[go: up one dir, main page]

TWI469384B - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
TWI469384B
TWI469384B TW98115039A TW98115039A TWI469384B TW I469384 B TWI469384 B TW I469384B TW 98115039 A TW98115039 A TW 98115039A TW 98115039 A TW98115039 A TW 98115039A TW I469384 B TWI469384 B TW I469384B
Authority
TW
Taiwan
Prior art keywords
layer
light
electrode
doped layer
emitting device
Prior art date
Application number
TW98115039A
Other languages
Chinese (zh)
Other versions
TW201001757A (en
Inventor
Rong Xuan
Jenq Dar Tsay
Chih Hao Hsu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/117,747 external-priority patent/US7906786B2/en
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Publication of TW201001757A publication Critical patent/TW201001757A/en
Application granted granted Critical
Publication of TWI469384B publication Critical patent/TWI469384B/en

Links

Landscapes

  • Led Devices (AREA)

Description

發光裝置Illuminating device

本發明是有關於一種發光裝置,且特別是有關於一種施加能量場的發光裝置。This invention relates to a lighting device and, more particularly, to a lighting device for applying an energy field.

與一般藉由產生熱而發光之螢光燈或白熾燈不同的是,發光二極體(LED)等半導體發光裝置是利用半導體的特性來發光,這類發光裝置所發射的光被稱作冷發光(cold luminescence)。這類發光裝置具有使用壽命長、重量輕和功率消耗低的優點,使得其可運用在多種領域上,諸如光學顯示器、交通信號燈、資料存儲設備、通信裝置、照明設備和醫療器材。因此,如何增進發光裝置的發光效率是這個領域中的一個重要問題。Unlike a fluorescent lamp or an incandescent lamp that generally emits light by generating heat, a semiconductor light-emitting device such as a light-emitting diode (LED) emits light by utilizing the characteristics of a semiconductor, and the light emitted by such a light-emitting device is called cold. Cold luminescence. Such light-emitting devices have the advantages of long life, light weight, and low power consumption, making them useful in a variety of fields such as optical displays, traffic lights, data storage devices, communication devices, lighting devices, and medical devices. Therefore, how to improve the luminous efficiency of the light-emitting device is an important issue in this field.

圖1繪示傳統發光裝置的截面圖。參看圖1,發光裝置100是一個垂直式發光二極體(LED),其包括電極110和120、第一摻雜層130、第二摻雜層140和半導體發光層150。隨著與電極110和120的距離增加,電流密度的分佈會逐漸減小。如圖1所示,較密的線表示高電流密度,而具有最多條線的區域位於電極110與120之間。然而,由於固有的缺陷,發光效率最高的區域會被電極110所阻斷,而使得發光裝置100的總發光效率受到影響。1 is a cross-sectional view of a conventional light emitting device. Referring to FIG. 1, a light emitting device 100 is a vertical light emitting diode (LED) including electrodes 110 and 120, a first doped layer 130, a second doped layer 140, and a semiconductor light emitting layer 150. As the distance from the electrodes 110 and 120 increases, the distribution of current density gradually decreases. As shown in FIG. 1, a dense line indicates a high current density, and a region having a maximum of lines is located between the electrodes 110 and 120. However, due to inherent defects, the region with the highest luminous efficiency is blocked by the electrode 110, so that the total luminous efficiency of the light-emitting device 100 is affected.

圖2繪示傳統發光裝置的俯視圖。參看圖2,發光裝置200是一個水平式LED,其包括電極210和220。由於電流總是通過最低電阻的路徑傳輸,因此電極210與220之間電流密度的分佈是不均勻的。其中,電流密度的主要分佈是沿著電極210與220之間的中心路徑。因此,為了增加發光裝置200所發射的光量,需要增大均勻電流分佈的區域,此將使得發光裝置200的尺寸增大。2 is a top plan view of a conventional light emitting device. Referring to FIG. 2, illumination device 200 is a horizontal LED that includes electrodes 210 and 220. Since the current is always transmitted through the path of the lowest resistance, the distribution of current density between the electrodes 210 and 220 is not uniform. Among them, the main distribution of current density is along the central path between the electrodes 210 and 220. Therefore, in order to increase the amount of light emitted by the light-emitting device 200, it is necessary to increase the area of the uniform current distribution, which will increase the size of the light-emitting device 200.

基於前面的描述,可以推斷出發光裝置的發光效率可能會受到下列因素影響:1.發光裝置電極之間的區域不僅是電流載子(current carrier)密度最高的區域,而且還是光子產生最多的區域。然而,在電極之間產生的光子大部分都會受到不透明電極的阻斷,而難以提高發光效率。Based on the foregoing description, it can be inferred that the luminous efficiency of the illuminating device may be affected by the following factors: 1. The region between the electrodes of the illuminating device is not only the region with the highest current carrier density, but also the region with the most photon generation. . However, most of the photons generated between the electrodes are blocked by the opaque electrodes, and it is difficult to improve the luminous efficiency.

2.電流總是經由電阻最低的路徑傳輸,此將導致發光裝置亮度的不均勻,從而使得發光裝置的發光效率和尺寸受到限制。2. The current is always transmitted via the path with the lowest resistance, which will result in uneven brightness of the illumination device, thereby limiting the luminous efficiency and size of the illumination device.

有鑑於此,本發明提供一種發光裝置,其係將磁性材料耦接到發光晶片上以在發光晶片上施加磁場,從而增加發光裝置的亮度。In view of this, the present invention provides a light emitting device that couples a magnetic material to a light emitting wafer to apply a magnetic field on the light emitting wafer, thereby increasing the brightness of the light emitting device.

本發明提供一種發光裝置,其包括至少一個發光晶片以及磁性材料,此磁性材料係耦接到發光晶片上以在發光晶片上施加磁場。The present invention provides a light emitting device comprising at least one light emitting wafer and a magnetic material coupled to the light emitting wafer to apply a magnetic field on the light emitting wafer.

在本發明的一個實施例中,上述之發光晶片包括基底、發光堆疊層和多個電極,其中基底耦合到磁性材料上,發光堆疊層配置於基底上,而電極則電性耦合到發光堆疊層上。In an embodiment of the invention, the above-mentioned light-emitting wafer comprises a substrate, a light-emitting stacked layer and a plurality of electrodes, wherein the substrate is coupled to the magnetic material, the light-emitting stacked layer is disposed on the substrate, and the electrode is electrically coupled to the light-emitting stack layer on.

在本發明的一個實施例中,上述之發光堆疊層包括第一摻雜層、第二摻雜層和活性層,其中第二摻雜層係配置於基底上且在第一摻雜層的下方,活性層係配置於第一摻雜層與第二摻雜層之間。所述第一摻雜層和第二摻雜層包括P摻雜層和N摻雜層。In an embodiment of the invention, the light emitting stacked layer includes a first doped layer, a second doped layer and an active layer, wherein the second doped layer is disposed on the substrate and below the first doped layer The active layer is disposed between the first doped layer and the second doped layer. The first doped layer and the second doped layer include a P doped layer and an N doped layer.

在本發明的一個實施例中,上述之電極包括第一電極和第二電極,其中第一電極係配置於第一摻雜層上且電性耦接至第一摻雜層,而第二電極則是配置於第二摻雜層的下方且電性耦接至第二摻雜層。In one embodiment of the present invention, the electrode includes a first electrode and a second electrode, wherein the first electrode is disposed on the first doped layer and electrically coupled to the first doped layer, and the second electrode Then, it is disposed under the second doped layer and electrically coupled to the second doped layer.

在本發明的一個實施例中,上述之發光堆疊層還包括透明導電層(Transparent Conductive Layer,TCL),其係在第一摻雜層的上方。In an embodiment of the invention, the light-emitting stack layer further includes a transparent conductive layer (TCL), which is above the first doped layer.

在本發明的一個實施例中,上述之發光堆疊層還包括阻斷層,其配置於第一電極與第一摻雜層之間,而用以阻斷第一電極與第一摻雜層之間電性連結的一部分。In one embodiment of the present invention, the light emitting stacked layer further includes a blocking layer disposed between the first electrode and the first doping layer to block the first electrode and the first doping layer. Part of an electrical connection.

在本發明的一個實施例中,發光堆疊層還包括隔離層,其係配置於第二摻雜層與磁性材料之間,而用於隔離第二電極與第一電極下方的區域。In an embodiment of the invention, the light emitting stacked layer further includes an isolation layer disposed between the second doped layer and the magnetic material for isolating the second electrode from the region under the first electrode.

在本發明的一個實施例中,上述之第一摻雜層、第二摻雜層、第一電極、第二電極、基底或磁性材料的上表面或下表面上還包括製作有粗糙凹凸圖案、圓形圖案或光子晶體層。In an embodiment of the present invention, the upper surface or the lower surface of the first doped layer, the second doped layer, the first electrode, the second electrode, the substrate or the magnetic material further includes a rough concave-convex pattern, A circular pattern or a photonic crystal layer.

在本發明的一個實施例中,上述之發光堆疊層還包括鏡面層,其配置於第二摻雜層與基底之間、基底與第二電極之間或第二電極與磁性材料之間,而用於反射從活性層發射的光。In an embodiment of the invention, the light emitting stacked layer further includes a mirror layer disposed between the second doped layer and the substrate, between the substrate and the second electrode, or between the second electrode and the magnetic material, and Used to reflect light emitted from the active layer.

在本發明的一個實施例中,上述之電極包括第一電極和第二電極,其中第一電極係配置於第一摻雜層上且電性耦接至第一摻雜層,而第二電極則是配置於第二摻雜層上未被活性層覆蓋的表面上且電性耦接至第二摻雜層。所述第一摻雜層和第二摻雜層包括P摻雜層或N摻雜層。In one embodiment of the present invention, the electrode includes a first electrode and a second electrode, wherein the first electrode is disposed on the first doped layer and electrically coupled to the first doped layer, and the second electrode Then, it is disposed on the surface of the second doped layer that is not covered by the active layer and is electrically coupled to the second doped layer. The first doped layer and the second doped layer comprise a P doped layer or an N doped layer.

在本發明的一個實施例中,上述之發光晶片包括發光堆疊層、基底和多個電極,其中發光堆疊層係耦接至磁性材料,基底係配置於發光堆疊層上,而電極則電性耦接至發光堆疊層。In an embodiment of the invention, the light-emitting chip comprises a light-emitting stack layer, a substrate and a plurality of electrodes, wherein the light-emitting stack layer is coupled to the magnetic material, the substrate is disposed on the light-emitting stack layer, and the electrodes are electrically coupled Connect to the luminescent stack.

在本發明的一個實施例中,上述之發光晶片包括發光堆疊層和多個電極,其中發光堆疊層係配置於磁性材料上,而電極則電性耦接至發光堆疊層。In one embodiment of the present invention, the illuminating wafer includes a luminescent stacked layer and a plurality of electrodes, wherein the luminescent stacked layer is disposed on the magnetic material, and the electrode is electrically coupled to the luminescent stacked layer.

在本發明的一個實施例中,上述之發光晶片包括發光堆疊層和多個電極,其中發光堆疊層係配置於磁性材料下方,而電極則電性耦接至發光堆疊層。In one embodiment of the present invention, the above-mentioned light-emitting chip includes a light-emitting stacked layer and a plurality of electrodes, wherein the light-emitting stacked layer is disposed under the magnetic material, and the electrode is electrically coupled to the light-emitting stacked layer.

在本發明的一個實施例中,上述之發光堆疊層被製作成過渡倒金字塔(Transitive Inverted Pyramid,TTP)形式。In one embodiment of the invention, the luminescent stack layer described above is fabricated in the form of a Transitive Inverted Pyramid (TTP).

在本發明的一個實施例中,上述之磁性材料具有一凹面,用於設置發光晶片,且此凹面具有一反射表面,而用於反射發光晶片所發射的光。In one embodiment of the invention, the magnetic material has a concave surface for providing a light-emitting wafer, and the concave mask has a reflective surface for reflecting light emitted by the light-emitting chip.

在本發明的一個實施例中,上述之磁性材料係用以在發光晶片上施加磁場以改變發光晶片之電流密度的分佈,從而增加發光晶片的亮度。In one embodiment of the invention, the magnetic material is used to apply a magnetic field on the luminescent wafer to change the distribution of current density of the luminescent wafer, thereby increasing the brightness of the luminescent wafer.

本發明提供一種發光裝置,其包括發光堆疊層、磁性材料、第一電極和第二電極。其中,發光堆疊層包括第一表面和第二表面。磁性材料係耦合到光堆疊層的第二表面上,而用以在發光堆疊層上施加磁場。第一電極係電性耦接至發光堆疊層的第一表面,而第二電極則是耦接至磁性材料。The present invention provides a light emitting device including a light emitting stacked layer, a magnetic material, a first electrode, and a second electrode. Wherein, the light emitting stacked layer comprises a first surface and a second surface. A magnetic material is coupled to the second surface of the light stacking layer to apply a magnetic field on the light emitting stack layer. The first electrode is electrically coupled to the first surface of the light emitting stack layer, and the second electrode is coupled to the magnetic material.

在本發明的一個實施例中,上述之發光裝置還包括基底,其配置於發光堆疊層與磁性材料之間。In an embodiment of the invention, the light emitting device further includes a substrate disposed between the light emitting stacked layer and the magnetic material.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

若電流流經磁場中的導體,則磁場會向移動的電荷載子施加一個橫向力,而將此電荷載子推向導體的一側。這種現象在平板導體(thin flat conductor)上最明顯。在導體側部累積的電荷將會平衡這種磁影響,而在導體的兩側之間產生可量測的電壓。這種可量測橫向電壓的存在稱為霍爾效應。If a current flows through the conductor in the magnetic field, the magnetic field applies a lateral force to the moving charge carrier, which pushes the charge carrier to one side of the conductor. This phenomenon is most pronounced on thin flat conductors. The charge accumulated on the sides of the conductor will balance this magnetic effect and produce a measurable voltage between the two sides of the conductor. The existence of such a measurable lateral voltage is called the Hall effect.

本發明即利用霍爾效應,而在光電子半導體裝置上導入能量場。這種在外部添加的能量力將會改變電流在電極與半導體裝置之間流動的方向和路徑,從而提高發光裝置的發光效率和均勻性。以下則提供用於描述這種發光裝置的具體結構和電流路徑的實施例。The present invention utilizes the Hall effect to introduce an energy field onto an optoelectronic semiconductor device. This externally added energy will change the direction and path of current flow between the electrode and the semiconductor device, thereby increasing the luminous efficiency and uniformity of the illumination device. Embodiments for describing the specific structure and current path of such a lighting device are provided below.

圖3(a)和圖3(b)是根據本發明一實施例所繪示之發光裝置的截面圖。參看圖3(a),發光裝置300為垂直式LED,其包括電極310和320、第一摻雜層330、第二摻雜層340和半導體發光層350。其中,第一摻雜層330和第二摻雜層340可為P摻雜層和N摻雜層。發光裝置300係由磁場360所覆蓋,磁場360係由磁源產生,並向內導向發光裝置300的橫截面。由磁場感應而生的洛侖茲力(Lorenz’s force)會推動電子,而使得電流向左偏移。如圖3(a)所示,電流密度的主要分佈(由電流線表示)係從電極310與320之間的區域移至光出射平面(light-out plane)下方的區域,這就表示發光效率最高的區域不再被電極310阻斷,且可實質上提高發光裝置300的總發光效率。上文或下文中所述的光出射平面係定義為第一摻雜層330上未被電極覆蓋的表面。在此需強調的是,只要有磁場的分量垂直於發光裝置300內部電流的流動方向,便會感應出電力以使電流產生漂移,而能夠提高發光效率。3(a) and 3(b) are cross-sectional views of a light emitting device according to an embodiment of the invention. Referring to FIG. 3(a), the light emitting device 300 is a vertical LED including electrodes 310 and 320, a first doped layer 330, a second doped layer 340, and a semiconductor light emitting layer 350. The first doped layer 330 and the second doped layer 340 may be a P doped layer and an N doped layer. The illumination device 300 is covered by a magnetic field 360 that is generated by a magnetic source and directed inwardly into a cross section of the illumination device 300. The Lorenz’s force, which is induced by the magnetic field, pushes the electrons and shifts the current to the left. As shown in Fig. 3(a), the main distribution of current density (indicated by current lines) is shifted from the region between the electrodes 310 and 320 to the region below the light-out plane, which indicates luminous efficiency. The highest region is no longer blocked by the electrode 310 and can substantially increase the overall luminous efficiency of the illumination device 300. The light exit plane described above or below is defined as the surface of the first doped layer 330 that is not covered by the electrodes. It should be emphasized here that as long as the component of the magnetic field is perpendicular to the flow direction of the current inside the light-emitting device 300, electric power is induced to cause the current to drift, and the luminous efficiency can be improved.

參看圖3(b),發光裝置300的光出射表面係被擴大且在其上設有多個電極310、370和380。如圖3(b)所示,電極320與電極310、370和380之間的電流密度的分佈(由電流線表示)全都從電極之間的區域移到光出射表面下方的區域,而使得發光裝置300的總發光效率實質上得到提高。此外,在兩個電極310和370之間和兩個電極370和380之間的光出射平面下方之電流密度的分佈仍維持不變。因此,本發明的發光裝置300能夠提供更高的亮度,而不影響光的均勻性。Referring to FIG. 3(b), the light exit surface of the light emitting device 300 is enlarged and a plurality of electrodes 310, 370, and 380 are disposed thereon. As shown in FIG. 3(b), the distribution of current density (represented by current lines) between the electrode 320 and the electrodes 310, 370, and 380 is all moved from the region between the electrodes to the region below the light exiting surface, so that the light is emitted. The overall luminous efficiency of device 300 is substantially improved. Furthermore, the distribution of current density below the light exit plane between the two electrodes 310 and 370 and between the two electrodes 370 and 380 remains unchanged. Therefore, the light-emitting device 300 of the present invention can provide higher brightness without affecting the uniformity of light.

在另一實施例中,圖4是根據本發明另一實施例所繪示之發光裝置的俯視圖。參看圖4,發光裝置400是水平式LED,其包括電極410和420。與前面的實施例類似,在磁力將電子從電極410與420之間的路徑推出時,電流密度的分佈將會移至發光裝置400的左部。如圖4所示,電流路徑擴展到更大區域(左部區域),其形成更均勻的電流密度分佈。In another embodiment, FIG. 4 is a top plan view of a light emitting device according to another embodiment of the present invention. Referring to FIG. 4, illumination device 400 is a horizontal LED that includes electrodes 410 and 420. Similar to the previous embodiment, when the magnetic force pushes electrons out of the path between the electrodes 410 and 420, the current density distribution will shift to the left portion of the light emitting device 400. As shown in Figure 4, the current path extends to a larger area (left area) which forms a more uniform current density distribution.

至於漂移電流的擴散能力,下文中即推導出相關原理,而用於說明外部磁場如何影響電流密度。As for the diffusion capability of the drift current, the relevant principle is derived hereinafter to illustrate how the external magnetic field affects the current density.

在物理學中,洛侖茲力是指電磁場中施加在帶電粒子上的力。粒子將受電場qE 和磁場q×所形成的力。磁場B 所感應的力F 則可通過下面的洛侖茲力方程式來計算: In physics, Lorentz force refers to the force exerted on a charged particle in an electromagnetic field. The particles will be subjected to the electric field qE and the magnetic field q . × The force formed. The force F induced by the magnetic field B can be calculated by the following Lorentz force equation:

其中,F 為洛侖茲力,E 為電場,B 為磁場,q 為粒子電荷,v 為電子的瞬時速度,而×為外積的記號。電子係在與電場E 相同的線性方向上加速,但根據右手定則,其將以垂直於瞬時速度向量v 和磁場B 的方向彎曲。Where F is the Lorentz force, E is the electric field, B is the magnetic field, q is the particle charge, v is the instantaneous velocity of the electron, and × is the sign of the outer product. The electron system accelerates in the same linear direction as the electric field E , but according to the right hand rule, it will bend in a direction perpendicular to the instantaneous velocity vector v and the magnetic field B.

在靜電電場中,時間導數為零,因此漂移速度如下: 其中m 為電子的有效質量。In an electrostatic field, the time derivative is zero, so the drift speed is as follows: Where m is the effective mass of the electron.

基於前述方程式,可以推斷出電子是沿著靜磁場B的軸向,以角速度w c =eB/mc 在螺旋路徑中漂移。舉例而言,為了將漂移電流擴展至負x 軸方向,需要增加磁場在z軸(B z )上的分量,並減小磁場在y 軸(B y )上的分量。此外,當外部電流在y 軸方向上的速度增加時,電流在x 軸方向上的速度也會增加,從而提高電流的均勻性。在此需強調的是,只要有磁場的分量垂直於LED內部電流的流動方向,即會感應出電磁力以使電流產生漂移,從而提高發光效率。同樣的構想也可用於其他發光裝置,諸如雷射二極體(Laser Diode,LD),但並不限於此。Based on the foregoing equation, it can be inferred that electrons drift in the spiral path at an angular velocity w c = eB/mc along the axial direction of the static magnetic field B. For example, in order to extend the drift current to the negative x- axis direction, it is necessary to increase the component of the magnetic field on the z-axis ( B z ) and reduce the component of the magnetic field on the y- axis ( B y ). Further, when the speed of the external current in the y- axis direction is increased, the speed of the current in the x- axis direction is also increased, thereby improving the uniformity of the current. It should be emphasized here that as long as the component of the magnetic field is perpendicular to the flow direction of the internal current of the LED, the electromagnetic force is induced to cause the current to drift, thereby improving the luminous efficiency. The same concept can be applied to other light-emitting devices, such as, but not limited to, Laser Diode (LD).

在向發光裝置施加外部磁場的情況下,不僅改變了電流路徑,而且也改變了半導體中載子密度的均勻性。因此,即使在注入電流的量保持不變的情況下,發光裝置仍具有更高的光電子轉換效率。In the case where an external magnetic field is applied to the light-emitting device, not only the current path is changed, but also the uniformity of the carrier density in the semiconductor is changed. Therefore, even in the case where the amount of the injection current remains unchanged, the light-emitting device has higher photoelectron conversion efficiency.

值得注意的是,本發明的發光裝置上所施加之外部磁場的強度係大於0.01特斯拉,並且可為定值、隨時間變化的值(time-varying value)或呈梯度變化的值(gradient-varying value),但並不限於這些情況。此外,磁場方向與發光方向之間的角度為0至360度。再者,此磁場是由磁鐵、磁性薄膜、電磁鐵或任何其他類型的磁性材料來提供,且磁源的數目可超過一個。It should be noted that the intensity of the external magnetic field applied to the illuminating device of the present invention is greater than 0.01 Tesla, and may be a fixed value, a time-varying value, or a gradient-changing value (gradient). -varying value), but not limited to these cases. Further, the angle between the direction of the magnetic field and the direction of the light emission is 0 to 360 degrees. Furthermore, the magnetic field is provided by a magnet, a magnetic film, an electromagnet or any other type of magnetic material, and the number of magnetic sources may exceed one.

基於前述的結論,在實際應用中,發光裝置可通過各種方式與磁性材料組合,諸如通過環氧樹脂(epoxy)、金屬鍵合(metal bonding)、晶片鍵合(wafer bonding)、外延嵌入(epitaxy embeding)及塗布。此外,磁性材料可耦合至發光裝置本身,且可製作為基底、基台(submount)、電磁鐵、金屬塊(slug)、保持器或磁性散熱片(magnetic heat sink),或者生產為磁膜或磁塊以便提供作為發光裝置的磁場。磁性材料可為鐵磁材料,諸如Rb、Ru、Nd、Fe、Pg、Co、Ni、Mn、Cr、Cu、Cr2 、Pt、Sm、Sb、Pt或其合金。磁性材料也可以是陶瓷材料,諸如Mn、Fe、Co、Cu和V的氧化物,Cr2 O3 、CrS、MnS、MnSe、MnTe、Mn、Fe、Co或Ni的氟化物,V、Cr、Fe、Co、Ni和Cu的氯化物,Cu的溴化物、CrSb、MnAs、MnBi、α-Mn、MnCl2 .4H2 O、MnBr2 .4H2 O、CuCl2 .2H2 O、Co(NH4 )x(SO4 )xCl2 .6H2 O、FeCo3 和FeCo3 .2MgCO3 。發光裝置可為有機LED(OLED)、無機LED、垂直式LED、水平式LED、薄膜LED或覆晶(flip chip)LED。以下則分別介紹前述結構的發光裝置。Based on the foregoing conclusions, in practical applications, the light-emitting device can be combined with magnetic materials in various ways, such as by epoxy, metal bonding, wafer bonding, epitaxial embedding (epitaxy). Embeding) and coating. Furthermore, the magnetic material may be coupled to the illumination device itself and may be fabricated as a substrate, a submount, an electromagnet, a slug, a holder or a magnetic heat sink, or as a magnetic film or The magnetic block is provided to provide a magnetic field as a light emitting device. The magnetic material may be a ferromagnetic material such as Rb, Ru, Nd, Fe, Pg, Co, Ni, Mn, Cr, Cu, Cr 2 , Pt, Sm, Sb, Pt or alloys thereof. The magnetic material may also be a ceramic material such as an oxide of Mn, Fe, Co, Cu and V, a fluoride of Cr 2 O 3 , CrS, MnS, MnSe, MnTe, Mn, Fe, Co or Ni, V, Cr, Chloride of Fe, Co, Ni and Cu, bromide of Cu, CrSb, MnAs, MnBi, α-Mn, MnCl 2 . 4H 2 O, MnBr 2 . 4H 2 O, CuCl 2 . 2H 2 O, Co(NH 4 )x(SO 4 )xCl 2 . 6H 2 O, FeCo 3 and FeCo 3 . 2MgCO 3 . The light emitting device may be an organic LED (OLED), an inorganic LED, a vertical LED, a horizontal LED, a thin film LED, or a flip chip LED. Hereinafter, the light-emitting device of the foregoing structure will be separately described.

關於具有垂直式結構的標準LED,圖5是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖5,本發明的發光裝置500a是垂直式LED,其包括發光晶片510和磁性基台520。發光晶片510通過環氧樹脂、金屬鍵合、晶片鍵合、外延嵌入或塗布等過程配置於磁性基台520上。Regarding a standard LED having a vertical structure, FIG. 5 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention. Referring to FIG. 5, the light emitting device 500a of the present invention is a vertical LED including a light emitting wafer 510 and a magnetic base 520. The light-emitting wafer 510 is disposed on the magnetic base 520 by a process such as epoxy resin, metal bonding, wafer bonding, epitaxial insertion or coating.

發光晶片510包括(從頂部到底部)第一電極511、第一摻雜層512、活性層513、第二摻雜層514、基底515和第二電極516。其中,第一摻雜層512、活性層513和第二摻雜層514形成發光堆疊層,其配置於基底515上。第一電極511配置於第一摻雜層512上,且電性耦接至第一摻雜層512。第二電極516配置於基底515的下方,且電性耦接至第二摻雜層514,以便形成垂直式LED結構。活性層513配置於第一電極511與第二電極516之間,並且能夠在電流經過時產生光。值得注意的是,基底515的材料可以是Si、SiC、GaN、GaP、GaAs、藍寶石、ZnO或AlN,發光堆疊層的材料可以是無機半導體材料(諸如GaAS、InP、GaN、GaP、AlP、AlAs、InAs、GaSb、InSb、CdS、CdSe、ZnS或ZnSe)或者有機半導體材料(諸如聚合物)。The light emitting wafer 510 includes (from top to bottom) a first electrode 511, a first doping layer 512, an active layer 513, a second doping layer 514, a substrate 515, and a second electrode 516. The first doped layer 512 , the active layer 513 , and the second doped layer 514 form a light emitting stacked layer disposed on the substrate 515 . The first electrode 511 is disposed on the first doped layer 512 and electrically coupled to the first doped layer 512 . The second electrode 516 is disposed under the substrate 515 and electrically coupled to the second doped layer 514 to form a vertical LED structure. The active layer 513 is disposed between the first electrode 511 and the second electrode 516 and is capable of generating light when a current passes. It should be noted that the material of the substrate 515 may be Si, SiC, GaN, GaP, GaAs, sapphire, ZnO or AlN, and the material of the light-emitting stacked layer may be an inorganic semiconductor material (such as GaAS, InP, GaN, GaP, AlP, AlAs). , InAs, GaSb, InSb, CdS, CdSe, ZnS or ZnSe) or an organic semiconductor material such as a polymer.

由磁性基台520感應生成的磁場係施加在發光晶片510上,使得在發光晶片510中電流密度的主要分佈從第一電極511與第二電極516之間的區域移至光出射平面下方的區域,從而提高電流的均勻性,並增加發光裝置500a的總亮度。The magnetic field induced by the magnetic base 520 is applied to the light-emitting wafer 510 such that the main distribution of current density in the light-emitting wafer 510 is moved from the area between the first electrode 511 and the second electrode 516 to the area below the light exit plane. Thereby increasing the uniformity of the current and increasing the total brightness of the light-emitting device 500a.

在本發明的一個實施例中,發光裝置中還設有透明導電層(TCL)和阻斷層,藉以提高發光裝置的亮度。圖6是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖6,在本實施例的發光裝置500b中,如先前實施例所述,第一電極511與第一摻雜層512之間還設有透明導電層530,以便提高電流聚集作用。透明導電層530則為一薄膜,其可導電、透明,且由氧化銦錫(Indium Tin Oxides,ITO)、NiAu和AlZnO等材料所生成。In an embodiment of the invention, a transparent conductive layer (TCL) and a blocking layer are further disposed in the light emitting device to improve the brightness of the light emitting device. FIG. 6 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention. Referring to FIG. 6, in the light-emitting device 500b of the present embodiment, as described in the previous embodiment, a transparent conductive layer 530 is further disposed between the first electrode 511 and the first doping layer 512 to improve current collecting. The transparent conductive layer 530 is a thin film which is electrically conductive, transparent, and is formed of materials such as Indium Tin Oxides (ITO), NiAu, and AlZnO.

此外,第一電極511與第一摻雜層512之間還設有阻斷層540,藉以阻斷第一電極層511與第一摻雜層512之間電性連結的一部分。因此,阻斷層540阻斷第一電極511下方大部分的電流路徑,且僅留下很小的空隙供電流流出,使得電流密度的主要分佈從第一電極511下方的區域移到光出射平面下方的區域,從而增加發光裝置500b的亮度。In addition, a blocking layer 540 is further disposed between the first electrode 511 and the first doping layer 512 to block a portion of the electrical connection between the first electrode layer 511 and the first doping layer 512. Therefore, the blocking layer 540 blocks most of the current path below the first electrode 511, and leaves only a small gap for current to flow, so that the main distribution of current density moves from the area below the first electrode 511 to the light exiting plane. The area below, thereby increasing the brightness of the light-emitting device 500b.

在本發明的一個實施例中,發光裝置中還設有隔離層,藉以提高發光裝置的亮度。圖7是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖7,在本實施例的發光裝置500c中,如同先前實施例所述,基底515與磁性基台520之間還設有隔離層550。類似於阻斷層540的作用,隔離層550可阻斷第一電極511下方大部分的電流路徑,而迫使電流密度的主要分佈從第一電極511下方的區域移到光出射平面下方的區域,從而增加發光裝置500c的亮度。In an embodiment of the invention, an isolation layer is further provided in the illumination device to increase the brightness of the illumination device. FIG. 7 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention. Referring to FIG. 7, in the light-emitting device 500c of the present embodiment, as described in the previous embodiment, an isolation layer 550 is further disposed between the substrate 515 and the magnetic base 520. Similar to the function of the blocking layer 540, the isolation layer 550 can block most of the current path below the first electrode 511, while forcing the main distribution of current density to move from the region below the first electrode 511 to the region below the light exit plane. Thereby the brightness of the light-emitting device 500c is increased.

在本發明的一個實施例中,發光裝置中還設有鏡面層,藉以提高發光裝置的亮度。圖8是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖8,在本實施例的發光裝置500d中,基底515與第二電極516之間還設有鏡面層560,而用於反射從活性層513發射的光,以便增加發光裝置的亮度。值得注意的是,在其他實施例中,鏡面層560還可配置於第二摻雜層514與基底515之間,或是第二電極516與磁性基台520之間,而用於反射光,但是並不限於這些情形。In an embodiment of the invention, the illumination device is further provided with a mirror layer to increase the brightness of the illumination device. FIG. 8 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention. Referring to FIG. 8, in the light-emitting device 500d of the present embodiment, a mirror layer 560 is further disposed between the substrate 515 and the second electrode 516 for reflecting light emitted from the active layer 513 to increase the brightness of the light-emitting device. It should be noted that in other embodiments, the mirror layer 560 may be disposed between the second doped layer 514 and the substrate 515 or between the second electrode 516 and the magnetic base 520 for reflecting light. But it is not limited to these situations.

在本發明的一個實施例中,還可製作粗糙圖案、梯形圖案、圓形圖案或光子晶體層以提高發光裝置的亮度。圖9(a)至9(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖9(a),在本實施例的發光裝置500e中,第一摻雜層512的表面上製作有粗糙圖案570,藉以增加第一摻雜層512的表面反射率。此外,可在基底515的上表面(或在第二摻雜層514的下表面上)上製作粗糙圖案,藉以增加基底515的表面反射率(如圖9(b)所示的粗糙圖案580),或在第二電極516的上表面(或基底515的表面上)上製作粗糙圖案,藉以增加第二電極516的表面反射率(如圖9(c)所示的粗糙圖案590)。值得注意的是,如上述的粗糙圖案、梯形圖案、圓形圖案或光子晶體層可製作於第一摻雜層512、第二摻雜層514、第一電極511、第二電極516、基底515、磁性基台520或其組合的一個或多個上表面和下表面上,但並不限於這些情形。In one embodiment of the invention, a rough pattern, a trapezoidal pattern, a circular pattern, or a photonic crystal layer may also be fabricated to increase the brightness of the illumination device. 9(a) to 9(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention. Referring to FIG. 9(a), in the light-emitting device 500e of the present embodiment, a rough pattern 570 is formed on the surface of the first doping layer 512, thereby increasing the surface reflectance of the first doping layer 512. Further, a rough pattern may be formed on the upper surface of the substrate 515 (or on the lower surface of the second doped layer 514), thereby increasing the surface reflectance of the substrate 515 (rough pattern 580 as shown in FIG. 9(b)) Or, a rough pattern is formed on the upper surface of the second electrode 516 (or on the surface of the substrate 515), thereby increasing the surface reflectance of the second electrode 516 (the roughness pattern 590 as shown in FIG. 9(c)). It should be noted that the rough pattern, the trapezoidal pattern, the circular pattern or the photonic crystal layer as described above may be formed on the first doping layer 512, the second doping layer 514, the first electrode 511, the second electrode 516, and the substrate 515. On, but not limited to, one or more of the upper and lower surfaces of the magnetic abutment 520 or a combination thereof.

關於具有水平式結構的標準LED,圖10是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖10,本實施例的發光裝置600a為水平式LED,其包括發光晶片610和磁性基台620。發光晶片610通過環氧樹脂、金屬鍵合(bonding)、晶片鍵合(bonding)、外延嵌入或塗布過程配置於磁性基台620上。Regarding a standard LED having a horizontal structure, FIG. 10 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the present invention. Referring to FIG. 10, the light emitting device 600a of the present embodiment is a horizontal LED including a light emitting chip 610 and a magnetic base 620. The luminescent wafer 610 is disposed on the magnetic submount 620 by epoxy, metal bonding, wafer bonding, epitaxial embedding, or coating processes.

發光晶片610包括(從頂部到底部)第一電極611、第一摻雜層612、活性層613、第二摻雜層614和基底615。其中,第一摻雜層612、活性層613和第二摻雜層614形成發光堆疊層,其配置於基底615上。第一電極611配置於第一摻雜層612上,且電性耦接至第一摻雜層612,而第二電極616則配置於第二摻雜層614上未被活性層614覆蓋的表面上,並且電性耦接至第二摻雜層614上,以便形成垂直式LED結構。活性層613係配置於第一電極611與第二電極616之間,並且能夠在電流經過時產生光。The luminescent wafer 610 includes (from top to bottom) a first electrode 611, a first doped layer 612, an active layer 613, a second doped layer 614, and a substrate 615. The first doped layer 612 , the active layer 613 , and the second doped layer 614 form a light emitting stacked layer disposed on the substrate 615 . The first electrode 611 is disposed on the first doped layer 612 and electrically coupled to the first doped layer 612, and the second electrode 616 is disposed on the surface of the second doped layer 614 that is not covered by the active layer 614. And electrically coupled to the second doped layer 614 to form a vertical LED structure. The active layer 613 is disposed between the first electrode 611 and the second electrode 616 and is capable of generating light when a current passes.

由磁性基台620感應生成的磁場係施加在發光晶片610上,使得在發光晶片610中電流密度的主要分佈可從第一電極611下方的區域移至光出射平面下方的區域,從而提高電流均勻性,並增加發光裝置600a的總亮度。The magnetic field induced by the magnetic base 620 is applied to the light-emitting wafer 610 such that the main distribution of current density in the light-emitting wafer 610 can be moved from the area under the first electrode 611 to the area below the light exit plane, thereby improving current uniformity. And increase the total brightness of the illuminating device 600a.

本發明的一個實施例中,發光裝置中還設有透明導電層和阻斷層,藉以提高發光裝置的亮度。圖11是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖11,在本實施例的發光裝置600b中,如同先實施例所述,第一摻雜層612上方還設有透明導電層630,以便提高電流聚集作用。此外,第一電極611與第一摻雜層612之間還設有阻斷層640,藉以阻斷第一電極611與第一摻雜層612之間電性連結的一部分。因此,阻斷層640可阻斷第一電極611下方的大部分電流路徑,而僅留下很小的空隙供電流流出,此將使得電流密度的主要分佈從第一電極611下方的區域移至光出射表面下方的區域,從而增加發光裝置600b的亮度。In an embodiment of the invention, the light-emitting device is further provided with a transparent conductive layer and a blocking layer, thereby improving the brightness of the light-emitting device. FIG. 11 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention. Referring to FIG. 11, in the light-emitting device 600b of the present embodiment, as described in the previous embodiment, a transparent conductive layer 630 is further disposed above the first doped layer 612 to improve current collecting. In addition, a blocking layer 640 is further disposed between the first electrode 611 and the first doping layer 612, thereby blocking a portion of the electrical connection between the first electrode 611 and the first doping layer 612. Therefore, the blocking layer 640 can block most of the current path under the first electrode 611, leaving only a small gap for current to flow, which will cause the main distribution of current density to be moved from the area under the first electrode 611 to Light exits the area below the surface, thereby increasing the brightness of the illumination device 600b.

在本發明的一個實施例中,發光裝置中還設有隔離層,藉以提高發光裝置的亮度。圖12是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖12,在本實施例的發光裝置600c中,如同先前實施例所述,第二摻雜層614與基底615之間還設有隔離層650。類似於阻斷層640的作用,隔離層650可阻斷第二摻雜層614與基底615之間大部分的電流路徑,使得電流密度的主要分佈移至光出射平面下方的區域,從而增加發光裝置600c的亮度。In an embodiment of the invention, an isolation layer is further provided in the illumination device to increase the brightness of the illumination device. FIG. 12 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention. Referring to FIG. 12, in the light-emitting device 600c of the present embodiment, as described in the previous embodiment, an isolation layer 650 is further disposed between the second doped layer 614 and the substrate 615. Similar to the function of the blocking layer 640, the isolation layer 650 can block most of the current path between the second doping layer 614 and the substrate 615, so that the main distribution of current density shifts to the area below the light exiting plane, thereby increasing illumination. The brightness of device 600c.

在本發明的一個實施例中,發光裝置中還設有鏡面層,藉以提高發光裝置的亮度。圖13是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖13,在本實施例的發光裝置600d中,基底615與磁性基台620之間還設有鏡面層660,而用於反射從活性層613發射的光,以便增加發光裝置600d的亮度。值得注意的是,在其他實施例中,鏡面層660還可配置於第二摻雜層614與基底615之間,而用於反射光,但是並不限於這些情形。In an embodiment of the invention, the illumination device is further provided with a mirror layer to increase the brightness of the illumination device. FIG. 13 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention. Referring to Fig. 13, in the light-emitting device 600d of the present embodiment, a mirror layer 660 is further disposed between the substrate 615 and the magnetic base 620 for reflecting light emitted from the active layer 613 to increase the brightness of the light-emitting device 600d. It should be noted that in other embodiments, the mirror layer 660 may also be disposed between the second doped layer 614 and the substrate 615 for reflecting light, but is not limited to these cases.

在本發明的一個實施例中,還包括製作粗糙圖案、梯形圖案、圓形圖案或光子晶體層,藉以提高發光裝置的亮度。圖14(a)至14(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖14(a),在本實施例的發光裝置600e中,第一摻雜層612的上表面包括製作了粗糙圖案670,藉以增加第一摻雜層612的表面反射率。此外,可在基底615的上表面(或在第二摻雜層614的下表面)上製作粗糙圖案,藉以增加基底615的表面反射率(如圖14(b)所示的粗糙圖案680),或在磁性基台620的上表面(或基底615的下表面)上製作粗糙圖案,藉以增加磁性基台620的表面反射率(如圖14(c)所示的粗糙圖案690)。在此需注意的是,如上文所述,粗糙圖案、梯形圖案、圓形圖案或光子晶體層可製作於第一摻雜層612、第二摻雜層614、第一電極611、基底615、磁性基台620或其組合的一個或多個上表面和下表面上,但並不限於這些情形。In an embodiment of the invention, the method further comprises forming a rough pattern, a trapezoidal pattern, a circular pattern or a photonic crystal layer, thereby improving the brightness of the light emitting device. 14(a) to 14(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention. Referring to FIG. 14(a), in the light-emitting device 600e of the present embodiment, the upper surface of the first doped layer 612 includes a rough pattern 670 formed to increase the surface reflectance of the first doped layer 612. Further, a rough pattern may be formed on the upper surface of the substrate 615 (or on the lower surface of the second doped layer 614), thereby increasing the surface reflectance of the substrate 615 (the roughness pattern 680 as shown in FIG. 14(b)), Or a rough pattern is formed on the upper surface of the magnetic base 620 (or the lower surface of the substrate 615), thereby increasing the surface reflectance of the magnetic base 620 (the rough pattern 690 as shown in Fig. 14(c)). It should be noted that, as described above, a rough pattern, a trapezoidal pattern, a circular pattern, or a photonic crystal layer may be fabricated on the first doped layer 612, the second doped layer 614, the first electrode 611, the substrate 615, One or more of the upper and lower surfaces of the magnetic abutment 620 or a combination thereof, but is not limited to these cases.

關於具有垂直式結構的覆晶LED,圖15是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖15,本實施例的發光裝置700a為垂直式LED,其包括發光晶片710和磁性基台720。發光晶片710通過環氧樹脂、金屬鍵合、晶片鍵合、外延嵌入或塗布過程配置於磁性基台720上。With respect to a flip chip LED having a vertical structure, FIG. 15 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the present invention. Referring to FIG. 15, the light-emitting device 700a of the present embodiment is a vertical LED including a light-emitting chip 710 and a magnetic base 720. The luminescent wafer 710 is disposed on the magnetic submount 720 by epoxy, metal bonding, wafer bonding, epitaxial embedding, or coating processes.

發光晶片710包括(從頂部到底部)第一電極711、基底712、第一摻雜層713、活性層714、第二摻雜層715和第二電極716。其中,第一摻雜層713、活性層714和第二摻雜層715形成發光堆疊層,其配置於基底712下方。第一電極711係配置於第一摻雜層713上,且電性耦接至第一摻雜層713,而第二電極716則配置於第二摻雜層715下方,且電性耦接至第二摻雜層715上,以便形成垂直式LED結構。活性層714係配置於第一電極711與第二電極716之間,而能夠在電流經過時產生光。The luminescent wafer 710 includes (from top to bottom) a first electrode 711, a substrate 712, a first doped layer 713, an active layer 714, a second doped layer 715, and a second electrode 716. The first doped layer 713 , the active layer 714 , and the second doped layer 715 form a light emitting stacked layer disposed under the substrate 712 . The first electrode 711 is disposed on the first doped layer 713 and electrically coupled to the first doped layer 713, and the second electrode 716 is disposed under the second doped layer 715 and electrically coupled to The second doped layer 715 is over to form a vertical LED structure. The active layer 714 is disposed between the first electrode 711 and the second electrode 716, and is capable of generating light when a current passes.

由磁性基台720感應生成的磁場係施加在發光晶片710上,使得在發光晶片710中電流密度的主要分佈可從第一電極711與第二電極715之間的區域移至光出射平面下方的區域,從而提高電流的均勻性,並增加發光裝置700a的總亮度。The magnetic field induced by the magnetic base 720 is applied to the light-emitting wafer 710 such that the main distribution of current density in the light-emitting wafer 710 can be moved from the area between the first electrode 711 and the second electrode 715 to below the light exit plane. The area, thereby increasing the uniformity of the current and increasing the total brightness of the light-emitting device 700a.

本發明的一個實施例中,發光裝置中還設有透明導電層(TCL)和阻斷層,藉以提高發光裝置的亮度。圖16是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖16,在本實施例的發光裝置700b中,如同先前實施例所述,基底712上方還設有透明導電層730,以便提高電流聚集作用。此外,第一電極711與基底712之間還設有阻斷層740,藉以阻斷第一電極711與基底712之間電性連結的一部分。因此,阻斷層740可阻斷第一電極711下方大部分的電流路徑,且僅留下很小的空隙供電流流出,而使得電流密度的主要分佈中從第一電極711下方的區域移至光出射表面下方的區域,從而增加發光裝置700b的亮度。In an embodiment of the invention, the light-emitting device is further provided with a transparent conductive layer (TCL) and a blocking layer, thereby improving the brightness of the light-emitting device. Figure 16 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention. Referring to Fig. 16, in the light-emitting device 700b of the present embodiment, as described in the previous embodiment, a transparent conductive layer 730 is further disposed above the substrate 712 to enhance current collecting. In addition, a blocking layer 740 is further disposed between the first electrode 711 and the substrate 712 to block a portion of the electrical connection between the first electrode 711 and the substrate 712. Therefore, the blocking layer 740 can block most of the current path below the first electrode 711, leaving only a small gap for current to flow out, so that the main distribution of current density is moved from the area under the first electrode 711 to Light exits the area below the surface, thereby increasing the brightness of the illumination device 700b.

在本發明的一個實施例中,發光裝置中還設有隔離層,藉以提高發光裝置的亮度。圖17是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖17,在本實施例的發光裝置700c中,如同先前實施例所述,第二摻雜層715與磁性基底720之間還設有隔離層750。類似於阻斷層740的作用,隔離層750可阻斷第一電極711下方大部分的電流路徑,並且使得電流密度的主要分佈從第一電極711下方的區域移至光出射平面下方的區域,從而增加發光裝置700c的亮度。In an embodiment of the invention, an isolation layer is further provided in the illumination device to increase the brightness of the illumination device. Figure 17 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention. Referring to FIG. 17, in the light-emitting device 700c of the present embodiment, as described in the previous embodiment, an isolation layer 750 is further disposed between the second doping layer 715 and the magnetic substrate 720. Similar to the function of the blocking layer 740, the isolation layer 750 can block most of the current path below the first electrode 711 and cause the main distribution of current density to move from the area under the first electrode 711 to the area below the light exit plane, Thereby the brightness of the light-emitting device 700c is increased.

在本發明的一個實施例中,在發光裝置中還設有鏡面層,藉以提高發光裝置的亮度。圖18是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖18,在本實施例的發光裝置700d中,第二摻雜層715與第二電極516之間還設有鏡面層760,而可用於反射從活性層714發射的光,以便增加發光裝置700d的亮度。在此應注意的是,在其他實施例中,鏡面層760還可配置於第二電極716與磁性基台720之間,而用於反射光,但並不限於此情形。In one embodiment of the invention, a mirror layer is also provided in the illumination device to increase the brightness of the illumination device. FIG. 18 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention. Referring to FIG. 18, in the light-emitting device 700d of the present embodiment, a mirror layer 760 is further disposed between the second doping layer 715 and the second electrode 516, and can be used to reflect the light emitted from the active layer 714 to increase the light-emitting device. 700d brightness. It should be noted that in other embodiments, the mirror layer 760 may also be disposed between the second electrode 716 and the magnetic base 720 for reflecting light, but is not limited thereto.

在本發明的一個實施例中,還包括製作粗糙圖案、梯形圖案、圓形圖案或光子晶體層,藉以提高發光裝置的亮度。圖19(a)至19(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖19(a),在本實施例的發光裝置700e中,基底712的上表面係製作粗糙圖案770,藉以增加第一摻雜層712的表面反射率。此外,可在第一摻雜層713的上表面(或在基底712的下表面)上製作粗糙圖案,藉以增加第一摻雜層713的表面反射率(如圖19(b)所示的粗糙圖案780),或在第二電極716的上表面(或第二摻雜層715的下表面)上製作粗糙圖案,藉以增加第二電極716的表面反射率(如圖19(c)所示的粗糙圖案790)。在此應注意的是,如上文所述,粗糙圖案、梯形圖案、圓形圖案或光子晶體層可製作於基底712、第一摻雜層713、第二摻雜層715、第一電極711、第二電極716、磁性基台720或其組合的一個或多個上表面和下表面上,但並不限於這些情形。In an embodiment of the invention, the method further comprises forming a rough pattern, a trapezoidal pattern, a circular pattern or a photonic crystal layer, thereby improving the brightness of the light emitting device. 19(a) to 19(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention. Referring to FIG. 19(a), in the light-emitting device 700e of the present embodiment, the upper surface of the substrate 712 is formed with a rough pattern 770, thereby increasing the surface reflectance of the first doped layer 712. Further, a rough pattern may be formed on the upper surface of the first doping layer 713 (or on the lower surface of the substrate 712), thereby increasing the surface reflectance of the first doping layer 713 (rough as shown in FIG. 19(b)) The pattern 780), or a rough pattern is formed on the upper surface of the second electrode 716 (or the lower surface of the second doping layer 715), thereby increasing the surface reflectance of the second electrode 716 (as shown in FIG. 19(c) Rough pattern 790). It should be noted that, as described above, a rough pattern, a trapezoidal pattern, a circular pattern, or a photonic crystal layer may be fabricated on the substrate 712, the first doped layer 713, the second doped layer 715, the first electrode 711, One or more of the upper and lower surfaces of the second electrode 716, the magnetic base 720, or a combination thereof, but are not limited to these cases.

關於具有水平式結構的覆晶LED,圖20是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖20,本實施例的發光裝置800a為水平式LED,其包括發光晶片810和磁性基台820。發光晶片810通過環氧樹脂、金屬鍵合、晶片鍵合、外延嵌入或塗布過程配置於磁性基台820上。FIG. 20 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention. Referring to FIG. 20, the light emitting device 800a of the present embodiment is a horizontal LED including a light emitting chip 810 and a magnetic base 820. The luminescent wafer 810 is disposed on the magnetic submount 820 by epoxy, metal bonding, wafer bonding, epitaxial embedding, or coating processes.

發光晶片810包括(從頂部到底部)第一電極811、基底812、第一摻雜層813、活性層814、第二摻雜層815。其中,第一摻雜層813、活性層814和第二摻雜層815形成發光堆疊層,其配置於基底812下方。第一電極811係配置於基底812上,且電性耦接至第一摻雜層813,而第二電極816則配置於第二摻雜層815未被活性層814覆蓋的表面上,且電性耦接至第二摻雜層815以便形成水平式LED結構。活性層814係配置於第一電極811與第二電極816之間,並且能夠在電流經過時產生光。The light emitting wafer 810 includes (from top to bottom) a first electrode 811, a substrate 812, a first doped layer 813, an active layer 814, and a second doped layer 815. The first doped layer 813 , the active layer 814 , and the second doped layer 815 form a light emitting stacked layer disposed under the substrate 812 . The first electrode 811 is disposed on the substrate 812 and electrically coupled to the first doped layer 813, and the second electrode 816 is disposed on the surface of the second doped layer 815 not covered by the active layer 814. The second doped layer 815 is coupled to form a horizontal LED structure. The active layer 814 is disposed between the first electrode 811 and the second electrode 816 and is capable of generating light when a current passes.

由磁性基台820感應生成的磁場係施加在發光晶片810上,使得在發光晶片810中電流密度的主要分佈可從第一電極811下方的區域移至光出射平面下方的區域,從而提高電流的均勻性,並增加發光裝置800a的總亮度。The magnetic field induced by the magnetic base 820 is applied to the light-emitting wafer 810 such that the main distribution of current density in the light-emitting wafer 810 can be moved from the area under the first electrode 811 to the area below the light exit plane, thereby increasing the current. Uniformity and increase the overall brightness of the illumination device 800a.

本發明的一個實施例中,發光裝置中還設有透明導電層和阻斷層,藉以提高發光裝置的亮度。圖21是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖21,在本實施例的發光裝置800b中,如同先前實施例所述,基底812上方還配置透明導電層830,以便提高電流聚集效果。此外,第一電極811與基底812之間還配置阻斷層840,藉以阻斷第一電極811與基底812之間電性連結的一部分。因此,阻斷層840可阻斷第一電極811下方大部分的電流路徑,且僅留下很小的空隙供電流流出,使得電流密度的主要分佈中從第一電極811下方的區域移至光出射表面下方的區域,從而增加發光裝置800b的亮度。In an embodiment of the invention, the light-emitting device is further provided with a transparent conductive layer and a blocking layer, thereby improving the brightness of the light-emitting device. Figure 21 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention. Referring to Fig. 21, in the light-emitting device 800b of the present embodiment, as described in the previous embodiment, a transparent conductive layer 830 is disposed above the substrate 812 to improve the current collecting effect. In addition, a blocking layer 840 is further disposed between the first electrode 811 and the substrate 812, thereby blocking a portion of the electrical connection between the first electrode 811 and the substrate 812. Therefore, the blocking layer 840 can block most of the current path below the first electrode 811, and leave only a small gap for current to flow out, so that the main distribution of current density moves from the area under the first electrode 811 to the light. The area below the surface is emerged, thereby increasing the brightness of the illumination device 800b.

在本發明的一個實施例中,發光裝置中還設有隔離層,藉以提高發光裝置的亮度。圖22是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖22,在本實施例的發光裝置800c中,如同先前實施例所述,第二摻雜層815與磁性基台820之間還設有隔離層850。類似於阻斷層840的作用,隔離層850可阻斷第一電極811與磁性基台820之間大部分的電流路徑,而使得電流密度的主要分佈移至光出射平面下方的區域,從而增加發光裝置800c的亮度。In an embodiment of the invention, an isolation layer is further provided in the illumination device to increase the brightness of the illumination device. Figure 22 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention. Referring to FIG. 22, in the light-emitting device 800c of the present embodiment, as described in the previous embodiment, an isolation layer 850 is further disposed between the second doped layer 815 and the magnetic base 820. Similar to the function of the blocking layer 840, the isolation layer 850 can block most of the current path between the first electrode 811 and the magnetic base 820, so that the main distribution of current density shifts to the area below the light exit plane, thereby increasing The brightness of the light emitting device 800c.

在本發明的一個實施例中,發光裝置中還設有鏡面層,藉以提高發光裝置的亮度。圖23是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖23,在本實施例的發光裝置800d中,第二摻雜層815與磁性基台820之間還設有鏡面層860,而用於反射從活性層814所發射的光,以便增加發光裝置800d的亮度。In an embodiment of the invention, the illumination device is further provided with a mirror layer to increase the brightness of the illumination device. 23 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention. Referring to FIG. 23, in the light-emitting device 800d of the present embodiment, a mirror layer 860 is further disposed between the second doped layer 815 and the magnetic base 820 for reflecting light emitted from the active layer 814 to increase light emission. The brightness of device 800d.

在本發明的一個實施例中,還製作粗糙圖案、梯形圖案、圓形圖案或光子晶體層,藉以提高發光裝置的亮度。圖24(a)至24(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖24(a),在本實施例的發光裝置800e中,基底812的上表面係有製作粗糙圖案870,藉以增加第一摻雜層812的表面反射率。此外,可在第一摻雜層813的上表面(或在基底812的下表面)上製作粗糙圖案,藉以增加第一摻雜層813的表面反射率(如圖24(b)所示的粗糙圖案880),或在磁性基台820的上表面(或第二摻雜層815的下表面)上製作粗糙圖案,藉以增加磁性基台820的表面反射率(如圖24(c)所示的粗糙圖案890)。在此應注意的是,如上文所述,粗糙圖案、梯形圖案、圓形圖案或光子晶體層可製作於在基底812、第一摻雜層813、第二摻雜層815、第一電極811、磁性基台820或其組合的一個或多個上表面和下表面上,但並不限於這些情形。In one embodiment of the present invention, a rough pattern, a trapezoidal pattern, a circular pattern, or a photonic crystal layer is also formed to improve the brightness of the light-emitting device. 24(a) to 24(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention. Referring to FIG. 24(a), in the light-emitting device 800e of the present embodiment, the upper surface of the substrate 812 is formed with a rough pattern 870 to increase the surface reflectance of the first doped layer 812. Further, a rough pattern may be formed on the upper surface of the first doped layer 813 (or on the lower surface of the substrate 812) to increase the surface reflectance of the first doped layer 813 (as shown in FIG. 24(b) The pattern 880), or a rough pattern is formed on the upper surface of the magnetic base 820 (or the lower surface of the second doped layer 815), thereby increasing the surface reflectance of the magnetic base 820 (as shown in FIG. 24(c) Rough pattern 890). It should be noted here that, as described above, a rough pattern, a trapezoidal pattern, a circular pattern, or a photonic crystal layer may be fabricated on the substrate 812, the first doped layer 813, the second doped layer 815, and the first electrode 811. On, but not limited to, one or more of the upper and lower surfaces of the magnetic abutment 820 or a combination thereof.

關於具有垂直式結構的薄膜LED,圖25是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖25,本實施例的發光裝置900a是垂直式LED,其包括發光晶片910和磁性基台920。發光晶片910通過環氧樹脂、金屬鍵合、晶片鍵合、外延嵌入或塗布過程配置於磁性基台920上。With respect to a thin film LED having a vertical structure, FIG. 25 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the present invention. Referring to FIG. 25, the light emitting device 900a of the present embodiment is a vertical LED including a light emitting chip 910 and a magnetic base 920. The light emitting wafer 910 is disposed on the magnetic substrate 920 by an epoxy resin, metal bonding, wafer bonding, epitaxial embedding, or coating process.

發光晶片910包括(從頂部到底部)第一電極911、第一摻雜層912、活性層913、第二摻雜層914和第二電極915。其中,第一摻雜層912、活性層913和第二摻雜層914形成發光堆疊層。第一電極911係配置於第一摻雜層912上,且電性耦接至第一摻雜層912,而第二電極915則配置於第二摻雜層914下方,且電性耦接至第二摻雜層914,以便形成垂直式LED結構。活性層913係配置於第一電極911與第二電極915之間,而能夠在電流經過時產生光。The light emitting wafer 910 includes (from top to bottom) a first electrode 911, a first doping layer 912, an active layer 913, a second doping layer 914, and a second electrode 915. Wherein, the first doping layer 912, the active layer 913 and the second doping layer 914 form a light emitting stacked layer. The first electrode 911 is disposed on the first doped layer 912 and electrically coupled to the first doped layer 912, and the second electrode 915 is disposed under the second doped layer 914 and electrically coupled to The second doped layer 914 is formed to form a vertical LED structure. The active layer 913 is disposed between the first electrode 911 and the second electrode 915, and is capable of generating light when a current passes.

由磁性基台920感應生成的磁場係施加在發光晶片910上,使得在發光晶片910中電流密度的主要分佈可從第一電極911與第二電極915之間的區域移至光出射平面下方的區域,以便提高電流的均勻性,並增加發光裝置900a的總亮度。The magnetic field induced by the magnetic substrate 920 is applied to the light emitting wafer 910 such that the main distribution of current density in the light emitting wafer 910 can be moved from the region between the first electrode 911 and the second electrode 915 to below the light exit plane. The area is to increase the uniformity of the current and increase the total brightness of the light-emitting device 900a.

本發明的一個實施例中,發光裝置中還設有透明導電層(TCL)和阻斷層,藉以提高發光裝置的亮度。圖26是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖26,在本實施例的發光裝置900b中,如同先前實施例所述,第一摻雜層912上方還可配置透明導電層930,以便提高電流聚集作用。此外,第一電極911與第一摻雜層912之間還可配置阻斷層940,以阻斷第一電極911與第一摻雜層912之間電性連結的一部分。因此,阻斷層940可阻斷第一電極911下方大部分的電流路徑,且僅留下很小的空隙供電流流出,而使得電流密度的主要分佈中從第一電極911下方的區域移至光出射表面下方的區域,從而增加發光裝置900b的亮度。In an embodiment of the invention, the light-emitting device is further provided with a transparent conductive layer (TCL) and a blocking layer, thereby improving the brightness of the light-emitting device. FIG. 26 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention. Referring to FIG. 26, in the light-emitting device 900b of the present embodiment, as described in the previous embodiment, a transparent conductive layer 930 may be disposed above the first doped layer 912 to improve current collecting. In addition, a blocking layer 940 may be disposed between the first electrode 911 and the first doping layer 912 to block a portion of the electrical connection between the first electrode 911 and the first doping layer 912. Therefore, the blocking layer 940 can block most of the current path below the first electrode 911, leaving only a small gap for current to flow out, so that the main distribution of current density is moved from the area under the first electrode 911 to Light exits the area below the surface, thereby increasing the brightness of the illumination device 900b.

在本發明的一個實施例中,發光裝置中還設有隔離層,藉以提高發光裝置的亮度。圖27是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖27,在本實施例的發光裝置900c中,如同先前實施例所述,第二摻雜層914與磁性基台920之間還設有隔離層950。類似於阻斷層940的作用,隔離層950可阻斷第一電極911下方大部分的電流路徑,並且使得電流密度的主要分佈可從第一電極911下方的區域移至光出射平面下方的區域,從而增加發光裝置900c的亮度。In an embodiment of the invention, an isolation layer is further provided in the illumination device to increase the brightness of the illumination device. Figure 27 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention. Referring to FIG. 27, in the light-emitting device 900c of the present embodiment, as described in the previous embodiment, an isolation layer 950 is further disposed between the second doping layer 914 and the magnetic base 920. Similar to the function of the blocking layer 940, the isolation layer 950 can block most of the current path below the first electrode 911, and the main distribution of current density can be moved from the area under the first electrode 911 to the area below the light exit plane. Thereby increasing the brightness of the light-emitting device 900c.

在本發明的一個實施例中,發光裝置中還設有鏡面層,藉以提高發光裝置的亮度。圖28是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖28,在本實施例的發光裝置900d中,第二摻雜層914與第二電極915之間還設有鏡面層960,而用於反射從活性層913發射的光,以便增加發光裝置900d的亮度。在此應注意的是,在其他實施例中,鏡面層960還可配置於第二電極915與磁性基台920之間,而用於反射光,但並不限於這種情形。In an embodiment of the invention, the illumination device is further provided with a mirror layer to increase the brightness of the illumination device. 28 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention. Referring to FIG. 28, in the light emitting device 900d of the present embodiment, a mirror layer 960 is further disposed between the second doping layer 914 and the second electrode 915 for reflecting light emitted from the active layer 913 to increase the light emitting device. 900d brightness. It should be noted that in other embodiments, the mirror layer 960 may also be disposed between the second electrode 915 and the magnetic base 920 for reflecting light, but is not limited to this case.

在本發明的一個實施例中,還包括製作粗糙圖案、梯形圖案、圓形圖案或光子晶體層,藉以提高發光裝置的亮度。圖29(a)至29(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖29(a),在本實施例的發光裝置900e中,第一摻雜層912的上表面有製作粗糙圖案970,藉以增加第一摻雜層912的表面反射率。此外,可在第二電極915的上表面(或在第二摻雜層914的下表面)上製作粗糙圖案,藉以增加第二電極915的表面反射率(如圖29(b)所示的粗糙圖案980),或在磁性基台920的上表面(或第二摻雜層815的下表面)上製作粗糙圖案,藉以增加磁性基台920的表面反射率(如圖29(c)所示的粗糙圖案990)。在此應注意的是,如上文所述,粗糙圖案、梯形圖案、圓形圖案或光子晶體層可製作於第一摻雜層912、第二摻雜層914、第一電極911、第二電極915、磁性基台920或其組合的一個或多個上表面和下表面上,但並不限於這些情形。In an embodiment of the invention, the method further comprises forming a rough pattern, a trapezoidal pattern, a circular pattern or a photonic crystal layer, thereby improving the brightness of the light emitting device. 29(a) to 29(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention. Referring to FIG. 29(a), in the light-emitting device 900e of the present embodiment, the upper surface of the first doped layer 912 is formed with a rough pattern 970 to increase the surface reflectance of the first doped layer 912. Further, a rough pattern may be formed on the upper surface of the second electrode 915 (or on the lower surface of the second doping layer 914), thereby increasing the surface reflectance of the second electrode 915 (rough as shown in FIG. 29(b)) The pattern 980), or a rough pattern is formed on the upper surface of the magnetic base 920 (or the lower surface of the second doped layer 815), thereby increasing the surface reflectance of the magnetic base 920 (as shown in FIG. 29(c) Rough pattern 990). It should be noted here that, as described above, a rough pattern, a trapezoidal pattern, a circular pattern or a photonic crystal layer may be fabricated on the first doping layer 912, the second doping layer 914, the first electrode 911, and the second electrode. One or more of the upper and lower surfaces of 915, magnetic abutment 920, or a combination thereof, but are not limited to these situations.

關於具有水平式結構的薄膜LED,圖30是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖30,本實施例的發光裝置1000a是水平式LED,其包括發光晶片1010和磁性基台1020。發光晶片1010通過環氧樹脂、金屬鍵合、晶片鍵合、外延嵌入或塗布過程配置於磁性基台1020上。FIG. 30 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention. Referring to FIG. 30, the light emitting device 1000a of the present embodiment is a horizontal LED including an illuminating wafer 1010 and a magnetic pedestal 1020. The luminescent wafer 1010 is disposed on the magnetic submount 1020 by epoxy, metal bonding, wafer bonding, epitaxial embedding, or coating processes.

發光晶片1010包括(從頂部到底部)第一電極1011、第一摻雜層1012、活性層1013和第二摻雜層1014。其中,第一摻雜層1012、活性層1013和第二摻雜層1014形成發光堆疊層。第一電極1011係配置於第一摻雜層1012上,且電性耦接至第一摻雜層1012,而第二電極1016則配置於第二摻雜層1014上未被活性層1013覆蓋的表面上,且電性耦接至第二摻雜層1014以便形成水平式LED結構。活性層1013係配置於第一電極1011與第二電極1016之間,而能夠在電流經過時產生光。The luminescent wafer 1010 includes (from top to bottom) a first electrode 1011, a first doped layer 1012, an active layer 1013, and a second doped layer 1014. The first doped layer 1012, the active layer 1013, and the second doped layer 1014 form a light emitting stacked layer. The first electrode 1011 is disposed on the first doped layer 1012 and electrically coupled to the first doped layer 1012, and the second electrode 1016 is disposed on the second doped layer 1014 without being covered by the active layer 1013. The surface is electrically coupled to the second doped layer 1014 to form a horizontal LED structure. The active layer 1013 is disposed between the first electrode 1011 and the second electrode 1016, and is capable of generating light when a current passes.

由磁性基台1020感應生成的磁場係施加在發光晶片1010上,而使得在發光晶片1010中電流密度的主要分佈弟從電極1011下方的區域移至光出射平面下方的區域,以便提高電流的均勻性,並增加發光裝置1000a的總亮度。The magnetic field induced by the magnetic base 1020 is applied to the light-emitting wafer 1010, so that the main distribution of the current density in the light-emitting wafer 1010 is moved from the area under the electrode 1011 to the area below the light exit plane to improve the uniformity of the current. And increase the total brightness of the light-emitting device 1000a.

本發明的一個實施例中,發光裝置中還設有透明導電層(TCL)和阻斷層,藉以提高發光裝置的亮度。圖31是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖31,在本實施例的發光裝置1000b中,如同先前實施例所述,第一摻雜層1012上方還設有透明導電層1030,以便提高電流聚集作用。此外,第一電極1011與第一摻雜層1012之間還設有阻斷層1040,藉以阻斷第一電極1011與第一摻雜層1012之間電性連結的一部分。因此,阻斷層1040可阻斷第一電極1011下方大部分的電流路徑,而僅留下很小的空隙供電流流出,因此可使得電流密度的主要分佈從第一電極1011下方的區域移至光出射表面下方的區域,從而增加發光裝置1000b的亮度。In an embodiment of the invention, the light-emitting device is further provided with a transparent conductive layer (TCL) and a blocking layer, thereby improving the brightness of the light-emitting device. Figure 31 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention. Referring to Fig. 31, in the light-emitting device 1000b of the present embodiment, as described in the previous embodiment, a transparent conductive layer 1030 is further disposed above the first doped layer 1012 to enhance current collecting. In addition, a blocking layer 1040 is further disposed between the first electrode 1011 and the first doped layer 1012, thereby blocking a portion of the electrical connection between the first electrode 1011 and the first doped layer 1012. Therefore, the blocking layer 1040 can block most of the current path below the first electrode 1011, leaving only a small gap for current to flow out, thereby allowing the main distribution of current density to be moved from the area under the first electrode 1011 to Light exits the area below the surface, thereby increasing the brightness of the illumination device 1000b.

在本發明的一個實施例中,發光裝置中還設有隔離層,藉以提高發光裝置的亮度。圖32是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖32,在本實施例的發光裝置1000c中,如同先前實施例所述,第二摻雜層1014與磁性基台1020之間還設有隔離層1050。類似於阻斷層1040的作用,隔離層1050可阻斷第一電極1011與磁性基台1020之間大部分的電流路徑,而使得電流密度的主要分佈移至光出射平面下方的區域,從而增加發光裝置1000c的亮度。In an embodiment of the invention, an isolation layer is further provided in the illumination device to increase the brightness of the illumination device. 32 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention. Referring to FIG. 32, in the light-emitting device 1000c of the present embodiment, as described in the previous embodiment, an isolation layer 1050 is further disposed between the second doped layer 1014 and the magnetic base 1020. Similar to the function of the blocking layer 1040, the isolation layer 1050 can block most of the current path between the first electrode 1011 and the magnetic base 1020, so that the main distribution of current density shifts to the area below the light exit plane, thereby increasing The brightness of the light emitting device 1000c.

在本發明的一個實施例中,發光裝置中還設有鏡面層,有以提高發光裝置的亮度。圖33是根據本發明的一個實施例的發光裝置結構的截面圖。參看圖33,在本實施例的發光裝置1000d中,第二摻雜層1014與磁性基台1020之間還設有鏡面層1060,而用於反射從活性層1013發射的光,以便增加發光裝置1000d的亮度。In an embodiment of the invention, the illumination device is further provided with a mirror layer to increase the brightness of the illumination device. Figure 33 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the present invention. Referring to FIG. 33, in the light emitting device 1000d of the present embodiment, a mirror layer 1060 is further disposed between the second doped layer 1014 and the magnetic base 1020 for reflecting light emitted from the active layer 1013 to increase the light emitting device. 1000d brightness.

在本發明的一個實施例中,還包姑製作粗糙圖案、梯形圖案、圓形圖案或光子晶體層,藉以提高發光裝置的亮度。圖34(a)至34(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖34(a),在本實施例的發光裝置1000e中,第一摻雜層1012的上表面有製作粗糙圖案1070,藉以增加第一摻雜層1012的表面反射率。此外,可在磁性基台1020的上表面(或在第二摻雜層1014的下表面)上製作粗糙圖案,藉以增加磁性基台1020的表面反射率(如圖34(b)所示的粗糙圖案1080)。在此應注意的是,如上文所述,粗糙圖案、梯形圖案、圓形圖案或光子晶體層可製作於第一摻雜層1012、第二摻雜層1014、第一電極1011、磁性基台1020或其組合的一個或多個上表面和下表面上,但並不限於這些情形。In one embodiment of the present invention, a rough pattern, a trapezoidal pattern, a circular pattern, or a photonic crystal layer is also formed to improve the brightness of the light-emitting device. 34(a) to 34(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention. Referring to FIG. 34(a), in the light-emitting device 1000e of the present embodiment, the upper surface of the first doped layer 1012 is formed with a rough pattern 1070 to increase the surface reflectance of the first doped layer 1012. Further, a rough pattern may be formed on the upper surface of the magnetic submount 1020 (or on the lower surface of the second doped layer 1014), thereby increasing the surface reflectance of the magnetic submount 1020 (as shown in FIG. 34(b)). Pattern 1080). It should be noted here that, as described above, a rough pattern, a trapezoidal pattern, a circular pattern or a photonic crystal layer may be fabricated on the first doped layer 1012, the second doped layer 1014, the first electrode 1011, and the magnetic abutment. One or more of the upper and lower surfaces of 1020 or a combination thereof, but are not limited to these situations.

關於其中電極配置於磁性基台下方的具有垂直式結構的LED,圖35是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖35,本實施例的發光裝置1100a是垂直式LED,其包括(從頂部到底部)第一電極1111、第一摻雜層1112、活性層1113、第二摻雜層1114,基底1115、磁性基台1116和第二電極1117。其中,第一摻雜層1112、活性層1113和第二摻雜層1114形成發光堆疊層,其配置於基底1115上。第一電極1111係配置於第一摻雜層1112上,且電性耦接至第一摻雜層1112,而第二電極1117則配置於基底1115下方,且電性耦接至第二摻雜層1114以便形成垂直式LED結構。活性層1113係配置於第一電極1111與第二電極1117之間,並且能夠在電流經過時產生光。FIG. 35 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention, with respect to an LED having a vertical structure in which an electrode is disposed under a magnetic substrate. Referring to FIG. 35, the light emitting device 1100a of the present embodiment is a vertical LED including (from top to bottom) a first electrode 1111, a first doped layer 1112, an active layer 1113, a second doped layer 1114, a substrate 1115, Magnetic base 1116 and second electrode 1117. The first doped layer 1112 , the active layer 1113 and the second doped layer 1114 form a light emitting stacked layer, which is disposed on the substrate 1115 . The first electrode 1111 is disposed on the first doped layer 1112 and electrically coupled to the first doped layer 1112, and the second electrode 1117 is disposed under the substrate 1115 and electrically coupled to the second doping. Layer 1114 is used to form a vertical LED structure. The active layer 1113 is disposed between the first electrode 1111 and the second electrode 1117, and is capable of generating light when a current passes.

由磁性基台1116感應生成的磁場係施加在發光堆疊層上,而使得在發光堆疊層中電流密度的主要分佈可從第一電極1111與第二電極1117之間的區域移至光出射平面下方的區域,以便提高電流的均勻性,並增加發光裝置1100a的總亮度。The magnetic field induced by the magnetic base 1116 is applied to the light-emitting stack layer such that the main distribution of current density in the light-emitting stack layer can be moved from the area between the first electrode 1111 and the second electrode 1117 to below the light exit plane. The area is increased in order to increase the uniformity of the current and increase the total brightness of the light-emitting device 1100a.

在本發明的一個實施例中,發光裝置中還設有透明導電層和阻斷層,藉以提高發光裝置的亮度。圖36是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖36,在本實施例的發光裝置1100b中,如同先前實施例所述,第一摻雜層1112上方還設有透明導電層1130,以便提高電流聚集作用。此外,第一電極1111與第一摻雜層1112之間還設有阻斷層1140,藉以阻斷第一電極1111與第一摻雜層1112之間電性連結的一部分。因此,阻斷層1140可阻斷第一電極1111下方大部分的電流路徑,而僅留下很小的空隙供電流流出,因此可使得電流密度的主要分佈從第一電極1111下方的區域移至光出射表面下方的區域,從而增加發光裝置1100b的亮度。In an embodiment of the invention, the light-emitting device is further provided with a transparent conductive layer and a blocking layer, thereby improving the brightness of the light-emitting device. Figure 36 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention. Referring to Fig. 36, in the light-emitting device 1100b of the present embodiment, as described in the previous embodiment, a transparent conductive layer 1130 is further disposed above the first doped layer 1112 to enhance current collecting. In addition, a blocking layer 1140 is further disposed between the first electrode 1111 and the first doping layer 1112, thereby blocking a portion of the electrical connection between the first electrode 1111 and the first doping layer 1112. Therefore, the blocking layer 1140 can block most of the current path below the first electrode 1111, leaving only a small gap for current to flow out, so that the main distribution of current density can be moved from the area under the first electrode 1111 to Light exits the area below the surface, thereby increasing the brightness of the illumination device 1100b.

在本發明的一個實施例中,第二摻雜層1114與基底1115之間、在基底1115與磁性基台1116之間或在磁性基台1116與第二電極1117之間還設有隔離層或鏡面層,而用於反射光,以便提高發光裝置的亮度。此外,第一摻雜層1112、第二摻雜層1114、第一電極1111、第二電極1117、基底1115、磁性基台1116和其組合的一個或多個上表面和下表面上還可製作粗糙圖案、圓形圖案或光子晶體層,藉以提高發光裝置的亮度。In an embodiment of the present invention, an isolation layer is further disposed between the second doped layer 1114 and the substrate 1115, between the substrate 1115 and the magnetic submount 1116, or between the magnetic submount 1116 and the second electrode 1117. A mirror layer for reflecting light to increase the brightness of the illumination device. In addition, one or more upper and lower surfaces of the first doped layer 1112, the second doped layer 1114, the first electrode 1111, the second electrode 1117, the substrate 1115, the magnetic submount 1116, and combinations thereof may also be fabricated A rough pattern, a circular pattern or a photonic crystal layer is used to increase the brightness of the light-emitting device.

關於電極配置於磁性基台下方之具有垂直式結構的薄膜LED,圖37是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖37,本實施例的發光裝置1200a是垂直式LED,其包括(從頂部到底部)第一電極1211、第一摻雜層1212、活性層1213、第二摻雜層1214,磁性基台1215和第二電極1216。其中,第一摻雜層1212、活性層1213和第二摻雜層1214形成發光堆疊層。第一電極1211配置於第一摻雜層1212上,且電性耦接至第一摻雜層1112,而第二電極1216則配置於第二摻雜層1214下方,且電性耦接至第二摻雜層1214,以便形成垂直式LED結構。活性層1213係配置於第一電極1211與第二電極1216之間,並且能夠在電流經過時產生光。FIG. 37 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention, with respect to a thin film LED having a vertical structure disposed under a magnetic substrate. Referring to FIG. 37, the light emitting device 1200a of the present embodiment is a vertical LED including (from top to bottom) a first electrode 1211, a first doped layer 1212, an active layer 1213, a second doped layer 1214, and a magnetic abutment. 1215 and second electrode 1216. The first doped layer 1212, the active layer 1213, and the second doped layer 1214 form a light emitting stacked layer. The first electrode 1211 is disposed on the first doped layer 1212 and electrically coupled to the first doped layer 1112, and the second electrode 1216 is disposed under the second doped layer 1214 and electrically coupled to the first electrode 1212. The layers 1214 are doped to form a vertical LED structure. The active layer 1213 is disposed between the first electrode 1211 and the second electrode 1216 and is capable of generating light when a current passes.

由磁性基台1215感應生成的磁場係施加在發光堆疊層上,使得在發光堆疊層中電流密度的主要分佈從第一電極1211與第二電極1216之間的區域移至光出射平面下方的區域,從而提高電流的均勻性,並增加發光裝置1200a的總亮度。The magnetic field induced by the magnetic base 1215 is applied to the light-emitting stack layer such that the main distribution of the current density in the light-emitting stack layer is moved from the area between the first electrode 1211 and the second electrode 1216 to the area below the light exit plane. Thereby increasing the uniformity of the current and increasing the total brightness of the light-emitting device 1200a.

在本發明的一個實施例中,發光裝置中還設有透明導電層和阻斷層,藉以提高發光裝置的亮度。圖38是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖38,在本實施例的發光裝置1200b中,如同先前實施例所述,第一摻雜層1212上方還設有透明導電層1230,以便提高電流聚集作用。此外,第一電極1211與第一摻雜層1212之間還設有阻斷層1240,藉以阻斷第一電極1211與第一摻雜層1212之間電性連結的一部分。因此,阻斷層1240可阻斷第一電極1211下方大部分的電流路徑,而僅留下很小的空隙供電流流出,使得電流密度的主要分佈從第一電極1211下方的區域移至光出射表面下方的區域,從而增加發光裝置1200b的亮度。In an embodiment of the invention, the light-emitting device is further provided with a transparent conductive layer and a blocking layer, thereby improving the brightness of the light-emitting device. FIG. 38 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention. Referring to Fig. 38, in the light-emitting device 1200b of the present embodiment, as described in the previous embodiment, a transparent conductive layer 1230 is further disposed above the first doped layer 1212 to enhance current collecting. In addition, a blocking layer 1240 is further disposed between the first electrode 1211 and the first doping layer 1212, thereby blocking a portion of the electrical connection between the first electrode 1211 and the first doping layer 1212. Therefore, the blocking layer 1240 can block most of the current path below the first electrode 1211, leaving only a small gap for current to flow, so that the main distribution of current density is shifted from the area under the first electrode 1211 to the light exiting. The area under the surface, thereby increasing the brightness of the light-emitting device 1200b.

在本發明的一個實施例中,第二摻雜層1214與磁性基台1215之間還設有用於反射光的隔離層或鏡面層,以便提高發光裝置的亮度。此外,第一摻雜層1212、第二摻雜層1214、第一電極1211、第二電極1216、磁性基台1215和其組合的一個或多個上表面和下表面上還可製作粗糙圖案、圓形圖案或光子晶體層,以便提高發光裝置的亮度。In an embodiment of the invention, an isolation layer or a mirror layer for reflecting light is further disposed between the second doped layer 1214 and the magnetic submount 1215 to increase the brightness of the illumination device. In addition, a rough pattern may be formed on one or more of the upper surface and the lower surface of the first doped layer 1212, the second doped layer 1214, the first electrode 1211, the second electrode 1216, the magnetic submount 1215, and a combination thereof. A circular pattern or photonic crystal layer to increase the brightness of the illumination device.

關於具有垂直式結構且其上配置有磁性材料的LED,圖39(a)至圖39(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖39(a),本實施例的發光裝置1300a是垂直式LED,其包括發光晶片1310和磁性材料1320。發光晶片1310包括(從頂部到底部)第一電極1311、第一摻雜層1312、活性層1313、第二摻雜層1314和第二電極1315。其中,第一摻雜層1312、活性層1315和第二摻雜層1314形成發光堆疊層。第一電極1311係配置於第一摻雜層1312上,且電性耦接至第一摻雜層1312,而第二電極1315則配置於第二摻雜層1314下方,且電性耦接至第二摻雜層1314,以便形成垂直式LED結構。活性層1313係配置於第一電極1311與第二電極1316之間,並且能夠在電流經過時產生光。39(a) to 39(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention, with respect to an LED having a vertical structure and having a magnetic material disposed thereon. Referring to FIG. 39(a), the light-emitting device 1300a of the present embodiment is a vertical LED including a light-emitting chip 1310 and a magnetic material 1320. The light emitting wafer 1310 includes (from top to bottom) a first electrode 1311, a first doped layer 1312, an active layer 1313, a second doped layer 1314, and a second electrode 1315. The first doped layer 1312, the active layer 1315, and the second doped layer 1314 form a light emitting stacked layer. The first electrode 1311 is disposed on the first doped layer 1312 and electrically coupled to the first doped layer 1312, and the second electrode 1315 is disposed under the second doped layer 1314 and electrically coupled to The second doped layer 1314 is formed to form a vertical LED structure. The active layer 1313 is disposed between the first electrode 1311 and the second electrode 1316, and is capable of generating light when a current passes.

磁性材料1320係配置於第一電極1311上,並且在發光晶片1310上施加磁場,使得在發光晶片1310中電流密度的主要分佈從第一電極1311與第二電極1315之間的區域移至光出射平面下方的區域,以便提高電流的均勻性,並增加發光裝置1300a的總亮度。The magnetic material 1320 is disposed on the first electrode 1311, and a magnetic field is applied on the light emitting wafer 1310 such that a main distribution of current density in the light emitting wafer 1310 is shifted from a region between the first electrode 1311 and the second electrode 1315 to light emission. The area below the plane to increase the uniformity of the current and increase the overall brightness of the illumination device 1300a.

在其他實施例中,磁性材料可配置於發光堆疊層上且覆蓋第一電極(如圖39(b)所示的磁性材料1330)或配置於發光堆疊層上未被第一電極覆蓋的表面上(如圖39(c)所示的磁性材料1340)。In other embodiments, the magnetic material may be disposed on the light emitting stacked layer and cover the first electrode (such as the magnetic material 1330 shown in FIG. 39(b)) or on the surface of the light emitting stacked layer not covered by the first electrode. (Magnetic material 1340 as shown in Fig. 39 (c)).

關於具有水平式結構且其上配置有磁性材料的LED,圖40(a)至圖40(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖40(a),本實施例的發光裝置1400a是水平式LED,其包括發光晶片1410和磁性材料1420。發光晶片1410包括(從頂部到底部)第一電極1411、第一摻雜層1412、活性層1413和第二摻雜層1414。其中,第一摻雜層1412、活性層1413和第二摻雜層1414形成發光堆疊層。第一電極1411係配置於第一摻雜層1412上,且電性耦接至第一摻雜層1412,而第二電極1415則配置於第二摻雜層1414上未被活性層1413覆蓋的表面上,且電性耦接至第二摻雜層1414,以便形成水平式LED結構。活性層1413係配置於第一電極1411與第二電極1415之間,並且能夠在電流經過時產生光。40(a) to 40(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention, with respect to an LED having a horizontal structure and having a magnetic material disposed thereon. Referring to FIG. 40(a), the light-emitting device 1400a of the present embodiment is a horizontal LED including an illuminating wafer 1410 and a magnetic material 1420. The luminescent wafer 1410 includes (from top to bottom) a first electrode 1411, a first doped layer 1412, an active layer 1413, and a second doped layer 1414. The first doped layer 1412, the active layer 1413, and the second doped layer 1414 form a light emitting stacked layer. The first electrode 1411 is disposed on the first doped layer 1412 and electrically coupled to the first doped layer 1412, and the second electrode 1415 is disposed on the second doped layer 1414 without being covered by the active layer 1413. The surface is electrically coupled to the second doped layer 1414 to form a horizontal LED structure. The active layer 1413 is disposed between the first electrode 1411 and the second electrode 1415 and is capable of generating light when a current passes.

磁性材料1420係配置於第一電極1411上,並且在發光晶片1410上施加磁場,使得在發光晶片1410中電流密度的主要分佈從第一電極1411與第二電極1415之間的區域移至光出射平面下方的區域,從而提高電流的均勻性,並增加發光裝置1400a的總亮度。The magnetic material 1420 is disposed on the first electrode 1411, and a magnetic field is applied on the light emitting wafer 1410 such that a main distribution of current density in the light emitting wafer 1410 is shifted from a region between the first electrode 1411 and the second electrode 1415 to light emission. The area below the plane, thereby increasing the uniformity of the current and increasing the overall brightness of the illumination device 1400a.

在其他實施例中,磁性材料可配置於發光堆疊層上且覆蓋第一電極(如圖40(b)所示的磁性材料1430)或配置於發光堆疊層上未被第一電極覆蓋的表面上(如圖40(c)所示的磁性材料1440)。在又一實施例中,磁性材料可配置於第二電極(未圖示)上,但並不限於此情形。In other embodiments, the magnetic material may be disposed on the light emitting stacked layer and cover the first electrode (such as the magnetic material 1430 shown in FIG. 40(b)) or on the surface of the light emitting stacked layer that is not covered by the first electrode. (Magnetic material 1440 as shown in Fig. 40 (c)). In still another embodiment, the magnetic material may be disposed on the second electrode (not shown), but is not limited to this case.

在此應注意的是,在一個實施例中,前述發光堆疊層可製作為過渡倒金字塔(TIP)形式,以便提高發光裝置的亮度。圖41是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖41,本實施例的發光裝置1500是具有垂直式結構的覆晶LED,其包括發光晶片1510和磁性材料1520。發光晶片1510包括(自頂部至底部)第一電極1511、基底1512、第一摻雜層1513、活性層1514、第二摻雜層1515和第二電極1516。其中,第一摻雜層1513、活性層1514和第二摻雜層1515形成發光堆疊層1530。It should be noted here that in one embodiment, the aforementioned light-emitting stack layer can be fabricated in the form of a transitional pyramid (TIP) in order to increase the brightness of the light-emitting device. Figure 41 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention. Referring to FIG. 41, the light-emitting device 1500 of the present embodiment is a flip-chip LED having a vertical structure including a light-emitting chip 1510 and a magnetic material 1520. The light emitting wafer 1510 includes (from top to bottom) a first electrode 1511, a substrate 1512, a first doping layer 1513, an active layer 1514, a second doping layer 1515, and a second electrode 1516. The first doped layer 1513 , the active layer 1514 , and the second doped layer 1515 form a light emitting stacked layer 1530 .

如圖41所示,發光堆疊層1530被製作為過渡倒金字塔(TIP)形式,其中發光堆疊層1530的表面能夠反射從活性層1514發射的光,並且將光導向發光裝置1500的光出射表面,而使得發光裝置1500的總亮度增加。As shown in FIG. 41, the light emitting stacked layer 1530 is fabricated in the form of a transitional inverted pyramid (TIP) in which the surface of the light emitting stacked layer 1530 is capable of reflecting light emitted from the active layer 1514 and directing the light to the light exit surface of the light emitting device 1500, The total brightness of the light-emitting device 1500 is increased.

如上所述,本發明提供發光晶片的多種結構,且在其中配置磁性材料,以便提高發光裝置的亮度。然而,在另一方面,磁性材料可被製作為基底、基台、磁膜、電磁鐵、金屬塊、保持器或磁性散熱片,此磁性材料可為鐵磁材料,諸如Rb、Ru、Nd、Fe、Pg、Co、Ni、Mn、Cr、Cu、Cr2 、Pt、Sm、Sb、Pt或其合金,且其表面磁力大於0.01特斯拉,而其形狀則可以是圓形或多邊形。以下提供多個實施例說明磁性材料和多個發光晶片的配置。As described above, the present invention provides various structures of a light-emitting wafer in which a magnetic material is disposed in order to increase the brightness of the light-emitting device. However, in another aspect, the magnetic material can be fabricated as a substrate, abutment, a magnetic film, an electromagnet, a metal block, a holder or a magnetic heat sink, and the magnetic material can be a ferromagnetic material such as Rb, Ru, Nd, Fe, Pg, Co, Ni, Mn, Cr, Cu, Cr 2 , Pt, Sm, Sb, Pt or alloys thereof, and the surface magnetic force thereof is larger than 0.01 Tesla, and the shape thereof may be circular or polygonal. A number of embodiments are provided below to illustrate the configuration of a magnetic material and a plurality of light emitting wafers.

圖42是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖42,磁性材料係製作為基台1610,且發光晶片1620至1650係嵌入於基台1610中。Figure 42 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention. Referring to FIG. 42, the magnetic material is fabricated as a base 1610, and the light-emitting wafers 1620 to 1650 are embedded in the base 1610.

在其他實施例中,磁性材料可為製作為具有一或多個凹面,而用以設置發光晶片。圖43和圖44是根據本發明一實施例所繪示之發光裝置結構的截面圖。參看圖43,磁性材料可製作為具有多個凹面的基台1710,各個凹面均設有發光晶片1720至1750其中的一個,並且具有一反射性表面,而用以反射相對應發光晶片所發射的光。參看圖44,磁性材料係製作為僅具有一個凹面的基台1810,此凹面設有發光晶片1820至1840,也具有一反射性表面,而用於反射發光晶片1820至1840發射的光。因此,不僅可藉由磁力的作用,且可也藉由反射的作用,而提高了發光裝置效率或使得發光裝置的總亮度增加。In other embodiments, the magnetic material can be fabricated to have one or more concave surfaces for providing a light-emitting wafer. 43 and 44 are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the invention. Referring to FIG. 43, the magnetic material can be fabricated as a base 1710 having a plurality of concave surfaces, each of which is provided with one of the light-emitting wafers 1720 to 1750, and has a reflective surface for reflecting the emission of the corresponding light-emitting wafer. Light. Referring to Fig. 44, the magnetic material is fabricated as a base 1810 having only one concave surface, the concave surfaces being provided with light-emitting wafers 1820 to 1840, and also having a reflective surface for reflecting light emitted from the light-emitting wafers 1820 to 1840. Therefore, not only the action of the magnetic force but also the effect of the reflection can be used to increase the efficiency of the light-emitting device or increase the total brightness of the light-emitting device.

在此應注意的是,在有外部能量場施加在發光裝置的情況下,不僅電流路徑會改變,而且半導體中載子密度的均勻性也會改變。因此,即使在電流注入量保持不變的情況下,發光裝置仍可有較高的光電子轉換效率。It should be noted here that in the case where an external energy field is applied to the light-emitting device, not only the current path changes, but also the uniformity of the carrier density in the semiconductor changes. Therefore, even in the case where the current injection amount remains unchanged, the light-emitting device can have a high photoelectron conversion efficiency.

圖45是根據本發明一實施例所繪示之由具有磁性基底之發光裝置所發射光的輸出功率曲線圖。其中,x座標係指注入發光裝置的電流,而y座標則是指發光裝置所發射光的輸出功率。參看圖45,當在發光裝置上施加0.15T的磁場時,光電子轉換效率將提高至0.025 mW/mA,且光的總輸出功率提高至15%。另一方面,當在發光裝置上施加0.25T的磁場時,光電子轉換效率則提高0.04 mW/mA,且光的總輸出功率提高至22.6%。如圖45所示,顯然當外部磁場的強度增加時,光的輸出功率就會提高。Figure 45 is a graph showing the output power of light emitted by a light-emitting device having a magnetic substrate, in accordance with an embodiment of the invention. Wherein, the x coordinate refers to the current injected into the light emitting device, and the y coordinate refers to the output power of the light emitted by the light emitting device. Referring to Fig. 45, when a magnetic field of 0.15 T is applied to the light-emitting device, the photoelectron conversion efficiency is increased to 0.025 mW/mA, and the total output power of light is increased to 15%. On the other hand, when a magnetic field of 0.25 T was applied to the light-emitting device, the photoelectron conversion efficiency was increased by 0.04 mW/mA, and the total output power of the light was increased to 22.6%. As shown in Fig. 45, it is apparent that when the intensity of the external magnetic field is increased, the output power of the light is increased.

綜上所述,磁場可藉由上述的方式施加到發光裝置上,以便提高發光效率,並增加發光裝置的亮度。因此,本發明至少具有下列優點:1.隨著漂移電流擴散的能力提高,電極之間的距離即可拉長,以便減少電極的數目,並減小電極的尺寸。因此,可增大發光面積,以便提高發光裝置的發光效率。In summary, the magnetic field can be applied to the light-emitting device in the above manner to improve the luminous efficiency and increase the brightness of the light-emitting device. Therefore, the present invention has at least the following advantages: 1. As the ability to diffuse the drift current increases, the distance between the electrodes can be elongated to reduce the number of electrodes and reduce the size of the electrodes. Therefore, the light-emitting area can be increased in order to increase the luminous efficiency of the light-emitting device.

2.可增加擴散漂移電流的量,使得電流密度最高的主要分佈從發光裝置的電極之間的區域移至光出射區域下面的區域,從而提高電流的均勻性。因此,光電子轉換效率最高的區域不再被電極阻斷,從而提高發光裝置的發光效率。2. The amount of diffusion drift current can be increased such that the main distribution with the highest current density is moved from the region between the electrodes of the illumination device to the region under the light exit region, thereby increasing the uniformity of the current. Therefore, the region with the highest photoelectron conversion efficiency is no longer blocked by the electrodes, thereby improving the luminous efficiency of the light-emitting device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100、200、300、400、500a、500b、500c、500d、500e、600a、600b、600c、600d、600e、700a、700b、700c、700d、700e、800a、800b、800c、800d、800e、900a、900b、900c、900d、900e、1000a、1000b、1000c、1000d、1000e、1100a、1100b、1200a、1200b、1300a、1300b、1300c、1400a、1400b、1400c、1500...發光裝置100, 200, 300, 400, 500a, 500b, 500c, 500d, 500e, 600a, 600b, 600c, 600d, 600e, 700a, 700b, 700c, 700d, 700e, 800a, 800b, 800c, 800d, 800e, 900a, 900b, 900c, 900d, 900e, 1000a, 1000b, 1000c, 1000d, 1000e, 1100a, 1100b, 1200a, 1200b, 1300a, 1300b, 1300c, 1400a, 1400b, 1400c, 1500. . . Illuminating device

110、120、210、220、310、320、370、380、410、420...電極110, 120, 210, 220, 310, 320, 370, 380, 410, 420. . . electrode

130、330...第一摻雜層130, 330. . . First doped layer

140、340...第二摻雜層140, 340. . . Second doped layer

150、350...半導體發光層150, 350. . . Semiconductor light emitting layer

360...磁場360. . . magnetic field

510、610、710、810、910、1010、1110、1210、1310、1410、1510、1620、1630、1640、1650、1720、1730、1740、1750、1820、1830、1840...發光晶片510, 610, 710, 810, 910, 1010, 1110, 1210, 1310, 1410, 1510, 1620, 1630, 1640, 1650, 1720, 1730, 1740, 1750, 1820, 1830, 1840. . . Light emitting chip

511、611、711、811、911、1011、1111、1211、1311、1411、1511...第一電極511, 611, 711, 811, 911, 1011, 1111, 1211, 1311, 1411, 1511. . . First electrode

512、612、713、813、912、1012、1112、1212、1312、1412、1513...第一摻雜層512, 612, 713, 813, 912, 1012, 1112, 1212, 1312, 1412, 1513. . . First doped layer

513、613、714、814、913、1013、1113、1213、1313、1413、1514...活性層513, 613, 714, 814, 913, 1013, 1113, 1213, 1313, 1413, 1514. . . Active layer

514、614、715、815、914、1014、1114、1214、1314、1414、1515...第二摻雜層514, 614, 715, 815, 914, 1014, 1114, 1214, 1314, 1414, 1515. . . Second doped layer

515、615、712、812、1115、1512...基底515, 615, 712, 812, 1115, 1512. . . Base

516、616、716、816、915、1016、1117、1216、1315、1415、1516...第二電極516, 616, 716, 816, 915, 1016, 1117, 1216, 1315, 1415, 1516. . . Second electrode

520、620、720、820、920、1020、1116、1215...磁性基台520, 620, 720, 820, 920, 1020, 1116, 1215. . . Magnetic abutment

530、630、730、830、930、1030...透明導電層530, 630, 730, 830, 930, 1030. . . Transparent conductive layer

540、640、740、840、940、1040...阻斷層540, 640, 740, 840, 940, 1040. . . Blocking layer

550、650、750、850、950、1050...隔離層550, 650, 750, 850, 950, 1050. . . Isolation layer

560、660、760、860、960、1060...鏡面層560, 660, 760, 860, 960, 1060. . . Mirror layer

570、580、590、670、680、690、770、780、790、870、880、890、970、980、990、1070、1080...粗糙圖案570, 580, 590, 670, 680, 690, 770, 780, 790, 870, 880, 890, 970, 980, 990, 1070, 1080. . . Rough pattern

1320、1330、1340、1420、1430、1440、1520...磁性材料1320, 1330, 1340, 1420, 1430, 1440, 1520. . . Magnetic material

1530...發光堆疊層1530. . . Light stacking layer

1610、1710、1810...基台1610, 1710, 1810. . . Abutment

圖1繪示傳統發光裝置的截面圖。1 is a cross-sectional view of a conventional light emitting device.

圖2繪示傳統發光裝置的俯視圖。2 is a top plan view of a conventional light emitting device.

圖3(a)和圖3(b)是根據本發明一實施例所繪示之發光裝置的截面圖。3(a) and 3(b) are cross-sectional views of a light emitting device according to an embodiment of the invention.

圖4是根據本發明另一實施例所繪示之發光裝置的俯視圖。4 is a top plan view of a light emitting device according to another embodiment of the present invention.

圖5是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 5 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖6是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 6 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖7是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 7 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖8是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 8 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖9(a)至9(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。9(a) to 9(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention.

圖10是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 10 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖11是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 11 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖12是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 12 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖13是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 13 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖14(a)至14(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。14(a) to 14(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention.

圖15是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 15 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖16是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 16 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖17是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 17 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖18是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 18 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖19(a)至19(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。19(a) to 19(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention.

圖20是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 20 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖21是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 21 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖22是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 22 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖23是根據本發明一實施例所繪示之發光裝置結構的截面圖。23 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖24(a)至24(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。24(a) to 24(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention.

圖25是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 25 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖26是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 26 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖27是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 27 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖28是根據本發明一實施例所繪示之發光裝置結構的截面圖。28 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖29(a)至29(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。29(a) to 29(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention.

圖30是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 30 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖31是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 31 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖32是根據本發明一實施例所繪示之發光裝置結構的截面圖。32 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖33是根據本發明的一個實施例的發光裝置結構的截面圖。Figure 33 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the present invention.

圖34(a)至34(b)是根據本發明一實施例所繪示之發光裝置結構的截面圖。34(a) to 34(b) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention.

圖35是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 35 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖36是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 36 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖37是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 37 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖38是根據本發明一實施例所繪示之發光裝置結構的截面圖。FIG. 38 is a cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

圖39(a)至圖39(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。39(a) to 39(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention.

圖40(a)至圖40(c)是根據本發明一實施例所繪示之發光裝置結構的截面圖。40(a) to 40(c) are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the present invention.

圖41是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 41 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖42是根據本發明一實施例所繪示之發光裝置結構的截面圖。Figure 42 is a cross-sectional view showing the structure of a light-emitting device according to an embodiment of the invention.

圖43和圖44是根據本發明一實施例所繪示之發光裝置結構的截面圖。43 and 44 are cross-sectional views showing the structure of a light-emitting device according to an embodiment of the invention.

圖45是根據本發明一實施例所繪示之由具有磁性基底之發光裝置所發射光的輸出功率曲線圖。Figure 45 is a graph showing the output power of light emitted by a light-emitting device having a magnetic substrate, in accordance with an embodiment of the invention.

300...發光裝置300. . . Illuminating device

310、320、370、380...電極310, 320, 370, 380. . . electrode

330...第一摻雜層330. . . First doped layer

340...第二摻雜層340. . . Second doped layer

350...半導體發光層350. . . Semiconductor light emitting layer

360...磁場360. . . magnetic field

Claims (23)

一種發光裝置,包括:一發光堆疊層,包括一第一表面、一第二表面以及一活性層;一第一電極,電性耦接至該發光堆疊層的該第一表面;一第二電極,電性耦接至該發光堆疊層的該第二表面,其中該第一表面與該第二表面是位於該活性層的相對兩側,且該第一表面與該第二表面是位於該發光堆疊層的同一側;以及一磁性材料,耦接至該第一電極或該第二電極,以在該發光堆疊層上施加一磁場,其中該磁性材料為磁膜或磁塊,該磁性材料與該第一電極或該第二電極電性連接,且該磁性材料具有大於0.01特斯拉的表面磁力。 A light-emitting device comprising: a light-emitting stack layer comprising a first surface, a second surface and an active layer; a first electrode electrically coupled to the first surface of the light-emitting stack layer; a second electrode Electrically coupled to the second surface of the light emitting stack, wherein the first surface and the second surface are on opposite sides of the active layer, and the first surface and the second surface are located in the light a magnetic material coupled to the first electrode or the second electrode to apply a magnetic field on the light emitting stacked layer, wherein the magnetic material is a magnetic film or a magnetic block, and the magnetic material is The first electrode or the second electrode is electrically connected, and the magnetic material has a surface magnetic force greater than 0.01 Tesla. 如申請專利範圍第1項所述之發光裝置,其中該發光堆疊層包括:一第一摻雜層,配置於該發光堆疊層中靠近該第一表面的一側;一第二摻雜層,配置於該發光堆疊層中靠近該第二表面的一側,其中該活性層配置於該第一摻雜層與該第二摻雜層之間。 The light-emitting device of claim 1, wherein the light-emitting stack layer comprises: a first doped layer disposed on a side of the light-emitting stack layer adjacent to the first surface; a second doped layer, And disposed on a side of the light-emitting stack layer adjacent to the second surface, wherein the active layer is disposed between the first doped layer and the second doped layer. 如申請專利範圍第2項所述之發光裝置,其中該發光堆疊層更包括:一透明導電層,配置於該第一摻雜層上方。 The light emitting device of claim 2, wherein the light emitting stacked layer further comprises: a transparent conductive layer disposed above the first doped layer. 如申請專利範圍第2項所述之發光裝置,其中該發光堆疊層更包括:一阻斷層,配置於該第一電極與該第一摻雜層之間,用於阻斷該第一電極與該第一摻雜層之間的電性連結的一部分。 The illuminating device of claim 2, wherein the illuminating stack further comprises: a blocking layer disposed between the first electrode and the first doping layer for blocking the first electrode A portion of the electrical connection with the first doped layer. 如申請專利範圍第2項所述之發光裝置,其中該發光堆疊層更包括:一隔離層,配置於該第二電極與該磁性材料之間,用於隔離該第二電極與該第一電極下方的區域。 The illuminating device of claim 2, wherein the illuminating stack further comprises: an isolating layer disposed between the second electrode and the magnetic material for isolating the second electrode from the first electrode The area below. 如申請專利範圍第2項所述之發光裝置,其中在該第一摻雜層、該第二摻雜層、該第一電極、該第二電極、或該磁性材料的上表面或下表面上更包括有製作粗糙圖案、梯形圖案、圓形圖案或光子晶體層。 The illuminating device of claim 2, wherein the first doped layer, the second doped layer, the first electrode, the second electrode, or the upper surface or the lower surface of the magnetic material It also includes making a rough pattern, a trapezoidal pattern, a circular pattern or a photonic crystal layer. 如申請專利範圍第2項所述之發光裝置,其中該發光堆疊層更包括:一鏡面層,配置於該第二摻雜層與該磁性材料之間或該磁性材料與該第二電極之間,用於反射從該活性層發射的光。 The illuminating device of claim 2, wherein the luminescent stack further comprises: a mirror layer disposed between the second doped layer and the magnetic material or between the magnetic material and the second electrode For reflecting light emitted from the active layer. 如申請專利範圍第2項所述之發光裝置,其中該第一摻雜層與該第二摻雜層包括P摻雜層或N摻雜層。 The light emitting device of claim 2, wherein the first doped layer and the second doped layer comprise a P doped layer or an N doped layer. 如申請專利範圍第1項所述之發光裝置,更包括:一基底,配置於該發光堆疊層與該磁性材料之間。 The light-emitting device of claim 1, further comprising: a substrate disposed between the light-emitting stack layer and the magnetic material. 如申請專利範圍第9項所述之發光裝置,其中該發光堆疊層包括: 一第一摻雜層;一第二摻雜層,配置於該基底上和該第一摻雜層下方;以及一活性層,配置於該第一摻雜層與該第二摻雜層之間。 The illuminating device of claim 9, wherein the illuminating stack layer comprises: a first doped layer; a second doped layer disposed on the substrate and below the first doped layer; and an active layer disposed between the first doped layer and the second doped layer . 如申請專利範圍第10項所述之發光裝置,其中該發光堆疊層更包括:一透明導電層,配置於該第一摻雜層上方。 The light emitting device of claim 10, wherein the light emitting stacked layer further comprises: a transparent conductive layer disposed above the first doped layer. 如申請專利範圍第10項所述之發光裝置,其中該發光堆疊層更包括:一阻斷層,配置於該第一電極與該第一摻雜層之間,用於阻斷該第一電極與該第一摻雜層之間電性連結的一部分。 The illuminating device of claim 10, wherein the illuminating stack further comprises: a blocking layer disposed between the first electrode and the first doping layer for blocking the first electrode A portion electrically connected to the first doped layer. 如申請專利範圍第10項所述之發光裝置,其中在該第一摻雜層、該第二摻雜層、該第一電極、該第二電極、該基底或該磁性材料的上表面或下表面上更包括有製作粗糙圖案、梯形圖案、圓形圖案或光子晶體層。 The illuminating device of claim 10, wherein the first doped layer, the second doped layer, the first electrode, the second electrode, the substrate or the upper surface or the lower surface of the magnetic material The surface further includes a rough pattern, a trapezoidal pattern, a circular pattern or a photonic crystal layer. 如申請專利範圍第10項所述之發光裝置,其中該發光堆疊層更包括:一鏡面層,配置於該第二摻雜層與該基底之間或該基底與該磁性材料之間,用於反射從該活性層發射的光。 The illuminating device of claim 10, wherein the illuminating stack layer further comprises: a mirror layer disposed between the second doped layer and the substrate or between the substrate and the magnetic material, The light emitted from the active layer is reflected. 如申請專利範圍第10項所述之發光裝置,其中該第一摻雜層和該第二摻雜層包括P摻雜層或N摻雜層。 The light emitting device of claim 10, wherein the first doped layer and the second doped layer comprise a P doped layer or an N doped layer. 如申請專利範圍第9項所述之發光裝置,其中該基 底的材料包括Si、SiC、GaN、GaP、GaAs、藍寶石、ZnO或AlN。 The illuminating device of claim 9, wherein the illuminating device The material of the bottom includes Si, SiC, GaN, GaP, GaAs, sapphire, ZnO or AlN. 如申請專利範圍第9項所述之發光裝置,其中該基底具有大於10微米的厚度。 The illuminating device of claim 9, wherein the substrate has a thickness greater than 10 microns. 如申請專利範圍第2項所述之發光裝置,其中該發光堆疊層的材料包括GaAs、InP、GaN、GaP、AlP、AlAs、InAs、GaSb、InSb、CdS、CdSe、ZnS或ZnSe。 The light-emitting device of claim 2, wherein the material of the light-emitting stack layer comprises GaAs, InP, GaN, GaP, AlP, AlAs, InAs, GaSb, InSb, CdS, CdSe, ZnS or ZnSe. 如申請專利範圍第1項所述之發光裝置,其中該發光堆疊層係被製作為過渡倒金字塔形式。 The illuminating device of claim 1, wherein the illuminating stack layer is formed in the form of a transitional inverted pyramid. 如申請專利範圍第1項所述之發光裝置,其中該發光堆疊層係通過環氧樹脂、金屬鍵合、晶片鍵合、外延嵌入或塗布過程與該磁性材料耦合。 The illuminating device of claim 1, wherein the luminescent stack layer is coupled to the magnetic material by an epoxy resin, a metal bond, a wafer bond, an epitaxial embedding or a coating process. 如申請專利範圍第1項所述之發光裝置,其中該磁性材料包括Rb、Ru、Tb、Nd、Fe、Pg、Co、Ni、Mn、Cr、Cu、Cr2、Pt、Sm、Sb、Pt或其合金。 The illuminating device of claim 1, wherein the magnetic material comprises Rb, Ru, Tb, Nd, Fe, Pg, Co, Ni, Mn, Cr, Cu, Cr2, Pt, Sm, Sb, Pt or Its alloy. 如申請專利範圍第1項所述之發光裝置,其中該磁性材料包括Mn、Fe、Co、Cu和V的氧化物之一,Cr2 O3 、CrS、MnS、MnSe、MnTe,Mn、Fe、Co或Ni的氟化物,V、Cr、Fe、Co、Ni和Cu的氯化物,Cu的溴化物、CrSb、MnAs、MnBi、α-Mn、MnCl2 .4H2 O、MnBr2 .4H2 O、CuCl2 .2H2 O、Co(NH4 )x(SO4 )xCl2 .6H2 O、FeCo3 和FeCo3 .2MgCO3The illuminating device according to claim 1, wherein the magnetic material comprises one of oxides of Mn, Fe, Co, Cu and V, Cr 2 O 3 , CrS, MnS, MnSe, MnTe, Mn, Fe, Fluoride of Co or Ni, chloride of V, Cr, Fe, Co, Ni and Cu, bromide of Cu, CrSb, MnAs, MnBi, α-Mn, MnCl 2 . 4H 2 O, MnBr 2 . 4H 2 O, CuCl 2 . 2H 2 O, Co(NH 4 )x(SO 4 )xCl 2 . 6H 2 O, FeCo 3 and FeCo 3 . 2MgCO 3 . 如申請專利範圍第1項所述之發光裝置,其中該磁性材料在所述發光晶片上施加磁場以改變該發光堆疊層的電流密度分佈,從而增加所述發光裝置的亮度。 The illuminating device of claim 1, wherein the magnetic material applies a magnetic field on the luminescent wafer to change a current density distribution of the luminescent stacked layer, thereby increasing brightness of the illuminating device.
TW98115039A 2008-05-09 2009-05-06 Light emitting device TWI469384B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/117,747 US7906786B2 (en) 2008-01-11 2008-05-09 Light emitting device

Publications (2)

Publication Number Publication Date
TW201001757A TW201001757A (en) 2010-01-01
TWI469384B true TWI469384B (en) 2015-01-11

Family

ID=44838155

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98115039A TWI469384B (en) 2008-05-09 2009-05-06 Light emitting device

Country Status (1)

Country Link
TW (1) TWI469384B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513030B (en) * 2010-06-01 2015-12-11 Advanced Optoelectronic Tech Light-emitting diode and method for manufacturing the same
TWI414084B (en) * 2010-06-03 2013-11-01 Epistar Corp Light emitting diode structure
TWI659543B (en) * 2010-06-03 2019-05-11 晶元光電股份有限公司 Light emitting diode structure
CN107799661A (en) * 2017-11-29 2018-03-13 江苏集萃有机光电技术研究所有限公司 OLED and dot structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW517403B (en) * 2002-01-10 2003-01-11 Epitech Technology Corp Nitride light emitting diode and manufacturing method for the same
US20060186432A1 (en) * 2005-02-18 2006-08-24 Osipov Viatcheslav V Polarized radiation source using spin extraction/injection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW517403B (en) * 2002-01-10 2003-01-11 Epitech Technology Corp Nitride light emitting diode and manufacturing method for the same
US20060186432A1 (en) * 2005-02-18 2006-08-24 Osipov Viatcheslav V Polarized radiation source using spin extraction/injection

Also Published As

Publication number Publication date
TW201001757A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
CN101483214B (en) light emitting device
US7982205B2 (en) III-V group compound semiconductor light-emitting diode
US7202509B2 (en) Light emitting apparatus
WO2010003386A2 (en) Light-emitting device and packaging structure thereof
JP5517882B2 (en) Nitride semiconductor light emitting device
KR101348470B1 (en) Light emitting element
KR101033298B1 (en) Zinc Oxide Light Emitting Diode
JP2016518029A (en) Light emitting diode components
TWI469384B (en) Light emitting device
JP2013068883A (en) Light transmission type metal electrode, electronic device and optical element
US8502259B2 (en) Light emitting device
CN102130245A (en) Light emitting diode and manufacturing method thereof
CN103187502B (en) Nitride semiconductor light emitting device
CN101577306B (en) light emitting device
TW201251113A (en) Manufacturing method of LED base plate, LED base plate and white light LED structure
CN102479893A (en) Optoelectronic component
Chen et al. Implementation of light extraction improvements of GaN-based light-emitting diodes with specific textured sidewalls
TWI476956B (en) Semiconductor light emitting element and manufacturing method thereof
US20120085987A1 (en) Light emitting device
JP2012175040A (en) Semiconductor light-emitting device and light-emitting apparatus
TWI483423B (en) Nitride semiconductor light emitting device
CN113838952B (en) Nano-LED application-based epitaxial structure, chip and preparation method
TWI478374B (en) Light emitting device
Wang et al. Numerical Study on the Light Extraction Efficiency of a Size-Dependent GaN-Based Micro-LEDs
KR100753677B1 (en) Light emitting element