[go: up one dir, main page]

TWI467762B - Semiconductor device and method for fabricating the same - Google Patents

Semiconductor device and method for fabricating the same Download PDF

Info

Publication number
TWI467762B
TWI467762B TW98123742A TW98123742A TWI467762B TW I467762 B TWI467762 B TW I467762B TW 98123742 A TW98123742 A TW 98123742A TW 98123742 A TW98123742 A TW 98123742A TW I467762 B TWI467762 B TW I467762B
Authority
TW
Taiwan
Prior art keywords
semiconductor device
conductivity type
doped region
substrate
region
Prior art date
Application number
TW98123742A
Other languages
Chinese (zh)
Other versions
TW201103148A (en
Inventor
Han Min Huang
Chin Lung Chen
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW98123742A priority Critical patent/TWI467762B/en
Publication of TW201103148A publication Critical patent/TW201103148A/en
Application granted granted Critical
Publication of TWI467762B publication Critical patent/TWI467762B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

半導體元件及其製造方法Semiconductor component and method of manufacturing same

本發明是有關於一種積體電路,且特別是有關於一種半導體元件。This invention relates to an integrated circuit and, more particularly, to a semiconductor component.

隨著半導體製程技術的快速發展,為了增進元件的速度與效能,積體電路的積集度必須持續地提升,以符合電子元件輕、薄、短、小之趨勢。為了提高積集度,半導體元件所佔的面積必須縮減。With the rapid development of semiconductor process technology, in order to improve the speed and performance of components, the integration of integrated circuits must be continuously improved to meet the trend of light, thin, short and small electronic components. In order to increase the degree of integration, the area occupied by the semiconductor element must be reduced.

圖1A是習知一種半導體元件的上視示意圖。圖1B是沿著圖1A中I-1’線段的剖面示意圖。如圖1A與圖1B所示,習知的金氧半導體(metal-oxide semiconductor,MOS)元件101a、101b分別具有條狀配置的閘極結構102a、102b位於基底100上。在閘極結構102a、102b兩側的基底100中分別有沿著平行閘極結構102a、102b方向而延伸的汲極104a、104b與源極106a、106b。沿著平行閘極結構102a、102b方向而延伸的摻雜區108配置在金氧半導體元件101a的源極106a與金氧半導體元件101b的源極106b之間的基底100中,且摻雜區108是作為金氧半導體元件101a、101b共用的基底端。接觸窗110以垂直閘極結構102a、102b的方式共同連接源極106a、摻雜區108與源極106b。1A is a top plan view of a conventional semiconductor device. Fig. 1B is a schematic cross-sectional view taken along line I-1' of Fig. 1A. As shown in FIG. 1A and FIG. 1B, conventional gate-structures 102a, 102b having metal stripe elements 101a, 101b, respectively, are disposed on the substrate 100. In the substrate 100 on both sides of the gate structures 102a, 102b, there are drains 104a, 104b and sources 106a, 106b extending in the direction of the parallel gate structures 102a, 102b, respectively. A doped region 108 extending in the direction of the parallel gate structures 102a, 102b is disposed in the substrate 100 between the source 106a of the MOS element 101a and the source 106b of the MOS element 101b, and the doped region 108 It is a base end which is common to the MOS devices 101a and 101b. The contact window 110 commonly connects the source 106a, the doped region 108, and the source 106b in a manner of vertical gate structures 102a, 102b.

然而,此種藉由多個接觸窗110將條狀的金氧半導體元件101a、101b串聯在一起的設計所需使用的佈局面積較大,且所佔用的晶片的面積也較大。亦即,此種佈局容易造成元件積集度不佳,不僅不利於晶片的縮小且需耗費較高的晶片成本。因此,如何在有限的晶片面積下,尋求其他設計方式以達到較小佈局面積,且能使半導體元件仍保有一定水準的元件效能,將是目前極為重要的課題。However, such a design in which the strip-shaped MOS devices 101a, 101b are connected in series by a plurality of contact windows 110 requires a large layout area and a large area of the occupied wafer. That is, such a layout tends to cause poor component accumulation, which is not only disadvantageous for wafer shrinkage but also requires high wafer cost. Therefore, how to find other design methods to achieve a small layout area under a limited wafer area, and to enable semiconductor components to maintain a certain level of component performance, will be an extremely important issue at present.

有鑑於此,本發明提供一種半導體元件及其製造方法,此半導體元件具有較小的佈局設計。In view of the above, the present invention provides a semiconductor device having a small layout design and a method of fabricating the same.

本發明提出一種半導體元件,其包括具有第一導電型之基底、具有第二導電型之第一摻雜區、具有第一導電型之至少一個第二摻雜區、具有第二導電型之第三摻雜區、閘極結構以及至少一個接觸窗。第一摻雜區與第二摻雜區配置於基底中,且第一摻雜區環繞各第二摻雜區的周圍。第三摻雜區配置於第一摻雜區以外之基底中。閘極結構配置於第一摻雜區與第三摻雜區之間的基底上。接觸窗配置於基底上,且各接觸窗以平行閘極結構的方式交替連接第一摻雜區與第二摻雜區。The present invention provides a semiconductor device including a substrate having a first conductivity type, a first doping region having a second conductivity type, at least one second doping region having a first conductivity type, and a second conductivity type A three-doped region, a gate structure, and at least one contact window. The first doped region and the second doped region are disposed in the substrate, and the first doped region surrounds the periphery of each of the second doped regions. The third doped region is disposed in a substrate other than the first doped region. The gate structure is disposed on the substrate between the first doped region and the third doped region. The contact window is disposed on the substrate, and each contact window alternately connects the first doped region and the second doped region in a parallel gate structure.

在本發明之一實施例中,各接觸窗以平行閘極結構的方式交替連接至少三個相連的第一摻雜區與第二摻雜區。In an embodiment of the invention, each of the contact windows alternately connects at least three connected first doped regions and second doped regions in a parallel gate structure.

在本發明之一實施例中,當半導體元件包括多個第二摻雜區時,第二摻雜區是以平行閘極結構的方式排列。In one embodiment of the invention, when the semiconductor component includes a plurality of second doped regions, the second doped regions are arranged in a parallel gate structure.

在本發明之一實施例中,當半導體元件包括多個接觸窗時,接觸窗是以平行閘極結構的方式排列。In one embodiment of the invention, when the semiconductor component includes a plurality of contact windows, the contact windows are arranged in a parallel gate structure.

在本發明之一實施例中,上述之第一摻雜區為此半導體元件與相鄰的另一半導體元件之共用源極。In an embodiment of the invention, the first doped region is a common source of the semiconductor component and another adjacent semiconductor component.

在本發明之一實施例中,上述之半導體元件為金氧半導體元件。In an embodiment of the invention, the semiconductor component is a MOS device.

在本發明之一實施例中,上述之半導體元件為高壓元件或低壓元件。In an embodiment of the invention, the semiconductor component is a high voltage component or a low voltage component.

在本發明之一實施例中,更包括雙載子接合電晶體,其中雙載子接合電晶體與半導體元件共用接觸窗。雙載子接合電晶體與半導體元件例如是共用第二摻雜區與第三摻雜區。半導體元件可以是側壁金氧半導體(sidewall MOS)元件。In an embodiment of the invention, a bi-carrier bonded transistor is further included, wherein the bi-carrier bonding transistor shares a contact window with the semiconductor component. The bipolar junction transistor and the semiconductor element share, for example, a second doped region and a third doped region. The semiconductor component can be a sidewall metal MOS (sidewall MOS) component.

在本發明之一實施例中,當第一導電型為P型時,第二導電型為N型;當第一導電型為N型時,第二導電型為P型。In an embodiment of the invention, when the first conductivity type is a P type, the second conductivity type is an N type; when the first conductivity type is an N type, the second conductivity type is a P type.

本發明提出一種半導體元件,其包括具有第一導電型之基底、具有第二導電型之第一摻雜區、具有第一導電型之至少一個第二摻雜區、具有第二導電型之第三摻雜區、閘極結構以及至少一個接觸窗。第一摻雜區與第二摻雜區配置於基底中。第三摻雜區配置於第一摻雜區以外之基底中。閘極結構配置於第一摻雜區與第三摻雜區之間的基底上。接觸窗配置於基底上,且各接觸窗以平行閘極結構的方式交替連接至少三個相連的第一摻雜區與第二摻雜區。The present invention provides a semiconductor device including a substrate having a first conductivity type, a first doping region having a second conductivity type, at least one second doping region having a first conductivity type, and a second conductivity type A three-doped region, a gate structure, and at least one contact window. The first doped region and the second doped region are disposed in the substrate. The third doped region is disposed in a substrate other than the first doped region. The gate structure is disposed on the substrate between the first doped region and the third doped region. The contact window is disposed on the substrate, and each contact window alternately connects at least three connected first doped regions and second doped regions in a parallel gate structure.

在本發明之一實施例中,當半導體元件包括多個第二摻雜區時,第二摻雜區是以平行閘極結構的方式排列。在本發明之一實施例中,當半導體元件包括多個接觸窗時,接觸窗是以平行閘極結構的方式排列。In one embodiment of the invention, when the semiconductor component includes a plurality of second doped regions, the second doped regions are arranged in a parallel gate structure. In one embodiment of the invention, when the semiconductor component includes a plurality of contact windows, the contact windows are arranged in a parallel gate structure.

在本發明之一實施例中,上述之第一摻雜區為此半導體元件與相鄰的另一半導體元件之共用源極。In an embodiment of the invention, the first doped region is a common source of the semiconductor component and another adjacent semiconductor component.

在本發明之一實施例中,上述之半導體元件為金氧半導體元件。In an embodiment of the invention, the semiconductor component is a MOS device.

在本發明之一實施例中,上述之半導體元件為高壓元件或低壓元件。In an embodiment of the invention, the semiconductor component is a high voltage component or a low voltage component.

在本發明之一實施例中,更包括雙載子接合電晶體,其中雙載子接合電晶體與半導體元件共用接觸窗。雙載子接合電晶體與半導體元件例如是共用第二摻雜區與第三摻雜區。半導體元件可以是側壁金氧半導體元件。In an embodiment of the invention, a bi-carrier bonded transistor is further included, wherein the bi-carrier bonding transistor shares a contact window with the semiconductor component. The bipolar junction transistor and the semiconductor element share, for example, a second doped region and a third doped region. The semiconductor component can be a sidewall metal oxide semiconductor component.

在本發明之一實施例中,當第一導電型為P型時,第二導電型為N型;當第一導電型為N型時,第二導電型為P型。In an embodiment of the invention, when the first conductivity type is a P type, the second conductivity type is an N type; when the first conductivity type is an N type, the second conductivity type is a P type.

本發明另提出一種半導體元件的製造方法。提供具有第一導電型之基底,並於基底上形成閘極結構。於閘極結構兩側的基底中分別形成具有第二導電型之第一摻雜區與第二摻雜區。於基底中形成具有第一導電型之至少一個第三摻雜區。之後,於基底上形成至少一個接觸窗,各接觸窗以平行閘極結構的方式交替連接至少三個相連的第一摻雜區與第三摻雜區。The present invention further provides a method of fabricating a semiconductor device. A substrate having a first conductivity type is provided and a gate structure is formed on the substrate. A first doped region and a second doped region having a second conductivity type are respectively formed in the substrates on both sides of the gate structure. At least one third doped region having a first conductivity type is formed in the substrate. Thereafter, at least one contact window is formed on the substrate, and each contact window alternately connects at least three connected first doped regions and third doped regions in a parallel gate structure.

在本發明之一實施例中,上述之第一摻雜區環繞各第二摻雜區的周圍。In an embodiment of the invention, the first doped region surrounds the periphery of each of the second doped regions.

在本發明之一實施例中,當第一導電型為P型時,第二導電型為N型;當第一導電型為N型時,第二導電型為P型。In an embodiment of the invention, when the first conductivity type is a P type, the second conductivity type is an N type; when the first conductivity type is an N type, the second conductivity type is a P type.

基於上述,本發明之半導體元件藉由使源極區域中的第一摻雜區環繞各第二摻雜區周圍,並以平行閘極結構的方式配置接觸窗以連接至少三個導電型態交替且相連的第一、第二摻雜區,因此能夠減少源極區域的佈局面積,以獲得較小的元件尺寸。Based on the above, the semiconductor device of the present invention surrounds each of the second doped regions by surrounding the first doped region in the source region, and configures the contact window in a parallel gate structure to connect at least three conductive patterns. And the connected first and second doped regions can thus reduce the layout area of the source region to obtain a smaller component size.

再者,本發明之半導體元件的製造方法可以應用在所有MOS結構上,且製程簡單而可以與現有的半導體製程相整合。Furthermore, the method of fabricating the semiconductor device of the present invention can be applied to all MOS structures, and the process is simple and can be integrated with existing semiconductor processes.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

接下來,進一步以上視圖及剖面圖的方式來說明本發明之實施例。圖2A是依照本發明之一實施例之半導體元件的上視示意圖。圖2B是沿著圖2A中II-II’線段的剖面示意圖。須注意的是,下述實施例是以P型來表示第一導電型,而以N型來表示第二導電型,但本發明並不以此為限。熟習此技藝者應了解,本發明亦可以將第一導電型置換成N型,將第二導電型置換成P型以形成半導體元件。請參照圖2A與圖2B,本發明之半導體元件201例如是金氧半導體(metal-oxide semiconductor,MOS)元件,其配置於具有第一導電型之基底200上。基底200例如是P型基底,其可為矽基底或其他半導體基底。在一實施例中,基底200中還可以配置有P型井區(未繪示)。半導體元件201包括閘極結構204、汲極區域206、源極區域208以及接觸窗210。Next, embodiments of the present invention will be described in further aspects and cross-sectional views. 2A is a top plan view of a semiconductor device in accordance with an embodiment of the present invention. Fig. 2B is a schematic cross-sectional view taken along line II-II' of Fig. 2A. It should be noted that the following embodiment shows the first conductivity type in the P type and the second conductivity type in the N type, but the invention is not limited thereto. Those skilled in the art will appreciate that the present invention may also replace the first conductivity type with an N type and the second conductivity type with a P type to form a semiconductor element. Referring to FIGS. 2A and 2B, the semiconductor device 201 of the present invention is, for example, a metal-oxide semiconductor (MOS) device disposed on a substrate 200 having a first conductivity type. Substrate 200 is, for example, a P-type substrate, which may be a germanium substrate or other semiconductor substrate. In an embodiment, a P-type well region (not shown) may also be disposed in the substrate 200. The semiconductor component 201 includes a gate structure 204, a drain region 206, a source region 208, and a contact window 210.

閘極結構204位於汲極區域206與源極區域208之間的基底200上。閘極結構204包括閘極204a以及閘介電層204b。閘介電層204b配置於閘極204a與基底200之間。在一實施例中,閘極結構204的佈局為沿著Y方向延伸之長條狀結構。閘極204a的材料例如是摻雜多晶矽。閘介電層204b的材料例如是氧化矽。The gate structure 204 is located on the substrate 200 between the drain region 206 and the source region 208. The gate structure 204 includes a gate 204a and a gate dielectric layer 204b. The gate dielectric layer 204b is disposed between the gate 204a and the substrate 200. In one embodiment, the gate structure 204 is arranged in an elongated structure extending in the Y direction. The material of the gate 204a is, for example, doped polysilicon. The material of the gate dielectric layer 204b is, for example, hafnium oxide.

汲極區域206包括摻雜區206a,其配置於閘極結構204一側的基底200中。摻雜區206a具有第二導電型,其例如是N+摻雜區。在一實施例中,摻雜區206a的佈局為沿著Y方向延伸之長條狀結構。The drain region 206 includes a doped region 206a disposed in the substrate 200 on one side of the gate structure 204. The doped region 206a has a second conductivity type, which is, for example, an N+ doped region. In an embodiment, the layout of the doped regions 206a is an elongated structure extending in the Y direction.

源極區域208例如是與汲極區域206分開配置。源極區域208包括摻雜區208a與至少一個摻雜區208b,其配置於閘極結構204另一側的基底200中。摻雜區208a環繞各摻雜區208b的周圍。The source region 208 is, for example, disposed separately from the drain region 206. The source region 208 includes a doped region 208a and at least one doped region 208b disposed in the substrate 200 on the other side of the gate structure 204. Doped regions 208a surround the perimeter of each doped region 208b.

承上述,摻雜區208a具有第二導電型,其例如是N+摻雜區。在一實施例中,摻雜區208a的佈局為沿著Y方向延伸之長條狀結構。摻雜區208b具有第一導電型,其例如是P+摻雜區。摻雜區208b的底部例如是與基底200電性連接,以作為基底200的外接端。當源極區域208包括多個摻雜區208b時,摻雜區208b例如是分散配置在源極區域208中。在一實施例中,多個摻雜區208b是以平行閘極結構204的方式而排列。也就是說,多個摻雜區208b的佈局是沿著Y方向而排列。In view of the above, the doped region 208a has a second conductivity type, which is, for example, an N+ doped region. In an embodiment, the layout of the doped regions 208a is an elongated structure extending in the Y direction. Doped region 208b has a first conductivity type, which is, for example, a P+ doped region. The bottom of the doped region 208b is electrically connected to the substrate 200, for example, as an external end of the substrate 200. When the source region 208 includes a plurality of doped regions 208b, the doped regions 208b are, for example, dispersedly disposed in the source region 208. In one embodiment, the plurality of doped regions 208b are arranged in a parallel gate structure 204. That is, the layout of the plurality of doped regions 208b is arranged along the Y direction.

接觸窗210配置於源極區域208內。接觸窗210以平行閘極結構204的方式連接至少三個交替且相連的摻雜區208a與摻雜區208b,用以與外部電路連接。詳細說明的是,接觸窗210的佈局例如是沿著Y方向而配置,並在Y方向上連接至少三個相連的摻雜區,其中至少三個相連的摻雜區是由摻雜區208a與摻雜區208b所組成並以導電型態交替配置的方式共同連接到同一個接觸窗210上。另外,在汲極區域206內也會配置有至少一個接觸窗(未繪示)連接摻雜區206a,用以與外部電路連接。接觸窗210的材料例如是金屬或其他合適的導體材料。The contact window 210 is disposed within the source region 208. The contact window 210 connects at least three alternating and connected doped regions 208a and doped regions 208b in a parallel gate structure 204 for connection to an external circuit. In detail, the layout of the contact window 210 is, for example, arranged along the Y direction, and at least three connected doped regions are connected in the Y direction, wherein at least three connected doped regions are doped by the doped region 208a. The doped regions 208b are formed and connected together to the same contact window 210 in a conductive configuration. In addition, at least one contact window (not shown) is also disposed in the drain region 206 to connect the doped region 206a for connection with an external circuit. The material of the contact window 210 is, for example, a metal or other suitable conductor material.

在此說明的是,由於摻雜區208a與摻雜區208b同時以接觸窗210作為共用接觸窗(butting contact)連接在一起,亦即摻雜區208a與摻雜區208b是利用共用規則連接,因此半導體元件201各自的源極端與基底端會具有相同的電位。此外,在本發明之實施例中,用來作為基底端的摻雜區208b是以塊狀分布的方式配置於源極區域208中,且摻雜區208b的四周外圍會被作為源極端的摻雜區208a環繞。由於接觸窗210會沿著Y方向同時連接摻雜區208a與摻雜區208b,因此源極區域208的佈局設計可以縮小。如此一來,相較於習知之半導體結構,本發明之一實施例之半導體元件201具有較小元件尺寸。It is explained here that since the doping region 208a and the doping region 208b are simultaneously connected by the contact window 210 as a common bonding contact, that is, the doping region 208a and the doping region 208b are connected by using a sharing rule. Therefore, the source terminals of the semiconductor elements 201 will have the same potential as the substrate terminals. In addition, in the embodiment of the present invention, the doping region 208b used as the substrate end is disposed in the source region 208 in a block-like manner, and the periphery of the doping region 208b is doped as a source terminal. Area 208a is surrounded. Since the contact window 210 simultaneously connects the doping region 208a and the doping region 208b along the Y direction, the layout design of the source region 208 can be reduced. As such, the semiconductor component 201 of one embodiment of the present invention has a smaller component size than conventional semiconductor structures.

圖3是依照本發明之另一實施例之半導體元件的上視示意圖。在圖3中,和圖2A相同的構件則使用相同的標號並省略其說明。3 is a top plan view of a semiconductor device in accordance with another embodiment of the present invention. In FIG. 3, the same members as those in FIG. 2A are denoted by the same reference numerals and the description thereof will be omitted.

請參照圖3,組成半導體元件201a的主要構件與組成圖2A所示之半導體元件201的主要構件大致相同,然而兩者之間的差異主要是在於半導體元件201a包括多個接觸窗210a。多個接觸窗210a例如是以平行閘極結構208的方式而沿著Y方向排列。每個接觸窗210a各自沿著Y方向延伸並連接三個交替且相連的摻雜區208a與摻雜區208b,用以與外部電路連接。當半導體元件201a具有多個接觸窗210a時,多個接觸窗210a例如是在源極區域208上沿著Y方向而形成連接摻雜區208a與摻雜區208b的斷續結構。Referring to FIG. 3, the main components constituting the semiconductor element 201a are substantially the same as the main components constituting the semiconductor element 201 shown in FIG. 2A, but the difference between the two is mainly that the semiconductor element 201a includes a plurality of contact windows 210a. The plurality of contact windows 210a are arranged in the Y direction, for example, in the manner of parallel gate structures 208. Each contact window 210a extends in the Y direction and connects three alternating and connected doped regions 208a and doped regions 208b for connection to an external circuit. When the semiconductor element 201a has a plurality of contact windows 210a, the plurality of contact windows 210a, for example, form a discontinuous structure connecting the doped regions 208a and the doped regions 208b along the Y direction on the source regions 208.

如圖3所示,各接觸窗210a例如是依序連接三個相鄰的摻雜區208a、摻雜區208b與摻雜區208a。在一實施例中,各接觸窗210a也可以是依序連接三個相鄰的摻雜區208b、摻雜區208a與摻雜區208b。當然,在其他實施例中,當具有多個接觸窗210a時,各接觸窗210a也可以是連接至少三個交替且相連的摻雜區208a與摻雜區208b,本發明於此不做任何限制。As shown in FIG. 3, each contact window 210a is, for example, sequentially connected to three adjacent doped regions 208a, doped regions 208b, and doped regions 208a. In an embodiment, each contact window 210a may also sequentially connect three adjacent doped regions 208b, doped regions 208a, and doped regions 208b. Of course, in other embodiments, when there are multiple contact windows 210a, each contact window 210a may also be connected to at least three alternating and connected doped regions 208a and doped regions 208b, and the present invention does not impose any restrictions thereon. .

接下來將以兩個元件為例來對本發明之半導體元件進行詳細說明。須注意的是,以下所述之實施例主要是為了使熟習此項技術者能夠據以實施,但並非用以限定本發明之範圍,本發明並不對元件的數量及排列方式做特別的限制。圖4與圖5分別是依照本發明之另一實施例之半導體元件的上視示意圖。在圖4與圖5中,和圖2A與圖3相同的構件則使用相同的標號並省略其說明。Next, the semiconductor element of the present invention will be described in detail by taking two elements as an example. It is to be noted that the embodiments described below are mainly intended to enable those skilled in the art to implement the present invention, but are not intended to limit the scope of the present invention, and the present invention does not particularly limit the number and arrangement of the components. 4 and 5 are top plan views, respectively, of a semiconductor device in accordance with another embodiment of the present invention. In FIGS. 4 and 5, the same members as those in FIGS. 2A and 3 are denoted by the same reference numerals and the description thereof will be omitted.

請參照圖4,在一實施例中,相鄰的半導體元件201與半導體元件202同時配置於基底200上。半導體元件202的結構例如是與半導體元件201的結構相同。半導體元件202包括閘極結構204、汲極區域206、源極區域208以及接觸窗210,且半導體元件202的構件配置也相同於半導體元件201的構件配置。特別說明的是,如圖4所示,源極區域208位於兩相鄰半導體元件201與半導體元件202的兩個閘極結構204之間,因此兩相鄰的半導體元件201、202是共用此源極區域208。也就是說,兩相鄰的半導體元件201、202共用摻雜區208a、摻雜區208b與連接摻雜區的接觸窗210。Referring to FIG. 4, in an embodiment, adjacent semiconductor elements 201 and semiconductor elements 202 are disposed on substrate 200 at the same time. The structure of the semiconductor element 202 is, for example, the same as that of the semiconductor element 201. The semiconductor device 202 includes a gate structure 204, a drain region 206, a source region 208, and a contact window 210, and the component configuration of the semiconductor element 202 is also the same as that of the semiconductor device 201. Specifically, as shown in FIG. 4, the source region 208 is located between two adjacent semiconductor elements 201 and the two gate structures 204 of the semiconductor device 202, so that the two adjacent semiconductor devices 201, 202 share the source. Polar region 208. That is, the two adjacent semiconductor elements 201, 202 share the doped region 208a, the doped region 208b, and the contact window 210 connecting the doped regions.

請參照圖5,在另一實施例中,相鄰的半導體元件201a與半導體元件202a同時配置於基底200上。在此說明的是,組成圖5所示之半導體元件的主要構件與組成圖4所示之半導體元件的主要構件大致相同,然而兩者之間的差異主要是在於半導體元件201a、202a分別包括多個接觸窗210a。Referring to FIG. 5, in another embodiment, adjacent semiconductor elements 201a and semiconductor elements 202a are disposed on the substrate 200 at the same time. It is explained here that the main components constituting the semiconductor element shown in FIG. 5 are substantially the same as the main components constituting the semiconductor element shown in FIG. 4, but the difference between the two is mainly because the semiconductor elements 201a, 202a respectively include Contact windows 210a.

在圖4與圖5中,在利用摻雜區208a、208b與接觸窗210或210a的配置來降低各個元件尺寸的同時,藉由將兩個半導體元件同時配置在基底200上,並使兩相鄰元件共用源極區域208,因此還可有助於進一步減少晶片的使用面積。In FIGS. 4 and 5, by using the arrangement of the doping regions 208a, 208b and the contact window 210 or 210a to reduce the size of each element, two semiconductor elements are simultaneously disposed on the substrate 200, and the two phases are made. The adjacent elements share the source region 208 and thus may also help to further reduce the area of use of the wafer.

此外,上述之半導體元件例如是作為高壓元件或低壓元件。當半導體元件作為高壓元件時,其操作電壓例如是約10-120V。當半導體元件作為低壓元件時,其例如是在一般電壓(約2.5-5.0V)的條件下進行操作。上述高壓元件可以是動態起始電壓金氧半導體(dynamic threshold metal-oxide semiconductor,DTMOS)元件、場漂移金氧半導體(field drift metal-oxide semiconductor,FDMOS)元件或雙擴散汲極金氧半導體(double diffused drain metal-oxide semiconductor,DDDMOS)。接下來,將進一步以剖面圖或上視圖的方式說明本發明之半導體元件作為高壓元件的實施例。Further, the above-described semiconductor element is, for example, a high voltage element or a low voltage element. When the semiconductor element is used as a high voltage element, its operating voltage is, for example, about 10-120V. When the semiconductor element is used as a low voltage element, it is operated, for example, under a normal voltage (about 2.5 to 5.0 V). The high voltage component may be a dynamic threshold metal-oxide semiconductor (DTMOS) device, a field drift metal-oxide semiconductor (FDMOS) device, or a double-diffused germanium oxide semiconductor (double). Diffuse drain metal-oxide semiconductor, DDDMOS). Next, an embodiment of the semiconductor element of the present invention as a high voltage element will be further described in a sectional view or a top view.

圖6A、圖6B與圖7分別是依照本發明之另一實施例之半導體元件的剖面示意圖。在圖6A、圖6B與圖7中,和圖2B與圖4相同的構件則使用相同的標號並省略其說明。6A, 6B and 7 are schematic cross-sectional views showing a semiconductor device in accordance with another embodiment of the present invention. In FIGS. 6A, 6B, and 7, the same members as those in FIG. 2B and FIG. 4 are denoted by the same reference numerals and the description thereof will be omitted.

請參照圖6A,半導體元件可以作為高壓元件601、602,其例如是場漂移金氧半導體(field drift metal-oxide semiconductor,FDMOS)元件。高壓元件601、602例如是類似如圖4所繪示之半導體元件201、202,然而兩者的差異主要是在於閘極結構604,且高壓元件601、602更包括隔離結構612及具有第二導電型之井區614。Referring to FIG. 6A, the semiconductor device can be used as the high voltage device 601, 602, which is, for example, a field drift metal-oxide semiconductor (FDMOS) device. The high voltage elements 601, 602 are, for example, similar to the semiconductor elements 201, 202 as shown in FIG. 4, however, the difference between the two is mainly in the gate structure 604, and the high voltage elements 601, 602 further include the isolation structure 612 and have the second conductive Type well area 614.

閘極結構604位於汲極區域206與源極區域208之間的基底200上。閘極結構604包括閘極604a、閘介電層604b以及間隙壁604c。閘介電層604b配置於閘極604a與基底200之間,間隙壁604c配置於閘極604a與閘介電層604b的側壁上。Gate structure 604 is located on substrate 200 between drain region 206 and source region 208. The gate structure 604 includes a gate 604a, a gate dielectric layer 604b, and a spacer 604c. The gate dielectric layer 604b is disposed between the gate 604a and the substrate 200, and the spacer 604c is disposed on the sidewalls of the gate 604a and the gate dielectric layer 604b.

隔離結構612配置於閘極結構604與摻雜區206a之間。在一實施例中,在靠近汲極區域206的那側閘極604a會分別覆蓋在隔離結構612的部分區域上。隔離結構612例如是場氧化層(FOX)結構或淺溝渠隔離(STI)結構。The isolation structure 612 is disposed between the gate structure 604 and the doped region 206a. In an embodiment, the gate 604a on the side adjacent to the drain region 206 will overlie a portion of the isolation structure 612, respectively. The isolation structure 612 is, for example, a field oxide layer (FOX) structure or a shallow trench isolation (STI) structure.

井區614配置於汲極區域206的基底200中,且摻雜區206a例如是配置在井區614內。在一實施例中,井區614還可以從汲極區域206延伸至部分閘極結構604的下方基底200中。井區614例如是高壓N型井區(HVNW)。The well region 614 is disposed in the substrate 200 of the drain region 206, and the doped region 206a is disposed, for example, within the well region 614. In an embodiment, the well region 614 may also extend from the drain region 206 to the underlying substrate 200 of the partial gate structure 604. Well zone 614 is, for example, a high pressure N-type well zone (HVNW).

承上述,藉由配置隔離結構612與井區614可用以減緩熱載子效應,因此能夠增加汲極區域206與源極區域208的崩潰電壓。In view of the above, by configuring the isolation structure 612 and the well region 614 to be used to mitigate the hot carrier effect, the breakdown voltage of the drain region 206 and the source region 208 can be increased.

請參照圖6B,在另一實施例中,高壓元件601a、602a中具有第二導電型的井區614也可分別變更為具有第二導電型的階區(grade)616與具有第二導電型的漂移區(drift)618。Referring to FIG. 6B, in another embodiment, the well region 614 having the second conductivity type in the high voltage elements 601a, 602a may also be changed to have a second conductivity type grade 616 and a second conductivity type, respectively. The drift zone (drift) 618.

階區616配置於汲極區域206的基底200中,以環繞於摻雜區206a的周圍。階區616例如是N型階區。漂移區618配置於部分隔離結構612的下方,且漂移區618電性連接閘極結構604與階區616。漂移區618例如是N型漂移區。The terrace 616 is disposed in the substrate 200 of the drain region 206 to surround the periphery of the doped region 206a. The terrace 616 is, for example, an N-type terrace. The drift region 618 is disposed under the partial isolation structure 612, and the drift region 618 is electrically connected to the gate structure 604 and the step region 616. The drift region 618 is, for example, an N-type drift region.

請參照圖7,半導體元件可以作為高壓元件701、702,其例如是雙擴散汲極金氧半導體(double diffused drain metal-oxide semiconductor,DDDMOS)。高壓元件701、702例如是類似如圖4所繪示之半導體元件201、202,然而兩者的差異主要是在於閘極結構704,且高壓元件701、702更包括具有第二導電型之階區712。Referring to FIG. 7, the semiconductor element can be used as the high voltage element 701, 702, which is, for example, a double diffused drain metal-oxide semiconductor (DDDMOS). The high voltage elements 701, 702 are, for example, similar to the semiconductor elements 201, 202 as shown in FIG. 4, however, the difference between the two is mainly in the gate structure 704, and the high voltage elements 701, 702 further include the second conductivity type. 712.

閘極結構704位於汲極區域206與源極區域208之間的基底200上。閘極結構704包括閘極704a、閘介電層704b以及間隙壁704c。閘介電層704b配置於閘極704a與基底200之間,間隙壁704c配置於閘極704a與閘介電層704b的側壁上。Gate structure 704 is located on substrate 200 between drain region 206 and source region 208. The gate structure 704 includes a gate 704a, a gate dielectric layer 704b, and a spacer 704c. The gate dielectric layer 704b is disposed between the gate 704a and the substrate 200, and the spacer 704c is disposed on the sidewalls of the gate 704a and the gate dielectric layer 704b.

階區712配置於汲極區域206的基底200中,且摻雜區206a例如是配置在階區712內。在一實施例中,階區712還可以從汲極區域206延伸至部分閘極結構704的下方基底200中。階區712例如是高壓N型階區(HVNG)。The step region 712 is disposed in the substrate 200 of the drain region 206, and the doped region 206a is disposed, for example, within the step region 712. In an embodiment, the step 712 may also extend from the drain region 206 to the underlying substrate 200 of the partial gate structure 704. The step region 712 is, for example, a high voltage N-type step region (HVNG).

圖8是依照本發明之另一實施例之半導體元件佈局的上視示意圖。Figure 8 is a top plan view showing the layout of a semiconductor device in accordance with another embodiment of the present invention.

請參照圖8,半導體元件可以作為高壓元件800,其例如是電源(大功率)元件。對於佈局而言,在圖8中例如是以四個規則四邊型元件構成一基本單元,但本發明對元件的數量及形狀不做任何限制。在本實施例中,四個高壓元件800分別具有四個個別的汲極區域802,其例如是以2x2陣列的方式分開配置。閘極結構804的分佈範圍例如是圍繞個別的汲極區域802,且四個閘極結構804也是彼此分離配置連。也就是說,個別的汲極區域802會有個別的閘極結構804,而可以個別構成一個單元來使用。源極區域806的分佈範圍例如是圍繞在四個閘極結構804的外側周圍。Referring to FIG. 8, a semiconductor component can be used as the high voltage component 800, which is, for example, a power supply (high power) component. For the layout, a basic unit is constituted by, for example, four regular quadrilateral elements in Fig. 8, but the present invention does not impose any limitation on the number and shape of the elements. In the present embodiment, the four high voltage components 800 each have four individual drain regions 802 that are separately disposed, for example, in a 2x2 array. The distribution of gate structures 804 is, for example, around individual drain regions 802, and the four gate structures 804 are also spaced apart from one another. That is, the individual drain regions 802 have individual gate structures 804 that can be individually configured for use. The source region 806 is distributed, for example, around the outside of the four gate structures 804.

對於單一高壓元件800而言,閘極結構804與源極區域806例如是以圍繞汲極區域802四周的佈局方式而配置。也就是說,閘極結構804大致環繞汲極區域802,而源極區域806則大致分佈於閘極結構804的外圈四週。此外,如圖8所示,源極區域806位於相鄰兩個高壓元件800的閘極結構804之間,因此相鄰的高壓元件800是共用此源極區域806。For a single high voltage component 800, the gate structure 804 and the source region 806 are disposed, for example, in a manner surrounding the perimeter of the drain region 802. That is, the gate structure 804 generally surrounds the drain region 802, while the source region 806 is substantially distributed around the outer circumference of the gate structure 804. Furthermore, as shown in FIG. 8, the source region 806 is located between the gate structures 804 of adjacent two high voltage components 800, such that adjacent high voltage components 800 share this source region 806.

在一實施例中,汲極區域802包括具有第二導電型之摻雜區,其配置於具有第一導電型之基底中。源極區域806包括具有第二導電型之摻雜區806a與具有第一導電型之摻雜區806b,其配置於基底中。在源極區域806中,摻雜區806a環繞各摻雜區806b的周圍。在一實施例中,摻雜區806b的排列是以平行閘極結構804各邊的方式而圍繞在閘極結構804的外圈。而位於汲極區域802與源極區域806的閘極結構804配置於基底上。In an embodiment, the drain region 802 includes a doped region having a second conductivity type disposed in a substrate having a first conductivity type. The source region 806 includes a doped region 806a having a second conductivity type and a doped region 806b having a first conductivity type disposed in the substrate. In source region 806, doped region 806a surrounds the perimeter of each doped region 806b. In one embodiment, the arrangement of doped regions 806b surrounds the outer circumference of gate structure 804 in a manner that is parallel to each side of gate structure 804. The gate structure 804 located in the drain region 802 and the source region 806 is disposed on the substrate.

接觸窗808配置於源極區域806內。接觸窗808以平行閘極結構804的方式連接至少三個導電型態交替且相連的摻雜區806a與摻雜區806b,用以與外部電路連接。也就是說,摻雜區806a與摻雜區806b是利用共用規則而以導體接觸窗808連接在一起。如圖8所示,就單一高壓元件800而言,接觸窗808例如是以平行閘極結構804各邊的方式連續環繞在閘極結構804的外圈,進而將閘極結構804四周的摻雜區806a與摻雜區806b全部連接在一起。另外,在各汲極區域802內也會有至少一個接觸窗,用以與外部電路連接。Contact window 808 is disposed within source region 806. The contact window 808 connects at least three alternating and connected doped regions 806a and doped regions 806b in a parallel gate structure 804 for connection to an external circuit. That is, the doped region 806a and the doped region 806b are connected together by the conductor contact window 808 using a sharing rule. As shown in FIG. 8, in the case of a single high voltage component 800, the contact window 808 is continuously wound around the outer circumference of the gate structure 804, for example, in the manner of the sides of the parallel gate structure 804, thereby doping the periphery of the gate structure 804. Region 806a is fully coupled to doped region 806b. Additionally, there may be at least one contact window within each of the drain regions 802 for connection to an external circuit.

此外,在另一實施例中,也可以是多個接觸窗構成斷續結構,以平行閘極結構804各邊的方式斷續環繞在閘極結構804外圈,而分段連接至少三個導電型態交替且相連的摻雜區806a與摻雜區806b。本發明對接觸窗的數量以及各個接觸窗所連接的摻雜區數量不作特別的限制。In addition, in another embodiment, a plurality of contact windows may be formed as a discontinuous structure, intermittently surrounding the outer ring of the gate structure 804 in a manner parallel to each side of the gate structure 804, and at least three conductive portions are segmentally connected. The doped regions 806a and doped regions 806b are alternately and connected. The present invention does not particularly limit the number of contact windows and the number of doped regions to which the respective contact windows are connected.

在一實施例中,半導體元件更包括雙載子接合電晶體(bipolar junction transistor,BJT)。也就是說,半導體元件例如是由上述MOS結構與雙載子接合電晶體整合在同一晶片上。圖9是依照本發明之另一實施例之半導體元件的剖面示意圖。須注意的是,下述實施例是以N型來表示第一導電型,而以P型來表示第二導電型,但本發明並不以此為限。熟習此技藝者應了解,本發明亦可以將第一導電型置換成P型,將第二導電型置換成N型以形成半導體元件。In an embodiment, the semiconductor component further includes a bipolar junction transistor (BJT). That is, the semiconductor element is, for example, integrated on the same wafer by the above MOS structure and the bipolar bonding transistor. Figure 9 is a cross-sectional view showing a semiconductor device in accordance with another embodiment of the present invention. It should be noted that the following embodiments represent the first conductivity type in the N type and the second conductivity type in the P type, but the invention is not limited thereto. It will be appreciated by those skilled in the art that the present invention can also replace the first conductivity type with a P type and the second conductivity type with an N type to form a semiconductor element.

請參照圖9,在一實施例中,半導體元件包括具有第一導電型之基底900、金氧半導體元件901與雙載子接合電晶體902。基底900上具有突出的平台部900a。基底900例如是N+型基底。在一實施例中,基底900中配置有具有第一導電型之摻雜區906與具有第二導電型之摻雜區908。摻雜區906例如是N-摻雜區,配置於基底900內,以作為金氧半導體元件901的主體。摻雜區908例如是P-摻雜區,配置於摻雜區906內,且摻雜區908大致分布在突出的平台部900a中。Referring to FIG. 9, in an embodiment, the semiconductor device includes a substrate 900 having a first conductivity type, a MOS device 901, and a bipolar bonding transistor 902. The base 900 has a protruding platform portion 900a thereon. The substrate 900 is, for example, an N+ type substrate. In an embodiment, a doped region 906 having a first conductivity type and a doped region 908 having a second conductivity type are disposed in the substrate 900. The doped region 906 is, for example, an N-doped region disposed in the substrate 900 to serve as a body of the MOS device 901. The doped region 908 is, for example, a P-doped region disposed within the doped region 906, and the doped region 908 is substantially distributed in the protruding land portion 900a.

金氧半導體元件901包括閘極結構910、汲極區域912、源極區域914以及接觸窗916。在一實施例中,金氧半導體元件901可以是側壁金氧半導體(sidewall MOS)元件。閘極結構910位於汲極區域912與源極區域914之間的基底900上,且閘極結構910例如是部分覆蓋在平台部900a及其側壁上。閘極結構910包括閘極910a以及閘介電層910b。閘介電層910b配置於閘極910a與基底900之間。汲極區域912包括摻雜區912a,其配置於閘極結構910一側的基底900中。摻雜區912a具有第二導電型,其例如是P+摻雜區,以作為金氧半導體元件901的汲極端。源極區域914包括摻雜區914a與至少一個摻雜區914b,其配置於閘極結構910另一側的基底900中。以下將以多個摻雜區914b為例來做說明,其主要是為了使熟習此項技術者能夠據以實施,但並非用以限定本發明之範圍。摻雜區914a環繞各摻雜區914b的周圍,且多個摻雜區914b是以平行閘極結構910的方式而排列。摻雜區914a具有第二導電型,其例如是P+摻雜區,以作為金氧半導體元件901的源極端。摻雜區914b具有第一導電型,其例如是N+摻雜區,以作為連接基底900的基底端。接觸窗916配置於源極區域914內。接觸窗916以平行閘極結構910的方式連接至少三個交替且相連的摻雜區914a與摻雜區914b,用以與外部電路連接。The MOS device 901 includes a gate structure 910, a drain region 912, a source region 914, and a contact window 916. In an embodiment, the MOS device 901 may be a sidewall MOS device. The gate structure 910 is on the substrate 900 between the drain region 912 and the source region 914, and the gate structure 910 is, for example, partially covered on the land portion 900a and its sidewalls. The gate structure 910 includes a gate 910a and a gate dielectric layer 910b. The gate dielectric layer 910b is disposed between the gate 910a and the substrate 900. The drain region 912 includes a doped region 912a disposed in the substrate 900 on one side of the gate structure 910. The doped region 912a has a second conductivity type, which is, for example, a P+ doped region to serve as the 汲 terminal of the MOS element 901. The source region 914 includes a doped region 914a and at least one doped region 914b disposed in the substrate 900 on the other side of the gate structure 910. In the following, a plurality of doped regions 914b will be exemplified, which are mainly for the purpose of enabling those skilled in the art to implement the present invention, but are not intended to limit the scope of the present invention. Doped regions 914a surround the perimeter of each doped region 914b, and a plurality of doped regions 914b are arranged in a parallel gate structure 910. The doped region 914a has a second conductivity type, which is, for example, a P+ doped region to serve as a source terminal of the MOS element 901. The doped region 914b has a first conductivity type, which is, for example, an N+ doped region to serve as a base end of the connection substrate 900. Contact window 916 is disposed within source region 914. Contact window 916 connects at least three alternating and connected doped regions 914a and doped regions 914b in parallel gate structure 910 for connection to external circuitry.

在突出的平台部900a內更包括具有第一導電型之摻雜區918。摻雜區918例如是N+摻雜區,配置於摻雜區908內。如此一來,摻雜區918、908、912a、906、914b即構成垂直式的npn雙載子接面電晶體902。詳言之,摻雜區918例如是作為雙載子接面電晶體902的射極(emitter),摻雜區908、912a例如是共同作為雙載子接面電晶體902的基極(base),而摻雜區906、914b例如是共同作為雙載子接面電晶體902的集極(collector)。A doped region 918 having a first conductivity type is further included in the protruding land portion 900a. Doped region 918 is, for example, an N+ doped region disposed within doped region 908. As such, the doped regions 918, 908, 912a, 906, 914b form a vertical npn bipolar junction transistor 902. In detail, the doping region 918 is, for example, an emitter of the bipolar junction transistor 902, and the doping regions 908, 912a are, for example, commonly used as the base of the bipolar junction transistor 902. The doped regions 906, 914b are, for example, collectively used as a collector of the bi-carrier junction transistor 902.

在一實施例中,當金氧半導體元件901與雙載子接合電晶體902整合至同一晶片時,金氧半導體元件901與雙載子接合電晶體902例如是共用閘極結構910與摻雜區912a、914b。此外,藉由接觸窗916連接至少三個交替且相連的摻雜區914a與摻雜區914b,可以使金氧半導體元件901的源極端(摻雜區914a)與雙載子接合電晶體902的集極(摻雜區914b)電性連接。In one embodiment, when the MOS device 901 and the bipolar bonding transistor 902 are integrated into the same wafer, the MOS device 901 and the bipolar bonding transistor 902 are, for example, a common gate structure 910 and a doped region. 912a, 914b. In addition, by connecting at least three alternating and connected doping regions 914a and doping regions 914b through the contact window 916, the source terminal (doping region 914a) of the MOS device 901 and the bipolar bonding transistor 902 can be bonded. The collector (doped region 914b) is electrically connected.

特別說明的是,在此實施例中,源極區域914的佈局設計可以是如圖2A或是圖3所示之源極區域208的佈局設計。藉由使摻雜區914b沿著平行閘極結構910的配置方向上分散排列在源極區域914中,並使摻雜區914b的周圍被具有不同導電型態的摻雜區914a環繞,所以接觸窗916會沿著平行閘極結構910的配置方向上同時連接摻雜區914a與摻雜區914b。因此,利用共用規則連接經特殊佈局而形成的摻雜區914a與摻雜區914b,可有助於使源極區域914的佈局設計縮小,以節省晶片面積。Specifically, in this embodiment, the layout design of the source region 914 may be a layout design of the source region 208 as shown in FIG. 2A or FIG. The doping region 914b is dispersedly arranged in the source region 914 along the arrangement direction of the parallel gate structure 910, and the periphery of the doping region 914b is surrounded by the doping region 914a having a different conductivity type, so that the contact The window 916 will simultaneously connect the doped region 914a and the doped region 914b along the arrangement direction of the parallel gate structure 910. Therefore, the use of the sharing rule to connect the doped region 914a and the doped region 914b formed by the special layout can help to reduce the layout design of the source region 914 to save the wafer area.

值得一提的是,上述實施例可以相互做結合,而無需限制在以上所列舉作為說明的個別實施例。此外,本發明可應用於所有MOS結構的源極區域佈局,以達到降低元件尺寸的效果。It is to be noted that the above-described embodiments may be combined with each other without being limited to the individual embodiments enumerated above. Furthermore, the present invention can be applied to the source region layout of all MOS structures to achieve the effect of reducing the size of components.

當然,在其他實施例中,相鄰半導體元件也可以採用共用汲極的設計。也就是說,當相鄰半導體元件共用汲極時,上述實施例用於源極區域的佈局設計也可應用至共用的汲極區域,以使作為汲極的摻雜區環繞在作為基底端的摻雜區周圍。Of course, in other embodiments, adjacent semiconductor elements can also be designed with a common drain. That is to say, when the adjacent semiconductor elements share the drain, the layout design of the above embodiment for the source region can also be applied to the common drain region, so that the doped region as the drain is surrounded by the doping as the base end. Around the miscellaneous area.

圖11A與圖12A是依照本發明之一實施例之半導體元件的製造流程上視示意圖。圖11B與圖12B分別是沿著圖11A與圖12A中III-III’線段的剖面示意圖。11A and FIG. 12A are schematic top views showing a manufacturing process of a semiconductor device in accordance with an embodiment of the present invention. 11B and 12B are schematic cross-sectional views taken along line III-III' of Figs. 11A and 12A, respectively.

請參照圖11A與圖11B,提供具有第一導電型之基底1100,基底1100例如是P型矽基底或是N型矽基底。在一實施例中,還可於基底1100中形成第一導電型之井區(未繪示)。然後,在基底1100的表面上形成依序形成介電層與導體層。介電層的形成方法例如是進行熱氧化製程,以形成氧化矽層。導體層的材料例如是摻雜多晶矽,其形成方法例如是化學氣相沈積法。之後,對介電層與導體層進行圖案化製程,以形成閘介電層1102a、1102b與閘極1104a、1104b。閘介電層1102a以及閘極1104a會形成閘極結構1106a,而閘介電層1102b以及閘極1104b會形成閘極結構1106b。其後,分別在閘極結構1106a、1106b之兩側的基底1100中形成具有第二導電型的摻雜區1108a、1108b、1110。摻雜區1108a、1108b例如是分別作為兩個半導體元件的汲極,而摻雜區1110例如是作為兩相鄰半導體元件之間的共用源極。Referring to FIGS. 11A and 11B, a substrate 1100 having a first conductivity type, such as a P-type germanium substrate or an N-type germanium substrate, is provided. In an embodiment, a well region (not shown) of the first conductivity type may also be formed in the substrate 1100. Then, a dielectric layer and a conductor layer are sequentially formed on the surface of the substrate 1100. The method of forming the dielectric layer is, for example, performing a thermal oxidation process to form a ruthenium oxide layer. The material of the conductor layer is, for example, doped polysilicon, and the formation method thereof is, for example, a chemical vapor deposition method. Thereafter, the dielectric layer and the conductor layer are patterned to form gate dielectric layers 1102a, 1102b and gates 1104a, 1104b. The gate dielectric layer 1102a and the gate 1104a form a gate structure 1106a, and the gate dielectric layer 1102b and the gate 1104b form a gate structure 1106b. Thereafter, doped regions 1108a, 1108b, 1110 having a second conductivity type are formed in the substrate 1100 on both sides of the gate structures 1106a, 1106b, respectively. The doped regions 1108a, 1108b are, for example, the drains of the two semiconductor elements, respectively, and the doped region 1110 is, for example, a common source between two adjacent semiconductor elements.

請參照圖12A與圖12B,在閘極結構1106a、1106b之間的基底1100中形成至少一個具有第一導電型的摻雜區1112。摻雜區1110例如是環繞各摻雜區1112的周圍。當形成多個摻雜區1112時,多個摻雜區1112是沿著平行閘極結構1106a、1106b的方向而排列。摻雜區1112例如是作為基底1100的外接端。之後,在基底1100表面上形成接觸窗1114,其例如是位於摻雜區1110、1112上方。接觸窗1114是以平行閘極結構1106a、1106b的配置方式連接至少三個交替且相連的摻雜區1110與摻雜區1112,以作為共用接觸窗。Referring to FIGS. 12A and 12B, at least one doped region 1112 having a first conductivity type is formed in the substrate 1100 between the gate structures 1106a, 1106b. The doped region 1110 is, for example, surrounding the periphery of each doped region 1112. When a plurality of doped regions 1112 are formed, the plurality of doped regions 1112 are aligned along the direction of the parallel gate structures 1106a, 1106b. The doped region 1112 is, for example, an external end of the substrate 1100. Thereafter, a contact window 1114 is formed on the surface of the substrate 1100, for example, over the doped regions 1110, 1112. Contact window 1114 connects at least three alternating and connected doped regions 1110 and doped regions 1112 in a configuration of parallel gate structures 1106a, 1106b as a common contact window.

特別說明的是,在上述實施例中,是以形成兩個半導體元件且兩相鄰半導體元件共用源極為例來進行說明,但本發明並不限於此。於此技術領域具有通常知識者當可根據需求調整製程,故於此不贅述其細節。In particular, in the above embodiment, the description has been made by forming two semiconductor elements and the two adjacent semiconductor elements share the source. However, the present invention is not limited thereto. Those skilled in the art can adjust the process according to requirements, so the details are not described herein.

為證實本發明之半導體元件的佈局設計並不會使元件效能降低,接下來將以實驗例說明其特性。以下實驗例之說明僅是用來說明配置本發明之半導體元件的佈局設計對於汲極電壓與電流的影響,但並非用以限定本發明之範圍。In order to confirm that the layout design of the semiconductor device of the present invention does not degrade the device performance, the characteristics will be described experimentally. The following experimental examples are merely illustrative of the effect of the layout design of the semiconductor device of the present invention on the gate voltage and current, but are not intended to limit the scope of the present invention.

實驗例Experimental example

圖10為根據本發明之一實驗例之汲極電壓(VD )與汲極電流(ID )的關係曲線圖。Figure 10 is a graph showing the relationship between the drain voltage (V D ) and the drain current (I D ) according to an experimental example of the present invention.

在此實驗例中,分別對本發明之半導體元件的閘極與習知之半導體元件的閘極施加不同的閘極電壓(Vg ),並在汲極端量測電壓(VD )與電流(ID ),其結果繪示於圖10中。如圖10所示,在施加相同的閘極電壓(Vg )下,本發明之半導體元件與習知之半導體元件會具有相同的I-V曲線。此外,即使改變所施加的閘極電壓(Vg ),本發明之半導體元件與習知之半導體元件仍具有相同的I-V曲線。由此實驗例可知,本發明之半導體元件藉由特殊的佈局設計來達到降低元件尺寸的效果,且此佈局設計不會對元件的電性造成影響,而可使本發明之半導體元件維持穩定的效能。In this experimental example, a gate voltage of the semiconductor device of the present invention and a gate of a conventional semiconductor device are respectively applied with different gate voltages (V g ), and voltages (V D ) and currents (I D ) are measured at the 汲 extremes . ), the results of which are shown in FIG. 10, the same applied gate voltage (V g), the semiconductor device of the present invention and the conventional semiconductor device may have the same IV curve. Further, even if the applied gate voltage (V g ) is changed, the semiconductor element of the present invention has the same IV curve as the conventional semiconductor element. As can be seen from the experimental examples, the semiconductor device of the present invention achieves the effect of reducing the size of the device by a special layout design, and the layout design does not affect the electrical properties of the device, and the semiconductor device of the present invention can be stably maintained. efficacy.

綜上所述,本發明之一實施例之半導體元件藉由改變源極區域的摻雜區佈局配置,而能夠利用接觸窗以平行閘極結構的方式連接至少三個導電型態交替且相連的摻雜區,因此可有助於縮小源極區域的佈局面積。In summary, the semiconductor device of one embodiment of the present invention can be connected to at least three conductive patterns alternately and connected in a parallel gate structure by changing the doping region layout configuration of the source region. The doped regions can therefore help to reduce the layout area of the source regions.

此外,本發明之一實施例之半導體元件的製造方法可以應用在所有MOS結構上,且可以透過光罩圖案的改變而與現有的製程整合,製程簡單且可以避免晶片面積不必要的浪費。In addition, the method of fabricating the semiconductor device of one embodiment of the present invention can be applied to all MOS structures, and can be integrated with the existing process through the change of the mask pattern, the process is simple, and unnecessary waste of the wafer area can be avoided.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100、200、900、1100...基底100, 200, 900, 1100. . . Base

101a、101b、901...金氧半導體元件101a, 101b, 901. . . Gold oxide semiconductor component

102a、102b、204、604、704、804、910、1106a、1106b...閘極結構102a, 102b, 204, 604, 704, 804, 910, 1106a, 1106b. . . Gate structure

104a、104b...汲極104a, 104b. . . Bungee

106a、106b...源極106a, 106b. . . Source

108、206a、208a、208b、806a、806b、906、908、912a、914a、914b、918、1108a、1108b、1110、1112...摻雜區108, 206a, 208a, 208b, 806a, 806b, 906, 908, 912a, 914a, 914b, 918, 1108a, 1108b, 1110, 1112. . . Doped region

110、210、210a、808、916、1114...接觸窗110, 210, 210a, 808, 916, 1114. . . Contact window

201、201a、202、202a...半導體元件201, 201a, 202, 202a. . . Semiconductor component

204a、604a、704a、910a、1104a、1104b...閘極204a, 604a, 704a, 910a, 1104a, 1104b. . . Gate

204b、604b、704b、910b、1102a、1102b...閘介電層204b, 604b, 704b, 910b, 1102a, 1102b. . . Gate dielectric layer

206、802、912...汲極區域206, 802, 912. . . Bungee area

208、806、914...源極區域208, 806, 914. . . Source area

601、601a、602、602a、701、702、800...高壓元件601, 601a, 602, 602a, 701, 702, 800. . . High voltage component

604c、704c...間隙壁604c, 704c. . . Clearance wall

612...隔離結構612. . . Isolation structure

614...井區614. . . Well area

616、712...階區616, 712. . . Stage

618...漂移區618. . . Drift zone

900a...平台部900a. . . Platform department

902...雙載子接合電晶體902. . . Double carrier bonding transistor

圖1A是習知一種半導體元件的上視示意圖。1A is a top plan view of a conventional semiconductor device.

圖1B是沿著圖1A中I-I’線段的剖面示意圖。Fig. 1B is a schematic cross-sectional view taken along line I-I' of Fig. 1A.

圖2A是依照本發明之一實施例之半導體元件的上視示意圖。2A is a top plan view of a semiconductor device in accordance with an embodiment of the present invention.

圖2B是沿著圖2A中II-II’線段的剖面示意圖。Fig. 2B is a schematic cross-sectional view taken along line II-II' of Fig. 2A.

圖3是依照本發明之另一實施例之半導體元件的上視示意圖。3 is a top plan view of a semiconductor device in accordance with another embodiment of the present invention.

圖4與圖5分別是依照本發明之另一實施例之半導體元件的上視示意圖。4 and 5 are top plan views, respectively, of a semiconductor device in accordance with another embodiment of the present invention.

圖6A、圖6B與圖7分別是依照本發明之另一實施例之半導體元件的剖面示意圖。6A, 6B and 7 are schematic cross-sectional views showing a semiconductor device in accordance with another embodiment of the present invention.

圖8是依照本發明之另一實施例之半導體元件佈局的上視示意圖。Figure 8 is a top plan view showing the layout of a semiconductor device in accordance with another embodiment of the present invention.

圖9是依照本發明之另一實施例之半導體元件的剖面示意圖。Figure 9 is a cross-sectional view showing a semiconductor device in accordance with another embodiment of the present invention.

圖10為根據本發明之一實驗例之汲極電壓(VD )與汲極電流(ID )的關係曲線圖。Figure 10 is a graph showing the relationship between the drain voltage (V D ) and the drain current (I D ) according to an experimental example of the present invention.

圖11A與圖12A是依照本發明之一實施例之半導體元件的製造流程上視示意圖。11A and FIG. 12A are schematic top views showing a manufacturing process of a semiconductor device in accordance with an embodiment of the present invention.

圖11B與圖12B分別是沿著圖11A與圖12A中III-III’線段的剖面示意圖。11B and 12B are schematic cross-sectional views taken along line III-III' of Figs. 11A and 12A, respectively.

204...閘極結構204. . . Gate structure

206a、208a、208b...摻雜區206a, 208a, 208b. . . Doped region

210...接觸窗210. . . Contact window

201、202...半導體元件201, 202. . . Semiconductor component

206...汲極區域206. . . Bungee area

208...源極區域208. . . Source area

Claims (24)

一種半導體元件,包括:具有一第一導電型之一基底;具有一第二導電型之一第一摻雜區,配置於該基底中;以及具有該第一導電型之至少一第二摻雜區,配置於該基底中,該第一摻雜區環繞各第二摻雜區的周圍;具有該第二導電型之一第三摻雜區,配置於該第一摻雜區以外之該基底中;一閘極結構,配置於該第一摻雜區與該第三摻雜區之間的該基底上;以及至少一接觸窗,配置於該基底上,各該接觸窗以平行該閘極結構的方式交替連接該第一摻雜區與該第二摻雜區。A semiconductor device comprising: a substrate having a first conductivity type; a first doped region having a second conductivity type disposed in the substrate; and at least a second doping having the first conductivity type a region disposed in the substrate, the first doping region surrounding the periphery of each of the second doping regions; and a third doping region having the second conductivity type, the substrate disposed outside the first doping region a gate structure disposed on the substrate between the first doped region and the third doped region; and at least one contact window disposed on the substrate, each of the contact windows being parallel to the gate The first doped region and the second doped region are alternately connected in a structured manner. 如申請專利範圍第1項所述之半導體元件,其中各該些接觸窗以平行該閘極結構的方式交替連接至少三個相連的該第一摻雜區與該第二摻雜區。The semiconductor device of claim 1, wherein each of the contact windows alternately connects at least three connected first doped regions and the second doped region in parallel with the gate structure. 如申請專利範圍第1項所述之半導體元件,當該半導體元件包括多個第二摻雜區時,該些第二摻雜區是以平行該閘極結構的方式排列。The semiconductor device of claim 1, wherein when the semiconductor device comprises a plurality of second doped regions, the second doped regions are arranged in parallel with the gate structure. 如申請專利範圍第1項所述之半導體元件,當該半導體元件包括多個接觸窗時,該些接觸窗是以平行該閘極結構的方式排列。The semiconductor component according to claim 1, wherein when the semiconductor component comprises a plurality of contact windows, the contact windows are arranged in parallel with the gate structure. 如申請專利範圍第1項所述之半導體元件,其中該第一摻雜區為該半導體元件與相鄰的另一半導體元件之共用源極。The semiconductor device of claim 1, wherein the first doped region is a common source of the semiconductor device and another adjacent semiconductor device. 如申請專利範圍第1項所述之半導體元件,其中該半導體元件為金氧半導體元件。The semiconductor device according to claim 1, wherein the semiconductor device is a MOS device. 如申請專利範圍第1項所述之半導體元件,其中該半導體元件為高壓元件或低壓元件。The semiconductor component of claim 1, wherein the semiconductor component is a high voltage component or a low voltage component. 如申請專利範圍第1項所述之半導體元件,更包括一雙載子接合電晶體,其中該雙載子接合電晶體與該半導體元件共用該接觸窗。The semiconductor device of claim 1, further comprising a dual carrier bonding transistor, wherein the bipolar bonding transistor shares the contact window with the semiconductor device. 如申請專利範圍第8項所述之半導體元件,其中該雙載子接合電晶體與該半導體元件共用該第二摻雜區與該第三摻雜區。The semiconductor device of claim 8, wherein the bipolar junction transistor shares the second doped region and the third doped region with the semiconductor device. 如申請專利範圍第8項所述之半導體元件,其中該半導體元件為側壁金氧半導體(sidewall MOS)元件。The semiconductor component of claim 8, wherein the semiconductor component is a sidewall MOS device. 如申請專利範圍第1項所述之半導體元件,其中當該第一導電型為P型時,該第二導電型為N型;當該第一導電型為N型時,該第二導電型為P型。The semiconductor device according to claim 1, wherein when the first conductivity type is a P type, the second conductivity type is an N type; when the first conductivity type is an N type, the second conductivity type For the P type. 一種半導體元件,包括:具有一第一導電型之一基底;具有一第二導電型之一第一摻雜區,配置於該基底中;以及具有該第一導電型之至少一第二摻雜區,配置於該基底中;具有該第二導電型之一第三摻雜區,配置於該第一摻雜區以外之該基底中;一閘極結構,配置於該第一摻雜區與該第三摻雜區之間的該基底上;以及至少一接觸窗,配置於該基底上,各該接觸窗以平行該閘極結構的方式交替連接至少三個相連的該第一摻雜區與該第二摻雜區。A semiconductor device comprising: a substrate having a first conductivity type; a first doped region having a second conductivity type disposed in the substrate; and at least a second doping having the first conductivity type a third doped region of the second conductivity type disposed in the substrate outside the first doped region; a gate structure disposed in the first doped region On the substrate between the third doped regions; and at least one contact window disposed on the substrate, each of the contact windows alternately connecting at least three connected first doped regions in a manner parallel to the gate structure And the second doped region. 如申請專利範圍第12項所述之半導體元件,當該半導體元件包括多個第二摻雜區時,該些第二摻雜區是以平行該閘極結構的方式排列。The semiconductor component according to claim 12, wherein when the semiconductor component comprises a plurality of second doped regions, the second doped regions are arranged in parallel with the gate structure. 如申請專利範圍第12項所述之半導體元件,當該半導體元件包括多個接觸窗時,該些接觸窗是以平行該閘極結構的方式排列。The semiconductor component according to claim 12, wherein when the semiconductor component comprises a plurality of contact windows, the contact windows are arranged in parallel with the gate structure. 如申請專利範圍第12項所述之半導體元件,其中該第一摻雜區為該半導體元件與相鄰的另一半導體元件之共用源極。The semiconductor device of claim 12, wherein the first doped region is a common source of the semiconductor device and another adjacent semiconductor device. 如申請專利範圍第12項所述之半導體元件,其中該半導體元件為金氧半導體元件。The semiconductor component of claim 12, wherein the semiconductor component is a metal oxide semiconductor component. 如申請專利範圍第12項所述之半導體元件,其中該半導體元件為高壓元件或低壓元件The semiconductor component of claim 12, wherein the semiconductor component is a high voltage component or a low voltage component 如申請專利範圍第12項所述之半導體元件,更包括一雙載子接合電晶體,其中該雙載子接合電晶體與該半導體元件共用該接觸窗。The semiconductor device of claim 12, further comprising a dual carrier bonding transistor, wherein the bipolar bonding transistor shares the contact window with the semiconductor device. 如申請專利範圍第18項所述之半導體元件,其中該雙載子接合電晶體與該半導體元件共用該第二摻雜區與該第三摻雜區。The semiconductor device of claim 18, wherein the bipolar junction transistor shares the second doped region and the third doped region with the semiconductor device. 如申請專利範圍第18項所述之半導體元件,其中該半導體元件為側壁金氧半導體元件。The semiconductor component of claim 18, wherein the semiconductor component is a sidewall MOS device. 如申請專利範圍第12項所述之半導體元件,其中當該第一導電型為P型時,該第二導電型為N型;當該第一導電型為N型時,該第二導電型為P型。The semiconductor device of claim 12, wherein when the first conductivity type is a P type, the second conductivity type is an N type; and when the first conductivity type is an N type, the second conductivity type For the P type. 一種半導體元件的製造方法,包括:提供具有一第一導電型之一基底;於該基底上形成一閘極結構;於該閘極結構兩側的該基底中分別形成具有一第二導電型之一第一摻雜區與一第二摻雜區;於該基底中形成具有該第一導電型之至少一第三摻雜區;以及於該基底上形成至少一接觸窗,各該接觸窗以平行該閘極結構的方式交替連接至少三個相連的該第一摻雜區與該第三摻雜區。A method of manufacturing a semiconductor device, comprising: providing a substrate having a first conductivity type; forming a gate structure on the substrate; forming a second conductivity type in the substrate on both sides of the gate structure a first doped region and a second doped region; forming at least one third doped region having the first conductivity type in the substrate; and forming at least one contact window on the substrate, each of the contact windows The at least three connected first doped regions and the third doped region are alternately connected in parallel with the gate structure. 如申請專利範圍第22項所述之半導體元件的製造方法,其中該第一摻雜區環繞各第二摻雜區的周圍。The method of fabricating a semiconductor device according to claim 22, wherein the first doped region surrounds the periphery of each of the second doped regions. 如申請專利範圍第22項所述之半導體元件,其中當該第一導電型為P型時,該第二導電型為N型;當該第一導電型為N型時,該第二導電型為P型。The semiconductor device of claim 22, wherein when the first conductivity type is a P type, the second conductivity type is an N type; and when the first conductivity type is an N type, the second conductivity type For the P type.
TW98123742A 2009-07-14 2009-07-14 Semiconductor device and method for fabricating the same TWI467762B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98123742A TWI467762B (en) 2009-07-14 2009-07-14 Semiconductor device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98123742A TWI467762B (en) 2009-07-14 2009-07-14 Semiconductor device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201103148A TW201103148A (en) 2011-01-16
TWI467762B true TWI467762B (en) 2015-01-01

Family

ID=44837751

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98123742A TWI467762B (en) 2009-07-14 2009-07-14 Semiconductor device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI467762B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213140A (en) * 1977-07-22 1980-07-15 Hitachi, Ltd. Insulated-gate semiconductor device
US4841486A (en) * 1985-12-27 1989-06-20 Hitachi, Ltd. Semiconductor memory device and sense amplifier
US4849801A (en) * 1984-11-28 1989-07-18 Hitachi, Ltd. Semiconductor memory device having increased capacitance for the storing nodes of the memory cells
US5239505A (en) * 1990-12-28 1993-08-24 Intel Corporation Floating gate non-volatile memory with blocks and memory refresh

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213140A (en) * 1977-07-22 1980-07-15 Hitachi, Ltd. Insulated-gate semiconductor device
US4849801A (en) * 1984-11-28 1989-07-18 Hitachi, Ltd. Semiconductor memory device having increased capacitance for the storing nodes of the memory cells
US4841486A (en) * 1985-12-27 1989-06-20 Hitachi, Ltd. Semiconductor memory device and sense amplifier
US5239505A (en) * 1990-12-28 1993-08-24 Intel Corporation Floating gate non-volatile memory with blocks and memory refresh

Also Published As

Publication number Publication date
TW201103148A (en) 2011-01-16

Similar Documents

Publication Publication Date Title
JP5172654B2 (en) Semiconductor device
US9093472B2 (en) Semiconductor device
TWI697051B (en) Bipolar junction transistor
US20090206376A1 (en) Semiconductor device
US20070278613A1 (en) Semiconductor device
US20170294505A1 (en) Gate electrode structure and high voltage semiconductor device having the same
CN103000629B (en) Monolithic high-current and low-current transistors sharing high voltage drain
TW201515222A (en) Semiconductor device
US8049279B2 (en) Semiconductor device and method for fabricating the same
TWI677073B (en) Bipolar junction transistor layout structure
US8227853B2 (en) Semiconductor integrated circuit devices having conductive patterns that are electrically connected to junction regions
US9012979B2 (en) Semiconductor device having an isolation region separating a lateral double diffused metal oxide semiconductor (LDMOS) from a high voltage circuit region
TWI596768B (en) Semiconductor device
CN111033720A (en) Semiconductor integrated circuit device having a plurality of semiconductor chips
TWI467762B (en) Semiconductor device and method for fabricating the same
CN112447704A (en) High voltage semiconductor structure and method of manufacturing the same
US9847349B1 (en) Biasing the substrate region of an MOS transistor
JP2017034066A (en) Semiconductor device
KR100688273B1 (en) Semiconductor device and manufacturing method of semiconductor device
TWM628743U (en) Trench power semiconductor device
JP4819548B2 (en) Semiconductor device
TW201310620A (en) Semiconductor integrated circuit device
CN105355594B (en) Integrated circuit structure
JP2018011089A (en) Semiconductor device
CN103515424A (en) Semiconductor device and fabricating method thereof