TWI466887B - 經取代的黃嘌呤衍生物 - Google Patents
經取代的黃嘌呤衍生物 Download PDFInfo
- Publication number
- TWI466887B TWI466887B TW98128631A TW98128631A TWI466887B TW I466887 B TWI466887 B TW I466887B TW 98128631 A TW98128631 A TW 98128631A TW 98128631 A TW98128631 A TW 98128631A TW I466887 B TWI466887 B TW I466887B
- Authority
- TW
- Taiwan
- Prior art keywords
- compound
- disease
- hydrogen
- patient
- minutes
- Prior art date
Links
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
本發明係關於為經取代的黃嘌呤衍生物之新穎化合物及其醫藥學上可接受之鹽。本發明亦係關於包含一或多種本發明化合物及載劑的組成物及所揭示之化合物及組成物在治療可得益於配妥西菲林(pentoxifylline)及相關化合物之疾病及病狀之方法中的用途。
配妥西菲林1-(5-側氧基己基)-3,7-二甲基黃嘌呤係以商標Trental在美國及加拿大銷售。目前其獲准用於治療患有由四肢慢性閉塞性動脈疾病引起之間歇性跛行的患者。其亦用於以下疾病之臨床試驗中:腎小球性腎炎、腎病症候群、非酒精性脂肪變性肝炎、利什曼病(Leishmaniasis)、肝硬化、肝功能衰竭、杜興氏肌肉萎縮症(Duchenne’s muscular dystrophy)、HIV感染、遲發性放射誘發損傷、放射誘發之淋巴水腫、酒精性肝炎、放射性纖維變性、早產兒之壞死性小腸結腸炎、慢性腎病、肺部肉狀瘤病、復發性鵝口瘡口炎、乳癌患者之慢性乳房疼痛、腦及中樞神經系統腫瘤,及營養不良-發炎-惡病質症候群。配妥西菲林最近亦已作為糖尿病及與糖尿病相關之病症之潛在治療劑獲得關注。參見
Ferrari,E等人,Pharmatherapeutica,1987,5(1):26-39;Raptis,S等人,Acta Diabetol Lat,1987,24(3):181-92;及Rahbar,R等人,Clin Chim Acta,2000,301(1-2):65-77。
已知配妥西菲林具有作為磷酸二酯酶(PDE;參見Meskini,N等人,Biochem. Pharm. 1994,47(5):781-788)之抑制劑之活性以及針對其他生物目標之活性,但其產生臨床效果之確切作用方式為未知的。已展示配妥西菲林經由降低血液黏度且改良紅血球可撓性之血液流變作用來改良血流性質。配妥西菲林亦增加白血球可變形性且抑制嗜中性白血球黏附及活化。(參見http://www.fda.gov/cder/foi/nda/99/74-962_Pentoxifylline_prntlbl.pdf下關於配妥西菲林之FDA標註)。除改良血液流變性質之外,咸信配妥西菲林亦具有消炎及抗纖維變性性質。
配妥西菲林之臨床藥理學已歸諸於母體藥物以及其代謝物,惟導致臨床改良之事件順序仍待界定。配妥西菲林經歷快速首過代謝。在一小時內達到配妥西菲林及其代謝物之峰值血漿含量。配妥西菲林及其各種報導代謝物之結構展示如下。
所產生之主要代謝物為M-1及M-5。此等代謝物之血漿含量分別為母體藥物之五倍及八倍。(參見http://www.fda.gov/cder/foi/nda/99/74-962_Pentoxifylline_prntlbl.pdf下關於配妥西菲林之FDA標註)。M-1代謝物具有對掌性中心且形成(R
)-及(S
)-對映異構體。在配妥西菲林代謝期間,在M-1對映異構體與配妥西菲林之間發生相互轉變。(S
)-對映異構體為主要M-1物質種類(S:R比率據報導約為90:10或更大)且比(R
)-對映異構體更迅速地進行相互轉變。次要(R
)-M1代謝物(稱為利索茶鹼(lisofylline))據報導具有新穎消炎性質。
雖然活性M1代謝物似乎在配妥西菲林之臨床活性中起著重要作用,但是其他代謝物可造成藥物毒性。尤其在罹患腎功能缺損之患者中,對於配妥西菲林之毒性反應之風險可能較大(http://products.sanofi-aventis.us/trental/trental.pdf)。根據產品標註,服用藥物之患有腎功能缺損之患者需要監測腎功能。另外,至少一種產品標註警告配妥西菲林不應投予患有嚴重腎或肝功能缺損之患者。參見TrentalProduct Monograph,Canada,December 16,2008。據報導,在患有腎功能缺損之患者中,配妥西菲林及M-1之血漿含量展現下降趨勢,而M-4及尤其M-5代謝物之含量視功能缺損程度而極大地增加。參見Paap,Ann. Pharmacother.,1996,30:724。綜合考量,此等觀測結果表明M5代謝物之累積可能造成患有腎功能障礙之患者之耐受性降低。
已報導在結構上與配妥西菲林相關之其他化合物具有生物學活性。該等化合物之實例包括如下文展示之阿比茶鹼(albifylline)、托巴茶鹼(torbafylline)、A-802715及丙戊茶鹼(propentofylline)。
儘管存在配妥西菲林之有利活性,但仍持續需要在較大患者群體中治療上述疾病及病狀,同時減少毒性反應及其他不利作用之風險的新穎化合物。
本發明係關於為經取代的黃嘌呤衍生物之新穎化合物及其醫藥學上可接受之鹽。舉例而言,本發明係關於在結構上與配妥西菲林相關之新穎經取代的黃嘌呤衍生物。本發明亦提供包含一或多種本發明化合物及載劑的組成物及所揭示之化合物及組成物在治療可得益於配妥西菲林及相關化合物之疾病及病狀之方法中的用途。
術語“舒緩”及“治療”可互換使用且包括治療性及預防性治療。兩個術語皆意謂減少、抑制、減弱、削弱、阻抑或穩定疾病(例如本文中描述之疾病或病症)之發展或進展、減輕疾病嚴重程度或改善與疾病相關之症狀。
“疾病”意謂損害或干擾細胞、組織或器官之正常功能之任何病狀或病症。
應認識到,視在合成中所使用之化學物質之來源而定,所合成之化合物中存在某種程度的天然同位素豐度之變化。因此,配妥西菲林之製劑將固有地含有少量氘化同位素類似物。儘管存在此變化,但與本發明化合物之穩定同位素取代之程度相比,天然豐度穩定氫及碳同位素之濃度較低且不重要。參見例如Wada E等人,Seikagaku,1994,66:15;Gannes LZ等人,Comp Biochem Physiol Mol Integr Physiol,1998,119:725。在本發明化合物中,當特定位置指定為具有氘時,應瞭解彼位置之氘之豐度實質上大於氘之天然豐度(其為0.015%)。指定為具有氘之位置典型地在該化合物中指定為氘之各原子處具有至少3340之最小同位素富集因數(50.1%氘合併度)。
如本文中所用之術語“同位素富集因數”意謂指定同位素之同位素豐度與天然豐度之間的比率。
在其他具體實例中,對於各指定氘原子而言,本發明化合物具有至少3500之同位素富集因數(各指定氘原子之氘合併度為52.5%)、至少4000(60%氘合併度)、至少4500(67.5%氘合併度)、至少5000(75%氘)、至少5500(82.5%氘合併度)、至少6000(90%氘合併度)、至少6333.3(95%氘合併度)、至少6466.7(97%氘合併度)、至少6600(99%氘合併度)或至少6633.3(99.5%氘合併度)。
在本發明化合物中,未具體指定為特定同位素之任何原子意欲表示彼原子之任何穩定同位素。除非另外陳述,否則當一位置具體指定為“H”或“氫”時,該位置應理解為具有天然豐度同位素組成之氫。又,除非另外陳述,否則當一位置具體指定為“D”或“氘”時,該位置應理解為具有至少為氘之天然豐度(其為0.015%)之3340倍之豐度之氘(亦即至少50.1%氘合併度)。
術語“同位素類似物”係指僅在同位素組成方面不同於本發明之特定化合物的物質。
術語“化合物”當涉及本發明化合物時,係指除分子之組成原子之間可能存在同位素變化以外,具有相同化學結構之分子的集合。因此,熟習此項技術者瞭解由含有所指示氘原子之特定化學結構表示之化合物亦含有較少量的在彼結構中之一或多個指定氘位置處具有氫原子之同位素類似物。本發明化合物中該等同位素類似物之相對量視許多因素而定,該等因素包括:用於製備化合物之氘化試劑的同位素純度及用於製備化合物之各種合成步驟中的氘合併效率。然而,如以上所闡明,該等同位素類似物之相對量全部小於化合物之49.9%。
本發明亦提供本發明化合物之鹽。本發明化合物之鹽係在酸與化合物之鹼性基團(諸如胺基官能基)之間,或鹼與化合物之酸性基團(諸如羧基官能基)之間形成。根據另一具體實例,化合物為醫藥學上可接受之酸加成鹽。
如本文中所用之術語“醫藥學上可接受”係指在正確醫學判斷範圍內適用於與人類及其他哺乳動物之組織接觸而無不當毒性、刺激性、過敏性反應及其類似反應,且與合理效益/風險比率相稱之組份。“醫藥學上可接受之鹽”意謂在投予接受者後能夠直接或間接提供本發明化合物之任何無毒鹽。“醫藥學上可接受之相對離子”為在投予接受者後當自鹽釋放時不具有毒性之鹽之離子部分。
通常用於形成醫藥學上可接受之鹽之酸包括無機酸,諸如硫化氫、鹽酸、氫溴酸、氫碘酸、硫酸及磷酸,以及有機酸,諸如對甲苯磺酸、水楊酸、酒石酸、二酒石酸、抗壞血酸、順丁烯二酸、苯磺酸(besylic acid)、反丁烯二酸、葡萄糖酸、葡糖醛酸、甲酸、麩胺酸、甲磺酸、乙磺酸、苯磺酸(benzenesulfonic acid)、乳酸、草酸、對溴苯磺酸、碳酸、丁二酸、檸檬酸、苯甲酸及乙酸,以及相關無機及有機酸。因此,該等醫藥學上可接受之鹽包括硫酸鹽、焦硫酸鹽、硫酸氫鹽、亞硫酸鹽、亞硫酸氫鹽、磷酸鹽、磷酸單氫鹽、磷酸二氫鹽、偏磷酸鹽、焦磷酸鹽、氯化物、溴化物、碘化物、乙酸鹽、丙酸鹽、癸酸鹽、辛酸鹽、丙烯酸鹽、甲酸鹽、異丁酸鹽、癸酸鹽、庚酸鹽、丙炔酸鹽、草酸鹽、丙二酸鹽、丁二酸鹽、辛二酸鹽、癸二酸鹽、反丁烯二酸鹽、順丁烯二酸鹽、丁炔-1,4-二酸鹽、己炔-1,6-二酸鹽、苯甲酸鹽、氯苯甲酸鹽、甲基苯甲酸鹽、二硝基苯甲酸鹽、羥基苯甲酸鹽、甲氧基苯甲酸鹽、鄰苯二甲酸鹽、對苯二甲酸鹽、磺酸鹽、二甲苯磺酸鹽、苯乙酸鹽、苯丙酸鹽、苯丁酸鹽、檸檬酸鹽、乳酸鹽、β-羥基丁酸鹽、羥乙酸鹽、順丁烯二酸鹽、酒石酸鹽、甲磺酸鹽、丙磺酸鹽、萘-1-磺酸鹽、萘-2-磺酸鹽、杏仁酸鹽及其他鹽。在一具體實例中,醫藥學上可接受之酸加成鹽包括與無機酸(諸如鹽酸及氫溴酸)形成之酸加成鹽,及尤其與有機酸(諸如順丁烯二酸)形成之酸加成鹽。
本發明亦包括本發明之化合物之溶劑合物及水合物。如本文中所用,術語“水合物”意謂另外包括化學計算或非化學計算量的藉由非共價分子間力連接之水的化合物。如本文中所用,術語“溶劑合物”意謂另外包括化學計算或非化學計算量的藉由非共價分子間力連接之溶劑(諸如水、丙酮、乙醇、甲醇、二氯甲烷、2-丙醇或其類似物)的化合物。
應瞭解在式A、A1、I及B中帶有取代基Y1
及Y2
之碳原子在某些情況下可為對掌性的(當Y1
、Y2
及R3
彼此不同時)且在其他情況下其可為非對掌性的(當Y1
、Y2
及R3
中之至少兩者相同時)。在式A、A1、I及B中,此碳原子(亦即帶有Y1
及Y2
之碳原子)由“*”指示。因而,本發明之對掌性化合物可以個別對映異構體形式,或以對映異構體之外消旋或非外消旋混合物形式存在。因此,本發明化合物包括外消旋及非外消旋對映異構混合物以及實質上不含另一可能立體異構體之個別相應立體異構體。如本文中所用之術語“實質上不含其他立體異構體”意謂存在少於25%之其他立體異構體、較佳少於10%之其他立體異構體、更佳少於5%之其他立體異構體且最佳少於2%之其他立體異構體,或少於“X”%之其他立體異構體(其中X為0與100之間且包括0及100之數值)。獲得或合成指定化合物之個別對映異構體之方法在此項技術中為熟知的且在可適用於最終化合物或起始物質或中間物時加以採用。
除非另有指示,否則當所揭示之化合物按照結構來命名或描述而不指定立體化學構型且具有一或多個對掌性中心時,應視為表示化合物之所有可能立體異構體。
如本文中所用之術語“定化合物”係指具有足以容許進行製造之穩定性且保持化合物完整性歷時足以適用於本文中詳述之目的(例如調配成治療性產品、用於產生治療性化合物之中間物、可分離或可儲存之中間化合物,從而治療對治療劑起反應之疾病或病狀)之時段的化合物。
“D”係指氘。“立體異構體”係指對映異構體及非對映異構體兩者。“第三”、“t
”及“t-”各自係指第三。“US”係指美國。
如本文中所用之術語“伸烷基”意謂較佳具有一至六個碳原子之直鏈或支鏈二價烴基(C1-6
伸烷基)。在一些具體實例中,伸烷基具有一至四個碳原子(C1-4
伸烷基)。如本文中所用之“伸烷基”之實例包括(但不限於)亞甲基(-CH2
-)、伸乙基(-CH2
CH2
-)、伸丙基(-CH2
CH2
CH2
-),及其支鏈型式,諸如(-CH(CH3
)-)、-CH2
CH(CH3
)-及其類似基團。
“鹵基”意謂氯基、溴基、氟基或碘基。
“烷基”意謂可為直鏈或支鏈且於鏈中具有1至15個碳原子之脂族烴基。較佳烷基在鏈中具有1至12個碳原子,且更佳具有1至6個碳原子。支鏈意謂一或多個諸如甲基、乙基或丙基之低碳烷基連接至直鏈烷基鏈。“低碳烷基”意謂於可為直鏈或支鏈之鏈中具有約1至約4個碳原子。例示性烷基包括甲基、氟甲基、二氟甲基、三氟甲基、環丙基甲基、環戊基甲基、乙基、正丙基、異丙基、正丁基、第三丁基、正戊基、3-戊基、庚基、辛基、壬基、癸基及十二烷基;較佳為甲基、二氟甲基及異丙基。烷基可視情況經一或多個選自以下之基團取代:鹵基、氰基、羥基、羧基、烷氧基、烷氧基羰基、側氧基、胺基、烷基胺基、二烷基胺基、環雜烷基、烷基環雜烷基、芳基、烷基芳基、雜芳基及烷基雜芳基。典型地,烷基取代基之任何烷基或烷氧基部分皆具有1至6個碳原子。
“芳基”意謂含有6至10個碳原子之芳族碳環基團。例示性芳基包括苯基或萘基。芳基可視情況經一或多個可相同或不同,且選自以下之基團取代:烷基、芳基、芳烷基、烷氧基、芳氧基、芳烷基氧基、鹵基及硝基。
典型地,芳基取代基之任何烷基或烷氧基部分皆具有1至6個碳原子。
“雜芳基”意謂5至10員芳族單環或多環烴環系統,其中環系統中之一或多個碳原子為除碳以外之元素,例如氮、氧或硫。雜芳基可視情況經一或多個可相同或不同,且選自以下之基團取代:烷基、芳基、芳烷基、烷氧基、芳氧基、芳烷基氧基、鹵基及硝基。例示性雜芳基包括吡嗪基、呋喃基、噻吩基、吡啶基、嘧啶基、異噁唑基、異噻唑基、噠嗪基、1,2,4-三嗪基、喹啉基及異喹啉基。
“芳烷基”意謂芳基及烷基組份係如先前所述之芳基-烷基。較佳芳烷基含有低碳烷基部分。例示性芳烷基包括苄基及2-苯乙基。
“雜芳烷基”意謂雜芳基及烷基組份係如先前所述之雜芳基-烷基。
“環烷基”意謂具有3至10個碳原子之非芳族單環、多環或橋環系統。環烷基視情況經一或多個鹵基或烷基取代。例示性單環環烷基環包括環戊基、氟環戊基、環己基及環庚基。
“雜環烷基”意謂非芳族單環、雙環或三環,或橋烴環系統,其中環系統中之一或多個原子為除碳以外之元素,例如氮、氧或硫。較佳雜環烷基含有環大小為3-6個環原子之環。例示性雜環烷基為吡咯啶、哌啶、四氫哌喃、四氫呋喃、四氫硫哌喃及四氫硫呋喃。
“環烷基烷基”意謂環烷基及烷基組份係如先前所述之基團。
“雜環烷基烷基”意謂環烷基及烷基組份係如先前所述之基團。
術語“視情況經氘取代”意謂所提及部分或化合物中之一或多個氫原子可經相應數目之氘原子置換。
在本說明書通篇中,代號可一般性提及(例如“各R”)或可特定提及(例如R1
、R2
、R3
等)。除非另有指示,否則當一般性提及一代號時,意欲包括彼特定代號之所有特定具體實例。
治療性化合物
本發明提供式A化合物:(A),或其醫藥學上可接受之鹽,其中:R1
及R2
係各自獨立地選自氫、-(C1
-C4
)烷基,或-(C1
-C4
)伸烷基-O-(C1
-C2
)烷基,其中烷基及伸烷基在各種情況下獨立地且視情況經氘取代;R3
係選自-CH3
、-CH2
D、-CHD2
及-CD3
;R4
為視情況經氘取代之伸正丁基;R5
係選自氫、氘、烷基、環烷基、雜環烷基、環烷基烷基、雜環烷基烷基、芳基及雜芳基,其中烷基、環烷基、雜環烷基、環烷基烷基、雜環烷基烷基、芳基及雜芳基各自視情況經取代且其中烷基、環烷基、雜環烷基、環烷基烷基、雜環烷基烷基、芳基或雜芳基或其視情況選用之取代基中之一或多個氫原子視情況經相應數目之氘原子置換;且(a)Y1
及Y2
各自為氟,或與其所結合之碳一起形成C=O,或(b)Y1
係選自氟及OH;且Y2
係選自氫、氘、-CH3
、-CH2
D、-CHD2
及-CD3
;其限制條件為:當Y1
及Y2
與其所結合之碳一起形成C=O時,則R1
、R2
、R3
、R4
及R5
中之至少一者帶有至少一個氘原子;且當Y1
為OH且Y2
為氫或CH3
時,則R1
、R2
、R3
、R4
及R5
中之至少一者帶有至少一個氘原子。
在另一具體實例中,式A化合物不為以下化合物:
在式A之另一具體實例中,當R1
及R2
各自為視情況經氘取代之甲基且R5
為氫或氘時,則:(i)Y1
為氟基;或(ii)Y1
為OH,且Y2
係選自-CH3
、-CH2
D、-CHD2
及-CD3
。在此具體實例之一態樣中,該化合物不為
在此具體實例之一更特定態樣中,Y2
、R1
、R2
、R3
及R4
中之至少一者帶有至少一個氘原子。
在式A之另一具體實例中,R1
及R2
各自為視情況經氘取代之甲基;R5
為氫或氘;且:(a)Y1
及Y2
與其所結合之碳原子一起形成=O,或(b)Y1
為-OH且Y2
係選自氫及氘,其限制條件為:當Y1
及Y2
與其所結合之碳一起形成C=O時,則R1
、R2
、R3
、R4
及R5
中之至少一者帶有至少一個氘原子;且當Y1
為OH時,則Y2
、R1
、R2
、R3
、R4
及R5
中之至少一者帶有至少一個氘原子。
在式A之另一具體實例中,R5
為D,該化合物具有式A1:(A1)或其鹽,其中R1
、R2
、R3
、R4
、Y1
及Y2
係如關於式A所定義。
在式A1之一態樣中,R1
及R2
係各自獨立地選自-CH3
、-CH2
D、-CHD2
及-CD3
;R3
係選自-CH3
、-CH2
D、-CHD2
及-CD3
;R4
係選自-(CH2
)4
-、-(CD2
)4
-、-(CD2
)3
CH2
及-CD2
(CH2
)3
-,其中“”表示R4
部分之與化合物中之C(Y1
)(Y2
)結合之部分;且(a)Y1
為OH且Y2
係選自氫及氘;或(b)Y1
及Y2
與其所連接之碳一起形成C=O。
在式A1之一更特定態樣中,R1
及R2
係各自獨立地選自-CH3
及-CD3
;R3
係選自-CH3
及-CD3
;R4
係選自-(CH2
)4
-及-CD2
(CH2
)3
-;且(a)Y1
為OH且Y2
係選自氫及氘;或(b)Y1
及Y2
與其所連接之碳一起形成C=O。
在式A1之另一態樣中,R1
及R2
係各自獨立地選自-CH3
及-CD3
;R3
係選自-CH3
及-CD3
;R4
係選自-(CH2
)4
-及-CD2
(CH2
)3
-;且Y1
及Y2
與其所連接之碳一起形成C=O。
在另一具體實例中,本發明提供式A化合物,其中R5
為氫,該化合物具有式I:
R1
及R2
係各自獨立地選自氫、-(C1
-C4
)烷基,或-(C1
-C4
)伸烷基-O-(C1
-C2
)烷基,其中烷基及伸烷基在各種情況下獨立地且視情況經氘取代;R3
係選自-CH3
、-CH2
D、-CHD2
及-CD3
;R4
為視情況經氘取代之伸正丁基;且(a)Y1
及Y2
各自為氟,或與其所連接之碳一起形成C=O;或(b)Y1
係選自氟及OH;且Y2
係選自氫、氘、-CH3
、-CH2
D、-CHD2
及-CD3
,其限制條件為:當Y1
及Y2
與其所連接之碳一起形成C=O時,則R1
、R2
、R3
及R4
中之至少一者帶有至少一個氘原子;且當Y1
為OH且Y2
為氫或-CH3
時,則R1
、R2
、R3
及R4
中之至少一者帶有至少一個氘原子。
在式I之一更特定具體實例中,R1
及R2
係各自獨立地選自-CH3
、-CH2
D、-CHD2
及-CD3
;R3
係選自-CH3
、-CH2
D、-CHD2
及-CD3
;R4
係選自-(CH2
)4
-、-(CD2
)4
-、-(CD2
)3
CH2
及-CD2
(CH2
)3
-,其中“”表示R4
部分之與化合物中之C(Y1
)(Y2
)結合之部分;且Y1
為OH且Y2
係選自氫及氘;或Y1
及Y2
與其所連接之碳一起形成C=O。
在式I之另一態樣中,R1
及R2
係各自獨立地選自-CH3
及-CD3
;R3
係選自-CH3
及-CD3
;R4
係選自-(CH2
)4
-及-CD2
(CH2
)3
-;且:Y1
為OH且Y2
係選自氫及氘;或Y1
及Y2
與其所連接之碳一起形成C=O。
在式I之另一態樣中,R1
及R2
係各自獨立地選自-CH3
及-CD3
;R3
係選自-CH3
及-CD3
;R4
係選自-(CH2
)4
-及-CD2
(CH2
)3
-;且Y1
及Y2
與其所連接之碳一起形成C=O。
在另一具體實例中,在以上闡明之任一態樣中,式I化合物不為以下化合物:
在另一具體實例中,在以上闡明之任一態樣中,式I化合物不為以下化合物:
在另一具體實例中,在以上闡明之任一態樣中,式I化合物不為以下化合物:
本發明之另一具體實例提供式II化合物:
R1
及R2
係各自獨立地選自氫、-(C1
-C4
)烷基,或-(C1
-C4
)伸烷基-O-(C1
-C2
)烷基,其中烷基及伸烷基在各種情況下獨立地且視情況經氘取代;R3
係選自-CH3
、-CH2
D、-CHD2
及-CD3
;R4
為視情況經氘取代之伸正丁基;且其中R2
、R3
及R4
中之至少一者帶有至少一個氘原子。
一具體實例係關於式A、A1、I或II之化合物,其中R2
及R3
係各自獨立地選自-CH3
、-CH2
D、-CHD2
及-CD3
。
另一具體實例係關於式A、A1、I或II之化合物,其中R2
及R3
係各自獨立地選自-CH3
及-CD3
。
另一具體實例係關於式A、A1、I或II之化合物,其中R1
係選自氫、(C1
-C3
)烷基及(C1
-C2
)伸烷基-O(C1
-C2
)烷基。
另一具體實例係關於式A、A1、I或II之化合物,其中R1
為氫、-CH3
、-CD3
、-CH2
CH2
CH3
、-CD2
CH2
CH3
、-CD2
CD2
CH3
、-CD2
CD2
CD3
、-CH2
OCH2
CH3
、-CH2
OCD2
CH3
、-CH2
OCD2
CD3
、-CD2
OCH2
CH3
、-CD2
OCD2
CH3
或-CD2
OCD2
CD3
。
另一具體實例係關於式A化合物,其中R5
係選自氫、氘、烷基、環烷基、雜環烷基、環烷基烷基及雜環烷基烷基,其中烷基、環烷基、雜環烷基、環烷基烷基及雜環烷基烷基各自可視情況經取代。
在式A、AI或I之其他具體實例中:
a)R4
中之各亞甲基單元係選自-CH2
-及-CD2
-;更特定言之R4
係選自-(CH2
)4
-、-(CD2
)4
-、+
-CD2
(CH2
)3
-及+
-(CD2
)3
CH2
-,其中“+
”表示R4
連接至化合物中之C(Y1
)(Y2
)之點;
b)當Y1
為F時,Y2
係選自氫、-CH3
、-CH2
D、-CHD2
及-CD3
;或
c)當Y1
為F時,Y2
為氟;或
d)當Y1
與Y2
不相同且Y2
與R3
不相同且Y1
與R3
不相同時,“*”處之立體化學構型由表示;或
e)當Y1
與Y2
不相同且Y2
與R3
不相同且Y1
與R3
不相同時,“*”處之立體化學構型由表示。
在式A、A1或I之其他具體實例中,R1
為-CD3
;R2
及R3
為-CH3
;Y1
及Y2
一起形成C=O;且R4
係選自-(CH2
)4
-、-(CD2
)4
-、+
-CD2
(CH2
)3
-及+
-(CD2
)3
CH2
-。
在式A、A1或I之其他具體實例中,R1
為-CD3
;R2
及R3
為-CH3
;Y1
及Y2
一起形成C=O;且R4
係選自-(CH2
)4
-及-(CD2
)4
-。
在式A、A1或I之其他具體實例中,R1
為-CD3
;R2
及R3
為-CH3
;R4
為-(CH2
)4
-;Y1
為氟基;且Y2
係選自氘、-CH2
D、-CHD2
及-CD3
。
在式A、Al或I之其他具體實例中,R1
為-CD3
;R2
及R3
為-CH3
;R4
為-(CH2
)4
-;Y1
為氟基;且Y2
為氟。
在式A或Al之其他具體實例中,R1
為-CD3
;R2
及R3
為-CH3
;R4
為-(CH2
)4
-;R5
為氘;Y1
為氟基;且Y2
係選自氘、-CH2
D、-CHD2
及-CD3
。
在式A或Al之其他具體實例中,R1
為-CD3
;R2
及R3
為-CH3
;R4
為-(CH2
)4
-;R5
為氘;Y1
為氟基;且Y2
為氟。
在式A、Al或I之其他具體實例中,Y1
為F;Y2
係選自氫;R3
為-CH3
;且R4
為-(CH2
)4
-。
在式A、Al或I之其他具體實例中,Y1
為F;Y2
為氟;R3
為-CH3
;且R4
為-(CH2
)4
-。
一具體實例提供式B化合物:B,或其醫藥學上可接受之鹽,其中R1
及R2
係各自獨立地選自-CH3
及-CD3
;R5
為氫或氘;Z3
各自為氫或氘;Z4
各自為氫或氘;Z5
各自為氫或氘;且(a)Y1
為OH,且Y2
為氫或氘,或(b)Y1
及Y2
與其所連接之碳一起形成C=O。
一具體實例提供式B化合物,其中Z3
、Z4
及Z5
各自為氫。在一態樣中,R1
及R2
各自為-CD3
。在另一態樣中,R5
為氘。在另一態樣中,Y1
及Y2
與其所連接之碳一起形成C=O。在另一態樣中,Y1
為OH,且Y2
為氫或氘。
另一具體實例提供式B化合物,其中Z3
、Z4
及Z5
各自為氘。在一態樣中,R1
及R2
各自為-CD3
。在另一態樣中,R5
為氘。在另一態樣中,Y1
及Y2
與其所連接之碳一起形成C=O。在另一態樣中,Y1
為OH,且Y2
為氫或氘。
另一具體實例提供式B化合物,其中R1
及R2
各自為-CD3
。在一態樣中,R5
為氘。在另一態樣中,Z3
、Z4
及Z5
各自為氫且R5
為氘。在另一態樣中,Z3
、Z4
及Z5
各自為氘且R5
為氘。
另一具體實例提供式B化合物,其中Y1
及Y2
與其所連接之碳一起形成C=O。在一態樣中,R5
為氘。在另一態樣中,Z3
、Z4
及Z5
各自為氫且R5
為氘。在另一態樣中,Z3
、Z4
及Z5
各自為氘且R5
為氘。在另一態樣中,R1
及R2
各自為-CD3
。在另一態樣中,R1
及R2
各自為-CD3
且R5
為氘。在另一態樣中,R1
及R2
各自為-CD3
,且Z3
、Z4
及Z5
各自為氘。在另一態樣中,R1
及R2
各自為-CD3
,Z3
、Z4
及Z5
各自為氘且R5
為氘。在另一態樣中,R1
及R2
各自為-CD3
,且Z3
、Z4
及Z5
各自為氫。在另一態樣中,R1
及R2
各自為-CD3
,Z3
、Z4
及Z5
各自為氫且R5
為氘。
另一具體實例提供式B化合物,Y1
為OH,且Y2
為氫或氘。在一態樣中,R5
為氘。在另一態樣中,Z3
、Z4
及Z5
各自為氫且R5
為氘。在另一態樣中,Z3
、Z4
及Z5
各自為氘且R5
為氘。在另一態樣中,R1
及R2
各自為-CD3
。在另一態樣中,R1
及R2
各自為-CD3
且R5
為氘。在另一態樣中,R1
及R2
各自為-CD3
,且Z3
、Z4
及Z5
各自為氘。在另一態樣中,R1
及R2
各自為-CD3
,Z3
、Z4
及Z5
各自為氘且R5
為氘。在另一態樣中,R1
及R2
各自為-CD3
,且Z3
、Z4
及Z5
各自為氫。在另一態樣中,R1
及R2
各自為-CD3
,Z3
、Z4
及Z5
各自為氫且R5
為氘。
另一具體實例提供式B化合物,其中R5
為氘。
另一具體實例提供式B化合物,其中R5
為氘,Z3
、Z4
及Z5
為氫且R1
為-CD3
。
式A、Al、I或II化合物之特定實例包括展示於表1-6(以下)中之化合物或其醫藥學上可接受之鹽,其中“”表示R4
部分之與化合物中之C(Y1
)(Y2
)結合之部分。在該等表中,指定為“(R
)”或“(S
)”之化合物係指帶有Y1
取代基之碳處之立體化學構型。未進行任何指定且含有與Y1
及Y2
結合之對掌性碳原子之化合物意欲表示對映異構體之外消旋混合物。
以上表1展示特定式I化合物之實例。此等實例為配妥西菲林及其代謝物之氘化及/或氟化類似物。
以上表2展示R1
為H且Y2
為CH3
或CD3
之特定式I化合物之實例。此等化合物包括阿比茶鹼(HWA-138)之氘化及氟化類似物。已針對與配妥西菲林相關之用途對阿
比茶鹼進行研究。
以上表3展示R1
為視情況經氘取代之-CH2
-O-CH2
CH3
之特定式I化合物之實例。在此等實例中,Y1
為OH或F且Y2
為CH3
或CD3
。此等化合物包括托巴茶鹼(HWA-448)之氘化及氟化類似物。已針對抑鬱症、尿失禁、大腸急躁症及多發性硬化症之治療對托巴茶鹼進行研究。
以上表4展示R1
為視情況經氘取代之-CH2
CH2
CH3
之特定式I化合物之實例。在此等實例中,Y1
為OH或F且Y2
為CH3
或CD3
。此等化合物包括A-802715之氘化及氟化類似物。已針對敗血性休克之治療及對同種異體移植物反應作用之抑制對A-802715進行研究。
以上表5展示R1
為視情況經氘取代之-CH2
CH2
CH3
之特定式I化合物之實例。在此等實例中,Y1
及Y2
與其間的碳一起形成羰基。此等化合物包括丙戊茶鹼之氘化類似物。已針對阿茲海默氏症(Alzheimer’s disease)、神經病變性疼痛、創傷性腦損傷、排尿困難、視網膜或視神經頭部損傷及消化性潰瘍之治療對丙戊茶鹼進行研究。亦針對控制眼內壓、穩定大腦血流量自動調節及對同種異體移植物反應作用之抑制對其進行研究。
以上表6展示特定式A化合物之實例。此等實例為R5
為氘之配妥西菲林及其代謝物之氘化及/或氟化類似物。
在以上具體實例之一態樣中,化合物不為化合物100、116或149中之任一者。
本發明之特定化合物之實例包括以下:
在另一組具體實例中,在以上闡明之任何具體實例中未指定為氘之任何原子係以其天然同位素豐度存在。
本發明化合物之合成可由一般熟習合成化學技術者達成。相關程序及中間物例如揭示於Sidzhakova,D等人,Farmatsiya,(Sofia,Bulgaria)1988,38(4):1-5;Davis,PJ等人,Xenobiotica,1985,15(12):1001-10;Akgun,H等人,J Pharm Sci,2001,26(2):67-71;德國專利申請案DD 274334;捷克專利第CS 237719號、第CS201558號;PCT專利公開案WO9531450;及日本專利公開案第JP58150594號、第JP58134092號、第JP58038284號、第JP57200391號、第JP57098284號、第JP57085387號、第JP57062278號、第JP57080385號、第JP57056481號、第JP57024385號、第JP57011981號、第JP57024386號、第JP57024382號、第JP56077279號、第JP56032477號、第JP56007785號、第JP56010188號、第JP56010187號、第JP55122779號及第JP55076876號中。
該等方法可利用相應氘化及視情況選用含有其他同位素之試劑及/或中間物來執行以合成本文中描述之化合物,或援用在此項技術中已知之標準合成方案以將同位素原子引入化學結構中。
在以下流程中描述合成式I化合物之方法。
流程1A.合成式I化合物
如流程1A中所述,在碳酸鉀存在下,用氘化中間物11
(其中X為氯基、溴基或碘基)使氘化化合物10
烷基化以提供式I化合物。或者,可根據美國專利4289776之方法使用於甲醇水溶液中之氫氧化鈉來提供式I化合物。
流程1B.自式II化合物製備Y1
=OH之化合物
如流程1B中所述,可使用式II化合物來製備Y1
為OH之化合物。因此,根據歐洲專利公開案0330031之通用方法,用硼氫化鈉或硼氘化鈉(可以99原子%D購得)還原式II化合物以形成Y1
為OH且Y2
為氫或氘之化合物。可例如經由Nicklasson,M等人,Chirality,2002,14(8):643-652之方法分離對映異構性醇產物。在一替代方法中,使用Pekala,E等人,Acta Poloniae Pharmaceutica,2007,64(2):109-113或Pekala,E等人,Biotech J,2007,2(4):492-496中所揭示之方法進行酶促還原來提供對映異構性富集醇產物。
參考流程1A,可用作化合物10以製備式I化合物之化合物為已知的且包括(但不限於)以下:可購得之可可豆鹼(其中R1
及R2
為CH3
)。(a)R1
為-CD3
且R2
為-CH3
;(b)R1
為-CH3
且R2
為-CD3
;及(c)R1
及R2
為-CD3
之10
之同位素類似物皆為已知的。參見
Benchekroun,Y等人,J Chromatogr B,1977,688:245;Ribon,B等人,Coll INSERM,1988,164:268;及Horning,MG等人,Proc Int Conf Stable Isot第2版,1976,41-54。R1
為正丙基且R2
為-CH3
之3-甲基-7-丙基黃嘌呤可購得。R1
為CH2
OCH3
且R2
為CH3
之化合物10
亦為已知的。參見
德國專利申請案DE 3942872A1。
流程2.合成化合物10
流程2中描述以市售N-亞硝基-N-甲脲為起始物質來合成化合物10
。遵循Boivin,JL等人,Canadian Journal of Chemistry,1951,29:478-81之方法,用於水中之適當氘化之胺12處理提供N-烷基脲13
。根據Dubey,PK等人,Indian Journal of Heterocyclic Chemistry,2005,14(4):301-306之方法,可以2-氰基乙酸及乙酸酐處理脲13
以提供氰基乙醯胺衍生物14
,其首先以NaOH水溶液且隨後以HCl水溶液處理以提供環化嘧啶二酮15
。或者,可經由Fulle,F等人,Heterocycles,2000,53(2):347-352之方法以三甲基矽烷基氯及六甲基二矽氮烷處理氰基乙醯胺14
以提供環化產物15
。
遵循Merlos,M等人,European Journal of Medicinal Chemistry,1990,25(8):653-8之方法,以於乙酸中之亞硝酸鈉,且隨後以氫氧化銨及連二亞硫酸鈉處理嘧啶二酮15
獲得化合物16
,其以甲酸處理以提供嘌呤衍生物17
。遵循Rybar,A等人在捷克專利申請案CS 263595B1中揭示之方法,在碳酸鉀存在下且視情況在諸如NaBr、KBr、NaI、KI或碘之添加劑存在下,以適當氘化之親電子劑18
(X為氯基、溴基或碘基)使17
烷基化來提供化合物10
。
參考流程2,適用氘化胺試劑12
包括(但不限於)諸如正丙基-d7
-胺之市售化合物或諸如1-丙-1,1-d2
-胺之已知化合物(Moritz,F等人,Organic Mass Spectrometry,1993,28(3):207-15)。適用氘化脲試劑13
可包括(但不限於)諸如N-甲基-d3
-脲,或甲基脲-d6 之市售化合物。
適用氘化親電子劑18
可包括(但不限於)諸如碘甲烷-d3
或溴甲烷-d3
或1-溴丙烷-d7
或1-溴丙烷-1,1-d2
之市售化合物,或諸如(氯甲氧基-d2
)-乙烷(Williams,AG,WO 2002059070A1),或溴甲氧基甲烷-d2
(Van der Veken,BJ等人,Journal of Raman Spectroscopy,1992,23(4):205-23),或(溴甲氧基-d2
)-甲烷-d3
(Van der Veken,BJ等人,Journal of Raman Spectroscopy,1992,23(4):205-23)之已知化合物。可獲得具有至少98原子%D之同位素純度之上述市售氘化中間物12、13
及18
。
流程3.合成中間物11a- d 5
在流程3中描述製備化合物11a- d 5
之方法(參看流程1A)(其中R3
為CD3
;R4
為-CD2
(CH2
)3
-,且Y1
及Y2
一起形成=O)。因此,根據Zhang,Q等人,Tetrahedron,2006,62(50):11627-11634之程序將甲基鋰添加至市售δ-戊內酯19
中以提供酮20
。根據Fodor-Csorba K,Tet Lett,2002,43:3789-3792之通用方法,在微波條件下,用於D2
O(99原子%D)中之TFA-d 1
(99原子%D)處理20
提供氘化酮21
。遵循Clment,J-L,Org Biomol Chem,2003,1:1591-1597之通用程序,在以三苯膦及四氯化碳處理後,21
中之醇部分轉化為氯化物以獲得氯化物11a- d 5
。
流程4描述化合物11a- d 9
及化合物11a- d 1 1
之合成。因此,可根據Esaki等人,Chem Eur J,2007,13:4052-4063之通用方法,在Pd/C及氫氣存在下於D2
O(99原子%D)中加熱市售4-苯基丁酸22
以提供氘化酸23
。根據Porta,A等人,J Org Chem,2005,70(12):4876-4878之通用方法,在三甲基矽烷基氯存在下添加氘化甲基鋰提供酮24
。藉由以D2
SO4
(99原子%D)及市售乙二醇-d 2
(99原子%D)處理將酮24
轉化為縮醛25
。根據Garnier,J-M等人,Tetrahedron:Asymmetry,2007,18(12):1434-1442之通用方法,以NaIO4
及RuCl3
處理25
提供羧酸26
。以LiAlH4
或LiAlD4
(98原子%D)還原提供醇(未圖示),隨後使用氧氯化磷或三苯膦及N-氯丁二醯亞胺將其氯化(Naidu,SV等人,Tet Lett,2007,48(13):2279-2282),接著以D2
SO4
進行縮醛裂解(Heathcock,CH等人,J Org Chem,1995,60(5):1120-30)來分別提供氯化物11a- d 9
及11a- d 1 1
。
流程4a.合成中間物11b-( R )
流程4b.合成氯化物11b-( S )
流程4a及4b描述氯化物之特定對映異構體11b-( R )
(其中Y1
為氟:Y2
係選自氫及氘;且該化合物呈(R
)構型)及11b-( S )
(其中Y1
為氟;Y2
係選自氫及氘;且該化合物呈(S
)構型)之合成。在流程4a中,諸如已知[[[(5R)-5-氟己基]氧基]甲基]-苯(PCT公開案WO2000031003)之氘化(或非氘化)苄基保護之醇27
係藉由在Pd/C存在下氫化來去保護以提供醇28
。根據Lacan,G等人,J Label Compd Radiopharm,2005,48(9):635-643之通用程序,以亞硫醯氯使醇氯化以提供氯化物11b-( R )
。
在流程4b中,使諸如已知(S)-(+)-5-氟己醇(Riswoko,A等人,Enantiomer,2002,7(1):33-39)之氘化(或非氘化)醇29
氯化以提供氯化物11b-( S )
。
流程5.合成中間物11c
及11e
流程5描述其他中間物11c
及11e
之合成。因此,遵循Kutner,Andrzej等人,Journal of Organic Chemistry,1988,53(15):3450-7或Larsen,SD等人,Journal of Medicinal Chemistry,1994,37(15):2343-51之方法,可以氘化格林納(Grignard)試劑32
處理化合物30
或31
(其中X為鹵基)以提供R3
與Y2
相同、Y1
為OH,且X為鹵基之中間物11c
。根據Karst,NA等人,Organic Letters,2003,5(25):4839-4842或Kiso,M等人,Carbohydrate Research,1988,177:51-67之通用程序,以於二氯甲烷或甲苯中之三氟化二乙基胺基硫(DAST)處理提供R3
與Y2
相同、Y1
為F,且X為鹵基之中間物11e
。
可使用市售鹵化物來製備如流程5中所揭示之化合物11。舉例而言,市售5-氯戊醯基氯,或市售5-溴戊醯基氯,或市售5-溴戊酸乙酯可適用作試劑30
或31
。再次參考流程5,使用市售碘化甲基-d 3
-鎂作為格林納試劑32
提供R3
與Y2
同時為CD3
之親電子劑11
。
流程6.合成中間物11e
(X=Br)
流程6描述R3
與Y2
相同且X=Br之中間物11e
之一替代性合成。因此,根據Hester,JB等人,Journal of Medicinal Chemistry,2001,44(7):1099-1115之程序,經由以3,4-二氫-2H-哌喃(DHP)及樟腦磺酸(CSA)處理來保護市售4-氯-1-丁醇以提供氯化物33
。藉由以鎂來生成相應格林納試劑,接著添加丙酮(R3
=Y2
=CH3
)或丙酮-d6
(Y2
=R3
=CD3
),提供醇34
。藉由以於DCM中之三氟化二乙基胺基硫(DAST)進行氟化來提供氟化物35
。以於MeOH中之CSA去保護提供醇36
,且以N-溴丁二醯亞胺及三苯膦處理提供中間物11e
。
流程7.替代性合成中間物11e
(X=Br)
流程7描述R3
與Y2
相同且X=Br之中間物11e
之合成。因此以DHP及CSA處理,或以DHP、TsOH及吡啶處理市售4-羥基-丁酸乙酯37
以提供酯38
。以LiAlD4
進行還原來提供氘化醇39
,其以於CCl4
中之三苯膦處理(Sabitha,G等人,Tetrahedron Letters,2006,(卷期2007年),48(2):313-315)或以於DMF中之甲磺醯氯、氯化鋰及2,6-二甲基吡啶處理(Blaszykowski,C等人,Organic Letters,2004,6(21):3771-3774)以提供氯化物40
。遵循與流程6中相同之方法,可使氯化物40
轉化為11e
。
流程8.合成中間物11e- d 8
(X=Br)
流程8描述R3
與Y2
相同且X=Br之中間物11e- d 8
之合成。因此,可根據Yang,A等人,Huagong Shikan,2002,16(3):37-39之通用方法,以DCl及ZnCl2
處理市售THF-d 8 41
以提供已知氯化物42
(Alken,Rudolf-Giesbert,WO 2003080598A1)。遵循與流程6中相同之方法,可使氯化物42
轉化為11e- d 8
。
流程9.合成中間物11c- d 8
(X=Br)
流程9描述R3
與Y2
相同且X=Br之中間物11c- d 8
之合成。因此,將已知羧酸43
(Lompa-Krzymien,L等人,Proc.I
nt. Conf. Stable Isot.第2版,1976,會期1975年,574-8)以重氮甲烷處理(根據Garrido,NM等人,Molecules,2006,11(6):435-443.之通用方法)或以三甲基矽烷基氯及甲醇-d 1
處理(根據Doussineau,T等人,Synlett,2004,(10):1735-1738之通用方法)以提供甲酯44
。如在流程5中,以氘化格林納試劑45
處理該酯來提供中間物11c- d 8
。舉例而言,使用市售碘化甲基-d3
-鎂作為格林納試劑45
提供R3
與Y2
同時為CD3
之11c- d 8
。
流程10.合成中間物11c- d 2
。
流程10描述R3
與Y2
相同之11c- d 2
之製備。因此,已知氘化酯46
(Feldman,KS等人,Journal of Organic Chemistry,2000,65(25):8659-8668)以四溴化碳及三苯膦處理(Brueckner,AM等人,European Journal of Organic Chemistry,2003,(18):3555-3561)以提供X為溴基之酯47
,或以甲磺醯氯及三乙胺處理,接著以氯化鋰及DMF處理(Sagi,K等人,Bioorganic & Medicinal Chemistry,2005,13(5):1487-1496)以提供X為氯基之酯47
。如在流程5中,以氘化格林納試劑48
處理酯47
提供11c- d 2
。舉例而言,使用市售碘化甲基-d3
-鎂作為格林納試劑48
提供R3
與Y2
同時為CD3
之11c- d 2
。
可在流程1A中用作試劑11
之其他已知氯化物包括:1-氯-5,5-二氟-己烷(Rybczynski,PJ等人,J Med Chemistry,2004,47(1):196-209);1-氯-5-氟己烷(Chambers,RD等人,Tetrahedron,2006,62(30):7162-7167);6-氯-2-己醇(歐洲專利公開案0412596);(S)-6-氯-2-己醇(Keinan,E等人,J Am Chem Soc,1986,108(12):3474-3480);市售(R)-6-氯-2-己醇;市售6-氯-2-己酮;已知6-氯-2-甲基己-2-醇(Kutner,A等人,Journal of Organic Chemistry,1988,53(15):3450-7);已知6-溴-2-甲基己-2-醇(Kutner,A等人,Journal of Organic Chemistry,1988,53(15):3450-7);已知1-溴-5-氟-5-甲基己烷(Hester,JB等人,Journal of Medicinal Chemistry,2001,44(7):1099-1115)。
流程11.合成式A1化合物
流程11描述式A1化合物之合成。因此,式I化合物以於D2
O中之碳酸鉀處理以實現氫氘交換反應,提供式A1化合物。熟習此項技術者應瞭解亦可在分子中別處發生額外氫氘交換反應。
流程12.替代性合成式Al化合物
流程12中描述式Al化合物之一替代性合成。因此,中間物10
(參看流程1A)以於D2
O中之碳酸鉀處理以實現氫氘交換反應,提供呈N-D或N-H物質種類形式之化合物50
。在碳酸鉀存在下對中間物11
進行烷基化來提供式Al化合物。
可使用許多新穎中間物來製備式A化合物。因此,本發明亦提供該種化合物,其係選自以下:
可如Org. Lett.,2005,7:1427-1429中一般性描述,使用適當氘化起始物質來製備以上化合物a-d。可參考如下所示之流程15,自上文列出之適當溴化物來製備化合物e-o。
適用於本發明之某些黃嘌呤中間物亦為新穎的。因此,本發明提供氘化黃嘌呤中間物III:III,其中W為氫或氘,且R1
及R2
係各自獨立地選自氫、氘、視情況經氘取代之C1-3
烷基,及視情況經氘取代之C1-3
烷氧基烷基。R1
及R2
C1-3
烷基之實例包括-CH3
、-CD3
、-CH2
CH2
CH3
及-CD2
CD2
CD3
。C1-3
烷氧基烷基之實例包括-CH2
OCH2
CH3
、-CD2
OCH2
CH3
、-CD2
OCD2
CH3
及-CD2
OCD2
CD3
。
式III之特定實例包括以下:
在以上每一式III實例中,W為氫。在一組相應實例中,W為氘。式III化合物之鹽亦為適用的,包括已知與已知黃嘌呤相關適用之鹽。適用鹽之實例包括(但不限於)鋰鹽、鈉鹽、鉀鹽及銫鹽。尤其適用鹽之一實例為鉀鹽。
以上所示之特定方法及化合物不欲具有限制性。本文流程中之化學結構描繪與本文化合物式中之相應位置之化學基團定義(部分、原子等)相匹配據此加以定義的代號,而不論該等化學基團定義是否由相同代號名稱(亦即R1
、R2
、R3
等)來識別。一般技術者完全知曉化合物結構中之化學基團用於合成另一化合物的適合性。
合成本發明化合物及其合成前驅物之其他方法(包括本文流程中未明確展示之途徑內之方法)為一般熟習化學技術者所掌握。適用於合成適用化合物之合成化學轉化及保護基方法(保護及去保護)在此項技術中為已知的且包括例如在以下文獻中所描述之方法:Larock R,Comprehensive Organic Transformations
,VCH Publishers(1989);Greene TW等人,Protective Groups in Organic Synthesis
,第3版,John Wiley and Sons(1999);Fieser L等人,Fieser and Fieser,s Reagents for Organic Synthesis
,John Wiley and Sons(1994);及Paquette L編,Encyclopedia of Reagents for Organic Synthesis
,John Wiley and Sons(1995)及其後續版本。
本發明所設想之取代基及代號之組合僅為導致形成穩定化合物之組合。
本發明亦提供無致熱質組成物,其包含有效量之本發明化合物或其醫藥學上可接受之鹽;及可接受之載劑。較佳地,本發明組成物經調配用於醫藥用途(“醫藥組成物”),其中載劑為醫藥學上可接受之載劑。在與調配物之其他成份相容之意義上,載劑為“可接受的”,且在醫藥學上可接受之載劑的情況中,在藥物中所用之量下,對其接受者無害。
可在本發明之醫藥組成物中使用之醫藥學上可接受之載劑、佐劑及媒劑包括(但不限於)離子交換劑、氧化鋁、硬脂酸鋁、卵磷脂、血清蛋白質諸如人類血清白蛋白、緩衝物質諸如磷酸鹽、甘胺酸、山梨酸、山梨酸鉀、飽和植物脂肪酸之偏甘油酯混合物、水、鹽或電解質,諸如硫酸魚精蛋白、磷酸氫二鈉、磷酸氫鉀、氯化鈉、鋅鹽、膠態二氧化矽、三矽酸鎂、聚乙烯吡咯啶酮、以纖維素為主之物質、聚乙二醇、羧甲基纖維素鈉、聚丙烯酸酯、蠟、聚乙烯-聚氧丙烯嵌段聚合物、聚乙二醇及羊毛脂。
本發明之醫藥組成物包括適合於經口、直腸、經鼻、局部(包括頰內及舌下)、陰道或非經腸(包括皮下、肌肉內、靜脈內及皮內)投予之醫藥組成物。在某些具體實例中,具有本文式之化合物係經皮投予(例如使用經皮貼片或電離子透入技術)。其他調配物可便利地以單位劑型(例如錠劑、持續釋放膠囊)及以脂質體形式提供,且可藉由製藥技術中熟知之任何方法製備。參見例如Remington’s Pharmaceutical Sciences,Mack Publishing Company,Philadelphia,PA(第17版1985)。
在某些具體實例中,化合物係經口投予。適合於經口投予之本發明組成物可以如下形式提供:各自含有預定量之活性成份之不連續單位(諸如膠囊、藥囊或錠劑);散劑或顆粒劑;水性液體或非水性液體中之溶液或懸浮液;水包油型液體乳液;油包水型液體乳液;脂質體包封形式;或大丸劑形式等。軟明膠膠囊可適用於容納該等懸浮液,其可有利地增加化合物吸收之速率。
在經口使用之錠劑之情況下,通常使用之載劑包括乳糖及玉米澱粉。亦典型地添加潤滑劑,諸如硬脂酸鎂。對於以膠囊形式經口投予而言,適用稀釋劑包括乳糖及乾燥玉米澱粉。當經口投予水性懸浮液時,活性成份與乳化及懸浮劑組合。需要時,可添加某些甜味劑及/或調味劑及/或著色劑。
適合於經口投予之組成物包括於調味基質(通常為蔗糖及阿拉伯膠(acacia)或黃蓍膠)中包含成份之口含錠;及於惰性基質(諸如明膠及甘油,或蔗糖及阿拉伯膠)中包含活性成份之片劑。
適合於非經腸投予之組成物包括可含有抗氧化劑、緩衝劑、抑菌劑及使得調配物與預定接受者之血液等滲之溶質之水性及非水性無菌注射溶液;及可包括懸浮劑及增稠劑之水性及非水性無菌懸浮液。調配物可提供於單位劑量或多劑量容器(例如密封安瓿及小瓶)之中,且可儲存於冷凍乾燥(凍乾)條件下,僅需要在使用之前即刻添加無菌液體載劑(例如注射用水)。可自無菌散劑、顆粒劑及錠劑製備臨時注射溶液及懸浮液。
該等注射溶液可呈例如無菌可注射水性或油性懸浮液形式。該懸浮液可根據此項技術中已知之技術、使用合適分散或濕潤劑(諸如吐溫80(Tween 80))及懸浮劑調配。無菌可注射製劑亦可為於非經腸可接受之無毒稀釋劑或溶劑中之無菌可注射溶液或懸浮液,例如呈於1,3-丁二醇中之溶液形式。可使用之可接受之媒劑及溶劑為甘露糖醇、水、林葛爾氏溶液(Ringer's solution)及等滲氯化鈉溶液。另外,習知無菌、不揮發性油用作溶劑或懸浮介質。為此目的,可使用任何無刺激性不揮發性油,包括合成單酸甘油酯或二酸甘油酯。如同尤其呈聚氧乙烯型式之醫藥學上可接受之天然油(諸如橄欖油或蓖麻油),脂肪酸(諸如油酸及其甘油酯衍生物)亦適用於製備可注射劑。此等油溶液或懸浮液亦可含有長鏈醇稀釋劑或分散劑。
本發明之醫藥組成物可以用於直腸投予之栓劑之形式投予。此等組成物可藉由將本發明化合物與在室溫下為固體但在直腸溫度下為液體且因此在直腸中將熔融從而釋放活性組份之合適非刺激性賦形劑混合來製備。該等物質包括(但不限於)可可脂、蜂蠟及聚乙二醇。
本發明之醫藥組成物可藉由經鼻氣溶膠或吸入來投予。該等組成物係根據醫藥調配技術中熟知之技術製備且可採用苄醇或其他合適防腐劑、增強生物可用性之吸收促進劑、碳氟化合物及/或此項技術中已知之其他增溶或分散劑製備為鹽水溶液。參見例如讓渡給Alexza Molecular Delivery Corporation之Rabinowitz,JD及Zaffaroni,AC美國專利6,803,031。
當所需治療涉及易藉由局部施用達到之區域或器官時,局部投予本發明之醫藥組成物尤其適用。對於局部施用至皮膚之局部施用而言,醫藥組成物應以含有懸浮或溶解於載劑中之活性組份的合適軟膏劑來調配。局部投予本發明化合物之載劑包括(但不限於)礦物油、液體石油、白石蠟、丙二醇、聚氧乙烯聚氧丙烯化合物、乳化蠟及水。或者,醫藥組成物可以含有懸浮或溶解於載劑中之活性化合物的合適洗劑或乳膏劑來調配。合適載劑包括(但不限於)礦物油、去水山梨糖醇單硬脂酸酯、聚山梨酸酯60、十六基酯蠟、十六醇十八醇、2-辛基十二醇、苄醇及水。本發明之醫藥組成物亦可藉由直腸栓劑調配物或以合適灌腸劑調配物形式局部施用於下部腸道。本發明中亦包括局部經皮貼片及電離子透入投藥。
標的治療劑之施用可為局部施用,以便投予至所關注之部位。可使用各種技術將標的組成物提供於所關注之部位,諸如注射、使用導管、套管、轟擊粒子、泊洛尼克(pluronic)凝膠、血管內支架、持續藥物釋放聚合物或提供內部接近之其他裝置。
在另一具體實例中,本發明組成物另外包含第二治療劑。第二治療劑可選自已知在與具有與配妥西菲林相同作用機制之化合物一起投予時具有或顯示有利性質的任何化合物或治療劑。該等藥劑包括表明適用於與配妥西菲林組合之藥劑,包括(但不限於)WO 1997019686、EP 0640342、WO 2003013568、WO 2001032156、WO 2006035418及WO 1996005838中所述之藥劑。
在本發明之醫藥組成物中,本發明化合物係以有效量存在。如本文中所用,術語“有效量”係指當以適當給藥方案投予時足以治療(治療性或預防性)目標病症之量。舉例而言,有效量足以降低或舒緩所治療病症之嚴重程度、持續時間或進程,阻止所治療病症之進展,使所治療病症好轉,或增強或改善另一療法之預防或治療效果。
用於動物與人類之劑量之內在關係(以每平方公尺體表所用之毫克數計)描述於Freireich等人,Cancer Chemother. Rep,1966,50:219中。體表面積可自患者之身高及體重近似地測定。參見例如Scientific Tables,Geigy Pharmaceuticals,Ardsley,N.Y.,1970,537。
在一具體實例中,本發明化合物之有效量在每次治療20mg至2000mg範圍內。在更特定具體實例中,該量在每次治療40mg至1000mg範圍內,或100mg至800mg範圍內,或更特定言之在200mg至400mg範圍內。治療典型地每天投予一至三次。
如熟習此項技術者所認識到,有效劑量亦視以下因素而不同:所治療之疾病、疾病嚴重程度、投藥途徑、患者之性別、年齡及一般健康狀況、賦形劑使用、與其他治療性治療(諸如使用其他藥劑)協同使用之可能性及治療醫師之判斷。舉例而言,選擇有效劑量之指南可參考配妥西菲林之處方資訊來確定。
對於包含第二治療劑之醫藥組成物而言,第二治療劑之有效量在僅使用彼藥劑之單一療法方案中正常使用之劑量的約20%與100%之間。較佳地,有效量在正常單一治療劑量之約70%與100%之間。此等第二治療劑之正常單一治療劑量在此項技術中為熟知的。參見例如Wells等人,編,Pharmacotherapy Handbook,第2版,Appleton and Lange,Stamford,Conn.(2000);PDR Pharmacopoeia,Tarascon Pocket Pharmacopoeia 2000,豪華版,Tarascon Publishing,Loma Linda,Calif.(2000),該等文獻中每一者之全文以引用之方式併入本文中。
在一具體實例中,本發明提供抑制細胞之磷酸二酯酶(PDE)活性之方法,其包含使細胞與一或多種式A、A1、I、II或B之化合物接觸。
除PDE抑制活性外,已知配妥西菲林亦抑制許多其他生物劑(諸如介白素-1(IL-1)、IL-6、IL-12、TNF-α、血纖維蛋白原及各種生長因子)之產生。因此,在另一具體實例中,本發明提供抑制細胞之介白素-1(IL-1)、IL-6、IL-12、TNF-α、血纖維蛋白原及各種生長因子之產生的方法,其包含使細胞與一或多種式A、A1、I、II或B之化合物接觸。
根據另一具體實例,本發明提供治療有需要之患者之可藉由配妥西菲林治療而獲益之疾病的方法,其包含投予該患者有效量之式A、A1、I、II或B化合物或包含式A、A1、I、II或B化合物及醫藥學上可接受之載劑之醫藥組成物的步驟。
該等疾病在此項技術中為熟知的且揭示於(但不限於)以下專利及公開申請案中:WO 1988004928、EP 0493682、US 5112827、EP 0484785、WO 1997019686、WO 2003013568、WO 2001032156、WO 1992007566、WO 1998055110、WO 2005023193、US 4975432、WO 1993018770、EP 0490181及WO 1996005836。該等疾病包括(但不限於)周邊阻塞性血管疾病;腎小球性腎炎;腎病症候群;非酒精性脂肪變性肝炎;利什曼病;肝硬化;肝功能衰竭;杜興氏肌肉萎縮症;遲發性放射誘發損傷;放射誘發之淋巴水腫;放射相關之壞死;酒精性肝炎;放射相關之纖維變性;早產兒之壞死性小腸結腸炎;糖尿病性腎病、高血壓誘發腎衰竭,及其他慢性腎病;局灶節段性腎小球硬化;肺部肉狀瘤病;復發性鵝口瘡口炎;乳癌患者之慢性乳房疼痛;腦及中樞神經系統腫瘤;營養不良-發炎-惡病質症候群;介白素-1介導之疾病;移植物抗宿主反應及其他同種異體移植物反應;飲食誘發之脂肪肝病狀、動脈粥樣化病變、脂肪肝變性及其他飲食誘發之高脂肪或酒精誘發之組織變性病狀;第1型人類免疫缺陷性病毒(HIV-1)及其他人類反轉錄病毒感染;多發性硬化症;癌症;纖維增生性疾病;真菌感染;藥物誘發之腎中毒;膠原性結腸炎及以血小板衍生生長因子(PDGF)或其他發炎性細胞激素含量升高為特徵之其他疾病及/或病狀;子宮內膜異位;與後天性免疫缺失症候群(AIDS)、免疫病症疾病或多發性硬化症相關之視神經病及CNS功能缺損;自體免疫疾病;上呼吸道病毒感染;抑鬱症;尿失禁;大腸急躁症;敗血性休克;阿茲海默氏癡呆;神經病變性疼痛;排尿困難;視網膜或視神經損傷;消化性潰瘍;胰島素依賴性糖尿病;非胰島素依賴性糖尿病;糖尿病性腎病;代謝症候群;肥胖症;胰島素抗性;異常血脂症;病理性葡萄糖耐受症;高血壓;高血脂症;高尿酸血症;痛風;高凝血性;急性酒精性肝炎;嗅覺病症;開放性動脈導管;及與嗜中性白血球趨化性及/或去顆粒作用相關之發炎或損傷。
式A、A1、I、II或B之化合物亦可用於控制如藉由體格檢查所確定需要進行控制之個體之眼內壓或穩定大腦血流之自動調節。
在一特定具體實例中,本發明方法用於治療有需要之患者之選自以下之疾病或病狀:由四肢慢性閉塞性動脈疾病及其他周邊阻塞性血管疾病所引起之間歇性跛行;腎小球性腎炎;局灶節段性腎小球硬化;腎病症候群;非酒精性脂肪變性肝炎;利什曼病;肝硬化;肝功能衰竭;杜興氏肌肉萎縮症;遲發性放射誘發損傷;放射誘發之淋巴水腫;酒精性肝炎;放射誘發之纖維變性;早產兒之壞死性小腸結腸炎;糖尿病性腎病、高血壓誘發之腎衰竭及其他慢性腎病;肺部肉狀瘤病;復發性鵝口瘡口炎;乳癌患者之慢性乳房疼痛;腦及中樞神經系統腫瘤;肥胖症;急性酒精性肝炎;嗅覺病症;子宮內膜異位相關之不孕症;營養不良-發炎-惡病質症候群;及開放性動脈導管。
在一具體實例中,本發明方法用於治療糖尿病性腎病、高血壓性腎病或由四肢慢性閉塞性動脈疾病所引起之間歇性跛行。在另一特定具體實例中,本發明方法用於治療有需要之患者之選自由四肢慢性閉塞性動脈疾病所引起之間歇性跛行的疾病或病狀。
在一具體實例中,本發明方法用於治療慢性腎病。慢性腎病可選自腎小球性腎炎、局灶節段性腎小球硬化、腎病症候群、逆流性尿路病或多囊性腎病。
在一具體實例中,本發明方法用於治療肝臟慢性疾病。肝臟慢性疾病可選自非酒精性脂肪變性肝炎、脂肪肝變性或其他飲食誘發之高脂肪或酒精誘發之組織變性病狀、肝硬化、肝功能衰竭或酒精性肝炎。
在一具體實例中,本發明方法用於糖尿病相關疾病或病狀。此疾病可選自胰島素抗性、視網膜病、糖尿病性潰瘍、放射相關之壞死、急性腎衰竭或藥物誘發之腎中毒。
在一具體實例中,本發明方法用於治療罹患囊腫性纖維變性之患者,包括罹患慢性假單胞菌支氣管炎之患者。
在一具體實例中,本發明方法用於幫助創傷癒合。可治療之創傷類型之實例包括靜脈曲張性潰瘍、糖尿病性潰瘍及褥瘡。
在另一特定具體實例中,本發明方法用於治療有需要之患者之選自以下之疾病或病狀:胰島素依賴性糖尿病;非胰島素依賴性糖尿病;代謝症候群;肥胖症;胰島素抗性;異常血脂症;病理性葡萄糖耐受症;高血壓;高血脂症;高尿酸血症;痛風;及高凝血性。
本文中描述之方法亦包括患者經識別為需要所述特定治療之方法。識別需要該治療之患者可由患者或健康護理專業人員判斷且可為主觀的(例如意見)或客觀的(例如可藉由測試或診斷方法量測)。
在另一具體實例中,任何上述治療方法包含另一將一或多種第二治療劑共投予該患者之步驟。第二治療劑可自已知適用於與配妥西菲林共投予之任何第二治療劑中進行選擇。第二治療劑之選擇亦視待治療之特定疾病或病狀而定。可在本發明方法中使用之第二治療劑之實例為以上闡明之在包含本發明化合物及第二治療劑之組合組成物中使用之第二治療劑。
詳言之,本發明之組合療法包括共投予式A、Al、I、II或B化合物與第二治療劑來治療以下病狀(其中特定第二治療劑在適應症後方之圓括號中指示):遲發性放射誘發損傷(α-生育酚)、放射誘發之纖維變性(α-生育酚)、放射誘發之淋巴水腫(α-生育酚)、乳癌患者之慢性乳房疼痛(α-生育酚)、第2型糖尿病性腎病(卡托普利(captopril))、營養不良-發炎-惡病質症候群(口服營養補充劑,諸如Nepro;及口服消炎模組,諸如Oxepa);及腦及中樞神經系統腫瘤(放射療法及羥基脲)。
本發明之組合療法亦包括共投予式A、Al、I、II或B化合物與第二治療劑來治療胰島素依賴性糖尿病;非胰島素依賴性糖尿病;代謝症候群;肥胖症;胰島素抗性;異常血脂症;病理性葡萄糖耐受症;高血壓;高血脂症;高尿酸血症;痛風;及高凝血性。
如本文中所用之術語“共投予”意謂第二治療劑可作為單一劑型(諸如包含本發明化合物及如上所述之第二治療劑之本發明組成物)之一部分或作為分開之多個劑型與本發明化合物一起投予。或者,可在投予本發明化合物之前投予其他藥劑、與本發明化合物連續投予其他藥劑或在投予本發明化合物之後投予其他藥劑。在該組合療法治療中,本發明化合物與第二治療劑皆藉由習知方法投予。向一患者投予包含本發明化合物及第二治療劑之本發明組成物不排除在療程期間之另一時間向該患者單獨投予彼相同治療劑、任何其他第二治療劑或任何本發明化合物。
此等第二治療劑之有效量為熟習此項技術者所熟知且給藥指南可見於本文中提及之專利及公開專利申請案中以及Wells等人,編Pharmacotherapy Handbook第2版,Appleton and Lange,Stamford,Conn.(2000);PDR Pharmacopoeia,Tarascon Pocket Pharmacopoeia 2000,豪華版,Tarascon Publishing,Loma Linda,Calif.(2000)及其他醫學教科書中。然而,判定第二治療劑之最佳有效量範圍完全在熟習此項技術者之能力範圍內。
在本發明之向個體投予第二治療劑之一具體實例中,本發明化合物之有效量少於其在不投予第二治療劑時之有效量。在另一具體實例中,第二治療劑之有效量少於其在不投予本發明化合物時之有效量。以此方式,可使與任一藥劑之高劑量相關之不當副作用降至最低程度。其他潛在優勢(包括(但不限於)改良之給藥方案及/或藥物成本降低)對熟習此項技術者而言將顯而易見。
在另一態樣中,本發明提供式A、Al、I、II或B化合物單獨或與一或多種上述第二治療劑一起之用途,其係用於製造呈單一組成物形式或呈分開劑型形式的用於治療或預防患者之上述疾病、病症或症狀之藥物。本發明之另一態樣為式A、Al、I、II或B之化合物,其係用於治療或預防患者之本文中描述之疾病、病症或症狀。
以下合成實施例提供製備本發明之某些化合物之詳細程序。熟習此項技術者顯而易見可參考上述此等程序及流程、經由使用其他試劑或中間物來製備本發明之其他化合物。所製備之化合物係藉由所說明之NMR、質譜分析及/或元素分析來分析。1
HNMR係在適用於測定氘合併度之300MHz儀器上執行。除非另外陳述,否則如以下實施例中所註明之不存在NMR信號指示氘合併度為至少90%。
實施例1
.合成3-甲基-7-(甲基-d 3
)-1-(5-側氧基己基)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物100
)。
流程13.製備化合物100
及409
。
步驟1.3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(51)。加熱3-甲基黃嘌呤50
(5.0g,30.1mmol,1當量)及粉狀K2
CO3
(5.0g,36.0mmol,1.2當量)於DMF(95mL)中之懸浮液至60℃且經由注射器添加碘甲烷-d3
(Cambridge Isotopes,99.5原子%D,2.2mL,36.0mmol,1.2當量)。在80℃下加熱所得混合物5小時。冷卻反應混合物至室溫(rt)且在減壓下蒸發DMF。粗殘餘物溶解於5% NaOH水溶液(50mL)中,產生暗黃色溶液。以DCM洗滌水溶液三次(共500mL)。用乙酸(6mL)使水層酸化至pH 5,導致形成棕褐色沈澱物。在冰水浴中冷卻混合物,且將固體過濾且以冷水洗滌。在真空烘箱中乾燥固體以獲得2.9g呈棕褐色固體狀之51
。將濾液濃縮至約25mL且藉由過濾收集第二批(0.70g)51
。51
之總產量為3.6g。粗物質在未進一步純化的情況下使用。
步驟2.3-甲基-7-(甲基-d 3
)-1-(5-側氧基己基)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物100
)。將粗51
(1.50g,8.2mmol,1當量)及粉狀K2
CO3
(2.28g,16.4mmol,2當量)懸浮於DMF(30mL)中且加熱至50℃。向所得棕褐色懸浮液中添加6-氯-2-己酮(52
,1.2mL,9.0mmol,1.1當量)且使反應溫度升高至130℃。在130℃下繼續加熱2小時,在此時間期間懸浮液變得更精細且顏色更暗。冷卻反應混合物至室溫且在減壓下蒸發DMF。將殘餘棕褐色糊狀物懸浮於EtOAc(250mL)中且過濾以移除不溶性物質。在減壓下濃縮濾液,產生黃色油狀物。使用Analogix層析系統、相繼以100% EtOAc(10分鐘)及0至25% MeOH/EtOAc之梯度溶離50分鐘來純化粗產物。在減壓下濃縮產物溶離份以獲得微黃色油狀物,其在靜置數分鐘之後凝固。固體以庚烷(100mL)濕磨且過濾以獲得2.00g呈灰白色固體狀之100
,mp 101.8-103.0℃。1
H-NMR(300M Hz,CDCl3
):δ1.64-1.68(m,4H),2.15(s,3H),2.51(t,J=7.0,2H),3.57(s,3H),4.01(t,J=7.0,2H),7.52(s,1H)。13
C-NMR(75MHz,CDCl3
):δ20.95,27.41,29.69,29.98,40.80,43.18,107.63,141.41,148.75,151.45,155.26,208.80。HPLC(方法:20mm C18-RP管柱-梯度方法在3.3分鐘內2至95% ACN+0.1%甲酸,且在95% ACN下保持1.7分鐘;波長:254nm):滯留時間2.54分鐘;98.5%純度。MS(M+H):282.0。元素分析(C13
H15
D3
N4
O3
):計算值:C=55.50,H=6.45,N=19.92。實驗值:C=55.58,H=6.48,N=19.76。
歸因於在以上1
H-NMR譜中在4.01ppm處存在三重峰,因此相應於嘌呤環之7位(R1
)處之N-甲基上是否存在氫來判定3.99ppm周圍是否存在單峰是不可能的。
實施例2.
合成8-d 1
-3-甲基-7-(甲基-d 3
)-1-(6-d 3
-4-d 2
-5-側氧基己基)-1H
-嘌呤-2,6(3H
,7H)-二酮(化合物409
)。
8-d 1
-3-甲基-7-(甲基-d 3
)-1-(6-d 3
-4-d 2
-5-側氧基己基)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物409
)。將100
(1.80g,6.4mmol,1當量)及粉狀K2
CO3
(0.23g,1.7mmol,0.25當量)於D2
O(Cambridge Isotope Labs,99原子%D)(45mL)中之懸浮液在回流條件下攪拌24小時,在此時間期間懸浮液變為微黃色溶液。冷卻反應混合物至室溫,以氯化鈉飽和,且以二氯甲烷萃取四次(共400mL)。經合併之有機溶液經Na2
SO4
乾燥,過濾,且在減壓下蒸發以提供1.7g微黃色油狀物,其在靜置後凝固。用新鮮K2
CO3
及D2
O使粗物質再經受上述氫/氘交換條件。在相同處理之後,以己烷(100mL)濕磨灰白色固體且過濾以獲得1.61g呈灰白色固體狀之409
,mp 99.6-99.8℃。1
H-NMR(300MHz,CDCl3
):δ1.64-1.69(m,4H),3.57(s,3H),4.01(t,J=7.0,2H)。13
C-NMR(75MHz,CDCl3
):δ21.05,27.61,29.90,41.02,107.83,148.99,151.69,155.50,209.28。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN下保持4分鐘;波長:254nm):滯留時間:3.26分鐘:98%純度。MS(M+H):288.3。元素分析(C13
H9
D9
N4
O3
):計算值:C=54.35,H=6.31,N=19.50。實驗值:C=54.36,H=6.32,N=19.10。
值得注意的是,在以上1
H-NMR譜中不存在以下峰:2.15ppm周圍之單峰,指示不存在甲基酮氫;2.51ppm周圍之三重峰,指示不存在亞甲基酮氫;及7.52ppm周圍之單峰,指示嘌呤環上之編號8位置處不存在氫。歸因於在以上1
H-NMR譜中在4.01ppm處存在三重峰,因此相應於嘌呤環之7位(R1
)處之N-甲基上是否存在氫來判定3.99ppm周圍是否存在單峰是不可能的。
實施例3
.合成3,7-二(甲基-d 3
)-1-(5-側氧基己基)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物101
)。
流程14.製備化合物101
及413
。
步驟1. 3,7-二(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(55
)。加熱黃嘌呤53
(2.00g,13.2mmol,1.0當量)及六甲基二矽氮烷(32mL)於甲苯(60mL)中之懸浮液至回流且攪拌4天。冷卻反應混合物至室溫,再以甲苯(50mL)稀釋且經矽藻土過濾以移除任何未反應之起始物質。濾液在減壓下蒸發至乾以產生呈白色固體狀之54
(4.1g)。一部分此物質(3.00g)置放於100mL密封管反應容器中,接著添加甲苯(60mL)及CD3
I(4mL,Cambridge Isotopes,99.5原子%D)。反應混合物在120℃油浴中加熱且攪拌24小時,在此時間期間反應混合物變成黃色且形成固體。冷卻反應混合物至室溫,導致整個反應混合物凝固成黃色固體。以丙酮(30mL)及MeOH(5mL)稀釋混合物且在N2
流下過濾。以丙酮(100mL)洗滌固體,從而移除黃色以提供灰白色固體。在N2
流下過濾乾燥固體以獲得大致1:1比率之55
與單烷基化副產物7-(甲基-d 3
)-黃嘌呤之混合物。總質量回收率為2.6g(42%粗產率)。歸因於此混合物之不良溶解性,因此其在未進一步純化之情況下進行後續處置。
步驟2. 3,7-二(甲基-d 3
)-1-(5-側氧基己基)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物101
)。加熱粗物質55
(2.60g,13.4mmol,1.0當量)及粉狀K2
CO3
(2.20g,16mmol,1.2當量)於DMF(50mL)中之懸浮液至60℃。向所得棕褐色懸浮液中添加6-氯-2-己酮52
(2.0mL,14.8mmol,1.1當量)且加熱混合物至140℃。在140℃下繼續加熱4小時,在此時間期間懸浮液變得更精細且顏色更暗。冷卻反應混合物至室溫且在減壓下蒸發DMF。所得棕褐色糊狀物懸浮於1:1二氯甲烷/乙酸乙酯(200mL)中且過濾以移除不溶性物質。在減壓下濃縮濾液,獲得黃棕色油狀物(3.0g)。將此粗反應產物吸附於矽膠上且乾式裝載於填充有100%二氯甲烷之矽膠管柱上。管柱以0-5% MeOH/二氯甲烷之梯度溶離。在減壓下濃縮含有產物之溶離份以獲得0.75g黃色油狀物。LCMS展示物質純度為約90%。使用Analogix層析系統、20分鐘內起初以60% EtOAc/庚烷、接著以60-100% EtOAc/庚烷之梯度溶離來進一步純化黃色油狀物。所需產物溶離約20分鐘。在減壓下濃縮含有產物之溶離份以獲得0.55g(16%)呈微黃色油狀之化合物101
,其在靜置後凝固。1
H-NMR(300MHz,CDCl3
):δ1.64-1.69(m,4H),2.15(s,3H),2.51(t,J=7.0,2H),4.02(t,J=7.0,2H),7.51(s,1H)。13
C-NMR(75MHz,CDCl3
):δ20.97,27.43,29.97,40.80,43.19,107.64,141.40,148.78,151.48,155.29,208.77。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN+0.1%甲酸下保持4分鐘;波長:305nm):滯留時間:3.24分鐘:98.6%純度。MS(M+H):285.3,(M+Na):307.2。元素分析(C13
H12
D6
N4
O3
):計算值:C=54.92,H=6.38,N=19.71。實驗值:C=54.90,H=6.40,N=19.50。
值得注意的是,在以上1
H-NMR譜中不存在3.57ppm周圍之單峰,指示嘌呤環之3位置處不存在N-甲基氫。歸因於在以上1
H-NMR譜中在4.01ppm處存在三重峰,因此相應於嘌呤環之7位置(R1
)處之N-甲基上是否存在氫來判定3.99ppm周圍是否存在單峰是不可能的。
實施例4
. 合成8-d 1
-3,7-二(甲基-d 3
)-1-(4,4,6,6,6-d 5
-5-側氧基己基)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物413
)。
8-d 1
-3,7-二(甲基-d 3
)-1-(4-d 2
-6-d 3
-5-側氧基己基)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物413
)。加熱化合物101
(0.60g,2.1mmol,1.0當量)及粉狀K2
CO3
(0.10g,0.72mmol,0.30當量)於D2
O(15mL,Cambridge Isotopes,99原子%D)中之懸浮液且在回流下攪拌16小時,在此時間期間懸浮液變為微黃色溶液。冷卻反應混合物至室溫,以氯化鈉飽和,且以二氯甲烷(200mL)萃取四次。經合併之有機萃取物經Na2
SO4
乾燥,過濾,且在減壓下濃縮以提供0.53g微黃色油狀物,其在靜置後凝固。用新鮮粉狀K2
CO3
及D2
O使粗反應產物再經受以上反應條件。在相同處理之後,以己烷(50mL)濕磨灰白色固體且過濾以獲得0.45g(74%)呈灰白色固體狀之化合物413
,mp 99.2-99.3℃。1
H-NMR(300MHz,CDCl3
):δ1.64-1.71(m,4H),4.01(t,J=7.0,2H)。13
C-NMR(75MHz,CDCl3
):δ20.85,27.41,40.81,107.63,148.80,151.50,155.31,209.09。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN+0.1%甲酸下保持4分鐘;波長:254nm):滯留時間:3.25分鐘:98.7%純度。MS(M+H):291.3,(M+Na):313.2。元素分析(C13
H6
D12
N4
O3
):計算值:C=53.78,H=6.25,N=19.30。實驗值:C=53.76,H=6.39,N=19.11。
值得注意的是,在以上1
H-NMR譜中不存在以下峰:2.15ppm周圍之單峰,指示不存在甲基酮氫;2.51ppm周圍之三重峰,指示不存在亞甲基酮氫;3.57ppm周圍之單峰,指示嘌呤環上之3位置處不存在N-甲基氫;及7.51ppm周圍之單峰,指示嘌呤環上之編號8位置處不存在氫。歸因於在以上1
H-NMR譜中在4.01ppm處存在三重峰,因此相應於嘌呤環之7位置(R1
)處之N-甲基上是否存在氫來判定3.99ppm周圍是否存在單峰是不可能的。
實施例5
.合成3-甲基-7-(甲基-d 3
)-1-(6,6,6-d 3
-5-側氧基己基)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物99
)。
流程15.製備化合物99
。
步驟1.5-(3-甲基-7-(甲基-d 3
)-2,3,6,7-四氫-1H
-嘌呤-1-基)-N-甲氧基-N-甲基戊醯胺(58
)。加熱51
(1.50g,8..2mmol,1.0當量,關於製備參見實施例1)及粉狀K2
CO3
(1.80g,12.9mmol,1.6當量)於DMF(40mL)中之懸浮液至60℃。添加5-溴-N-甲氧基-N-甲基戊醯胺57
(2.21g,9.8mmol,1.2當量,如Org. Lett.,2005,7
:1427-1429中概述製備)且在110℃下加熱混合物4小時,在此時間期間懸浮固體變得更精細且顏色變為棕褐色。冷卻反應混合物至室溫且在減壓下蒸發DMF。所得棕褐色糊狀物懸浮於1:1CH2
Cl2
:乙酸乙酯(250mL)中且過濾懸浮液以移除不溶性物質。在減壓下濃縮濾液為黃色油狀物。使用Analogix自動層析系統、以100% CH2
Cl2
歷時8分鐘、接著以40分鐘內0-5% MeOH/CH2
Cl2
之梯度溶離來純化此粗反應產物。所需產物溶離約24分鐘。在減壓下濃縮含有產物之溶離份為微黃色油狀物。該油狀物之1
H NMR指示其含有約10%未反應之5
1。經Analogix自動層析系統、以100% CH2
Cl2
歷時10分鐘、接著以50分鐘內0-5% MeOH/CH2
Cl2
之梯度溶離進行第二次純化容許移除雜質。在減壓下濃縮含有產物之溶離份為微黃色油狀物,其在靜置時結晶為灰白色固體。以庚烷(100mL)濕磨固體且過濾以獲得1.29g(49%)呈灰白色固體狀之58
。
步驟2.3-甲基-7-(甲基-d 3
)-1-(6,6,6-d 3
-5-側氧基己基)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物99
)。冷卻58
(0.72g,2.2mmol,1.0當量)於THF(20mL)中之懸浮液至2℃且經由注射器以保持溫度低於5℃之速率逐滴添加於乙醚中之1M CD3
MgI(2.4mL,2.4mmol,1.1當量,Aldrich>99原子%D)。在添加期間,混合物變為精細、微黃色懸浮液。當添加完成時,使反應混合物溫至室溫且攪拌3小時。冷卻混合物至2℃且再添加一份CD3
MgI溶液(0.4mL,0.4mmol)。使混合物溫至室溫且再攪拌3小時。以1N HCl(4mL)中止反應且以H2
O(10mL)稀釋,產生微黃色溶液,其以CH2
Cl2
萃取(3×,200mL)。將經合併之有機萃取物經Na2
SO4
乾燥,過濾且在減壓下濃縮為黃色油狀物。使用Analogix自動層析系統、以100% CH2
Cl2
歷時8分鐘,且隨後以40分鐘內0-5% MeOH/CH2
Cl2
之梯度溶離來純化粗產物。所需產物首先溶離約22分鐘,接著溶離未反應之起始物質。在減壓下濃縮含有產物之溶離份為黃色油狀物,其在靜置後凝固。以己烷(25mL)濕磨固體且經由真空過濾收集獲得0.33g(53%)呈白色固體狀之化合物99
,mp 93.7-94.4℃。亦收集到含有未反應起始物質之溶離份且將其濃縮獲得0.21g呈澄清、無色油狀之58
。所回收之物質再經受以上烷基化反應,在處理及純化之後再獲得0.06g(33%,以總起始物質計共62%)化合物99
,mp 93.3-94.0℃。1
H-NMR(300MHz,CDCl3
):δ 1.64-1.68(m,4H),2.50(t,J=7.0,2H),3.58(s,3H),4.02(t,J=7.0,2H),7.51(s,1H)。13
C-NMR(75MHz,CDCl3
):δ 21.16,27.65,29.91,41.03,43.41,107.87,141.62,149.00,151.69,155.50,209.12。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN+0.1%甲酸下保持4分鐘;波長:305nm):滯留時間:3.24分鐘:99.0%純度。MS(M+H):285.3,(M+Na):307.2。元素分析(C13
H12
D6
N4
O3
):計算值:C=54.92,H=6.38,N=19.71。實驗值:C=54.85,H=6.36,N=19.49。
值得注意的是,在以上1
H-NMR譜中不存在2.15ppm周圍之單峰,指示不存在甲基酮氫。歸因於在以上1
H-NMR譜中在4.01ppm處存在三重峰,因此相應於嘌呤環之7位置(R1
)處之N-甲基上是否存在氫來判定3.99ppm周圍是否存在單峰是不可能的。
實施例6.合成(±)8-d 1
-1-(4,4,6,6,6-d 5
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物419
)。
流程16.製備化合物419、419( R )
及419( S )
。
(±)8-d 1
-1-(4,4,6,6,6-d 5
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物419
)。將化合物409
(0.50g,1.7mmol,1.0當量,參見實施例2)溶解於EtOD(13mL,Aldrich 99.5原子%D)中且添加NaBH4
(0.07g,1.9mmol,1.1當量)。觀測到溫度自24℃增加至28℃。在室溫下攪拌反應2小時,隨後藉由添加D2
O(30mL,Cambridge Isotope Labs,99原子%D)中止。形成白色懸浮液,其以MTBE萃取(4×,共200mL)。將經合併之有機萃取物經Na2
SO4
乾燥,過濾且在減壓下濃縮為澄清、無色油狀物(0.45g)。藉由矽膠層析、首先以1% MeOH/CH2
Cl2
、接著以1-5% MeOH/CH2
Cl2
之梯度溶離來純化粗產物。在減壓下濃縮含有產物之溶離份獲得(0.41g,83%)呈澄清無色油狀之化合物419
,其在靜置時凝固。
實施例7.
對掌性分離(R
)-8-d 1
-1-(4,4,6,6,6-d 5
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物419(R)
)與(S
)-8-d 1
-1-(4,4,6,6,6-d 5
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物419 ( S )
)。
分離化合物419
之對映異構體。將自以上實施例6獲得之化合物419
(0.38g)溶解於最少量之iPrOH(6mL,HPLC級,需要加熱)中且以己烷(4mL,HPLC級)稀釋。使用配備有製備型Daicel Chiralpak AD管柱(20×250mm)之Waters HPLC系統達成對映異構體分離。在操作之第一分鐘中,移動相為80%己烷及20% iPrOH以及0.1%二乙胺。在第一分鐘之後,使用15分鐘內達到75%己烷及25%iPrOH以及0.1%二乙胺之梯度,接著在18mL/min之流動速率下保持此溶劑比率歷時17分鐘。此方法導致419( R )
首先溶離(21.0分鐘),接著419( S )
溶離(24.1分鐘)的基線分離。在減壓下濃縮含有各對映異構體之溶離份獲得各自0.16g之呈灰白色固體狀之419( R )
(mp 107.8-108.8℃)及419( S )
(mp 108.3-108.4℃)。
A).(R
)-8-d 1
-1-(4,4,6,6,6-d 5
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物419( R )
)。1
H-NMR(300MHz,CDCl3
):δ1.36-1.50(m,2H),1.60-1.74(m,3H),3.58(s,3H),3.80(s,1H),4.02(t,J=7.3,2H)。13
C-NMR(75MHz,CDCl3
):δ22.70,27.86,29.71,41.14,67.66,107.66,148.78,151.54,155.40。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN+0.1%甲酸下保持4分鐘;波長:254nm):滯留時間:3.26分鐘:99.9%純度。對掌性HPLC(方法:Chiralpak AD 25cm管柱-等度方法在1.00mL/min下78%己烷/22%異丙醇/0.01%二乙胺歷時40分鐘;波長:254nm):滯留時間:27.51分鐘(主要對映異構體);31.19分鐘(次要對映異構體之預期值):>99.9%ee
純度。MS(M+H):290.1,(M+Na):312.3。元素分析(C13
H11
D9
N4
O3
):計算值:C=53.97,H=6.97,N=19.36。實驗值:C=54.39,H=7.11,N=18.98。
值得注意的是,在以上1
H-NMR譜中不存在以下峰:1.19ppm周圍之峰,指示相對於羥基之α位不存在甲基氫;及7.51ppm周圍之單峰,指示嘌呤環上之編號8位置處不存在氫。歸因於在以上1
H-NMR譜中存在1.36-1.50ppm處之多重峰及4.01ppm處之三重峰,因此相應於相對於羥基之α位是否存在亞甲基氫來判定1.51ppm處是否存在峰以及相應於嘌呤環之7位置(R1
)處之N-甲基上是否存在氫來判定3.99ppm周圍是否存在單峰是不可能的。
B).(S
)-8-d 1
-1-(4,4,6,6,6-d 5
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物419( S )
)。1
H-NMR(300MHz,CDCl3
):δ1.41-1.48(m,2H),1.64-1.72(m,3H),3.58(s,3H),3.79(s,1H),4.02(t,J=7.4,2H)。13
C-NMR(75MHz,CDCl3
):δ22.70,27.86,29.71,41.15,67.66,107.67,148.78,151.54,155.41。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN+0.1%甲酸下保持4分鐘;波長:254nm):滯留時間:3.26分鐘:99.9%純度。對掌性HPLC(方法:Chiralpak AD 25cm管柱-等度方法在1.00mL/min下78%己烷/22%異丙醇/0.01%二乙胺歷時40分鐘;波長:254nm):滯留時間:31.19分鐘(主要對映異構體);27.51分鐘(次要對映異構體之預期值):>99.9%ee
純度。MS(M+H):290.1,(M+Na):312.3。元素分析(C13
H11
D9
N4
O3
):計算值:C=53.97,H=6.97,N=19.36。實驗值:C=54.35,H=7.28,N=18.75。
值得注意的是,在以上1
H-NMR譜中不存在以下峰:1.19ppm周圍之峰,指示相對於羥基之α位不存在甲基氫;及7.51ppm周圍之單峰,指示嘌呤環上之編號8位置處不存在氫。歸因於在以上1
H-NMR譜中存在1.36-1.50ppm處之多重峰及4.01ppm處之三重峰,因此相應於相對於羥基之α位是否存在亞甲基氫來判定1.51ppm處是否存在峰以及相應於嘌呤環之7位置(R1
)處之N-甲基上是否存在氫來判定3.99ppm周圍是否存在單峰是不可能的。
實施例8.
合成(±)8-d 1
-1-(4,4,5,6,6,6-d 6
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物435
)。
流程17.製備化合物435、435( R )及435( S )。
(±)8-d 1
-1-(4,4,5,6,6,6-d 6
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物435
)。向化合物409
(0.50g,1.7mmol,1.0當量)於EtOD(13mL,Aldrich 99.5原子%D)之溶液中添加NaBD4
(0.08g,1.9mmol,1.1當量,Cambridge Isotope Labs,99原子%D)。觀測到溫度自24℃增加至27℃。在室溫下攪拌反應2小時,隨後藉由添加D2
O(30mL)(Cambridge Isotope,99原子%D)中止。形成白色懸浮液,其以MTBE萃取(4×,共200mL)。將經合併之有機萃取物經Na2
SO4
乾燥,過濾且在減壓下濃縮為澄清、無色油狀物(0.45g)。藉由矽膠層析、首先以1% MeOH/CH2
Cl2
、接著以1-5% MeOH/CH2
Cl2
之梯度溶離來純化粗產物。在減壓下濃縮含有產物之溶離份獲得0.40g(81%)呈澄清無色油狀之化合物435
,其在靜置時凝固。
實施例9.
對掌性分離(R
)-8-d 1
-1-(4,4,5,6,6,6-d 6
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物435( R )
)與(S
)-8-d 1
-1-(4,4,5,6,6,6-d 6
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物435( S )
)。
分離化合物435
之對映異構體。將自以上實施例8獲得之化合物435
(0.32g)溶解於最少量之iPrOH(5mL,HPLC級,需要加熱)中且以己烷(4mL,HPLC級)稀釋。使用配備有製備型Daicel Chiralpak AD管柱(20×250mm)之Waters HPLC系統達成對映異構體分離。在操作之第一分鐘中,移動相為80%己烷及20% iPrOH以及0.1%二乙胺。在第一分鐘之後,使用15分鐘內達到75%己烷及25%iPrOH以及0.1%二乙胺之梯度,接著在18mL/min之流動速率下保持此溶劑比率歷時17分鐘。此方法導致化合物435( R )
首先溶離(21.9分鐘),接著化合物435( S )
溶離(25.2分鐘)的基線分離。在減壓下濃縮含有各對映異構體之溶離份獲得各自0.12g之呈灰白色固體狀之435( R )
(mp108.0-108.1℃)及435( S )
(mp 107.6-107.7℃)。
A).(R
)-8-d 1
-1-(4,4,5,6,6,6-d6
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物435( R )
)。
1
H-NMR(300MHz,CDCl3
):δ1.40-1.48(m,3H),1.66-1.70(m,2H),3.58(s,3H),4.02(t,J=7.5,2H)。13
C-NMR(75MHz,CDCl3
):δ22.66,27.86,29.71,41.15,107.67,148.80,151.54,155.41。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN+0.1%甲酸下保持4分鐘;波長:254nm):滯留時間:3.25分鐘:99.8%純度。對掌性HPLC(方法:Chiralpak AD 25cm管柱-等度方法在1.00mL/min下78%己烷/22%異丙醇/0.01%二乙胺歷時40分鐘;波長:254nm):滯留時間:27.24分鐘(主要對映異構體);31.11分鐘(次要對映異構體之預期值):>99.9%ee
純度。MS(M+H):291.3,(M+Na):313.2。元素分析(C13
H10
D10
N4
O3
):計算值:C=53.78,H=6.94,N=19.30。實驗值:C=54.01,H=7.07,N=18.90。
值得注意的是,在以上1
H-NMR譜中不存在以下峰:1.19ppm周圍之峰,指示相對於羥基之α位不存在甲基氫;3.80ppm周圍之峰,指示次甲基羥基位置處不存在氫;及7.51ppm周圍之單峰,指示嘌呤環上之編號8位置處不存在氫。歸因於在以上1
H-NMR譜中存在1.36-1.50ppm處之多重峰及4.01ppm處之三重峰,因此相應於相對於羥基之α位是否存在亞甲基氫來判定1.51ppm處是否存在峰以及相應於嘌呤環之7位置(R1
)處之N-甲基上是否存在氫來判定3.99ppm周圍是否存在單峰是不可能的。
B).(S
)-8-d 1
-1-(4,4,5,6,6,6-d 6
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物435( S )
)。H-NMR(300MHz,CDCl3
):δ1.41-1.48(m,3H),1.62-1.72(m,2H),3.58(s,3H),4.03(t,J=7.4,2H)。13
C-NMR(75MHz,CDCl3
):δ22.69,27.90,29.70,41.17,107.69,148.82,151.58,155.43。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN+0.1%甲酸下保持4分鐘;波長:254nm):滯留時間:3.25分鐘:99.5%純度。對掌性HPLC(方法:Chiralpak AD 25cm管柱-等度方法在1.00mL/min下78%己烷/22%異丙醇/0.01%二乙胺歷時40分鐘;波長:254nm):滯留時間:31.11分鐘(主要對映異構體);27.24分鐘(次要對映異構體之預期值):>99.9%ee
純度。MS(M+H):291.3,(M+Na):313.2。元素分析(C13
H10
D10
N4
O3
):計算值:C=53.78,H=6.94,N=19.30。實驗值:C=54.01,H=7.11,N=18.78。
值得注意的是,在以上1
H-NMR譜中不存在以下峰:1.19ppm周圍之峰,指示相對於羥基之α位不存在甲基氫;3.80ppm周圍之峰,指示次甲基羥基位置處不存在氫;及7.51ppm周圍之單峰,指示嘌呤環上之編號8位置處不存在氫。歸因於在以上1
H-NMR譜中存在1.36-1.50ppm處之多重峰及4.01ppm處之三重峰,因此相應於相對於羥基之α位是否存在亞甲基氫來判定1.51ppm處是否存在峰以及相應於嘌呤環之7位置(R1
)處之N-甲基上是否存在氫來判定3.99ppm周圍是否存在單峰是不可能的。
實施例10.
合成8-d 1
-3,7-二甲基-1-(4,4,6,6,6-d 5
-5-側氧基己基)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物407
)。
流程18.製備化合物407、437、437( R )及437( S )
。
8-d 1
-3,7-二甲基-1-(4,4,6,6,6-d 5
-5-側氧基己基)-1H
-嘌呤-2,6(3H
,7H
)-二酮(化合物407
)。加熱市售59
(7.95g,28.6mmol)及碳酸鉀(990mg,7.2mmol)於D2
O(195mL,Cambridge Isotopes,99.9原子%D)中之混合物至回流歷時24小時。懸浮之固體逐漸溶解,獲得黃色溶液。冷卻溶液至約40℃且在減壓下濃縮為棕褐色固體。將固體溶解於D2
O(195mL)中且再加熱溶液至回流歷時24小時。冷卻溶液至室溫且在減壓下濃縮為棕褐色固體。添加乙酸乙酯(200mL)且在約40℃下攪拌混合物0.5小時。濾出不溶性物質且在減壓下濃縮濾液為淺黃色固體,將其以MTBE(40mL)濕磨獲得7.5g(93%)呈灰白色固體狀之化合物407
。
1
H-NMR(300MHz,CDCl3
):δ1.64-1.68(m,4H),3.57(s,3H),3.99(s,3H),3.99-4.04(m,2H)。13
C-NMR(75MHz,CDCl3
):δ20.84,27.40,29.69,33.57,40.81,107.62,148.77,151.48,155.28,209.07。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN+0.1%甲酸下保持4分鐘;波長:305nm):滯留時間:3.24分鐘:99.9%純度。MS(M+H):285.3,(M+Na):307.2。元素分析(C13
H12
D6
N4
O3
):計算值:C=54.92,H=6.38,N=19.71。實驗值:C=54.89,H=6.38,N=19.70。
值得注意的是,在以上1
H-NMR譜中不存在以下峰:2.15ppm周圍之單峰,指示不存在甲基酮氫;2.51ppm周圍之三重峰,指示不存在亞甲基酮氫;及7.52ppm周圍之單峰,指示嘌呤環上之編號8位置處不存在氫。
實 施例11
.合成(±)8-d 1
-1-(4,4,5,6,6,6-d 6
-5-羥基己基)-3,7-二甲基-1H-嘌呤-2,6(3H,7H)-二酮(化合物437
)。(±)8-d 1
-1-(4,4,5,6,6,6-d 6
-5-羥基己基)-3,7-二甲基-1H-嘌呤-2,6(3H,7H)-二酮(化合物437
)。在0℃下,將硼氘化鈉(1.06g,25.3mmol,Cambridge Isotopes,99原子%D)添加至407
(6.5g,22.9mmol)於乙醇-d1
(65mL,Aldrich,99.5原子%D)中之懸浮液中。使混合物溫至室溫且攪拌直至已出現澄清溶液(約1小時)。以氯化銨-d4
(Cambridge Isotopes,98原子%D)於D2
O(8mL,Cambridge Isotope,99.9原子%D)中之飽和溶液中止反應,在減壓下蒸發乙醇-d1
且以EtOAc(160mL)萃取殘餘物。以D2
O(20mL)洗滌有機相,經硫酸鈉乾燥,過濾且在減壓下濃縮以獲得4.8g(73%)呈淺黃色固體狀之化合物437
。
實施例12
.對掌性分離(R
)-8-d 1
-1-(4,4,5,6,6,6-d 6
-5-羥基己基)-3,7-二甲基-1H-嘌呤-2,6(3H,7H)-二酮(化合物437( R )
)與(S
)-8-d 1
-1-(4,4,5,6,6,6-d 6
-5-羥基己基)-3,7-二甲基-1H-嘌呤-2,6(3H,7H)-二酮(化合物437( S )
)。
分離化合物437
之對映異構體。將自以上實施例11獲得之化合物437
(1.60g)溶解於iPrOH(20mL,HPLC級,需要加熱)中。使用配備有製備型Chiralpak AD管柱(20×250mm Daicel,10μM)及位於其之前之製備型Chiralpak AD前導管柱(20×50mm Daicel,10μM)的Waters HPLC系統達成對映異構體分離。在操作之第一分鐘中,樣品以20% iPrOH/己烷(此後以0.1%作為共溶離劑之二乙胺)溶離,同時自15mL/min之流動速率勻升至18mL/min。在後續15分鐘內,樣品以流動速率為18mL/min之20%至25%iPrOH/己烷之梯度溶離。在後續19分鐘內,樣品以流動速率為18mL/min之25% iPrOH/己烷溶離。在後續0.5分鐘內,樣品以流動速率為18mL/min之25%至20% iPrOH/己烷之梯度溶離。在後續4.5分鐘內,樣品以流動速率為18mL/min之20% iPrOH/己烷溶離。此溶離方法導致化合物437( R )
首先溶離(滯留時間約29分鐘)且化合物437( S )
接著溶離(滯留時間約33分鐘)的基線分離。收集含有各對映異構體之溶離份且在減壓下濃縮獲得呈灰白色固體狀之340mg之437( R )
(mp 112.0-114.5℃)及375mg之437( S )
(mp 111.9-112.3℃)。[應注意:僅自以上製備之溶液注入1.0g437
。]
A.(R)-8-d 1
-1-(4,4,5,6,6,6-d 6
-5-羥基己基)-3,7-二甲基-1H-嘌呤-2,6(3H,7H)-二酮(化合物437( R )
)。1
H-NMR(300MHz,CDCl3
):δ1.36-1.50(m,2H),1.54(s,1H),1.64-1.74(m,2H),3.58(s,3H),3.99(s,3H),4.00-4.05(m,2H)。13
C-NMR(75MHz,CDCl3
):δ22.66,27.86,29.70,33.59,41.14,107.65,148.76,151.52,155.40。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN+0.1%甲酸下保持4分鐘;波長:305nm):滯留時間:3.28分鐘:99.9%純度。對掌性HPLC(方法:Chiralpak AD 25cm管柱-等度方法在1.00mL/min下78%己烷/22%異丙醇/0.01%二乙胺歷時40分鐘;波長:254nm):滯留時間:25.20分鐘(主要對映異構體);28.39分鐘(次要對映異構體之預期值):>99.9%ee
純度。MS(M+H):288.3,(M+Na):310.2。元素分析(C13
H13
D7
N4
O3
):計算值:C=54.34,H=7.02,N=19.50。實驗值:C=54.32,H=7.23,N=19.35。
值得注意的是,在以上1
H-NMR譜中不存在以下峰:1.19ppm周圍之峰,指示相對於羥基之α位不存在甲基氫;3.80ppm周圍之峰,指示次甲基羥基位置處不存在氫;及7.51ppm周圍之單峰,指示嘌呤環上之編號8位置處不存在氫。歸因於在以上1
H-NMR譜中存在1.36-1.50ppm處之多重峰,因此相應於相對於羥基之α位是否存在亞甲基氫來判定1.51ppm處是否存在峰是不可能的。
B. (S
)-8-d 1
-1-(4,4,5,6,6,6-d 6
-5-羥基己基)-3,7-二甲基-1H-嘌呤-2,6(3H,7H)-二酮(化合物437( S )
)。1
H-NMR(300MHz,CDCl3
):δ 1.38-1.48(m,2H),1.55(s,1H),1.64-1.72(m,2H),3.58(s,3H),3.99(s,3H),4.00-4.05(m,2H)。13
C-NMR(75MHz,CDCl3
):δ 22.65,27.84,29.71,33.59,41.13,107.64,148.75,151.52,155.39。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN+0.1%甲酸下保持4分鐘;波長:305nm):滯留時間:3.27分鐘:99.9%純度。對掌性HPLC(方法:Chiralpak AD 25cm管柱-等度方法在1.00mL/min下78%己烷/22%異丙醇/0.01%二乙胺歷時40分鐘;波長:254nm):滯留時間:28.39分鐘(主要對映異構體);25.20分鐘(次要對映異構體之預期值):>99.9%ee
純度。MS(M+H):288.3,(M+Na):310.2。元素分析(C13
H13
D7
N4
O3
):計算值:C=54.34,H=7.02,N=19.50。實驗值:C=54.33,H=7.30,N=19.36。
值得注意的是,在以上1
H-NMR譜中不存在以下峰:1.19ppm周圍之峰,指示相對於羥基之α位不存在甲基氫;3.80ppm周圍之峰,指示次甲基羥基位置處不存在氫;及7.51ppm周圍之單峰,指示嘌呤環上之編號8位置處不存在氫。歸因於在以上1
H-NMR譜中存在1.36-1.50ppm處之多重峰,因此相應於相對於羥基之α位是否存在亞甲基氫來判定1.51ppm處是否存在峰是不可能的。
實施例13.
合成(±)1-(5-d 1
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H-嘌呤-2,6(3H,7H)-二酮(化合物131
)。
流程19.製備化合物131、131( R )及131( S )
。
(±)1-(5-d 1
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H-嘌呤-2,6(3H,7H)-二酮(化合物131
)。遵循與以上合成化合物437
相同之通用方法,以EtOH中之NaBD4
處理化合物100
(參見實施例1)以提供化合物131
。
實 施例14.
對掌性分離(R
)-1-(5-d 1
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H-嘌呤-2,6(3H,7H)-二酮(化合物131( R )
)與(S
)-1-(5-d 1
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H-嘌呤-2,6(3H,7H)-二酮(化合物131( S )
)。
分離化合物131
之對映異構體。以與以上外消旋化合物437
相同之方式分離自以上實施例13獲得之外消旋化合物131
的一部分以提供經分離之對映異構體化合物131( R )
(mp 112.2-112.7℃)(210mg)及化合物131( S )
(mp 112.0-112.1℃)(220mg)。
A. (R
)-1-(5-d 1
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H-嘌呤-2,6(3H,7H)-二酮(化合物131( R )
)。1
H-NMR(300MHz,CDCl3
):δ 1.19(s,3H),1.39-1.56(m,5H),1.64-1.74(m,2H),3.58(s,3H),4.03(t,J=7.3,2H),7.51(s,1H)。13
C-NMR(75MHz,CDCl3
):δ 22.87,23.40,27.89,29.71,38.64,41.13,107.68,141.40,148.76,151.52,155.39。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN+0.1%甲酸下保持4分鐘;波長:305nm):滯留時間:3.29分鐘:99.9%純度。對掌性HPLC(方法:Chiralpak AD 25cm管柱-等度方法在1.00mL/min下78%己烷/22%異丙醇/0.01%二乙胺歷時40分鐘;波長:254nm):滯留時間:25.14分鐘(主要對映異構體);28.51分鐘(次要對映異構體之預期值):>99.9%ee
純度。MS(M+H):285.3,(M+Na):307.2。元素分析(C13
H16
D4
N4
O3
):計算值:C=54.92,H=7.09,N=19.71。實驗值:C=54.67,H=7.04,N=19.35。
值得注意的是,在以上1
H-NMR譜中不存在3.80ppm周圍之峰,指示次甲基羥基位置處不存在氫。歸因於以上1
H-NMR譜中存在4.01ppm處之三重峰,因此相應於嘌呤環之7位(R1
)處之N-甲基上是否存在氫來判定3.99ppm周圍是否存在單峰是不可能的。
B.(S
)-1-(5-d 1
-5-羥基己基)-3-甲基-7-(甲基-d 3
)-1H-嘌呤-2,6(3H,7H)-二酮(化合物131( S )
)。1
H-NMR(300MHz,CDCl3):δ1.18(s,3H),1.39-1.55(m,5H),1.67-1.72(m,2H),3.58(s,3H),4.03(t,J=7.3,2H),7.51(s,1H)。13
C-NMR(75MHz,CDCl3
):δ23.10,23.63,28.12,29.94,38.87,41.36,107.91,141.63,148.99,151.75,155.62。HPLC(方法:Waters Atlantis T3 2.1×50mm 3μm C18-RP管柱-梯度方法在14分鐘內5-95% ACN+0.1%甲酸(1.0mL/min),且在95% ACN+0.1%甲酸下保持4分鐘;波長:305nm):滯留時間:3.29分鐘:99.9%純度。對掌性HPLC(方法:Chiralpak AD 25cm管柱-等度方法在1.00mL/min下78%己烷/22%異丙醇/0.01%二乙胺歷時40分鐘;波長:254nm):滯留時間:28.51分鐘(主要對映異構體);25.14分鐘(次要對映異構體之預期值):>99.9%ee
純度。MS(M+H):285.3,(M+Na):307.2。元素分析(C13
H16
D4
N4
O3
):計算值:C=54.92,H=7.09,N=19.71。實驗值:C=54.65,H=7.04,N=19.32。
值得注意的是,在以上1
H-NMR譜中不存在3.80ppm周圍之峰,指示次甲基羥基位置處不存在氫。歸因於以上1
H-NMR譜中存在4.01ppm處之三重峰,因此相應於嘌呤環之7位(R1
)處之N-甲基上是否存在氫來判定3.99ppm周圍是否存在單峰是不可能的。
實施例15a
.評估經口投藥之後犬中之藥物動力學。比較化合物409
與配妥西菲林
研究經口投予雄性米格魯(beagle)犬之後標題化合物之代謝。在不同時點自服藥之犬移除血液樣品且由其中分離血漿。血漿樣品用於藉由LC-MS/MS(液相層析串聯質譜分析)測定血漿藥物含量以便估算藥物動力學參數。
將化合物409
及配妥西菲林單獨溶解於鹽水中至4mg/mL之濃度。製備兩種溶液之1:1(v/v)混合物以獲得具有兩種化合物409
及配妥西菲林之最終濃度為2mg/mL的溶液。
將兩隻雄性米格魯犬禁食隔夜且隨後使用上述混合物經由管飼經口給予2.5mg/kg化合物409
及配妥西菲林。在0分鐘(給藥前)、給藥後15分鐘、30分鐘、45分鐘、1小時、1.5小時、2小時、3小時、4小時、6小時、8小時、10小時、12小時、16小時及24小時經由股靜脈收集血液樣品(1.5-2mL)。將血液儲存於冰上,隨後離心以獲得血漿樣品。在血液收集1小時內進行離心以收集血漿(最大體積)。立即傾析血漿且將其於-70℃下冷凍/儲存直至分析。
a)差異%=[(氘化物質種類)-(非氘化物質種類)](100)/(非氘化物質種類)
表8展示實施例15a中所描述之評估之結果。化合物409
(氘化型式之配妥西菲林)之平均Cmax
及平均AUC顯著大於配妥西菲林。與配妥西菲林相比,氘化化合物在犬血漿中展現較大暴露量。
實施例15b.
重複評估經口投藥之後犬體內之藥物動力學。藉由監測代謝物來比較化合物409
與配妥西菲林
藉由另外監測配妥西菲林及化合物409
代謝物來重複實施例15a。在此實驗中,將化合物409
及配妥西菲林單獨溶解於鹽水中至分別4.4mg/mL及4mg/mL之濃度。製備兩種溶液之1:1(v/v)混合物以獲得具有2.2mg/mL化合物409
及2mg/mL配妥西菲林之最終濃度的溶液。給藥後資料分析包括進行調整以顧及化合物409
與配妥西菲林之間的給藥濃度之10%差異。
將四隻米格魯犬(2-3歲,且體重為5至8kg)禁食隔夜且隨後使用上述混合物經由管飼經口給予2.75mg/kg化合物409
及2.5mg/kg配妥西菲林。在0分鐘(給藥前)、給藥後5分鐘、15分鐘、30分鐘、45分鐘、1小時、1.5小時、2小時、3小時、4小時及6小時經由股靜脈收集血液樣品(約1mL)。將血液儲存於冰上,隨後離心以獲得血漿樣品。在血液收集15分鐘內進行離心以收集血漿(最大體積)。立即傾析血漿且將其於-20℃下冷凍/儲存直至分析。
藉由LC-MS/MS來分析血漿樣品中是否存在所投予之化合物及其相應M1代謝物:
來自四隻犬中每一者之結果展示於圖1A及1B中。來自四隻犬中之一者之結果(犬H,圖1b)與其他三隻犬之結果不一致。在投藥後5分鐘,彼犬展示10倍高的所投予化合物及其相應代謝物中每一者之血漿濃度。另外,在投藥後5分鐘與15分鐘之間,彼犬未展示所投予化合物之血漿濃度之特徵性增加。斷定此犬很可能管飼不當且化合物可能經由氣管投予,而非按照要求投予至胃腸道中。因此,來自此犬之資料不予分析。其餘三隻犬之概要分析展示於表9中。
a)化合物409之給藥濃度比配妥西菲林之給藥濃度高10%且因此本文中報導之數值反映針對彼10%增量所進行之調整。
b)差異%=[(氘化物質種類)-(非氘化物質種類)](100)/(非氘化物質種類)
如可在表9中所見,當與以相同含量共給藥之配妥西菲林相比時,觀測到就Cmax
及AUC而言化合物409
具有較高含量。圖1顯示在經口給藥之三隻犬中,與配妥西菲林相比,化合物409
較緩慢地自血漿清除。圖1a及1b顯示在經口給藥之三隻犬中,與配妥西菲林相比,化合物409
較緩慢地自血漿清除。圖1a及1b亦展示在給予化合物409
之後化合物419
(409
之氘化M1代謝物)之總體全身性暴露量大於給予配妥西菲林後M1代謝物之暴露量。
實施例15c.
評估經口投藥之後犬體內之藥物動力學。比較化合物413
與配妥西菲林。
除評估化合物413
以外,此研究與實施例15a及15b中所描述之研究類似。藉由管飼向四隻雄性米格魯犬經口給予於鹽水中含有各2mg/mL配妥西菲林及化合物413
之混合物。如實施例15b中獲取血液樣品。
實施例10.犬體內之化合物413
與配妥西菲林之血漿含量(實施例15c)
a)差異%=[(氘化物質種類)-(非氘化物質種類)](100)/(非氘化物質種類)
此研究之結果概述於上表10中。該表描述經口給藥之後化合物413
相較於配妥西菲林之血漿含量。當與以相同含量共給藥之配妥西菲林相比時,觀測到就Cmax
及AUC而言化合物413
具有較高含量。
實施例16.
評估化合物在大鼠全血中之穩定性。比較化合物409、435( S )、435( R )
與配妥西菲林及其M-1代謝物。
執行此研究以評估標題化合物在大鼠全血中之穩定性。因為酮(或酮基-化合物;配妥西菲林或409
)及其相應M-1醇代謝物相互轉變,所以在將酮基-化合物添加至血液中或添加M-1之後量測此等組份之含量。換言之,在某些測試中酮基-化合物為起始測試化合物,而在其他測試中M-1代謝物為起始測試化合物。
新鮮大鼠全血係自ViviSource Laboratories,Waltham,MA獲得。在二甲亞碸(DMSO)中製備測試化合物之儲備溶液(7.5毫莫耳濃度(mM))。在乙腈(ACN)中稀釋7.5mM儲備溶液至500微莫耳濃度(μM)。向990微升(μL)歷時7分鐘預溫至37℃之血液中添加10μL 500μM測試化合物至5μM之最終濃度。測試化合物為配妥西菲林、配妥西菲林之(S
)-M1代謝物、配妥西菲林之(R
)-M1代謝物、化合物409
、化合物435
( S
)及化合物435
(R
)。後兩種測試化合物分別為化合物409
之氘化(S
)-M1及(R
)-M1代謝物。在37℃下培育反應混合物。在0分鐘、添加測試化合物之後5分鐘、15分鐘、30分鐘、1小時及2小時移除等分試樣(50μL)且添加至含有150μL冰冷乙腈及內標準物之96孔板中以停止反應。將板在-20℃下儲存20分鐘,之後添加100μL 50%乙腈/水至孔中,隨後離心以使沈澱蛋白質成為離心塊。將200μL各上清液之等分試樣轉移至另一96孔板中且藉由LC-MS/MS使用Applied Bio-系統API 4000質譜儀分析下表11中列出之所投予化合物及其特定代謝物之量。
a)經由LC-MS/MS觀測到之質量。根據所公開之配妥西菲林代謝報導,立體化學構型假定為。
此研究之結果描述於圖2及3中。代謝物形成之時程展示於圖2中。如圖3中所示之所形成代謝物之相對量係根據相對於其在培育混合物中被偵測到之最早時點(對於A及B而言為5分鐘,且對於C而言為15分鐘)2小時時存在之量來計算。
如圖3中可見,約2小時之後,與配妥西菲林一起培育之大鼠全血中形成之(S)-M1之量(圖3,行A)類似於與化合物409
一起培育之大鼠全血中形成之化合物419( S )
之量(圖3,行B)。因此,與自非氘化配妥西菲林形成之非氘化(S
)-M1之相對含量相比,化合物409
中之氘取代作用對於氘化(S
)-M1代謝物(化合物419( S )
)不具有明顯影響。
對於(S
)-M1至酮基-化合物之逆反應而言,氘化作用確實具有顯著影響。圖3中之行C展示添加(S
)-M1之後存在可觀量之配妥西菲林。相比之下,添加化合物435( S )
之後2小時,未偵測到化合物409
(圖3,行D)。在此等條件下,化合物435( S )
中之氘取代作用阻礙此化合物轉化為相應酮。此影響尤其有利於增強所需M-1代謝物之血漿含量。
在此檢定中未偵測到(R
)-M1至配妥西菲林之代謝作用。類似地,將化合物435( R )
添加至大鼠血液中之後,未偵測到化合物409
。因此,不可作出關於氘化作用對於(R
)-M1轉化為配妥西菲林之影響的結論。圖2展示在將所投予化合物與大鼠全血一起培育期間產生特定代謝物之時程。
實施例17.
評估人類肝微粒體中化合物之穩定性。比較化合物409
、435( S )
、435( R )
及配妥西菲林。
在設計方面除使用人類肝微粒體替代大鼠全血來研究化合物之代謝作用以外,實施例17與實施例16類似。上表11展示在此實施例17中分析之各對測試化合物及代謝物。
人類肝微粒體(20mg/mL)係自Xenotech,LLC(Lenexa,KS)獲得。β菸鹼醯胺腺嘌呤二核苷酸磷酸酯(還原形式(NADPH))、氯化鎂(MgCl2
)及二甲亞碸(DMSO)係自Sigma-Aldrich購得。
在DMSO中製備含有7.5mM測試化合物(配妥西菲林、(S
)-M1代謝物、(R
)-M1代謝物、化合物409
、化合物435( S )
及化合物435( R )
)之儲備溶液。在乙腈(ACN)中將7.5mM儲備溶液稀釋至250μM。在含有3mM MgCl2
之0.1M磷酸鉀緩衝液(pH 7.4)中,將人類肝微粒體稀釋至2.5mg/mL。將經稀釋之微粒體一式三份添加至96孔深孔聚丙烯板之孔中。將10μL 250μM測試化合物添加至微粒體中且混合物預溫至37℃歷時10分鐘。藉由添加經預溫之NADPH溶液來啟始反應。最終反應體積為0.5mL且於0.1M磷酸鉀緩衝液(pH 7.4)及3mM MgCl2
中含有2.0mg/mL人類肝微粒體、5μM測試化合物及2mM NADPH。在37℃下培育反應混合物,且在0、5、10、20及30分鐘時移除50μL等分試樣且將其添加至含有50μL冰冷乙腈及內標準物之淺孔96孔板中以停止反應。在4℃下儲存板20分鐘,之後添加100μL水至孔中,隨後離心以使沈澱蛋白質成為離心塊。將上清液轉移至另一96孔板中且藉由LC-MS/MS使用Applied Bio-系統API 4000質譜儀分析所投予化合物及其特定代謝物(上表11中列出)之量。
此研究之結果描述於圖4及5中。代謝物形成之時程展示於圖4中。如圖5中所示之所形成代謝物之相對量係根據相對於其在培育混合物中被偵測到之最早時點(對於A、B、C及E而言為0分鐘,對於D而言為5分鐘且對於F而言為10分鐘)30分鐘時存在之量來計算。與配妥西菲林一起培育30分鐘之後之人類肝微粒體中形成之(S
)-M1之量(圖5,行A)類似於與化合物409
一起培育之人類肝微粒體中形成之化合物419( S )
之量(圖5,行B)。因此,與自非氘化配妥西菲林形成之非氘化(S
)-M1之相對含量相比,如由化合物409
所代表之配妥西菲林之氘化作用對於氘化(S
)-M1代謝物(化合物419( S )
)之相對含量不具有明顯影響。人類肝微粒體中之此等結果與使用大鼠全血所見之結果一致。
對於(S
)-M1至酮基-化合物之逆反應而言,氘化作用確實具有明顯影響。圖5中之行C展示添加(S
)-M1之後存在大量配妥西菲林。相比之下,添加化合物435( S )
之後,30分鐘後偵測到之化合物409
之含量少於(S
)-M1之含量(圖5,行D)。與自化合物435( S )
產生之化合物409
相比,自(S
)-M1產生之配妥西菲林多約30%。在此等條件下,化合物435( S )
中之氘取代作用阻礙此化合物轉化為相應酮。雖然氘在大鼠血液中具有更大影響,但是結果為一致的。
在人類肝微粒體中觀測到氘對於(R
)-M1代謝物之代謝作用之驚人影響。與自非氘化(R
)-M1形成之非氘化配妥西菲林之量相比,與人類肝微粒體一起培育30分鐘之後,(R
)-M1(化合物435( R )
)之氘化作用減少為所形成之氘化配妥西菲林(化合物409
)之量的幾乎1/5(比較圖5中之行E與F)。圖4展示在將所投予化合物與人類肝微粒體一起培育期間產生特定代謝物之時程。
實施例18
.經口及靜脈內給藥之後(S
)-M1及化合物435( S )
在大鼠體內之藥物動力學研究。
(S
)-M1及化合物435( S )
(氘化形式之(S
)-M1)分別以10mg/mL之濃度溶解於鹽水中。隨後製備化合物最終濃度各自為5mg/mL之兩種化合物之1:1混合物,其用於靜脈內投藥。為經口投藥,將混合物在鹽水中進一步稀釋至各自1mg/mL化合物之最終濃度。
經口及靜脈內研究中各自使用三隻雄性史泊格-多利(Sprague-Dawley)大鼠。在投予化合物之前,將動物禁食隔夜。藉由將1:1組合之5mg/kg單次劑量快速注射至大鼠之經插套管之頸靜脈中來達成靜脈內投藥。在給藥前一天,對已使用氯胺酮(IM 30mg/kg)進行麻醉處理之大鼠實行套管插入術。藉由經口管飼5mg/kg單次劑量來實現經口投藥。在給藥後不同時間(2分鐘、5分鐘、10分鐘、20分鐘、30分鐘、1小時、2小時、3小時、4小時、5小時、6小時)藉由對暫時以異氟烷麻醉之大鼠進行眶後取樣,自服藥大鼠收集血液樣品(250μL)。血液樣品置放於含有K2
-EDTA之管中且儲存於冰上直至離心。在收集30分鐘內,藉由離心來分離血漿。移除100μL等分試樣,將其與200μL乙腈混合且於-20℃下儲存直至藉由LC-MS/MS使用Applied Bio-系統API 4000質譜儀進一步分析。
就是否存在所投予化合物、相應酮(配妥西菲林及化合物409
)及相應M5代謝物來分析樣品。將樣品(10μL)注入Zorbax SB-C8(快速拆分)管柱(2.1×30mm,3.5mm)。初始移動相條件為100% A(水中之10mM乙酸銨)及0% B(甲醇),其中流動速率為0.5mL/min。使移動相B在3分鐘內達到55%且在1分鐘內自55%達到90%,隨後再在1分鐘內勻變回至0%。總操作時間為5分鐘。對於配妥西菲林及其M1及M5代謝物而言,前驅物/產物離子對設定為m/z 281/193(M1)、m/z 279/181(配妥西菲林)及m/z 267/221(M5)。
對於化合物435( S )
及化合物409
而言,設定一種以上離子對以偵測因氘損耗而產生之物質。發現對於在側鏈上與羰基碳相鄰之位置處具有氘之本發明化合物(諸如化合物409
)發生某種程度之氘損耗。此氘損耗似乎經由未知機制而在活體內及活體外發生。在分析之前,利用向血清樣品中添加乙腈來阻止任何額外活體外氘損耗。典型地,不超過2個氘原子經氫置換。對於化合物435( S )
而言,在氧化成酮基-化合物409
後,次甲基位置之氘耗損。409
還原為M1代謝物在次甲基位置處引入質子。當分析來自投服435( S )
之動物之血清以定量所投予化合物及代謝物時,包括總量少一個及兩個側鏈氘之化合物物質種類(在下文中稱為“-1D”及“-2D”物質種類)。因此,對於化合物435( S )
及化合物409
而言,對離子對分別設定以偵測化合物及其相應-1D及-2D物質種類。對於化合物435( S )
而言,偵測三種離子對:m/z 291/197、290/197及189/197。對於化合物409
而言,監測離子對m/z 288/186、287/186及286/186。在化合物409
及化合物435( S )
之量測中包括-1D及-2D物質種類可更準確地定量總活性物質種類且根據關於配妥西菲林及其M-1代謝物之代謝作用及活性之認識亦為合理的。增加對於化合物409
或409
之任何M-1代謝物之血漿暴露量為合意的。此包括-1D及-2D物質種類。
對於相應氘化M5代謝物(M5a
)而言:(M5a
),其在其酸側鏈上不具有氘,僅使用一種離子對m/z 271/225下。用於分析之內標準物為茚地普隆(indiplon)。
a)經由LC-MS/MS觀測到之質量。根據所公開之配妥西菲林代謝報導,立體化學構型假定為(S
)。
b)差異%=[(氘化物質種類)-(非氘化物質種類)](100)/(非氘化物質種類)
在大鼠中經口投藥之結果展示於表12中。氘化化合物435( S )
比其非氘化對應物(S
)-M1顯示顯著更高的AUC0-∞
及Cmax
。因為在(S
)-M1與配妥西菲林之間存在顯著血清相互轉化且兩種物質皆具有治療活性,所以亦定量(S
)-M1與配妥西菲林,以及化合物435( S )
與化合物409
之AUC0-∞
及Cmax
。在分別經口投予(S
)-M1及435( S )
之後,化合物435( S )
與化合物409
比(S
)-M1與配妥西菲林顯示顯著更高的AUC0-∞
及Cmax
。
亦量測分別由經口投予(S
)-M1及435( S )
所產生之M-5及M5a
代謝物之AUC0-∞
。M-5代謝物可能與在某些患者中之毒性相關且視為不合意的。表12展示與投予非氘化(S
)-M1之後獲得之M5之含量相比,經口投予化合物435( S )
提供顯著較少的M5a
。與非氘化化合物相比,氘化化合物之活性物質種類與M5代謝物之比率有利得多。(化合物435( S )
+化合物409
)與M5a
之比率為7.0,其比((S
)-M1+配妥西菲林)與M5之比率1.6好得多。
a)經由LC-MS/MS觀測到之質量。根據所公開之配妥西菲林代謝報導,立體化學構型假定為(S
)。
b)差異%=[(氘化物質種類)-(非氘化物質種類)](100)/(非氘化物質種類)
表13展示在大鼠中靜脈內投藥之後之結果。靜脈內投藥之結果與經口投藥之結果類似。靜脈內投藥之後,化合物435( S )
具有比其非氘化對應物(S
)-M1大110%之平均AUC0-∞
。靜脈內投藥之後,化合物435( S )
與化合物409
具有比(S
)-M1與配妥西菲林大79%之平均AUC0-∞
。靜脈內投予化合物435( S )
提供比靜脈內投予(S
)-M1所提供M5代謝物之量少15%之M5a
代謝物之量。靜脈內投予化合物435( S )
之大鼠體內之活性物質種類與相應M5代謝物之比率為7.4,與靜脈內投予(S
)-M1之大鼠之3.5形成對比。
實施例19
.經口及靜脈內給藥之後配妥西菲林及化合物435(S
)在黑猩猩體內之藥物動力學研究。
將配妥西菲林及化合物435( S )
分別以10mg/mL之濃度溶解於溫(65℃)鹽水中。隨後製備含有化合物最終濃度各為5mg/mL之兩種化合物之1:1混合物且隨後將混合物經0.2μM過濾器無菌過濾。
在經口及靜脈內研究中各自使用兩隻黑猩猩(一隻雄性及一隻雌性)。在投予化合物之前,將動物禁食隔夜。在給藥之前,所有動物以氯胺酮(約10mg/kg)及/或舒泰(telazol)(約5mg/kg)鎮靜。藉由靜脈內輸注各化合物75mg(共15mL給藥溶液)歷時10分鐘來達成靜脈內投藥。藉由經口管飼75mg單次劑量之各化合物(共15mL給藥溶液)來達成經口投藥。在給藥之前及之後之不同時間自服藥黑猩猩收集血液樣品(6mL)。對於靜脈內投藥而言,在0分鐘(輸注前)、5分鐘、9.5分鐘(在輸注結束之前即刻),隨後在停止輸注之後6、15、30及45分鐘,及1、2、4、6、8、10及12小時收集血液樣品。對於經口投藥而言,在0分鐘(給藥前)、15及30分鐘,及給藥後1、1.5、2、4、6、8、10及12小時收集血液樣品。
血液樣品置放於含有肝素鈉之管中,混合且儲存於冰上直至離心。在收集30分鐘內,藉由離心血液樣品來分離血漿且移除所得血漿之等分試樣(200μL)。將各200μL血漿之等分試樣與400μL乙腈混合且於-70℃下儲存直至藉由LC-MS/MS使用Applied Bio-系統API 4000質譜儀進一步分析。
如上在實施例18中對於大鼠血漿樣品所述,藉由LC-MS/MS執行所有樣品之分析。
a)經由LC-MS/MS觀測到之質量。根據所公開之配妥西菲林代謝報導,立體化學構型假定為。
b)差異%=[(氘化物質種類)-(非氘化物質種類)](100)/(非氘化物質種類)
表14展示在黑猩猩中經口投予435( S )
及配妥西菲林之結果。經口投予化合物435( S )
及配妥西菲林之1:1組合之後,化合物435( S )
及其相應酮化合物409
顯示比相應非氘化對應物(S
)-M1及配妥西菲林顯著更高之平均AUC0-∞
值。化合物43S( S )
與化合物409
之平均AUC0-∞
顯著高於(S
)-M1與配妥西菲林之平均AUC0-∞
。另外,不合意氘化M-5代謝物(M5a
)之平均AUC0-∞
顯著低於非氘化M-5之平均AUC0-∞
。最後,氘化化合物之活性物質種類與M5代謝物之比率{(435( S )
+409
):(氘化M5)}比非氘化物質種類之相應比率{((S
)-M1+配妥西菲林):M5}高約8倍。
a)經由LC-MS/MS觀測到之質量。根據所公開之配妥西菲林代謝報導,立體化學構型假定為(S
)。
b)差異%=[(氘化物質種類)-(非氘化物質種類)](100)/(非氘化物質種類)
表15展示在黑猩猩中靜脈內投予435( S )
及配妥西菲林之結果。靜脈內投藥之後之結果展示氘化化合物之有利差異,惟不如經口投藥後觀測到之差異顯著。與投予配妥西菲林相比,自投予化合物435( S )
所產生之活性物質種類之量高出40%與57%之間,而所產生M5代謝物之量減少60%與65%之間。靜脈內投予化合物435( S )
之黑猩猩體內之活性物質種類與M5代謝物的比率比投予配妥西菲林之黑猩猩高約4倍。
以上結果展示與相應非氘化化合物相比,本發明化合物提供所需活性物質種類之更大血漿暴露量。另外,展示本發明之化合物中的氘取代作用會減少可能與腎功能缺損患者之不耐性相關之M5代謝物之含量。
無需進一步描述,咸信一般技術者可使用前文描述及說明性實施例來製得及利用本發明化合物且實施所主張之方法。應瞭解上述討論及實施例僅提供某些較佳具體實例之詳細描述。對一般技術者而言將顯而易見,可在不背離本發明精神及範圍的情況下獲得不同修改及等效物。
圖1A及1B描述本發明化合物、配妥西菲林及其某些相應代謝物在經口投予配妥西菲林與彼本發明化合物之組合後在四隻個別犬體內之血清含量。
圖2描述在將不同本發明化合物、配妥西菲林、(S
)-M1及(R
)-M1與大鼠全血一起培育之後產生圖3中量測之特定代謝物之時程。
圖3描述在將不同本發明化合物、配妥西菲林、(S
)-M1及(R
)-M1與大鼠全血一起培育之後產生之特定代謝物之相對量。
圖4描述在將不同本發明化合物、配妥西菲林、(S
)-M1及(R
)-M1與人類肝微粒體一起培育之後產生圖5中量測之特定代謝物之時程。
圖5描述在將不同本發明化合物、配妥西菲林、(S
)-M1及(R
)-M1與人類肝微粒體一起培育之後產生之特定代謝物之相對量。
Claims (28)
- 一種式B化合物, ,或其醫藥學上可接受之鹽,其中:R1 及R2 係各自獨立地選自-CH3 及-CD3 ;R5 為氫或氘;且(a)Y1 為OH,且Y2 為氫或氘,或(b)Y1 及Y2 與其所連接之碳一起形成C=O。
- 如申請專利範圍第1項之化合物,其中R5 為氘。
- 如申請專利範圍第2項之化合物,其中R1 為-CD3 。
- 如申請專利範圍第1項之化合物,其中R1 及R2 各自為-CD3 。
- 如申請專利範圍第1項之化合物,其中Y1 及Y2 與其所連接之碳一起形成C=O。
- 如申請專利範圍第1項之化合物,其中Y1 為OH,且Y2 為氫或氘。
- 如申請專利範圍第1項之化合物,其中該化合物為式I化合物, ,或其醫藥學上可接受之鹽,其係選自 以下:
- 如申請專利範圍第1項之化合物,其中該化合物為式A化合物,,或其醫藥學上可接受之鹽,其係選自以下:
- 如申請專利範圍第1項之化合物,其中該化合物係選自以下中之任一者:
- 一種由以下結構式代表的化合物
- 如申請專利範圍第1項至第10項中任一項之化合 物,其中未指定為氘之任何原子係以其天然同位素豐度存在。
- 一種醫藥組成物,其包含如申請專利範圍第1至11項中任一項之化合物及醫藥學上可接受之載劑。
- 如申請專利範圍第12項之醫藥組成物,其係用於治療有需要之患者之疾病或病狀,其中該疾病係選自糖尿病性腎病、高血壓性腎病或由四肢慢性閉塞性動脈疾病引起之間歇性跛行。
- 如申請專利範圍第12項之醫藥組成物,其係用於治療有需要之患者之慢性腎病。
- 如申請專利範圍第14項的醫藥組成物,其中該慢性腎病為腎小球性腎炎、局灶節段性腎小球硬化、腎病症候群、逆流性尿路病或多囊性腎病。
- 如申請專利範圍第12項之醫藥組成物,其係用於治療有需要之患者之慢性肝病。
- 如申請專利範圍第16項的醫藥組成物,其中該慢性肝病為非酒精性脂肪變性肝炎、脂肪肝變性或其他飲食誘發之高脂肪或酒精誘發之組織變性病狀、肝硬化、肝功能衰竭或酒精性肝炎。
- 如申請專利範圍第12項之醫藥組成物,其係用於治療有需要之患者之與糖尿病相關之疾病或病狀,其中該疾病或病狀係選自胰島素抗性、視網膜病、糖尿病性潰瘍、放射相關之壞死、急性腎衰竭或藥物誘發之腎中毒。
- 如申請專利範圍第12項之醫藥組成物,其係用於治 療有需要之患者之由四肢慢性閉塞性動脈疾病引起之間歇性跛行。
- 如申請專利範圍第12項之醫藥組成物,其係用於治療有需要之患者之疾病或病狀,其中該疾病或病狀係選自胰島素依賴性糖尿病;非胰島素依賴性糖尿病;代謝症候群;肥胖症;胰島素抗性;異常血脂症;病理性葡萄糖耐受症;高血壓;高血脂症;高尿酸血症;痛風;及高凝血性。
- 一種如申請專利範圍第1至11項中任一項之化合物的用途,其係用於製造用於治療有需要之患者之疾病或病狀之醫藥品,其中該疾病係選自糖尿病性腎病、高血壓性腎病或由四肢慢性閉塞性動脈疾病引起之間歇性跛行。
- 一種如申請專利範圍第1至11項中任一項之化合物的用途,其係用於製造用於治療有需要之患者之慢性腎病之醫藥品。
- 如申請專利範圍第22項的用途,其中該慢性腎病為腎小球性腎炎、局灶節段性腎小球硬化、腎病症候群、逆流性尿路病或多囊性腎病。
- 一種如申請專利範圍第1至11項中任一項之化合物的用途,其係用於製造用於治療有需要之患者之慢性肝病的醫藥品。
- 如申請專利範圍第24項的用途,其中該慢性肝病為非酒精性脂肪變性肝炎、脂肪肝變性或其他飲食誘發之高脂肪或酒精誘發之組織變性病狀、肝硬化、肝功能衰竭或 酒精性肝炎。
- 一種如申請專利範圍第1至11項中任一項之化合物的用途,其係用於製造用於治療有需要之患者之與糖尿病相關之疾病或病狀的醫藥品,其中該疾病或病狀係選自胰島素抗性、視網膜病、糖尿病性潰瘍、放射相關之壞死、急性腎衰竭或藥物誘發之腎中毒。
- 一種如申請專利範圍第1至11項中任一項之化合物的用途,其係用於製造用於治療有需要之患者之由四肢慢性閉塞性動脈疾病引起之間歇性跛行的醫藥品。
- 一種如申請專利範圍第1至11項中任一項之化合物的用途,其係用於製造用於治療有需要之患者之疾病或病狀的醫藥品,其中該疾病或病狀係選自胰島素依賴性糖尿病;非胰島素依賴性糖尿病;代謝症候群;肥胖症;胰島素抗性;異常血脂症;病理性葡萄糖耐受症;高血壓;高血脂症;高尿酸血症;痛風;及高凝血性。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98128631A TWI466887B (zh) | 2009-08-26 | 2009-08-26 | 經取代的黃嘌呤衍生物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98128631A TWI466887B (zh) | 2009-08-26 | 2009-08-26 | 經取代的黃嘌呤衍生物 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201107326A TW201107326A (en) | 2011-03-01 |
TWI466887B true TWI466887B (zh) | 2015-01-01 |
Family
ID=44835229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98128631A TWI466887B (zh) | 2009-08-26 | 2009-08-26 | 經取代的黃嘌呤衍生物 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI466887B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017071606A1 (zh) * | 2015-10-29 | 2017-05-04 | 南京明德新药研发股份有限公司 | 羟基嘌呤类化合物的医药用途 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316458B1 (en) * | 1999-04-30 | 2001-11-13 | Cell Therapeutics, Inc. | Method of enhancing insulin action |
-
2009
- 2009-08-26 TW TW98128631A patent/TWI466887B/zh not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316458B1 (en) * | 1999-04-30 | 2001-11-13 | Cell Therapeutics, Inc. | Method of enhancing insulin action |
Non-Patent Citations (1)
Title |
---|
WARD ET AL: "Pentoxifylline. A review of its pharmacodynamic and pharmacokinetic properties and its therapeutic effects" DRUGS, vol. 34, 1 January 1987, pages 50-97. KUSHNER DJ ET AL: "Pharmacological uses and perspectives of heavy water and deuterated compounds" CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, vol. 77, no. 2, 1 February 1999, pages 79-88. * |
Also Published As
Publication number | Publication date |
---|---|
TW201107326A (en) | 2011-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5567503B2 (ja) | 置換キサンチン誘導体 | |
CN113439078B (zh) | Fxr激动剂的固体形式 | |
CN102480968B (zh) | 取代的黄嘌呤衍生物 | |
JP2008510840A (ja) | モンテルカストの精製 | |
EP3762386B1 (en) | Adenosine receptor antagonists and uses thereof | |
JP2013503883A (ja) | 置換キサンチン誘導体 | |
AU2015302407B2 (en) | Process for preparing synthetic intermediates for preparing tetrahydroquinoline derivatives | |
CA1228359A (fr) | Procede de preparation de nouveaux derives de la quinoleine | |
TWI466887B (zh) | 經取代的黃嘌呤衍生物 | |
WO2008062770A1 (fr) | Dérivé de quinolone ou sel acceptable du point de vue pharmaceutique de celui-ci | |
US9556196B2 (en) | Anti-platelet compound addition salt | |
US8389551B2 (en) | Optical enantiomers of phenyramidol and process for chiral synthesis | |
CN113603689B (zh) | 多环吡啶酮化合物及其药物组合物和用途 | |
EP3359538B9 (fr) | Derivés de 1,4,8-triazaphénanthrène pour le traitement de maladies neurodégénératives | |
CN113603692A (zh) | 5型磷酸二酯酶抑制剂的多晶物及其制备方法和应用 | |
WO2016019868A1 (zh) | 噻二唑衍生物类dpp-ⅳ抑制剂的盐 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |