‧‧‧透明導電層 106‧‧‧Transparent conductive layer
107‧‧‧前電極 107‧‧‧ front electrode
1012‧‧‧基板的表面 1012‧‧‧ Surface of the substrate
20‧‧‧捲軸式鍍膜系統 20‧‧‧Roll coating system
202‧‧‧捲繞室 202‧‧‧Winding room
204‧‧‧鍍膜室 204‧‧‧ Coating room
206‧‧‧放捲軸 206‧‧‧Reel
208‧‧‧收捲軸 208‧‧‧Reel
210‧‧‧滾軸 210‧‧‧roller
212‧‧‧導向軸 212‧‧‧guide shaft
2041‧‧‧第一濺射區 2041‧‧‧First sputtering zone
2042‧‧‧第一沈積區 2042‧‧‧First sedimentary zone
2043‧‧‧第二濺射區 2043‧‧‧Second sputtering zone
2044‧‧‧第二沈積區 2044‧‧‧Second sedimentary zone
2045‧‧‧第三濺射區 2045‧‧‧3rd sputtering zone
2046‧‧‧第四濺射區 2046‧‧‧4th sputtering zone
圖1係本發明實施例太陽能電池的剖面示意圖;圖2係本發明實施例用於製造太陽能電池的捲軸式鍍膜系統的剖面示意圖。 1 is a schematic cross-sectional view of a solar cell according to an embodiment of the present invention; and FIG. 2 is a cross-sectional view showing a roll coating system for manufacturing a solar cell according to an embodiment of the present invention.
下面將結合附圖,對本發明作進一步的詳細說明。 The invention will be further described in detail below with reference to the accompanying drawings.
請參閱圖1,本發明實施例太陽能電池10包括一個基板101,基板101具有一個表面1012,基板101的表面1012上依次形成有:背電極(Back Metal Contact Layer)102,P型半導體層103,P-N結層104,N型半導體層105,透明導電層(Transparent Conductive Oxide)106,及前電極(Front Metal Contact Layer)107。 Referring to FIG. 1, a solar cell 10 includes a substrate 101 having a surface 1012. The surface 1012 of the substrate 101 is sequentially formed with a back metal contact layer 102 and a P-type semiconductor layer 103. The PN junction layer 104, the N-type semiconductor layer 105, the Transparent Conductive Oxide 106, and the Front Metal Contact Layer 107.
基板101係可撓曲的聚合物薄片(Polymer Foil)。該聚合物可以係透明或者不透明的。透明的聚合物材料可以係聚碳酸酯(Polycarbonate,PC)、聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)等。不透明的聚合物材料可以係聚醚醚酮(Polyether Ether Ketone,PEEK)、液晶聚合物(Liquid Crystal Polymer,LCP)等。優選地,基板101的材料係光學等級聚合物(Optical Grade Polymer),例如PMMA。基板101的厚度大約在10μm至100μm之間。 The substrate 101 is a flexible polymer sheet (Polymer Foil). The polymer can be transparent or opaque. The transparent polymer material may be polycarbonate (Polycarbonate, PC), polymethyl methacrylate (PMMA) or the like. The opaque polymer material may be Polyether Ether Ketone (PEEK), Liquid Crystal Polymer (LCP) or the like. Preferably, the material of the substrate 101 is an optical grade polymer such as PMMA. The thickness of the substrate 101 is approximately between 10 μm and 100 μm.
背電極102的材料可以係銀(Ag),銅(Cu),鉬(Mo),鋁(Al),銅鋁合金(Cu-Al Alloy),銀銅合金(Ag-Cu Alloy),或者銅鉬合金(Cu-Mo Alloy)等。背電極102可以採用濺射(Sputtering)或者沈積(Deposition)的方法形成。 The material of the back electrode 102 may be silver (Ag), copper (Cu), molybdenum (Mo), aluminum (Al), copper-aluminum alloy (Cu-Al Alloy), silver-copper alloy (Ag-Cu Alloy), or copper-molybdenum. Alloy (Cu-Mo Alloy) and the like. The back electrode 102 may be formed by a sputtering method or a deposition method.
P型半導體層103的材料可以係P型非晶矽(P-Type Amorphous Silicon,簡稱P-a-Si)材料,特別係P型含氫非晶矽(P-Type Amorphous Silicon With Hydrogen,簡稱P-a-Si:H)材料。當然,該P型半導體層的材料也可以係III-V族化合物或II-VI族化合物,特別係摻雜鋁(Al)、鉀(Ga)、銦(In)的半導體材料,如氮化鋁鉀(AlGaN)或鋁砷化鎵(AlGaAs)。 The material of the P-type semiconductor layer 103 may be a P-type Amorphous Silicon (Pa-Si) material, in particular, a P-Type Amorphous Silicon With Hydrogen (Pa-Si). :H) Material. Of course, the material of the P-type semiconductor layer may also be a III-V compound or a II-VI compound, especially a semiconductor material doped with aluminum (Al), potassium (Ga), or indium (In), such as aluminum nitride. Potassium (AlGaN) or aluminum gallium arsenide (AlGaAs).
優選地,P型半導體層103的材料為P型非晶矽材料。非晶矽材料對光的吸收性比結晶矽材料強約500倍,所以在對光子吸收量要求相同的情況下,非晶矽材料製成的半導體層的厚度遠小於結晶矽材料製成的半導體層的厚度。且非晶矽材料對基板材質的要求更低。所以採用非晶矽材料不僅可以節省大量的材料,也使得製作大面積的太陽能電池成為可能(結晶矽太陽能電池的面積受限於矽晶圓的尺寸)。 Preferably, the material of the P-type semiconductor layer 103 is a P-type amorphous germanium material. The amorphous germanium material absorbs light about 500 times stronger than the crystalline germanium material, so the thickness of the semiconductor layer made of the amorphous germanium material is much smaller than that of the crystalline germanium material when the photon absorption amount is the same. The thickness of the layer. And the amorphous germanium material has lower requirements on the material of the substrate. Therefore, the use of an amorphous germanium material not only saves a large amount of material, but also makes it possible to fabricate a large-area solar cell (the area of the crystalline germanium solar cell is limited by the size of the germanium wafer).
P-N結層104的材料可以係結合性較好的III-V族化合物或I-III-VI族化合物,如碲化鎘(CdTe)、銅銦硒(CuInSe2)等材料,也可以係銅銦鎵硒(CuIn1-XGaSe2,CIGS)。該P-N結層132用於將光子轉換成電子-孔穴對並形成勢壘電場。該P-N結層132可以通過化學氣相沈積法(Chemical Vapor Deposition,CVD),濺射法等方法形成。 The material of the PN junction layer 104 may be a combination of a group III-V compound or a group I-III-VI compound, such as cadmium telluride (CdTe), copper indium selenide (CuInSe2), or copper indium gallium. Selenium (CuIn1-XGaSe2, CIGS). The P-N junction layer 132 is used to convert photons into electron-hole pairs and form a barrier electric field. The P-N junction layer 132 can be formed by a method such as Chemical Vapor Deposition (CVD), sputtering, or the like.
N型半導體層105的材料可以係N型非晶矽(N type amorphous silicon,簡稱N-a-Si)材料,特別係N型含氫非晶矽(N-type amorphous silicon with hydrogen,簡稱N-a-Si:H)材料。當然,該N型半導體層133的材料也可以係III-V族化合物或II-VI族化合物,特別係摻雜氮(N)、磷(P)、砷(As)的半導體材料,如氮化鉀(GaN)或磷化銦鎵(InGaP)。 The material of the N-type semiconductor layer 105 may be an N-type amorphous germanium (N type amorphous Silicon, abbreviated as N-a-Si) material, especially N-type amorphous silicon with hydrogen (N-a-Si:H) material. Of course, the material of the N-type semiconductor layer 133 may also be a III-V compound or a II-VI compound, especially a semiconductor material doped with nitrogen (N), phosphorus (P), or arsenic (As), such as nitriding. Potassium (GaN) or indium gallium phosphide (InGaP).
透明導電層106的材料可以係,例如,銦錫氧化層(Indium Tin Oxide,ITO),氧化鋅(ZnO)等。 The material of the transparent conductive layer 106 may be, for example, Indium Tin Oxide (ITO), zinc oxide (ZnO), or the like.
前電極107的材料可以係銀(Ag),銅(Cu),鉬(Mo),鋁(Al),銅鋁合金(Cu-Al Alloy),銀銅合金(Ag-Cu Alloy),或者銅鉬合金(Cu-Mo Alloy)等。 The material of the front electrode 107 may be silver (Ag), copper (Cu), molybdenum (Mo), aluminum (Al), copper-aluminum alloy (Cu-Al Alloy), silver-copper alloy (Ag-Cu Alloy), or copper-molybdenum. Alloy (Cu-Mo Alloy) and the like.
相對於先前技術,本發明太陽能電池10的基板101係可撓曲的聚合物薄片,故太陽能電池10可撓曲,將其應用於建築領域時,更容易配合建築物本身的形狀設計成不同幾何形狀的太陽能電池,使設計更有彈性。而且,聚合物薄片價格相對較便宜,從而可以降低太陽能電池10的成本,有利於太陽能電池10的進一步大範圍推廣。此外,本發明太陽能電池10不僅可以應用於建築領域,由於其具有可撓曲、且成本低等特性,還可以廣泛地應用於航天器,交通工具,以及手機等3C產品上。 Compared with the prior art, the substrate 101 of the solar cell 10 of the present invention is a flexible polymer sheet, so that the solar cell 10 can be flexed, and when it is applied to the construction field, it is easier to design different geometries according to the shape of the building itself. The shape of the solar cell makes the design more flexible. Moreover, the price of the polymer sheet is relatively inexpensive, so that the cost of the solar cell 10 can be reduced, which is advantageous for further widespread promotion of the solar cell 10. In addition, the solar cell 10 of the present invention can be applied not only to the construction field but also to 3C products such as spacecraft, vehicles, and mobile phones due to its flexibility and low cost.
以下介紹一種製造太陽能電池10的設備及方法。 An apparatus and method for manufacturing a solar cell 10 are described below.
請參閱圖2,捲軸式鍍膜系統20包括一個捲繞室202及一個鍍膜室204。捲繞室202內設置有一個放捲軸206及一個收捲軸208。 Referring to FIG. 2, the roll coating system 20 includes a winding chamber 202 and a coating chamber 204. A take-up reel 206 and a take-up reel 208 are disposed in the winding chamber 202.
鍍膜室204從左至右依次包括第一濺射區2041、第一沈積區2042、第二濺射區2043、第二沈積區2044、第三濺射區2045及第四濺 射區2046。 The coating chamber 204 includes, in order from left to right, a first sputtering zone 2041, a first deposition zone 2042, a second sputtering zone 2043, a second deposition zone 2044, a third sputtering zone 2045, and a fourth sputtering. Shot area 2046.
第一濺射區2041、第二濺射區2043、第三濺射區2045及第四濺射區2046分別用於通過濺射法形成太陽能電池的背電極102、P-N結層104、透明導電層106及前電極107。在本實施例中,濺射法優選採用直流磁控濺射法(Direct Current Magnetron Sputtering)。各個濺射區的濺射靶材(圖未示)根據不同的材料選擇。例如,對於第一濺射區2041,根據所需要形成的背電極102的材料,濺射靶材可以係銀,銅,鉬,鋁,銅鋁合金,銀銅合金,或者銅鉬合金等。 The first sputtering region 2041, the second sputtering region 2043, the third sputtering region 2045, and the fourth sputtering region 2046 are respectively used to form the back electrode 102, the PN junction layer 104, and the transparent conductive layer of the solar cell by a sputtering method. 106 and front electrode 107. In the present embodiment, the sputtering method is preferably a direct current magnetron sputtering method (Direct Current Magnetron Sputtering). The sputtering targets (not shown) of the respective sputtering zones are selected according to different materials. For example, for the first sputtering region 2041, the sputtering target may be silver, copper, molybdenum, aluminum, copper aluminum alloy, silver copper alloy, or copper molybdenum alloy, etc., depending on the material of the back electrode 102 to be formed.
第一沈積區2042及第二沈積區2044分別用於通過化學氣相沈積法(Chemical Vapor Deposition,CVD)形成太陽能電池10的P型半導體層103及N型半導體層105。在本實施例中,沈積法優選採用等離子體輔助化學氣相沈積(Plasma Enhanced Chemical Vapor Deposition)。 The first deposition region 2042 and the second deposition region 2044 are used to form the P-type semiconductor layer 103 and the N-type semiconductor layer 105 of the solar cell 10 by chemical vapor deposition (CVD), respectively. In the present embodiment, the deposition method is preferably plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition).
每個濺射區及沈積區內分別設置有至少一個滾軸210,滾軸210用於支撐待鍍膜的基板101。在本施實例中,滾軸210內還可以設置有冷卻液體(圖未示),有利於基板101散熱,使其在整個鍍膜的過程中始終保持相對較低的溫度。捲繞室202及鍍膜室204之間設置有導向軸212,導向軸212用於引導待鍍膜的基板101前進。 At least one roller 210 is disposed in each of the sputtering zone and the deposition zone, and the roller 210 is used to support the substrate 101 to be coated. In the present embodiment, a cooling liquid (not shown) may be disposed in the roller 210 to facilitate heat dissipation of the substrate 101 so as to maintain a relatively low temperature throughout the entire coating process. A guide shaft 212 is disposed between the winding chamber 202 and the coating chamber 204, and the guide shaft 212 is used to guide the substrate 101 to be coated to advance.
採用捲軸式鍍膜系統20製造太陽能電池的方法如下所述: A method of manufacturing a solar cell using the roll coating system 20 is as follows:
在鍍膜前,放捲軸206、導向軸212、滾軸210及收捲軸208之間纏繞有待鍍膜的基板101,基板101係聚合物薄片。通過在基板101的表面1012上鍍膜依次形成背電極102等結構,從而得到太陽能 電池10。 Before the coating, the substrate 101 to be coated is wound between the take-up reel 206, the guide shaft 212, the roller 210, and the take-up reel 208, and the substrate 101 is a polymer sheet. The structure of the back electrode 102 and the like is sequentially formed by plating on the surface 1012 of the substrate 101, thereby obtaining solar energy. Battery 10.
當電機(圖未示)帶動放捲軸206順時針轉動時,導向軸212、滾軸210跟著逆時針轉動,而收捲軸208跟著順時針轉動。從放捲軸206出發的基板101經過導向軸212到達第一濺射區2041,滾軸210將基板101冷卻並且將其溫度保持在合適的溫度,在第一濺射區2041進行濺鍍(Sputtering),在基板101的表面1012上形成背電極102。 When the motor (not shown) drives the take-up reel 206 to rotate clockwise, the guide shaft 212 and the roller 210 rotate counterclockwise, and the take-up reel 208 rotates clockwise. The substrate 101 from the take-up reel 206 passes through the guide shaft 212 to the first sputtering zone 2041. The roller 210 cools the substrate 101 and maintains its temperature at a suitable temperature, and performs sputtering in the first sputtering zone 2041. The back electrode 102 is formed on the surface 1012 of the substrate 101.
收捲軸208繼續帶動基板101前進,具有背電極102的基板101的部分抵達第一沈積區,滾軸210冷卻基板101並且將其溫度保持在合適的溫度,在第一沈積區2042進行等離子體輔助化學氣相沈積,在背電極102上形成P型半導體層103。 The take-up reel 208 continues to drive the substrate 101 forward, the portion of the substrate 101 having the back electrode 102 reaches the first deposition zone, the roller 210 cools the substrate 101 and maintains its temperature at a suitable temperature, and plasma assists in the first deposition zone 2042 The P-type semiconductor layer 103 is formed on the back electrode 102 by chemical vapor deposition.
收捲軸208繼續帶動基板101前進,具有背電極102及P型半導體層103的基板101的部分抵達第二濺射區2043,滾軸210冷卻基板101並且將其溫度保持在合適的溫度,在第二濺射區進行濺射,在P型半導體層103上形成P-N結層104。 The take-up reel 208 continues to drive the substrate 101 forward, and the portion of the substrate 101 having the back electrode 102 and the P-type semiconductor layer 103 reaches the second sputtering region 2043, and the roller 210 cools the substrate 101 and maintains its temperature at a suitable temperature. The second sputtering region is sputtered to form a PN junction layer 104 on the P-type semiconductor layer 103.
具有背電極102、P型半導體層103及P-N結層104的基板101的部分依次經過第二沈積區2044、第三濺射區2045及第四濺射區2046,依次形成N型半導體層105、透明導電層106及前電極107,從而得到圖1所示的太陽能電池10。 A portion of the substrate 101 having the back electrode 102, the P-type semiconductor layer 103, and the PN junction layer 104 sequentially passes through the second deposition region 2044, the third sputtering region 2045, and the fourth sputtering region 2046, and sequentially forms an N-type semiconductor layer 105, The transparent conductive layer 106 and the front electrode 107 are used to obtain the solar cell 10 shown in FIG.
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.
20‧‧‧捲軸式鍍膜系統 20‧‧‧Roll coating system
202‧‧‧捲繞室 202‧‧‧Winding room
204‧‧‧鍍膜室 204‧‧‧ Coating room
206‧‧‧放捲軸 206‧‧‧Reel
208‧‧‧收捲軸 208‧‧‧Reel
210‧‧‧滾軸 210‧‧‧roller
212‧‧‧導向軸 212‧‧‧guide shaft
2041‧‧‧第一濺射區 2041‧‧‧First sputtering zone
2042‧‧‧第一沈積區 2042‧‧‧First sedimentary zone
2043‧‧‧第二濺射區 2043‧‧‧Second sputtering zone
2044‧‧‧第二沈積區 2044‧‧‧Second sedimentary zone
2045‧‧‧第三濺射區 2045‧‧‧3rd sputtering zone
2046‧‧‧第四濺射區 2046‧‧‧4th sputtering zone
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096134443A TWI487131B (en) | 2007-09-14 | 2007-09-14 | Apparatus and method for making solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096134443A TWI487131B (en) | 2007-09-14 | 2007-09-14 | Apparatus and method for making solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200913294A TW200913294A (en) | 2009-03-16 |
TWI487131B true TWI487131B (en) | 2015-06-01 |
Family
ID=44725120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096134443A TWI487131B (en) | 2007-09-14 | 2007-09-14 | Apparatus and method for making solar cell |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI487131B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6974976B2 (en) * | 2002-09-30 | 2005-12-13 | Miasole | Thin-film solar cells |
EP1605479A2 (en) * | 2004-06-09 | 2005-12-14 | Electronics and Telecommunications Research Institute | Flexible dye-sentitized solar cell using conducting metal substrate |
US20070093059A1 (en) * | 2005-10-24 | 2007-04-26 | Basol Bulent M | Method And Apparatus For Thin Film Solar Cell Manufacturing |
US20100132778A1 (en) * | 2007-06-21 | 2010-06-03 | Jusung Engineering Co., Ltd. | Solar cell, method of fabricating the same and apparatus for fabricating the same |
US20100210092A1 (en) * | 2009-02-19 | 2010-08-19 | You Dongjoo | Method and apparatus for manufacturing silicon thin film layer and manufacturing apparatus of solar cell |
-
2007
- 2007-09-14 TW TW096134443A patent/TWI487131B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6974976B2 (en) * | 2002-09-30 | 2005-12-13 | Miasole | Thin-film solar cells |
EP1605479A2 (en) * | 2004-06-09 | 2005-12-14 | Electronics and Telecommunications Research Institute | Flexible dye-sentitized solar cell using conducting metal substrate |
US20070093059A1 (en) * | 2005-10-24 | 2007-04-26 | Basol Bulent M | Method And Apparatus For Thin Film Solar Cell Manufacturing |
US20100132778A1 (en) * | 2007-06-21 | 2010-06-03 | Jusung Engineering Co., Ltd. | Solar cell, method of fabricating the same and apparatus for fabricating the same |
US20100210092A1 (en) * | 2009-02-19 | 2010-08-19 | You Dongjoo | Method and apparatus for manufacturing silicon thin film layer and manufacturing apparatus of solar cell |
Also Published As
Publication number | Publication date |
---|---|
TW200913294A (en) | 2009-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101388417B (en) | Solar cell component | |
KR20120063324A (en) | Bifacial solar cell | |
CN101355109A (en) | Solar cell module and its manufacturing equipment | |
KR100999810B1 (en) | Solar cell and manufacturing method thereof | |
KR101497955B1 (en) | Light transmitting back contact and solar cell using the same, and methods of manufacturing them | |
CN101355110A (en) | Solar cell and its manufacturing equipment and manufacturing method | |
CN104115283B (en) | Solar cell module and method of fabricating the same | |
KR20120113130A (en) | Solar cell apparatus and method of fabricating the same | |
KR101241708B1 (en) | Solar cell apparatus and method of fabricating the same | |
Buecheler et al. | Flexible and lightweight solar modules for new concepts in building integrated photovoltaics | |
KR20130072647A (en) | See through type solar cell and fabricating method | |
TWI487131B (en) | Apparatus and method for making solar cell | |
CN101359698A (en) | Solar cell and its manufacturing equipment and manufacturing method | |
TWI396291B (en) | Solar cell, apparatus and method for making same | |
Salve | State of art of thin film photovoltic cell: A review | |
Perrenoud et al. | Flexible CdTe solar cells and modules: challenges and prospects | |
KR101091319B1 (en) | Solar cell and manufacturing method thereof | |
US20150249171A1 (en) | Method of making photovoltaic device comprising i-iii-vi2 compound absorber having tailored atomic distribution | |
TWI407572B (en) | Solar cell module | |
KR101144483B1 (en) | Solar cell apparatus, solar power generating system having the same and method of fabricating the same | |
KR101345430B1 (en) | Tendam structure and manufacture for solar cell | |
KR20130031020A (en) | Solar cell | |
KR101814814B1 (en) | Solar cell and method of fabricating the same | |
KR101305603B1 (en) | Solar cell apparatus and method of fabricating the same | |
Chen | Flexible Inorganic Photovoltaics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |