TWI452719B - Iii-n semiconductor nanostructure and nano-light emitting diode thereof - Google Patents
Iii-n semiconductor nanostructure and nano-light emitting diode thereof Download PDFInfo
- Publication number
- TWI452719B TWI452719B TW097116441A TW97116441A TWI452719B TW I452719 B TWI452719 B TW I452719B TW 097116441 A TW097116441 A TW 097116441A TW 97116441 A TW97116441 A TW 97116441A TW I452719 B TWI452719 B TW I452719B
- Authority
- TW
- Taiwan
- Prior art keywords
- nano
- tri
- gallium nitride
- substrate
- nitride layer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 78
- 239000002086 nanomaterial Substances 0.000 title claims description 53
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 69
- 229910052757 nitrogen Inorganic materials 0.000 claims description 64
- 229910002601 GaN Inorganic materials 0.000 claims description 52
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 51
- 239000000758 substrate Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 38
- 239000002061 nanopillar Substances 0.000 claims description 37
- 229910052738 indium Inorganic materials 0.000 claims description 29
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 28
- 239000011521 glass Substances 0.000 claims description 13
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 9
- 229910052733 gallium Inorganic materials 0.000 claims description 9
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 5
- 238000002425 crystallisation Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910000420 cerium oxide Inorganic materials 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 4
- 238000001506 fluorescence spectroscopy Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000386 microscopy Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Led Devices (AREA)
Description
本發明係關於一種三族-氮半導體奈米構造及其發光二極體,特別是關於三族-氮半導體奈米構造及其發光二極體具有一奈米柱狀結構[nanorod structure]。The present invention relates to a tri-n-nitrogen semiconductor nanostructure and a light-emitting diode thereof, particularly to a tri-n-nitrogen semiconductor nanostructure and a light-emitting diode having a nanorod structure.
目前三族-氮半導體奈米柱[線]及其複合材料可應用於各種電子元件,例如:三族-氮半導體奈米發光二極體。一般而言,分子束磊晶[molecular beam epitaxy:MBE]技術可用於在一基板上形成三族-氮半導體奈米柱[線]。關於分子束磊晶技術,其亦揭示於許多各國專利之技術內容。舉例而言,美國專利第6387781號之〝METHOD OF FORMING THREE-DIMENSIONAL SEMICONDUCTORS STRUCTURES〞,其揭示三維半導體結構之形成方法。該美國專利僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明之範圍。At present, the tri-nitrogen semiconductor nanocolum [line] and its composite materials can be applied to various electronic components, for example, a tri-n-nitrogen semiconductor nano-light emitting diode. In general, the molecular beam epitaxy (MBE) technique can be used to form a tri-n-nitrogen semiconductor nanocolum [line] on a substrate. Regarding the molecular beam epitaxy technology, it is also disclosed in the technical content of many national patents. For example, U.S. Patent No. 6,387,781, METHOD OF FORMING THREE-DIMENSIONAL SEMICONDUCTORS STRUCTURES, discloses a method of forming a three-dimensional semiconductor structure. This U.S. patent is only a reference to the technical background of the present invention and the state of the art is not intended to limit the scope of the present invention.
關於三族-氮半導體奈米發光二極體,其亦揭示於許多國內專利之技術內容。舉例而言,中華民國專利公開公報之第200731563號、中華民國專利公開公報之第200420492號及中華民國專利公報之公告第595015號揭示相關三族-氮半導體奈米發光二極體之技術。前述中華民國專利僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明之範圍。Regarding the tri-n-cell semiconductor nano-light emitting diode, it is also disclosed in the technical content of many domestic patents. For example, the technique of the related tri-n-semiconductor nano-luminescence diode is disclosed in the Republic of China Patent Publication No. 200731563, the Republic of China Patent Publication No. 200420492, and the Republic of China Patent Publication No. 595015. The foregoing China Patent is only a reference to the technical background of the present invention and the state of the art is not intended to limit the scope of the present invention.
目前半導體製程普遍應用光阻回蝕[resist etch back,REB]技術,其在一晶圓[wafer]上沉積二氧化矽[SiO2 ],以形成一二氧化矽薄膜[thin layer];再利用非等向蝕刻[anisotropic etch]技術將該二 氧化矽薄膜蝕刻至一預定厚度。事實上,傳統三族-氮半導體奈米[線]製程亦同樣選擇採用光阻回蝕技術方法,其係將一二氧化矽層[SiO2 layer]沉積於一基板上,再利用非等向蝕刻製程方法將該二氧化矽層進行蝕刻至一預定厚度。然而,該非等向蝕刻製程額外需要多次重複進行光罩及蝕刻製程步驟,且必須中斷真空作業,因而具有製程效率不佳的缺點。At present, the semiconductor process generally applies resist etch back (REB) technology, which deposits cerium oxide [SiO 2 ] on a wafer to form a thin film [thin layer]; An anisotropic etch technique etches the cerium oxide film to a predetermined thickness. In fact, the traditional tri-n-nitrogen semiconductor nanowire [line] process also chose to use photoresist etchback technology, which deposits a SiO 2 layer on a substrate and then uses anisotropic An etching process etches the cerium oxide layer to a predetermined thickness. However, the anisotropic etching process additionally requires multiple repetitions of the mask and etching process steps, and the vacuum operation must be interrupted, thereby having the disadvantage of poor process efficiency.
有鑑於此,三族-氮半導體奈米柱[線]製程將必需捨棄原先的光阻回蝕技術方法,而改採用其他製程方法,以期改善其製程效率不佳的缺點。此外,目前半導體製程亦採用旋轉塗佈玻璃或旋塗式玻璃[Spin-On Glass Coating,SOG Coating]技術,以形成二氧化矽薄膜,即形成絕緣層。旋轉塗佈玻璃技術為在半導體製程上主要的局部性[locally]平坦化技術,其具有良好的填溝性質。旋轉塗佈玻璃技術係利用旋轉塗佈方式將含有介電材料的液態溶劑均勻塗佈在晶圓表面上,以填補沉積介電層凹陷的孔洞;接著,再進行熱處理步驟,以便去除溶劑;最後,在晶圓表面上祇留下固化後近似二氧化矽的介電材料。In view of this, the tri-n-nitrogen semiconductor nanocolumn [line] process will have to abandon the original photoresist etchback technology method, and adopt other process methods to improve the shortcomings of poor process efficiency. In addition, the current semiconductor process also uses spin-on-glass or spin-on-glass (SOG Coating) technology to form a ruthenium dioxide film, that is, to form an insulating layer. Rotating coated glass technology is a major localized planarization technique in semiconductor processes with good trench filling properties. The spin-on-glass technology utilizes a spin coating method to uniformly apply a liquid solvent containing a dielectric material on the surface of the wafer to fill the holes in which the dielectric layer is recessed; then, a heat treatment step is performed to remove the solvent; Only the dielectric material of the near-cerium oxide after curing remains on the surface of the wafer.
有鑑於此,本發明為了改良上述缺點,其提供一種三族-氮半導體奈米構造及其發光二極體,該三族-氮半導體奈米構造包含一基板、數個奈米柱及一絕緣層,該絕緣層係由旋塗式玻璃方法直接形成,其可在真空環境之下直接形成,即不需中斷真空作業,因而其能提升製程效率;且該絕緣層能確實填入形成在該奈米柱之間,以強化該奈米柱之整體結構。In view of the above, in order to improve the above disadvantages, the present invention provides a tri-n-nitrogen semiconductor nanostructure and a light-emitting diode thereof, the tri-n-nitrogen semiconductor nanostructure comprising a substrate, a plurality of nano-pillars and an insulation a layer which is directly formed by a spin-on glass method, which can be directly formed under a vacuum environment, that is, it does not need to interrupt the vacuum operation, thereby improving the process efficiency; and the insulating layer can be surely filled in the formation Between the nano columns, to strengthen the overall structure of the nano column.
本發明之主要目的係提供一種三族-氮半導體奈米構造及其發光二極體,該三族-氮半導體奈米構造包含一基板、數個奈米柱及一絕緣 層,該絕緣層係由旋塗式玻璃方法直接形成在該奈米柱之間,以達成提升製程效率之目的。The main object of the present invention is to provide a tri-n-nitrogen semiconductor nanostructure and a light-emitting diode thereof, the tri-n-nitrogen semiconductor nanostructure comprising a substrate, a plurality of nano columns and an insulation The layer is directly formed between the nano-pillars by a spin-on glass method to achieve the purpose of improving process efficiency.
本發明之另一目的係提供一種三族-氮半導體奈米構造及其發光二極體,該三族-氮半導體奈米構造包含一基板、數個奈米柱及一絕緣層,該絕緣層係由旋塗式玻璃方法形成,且該絕緣層填入形成在該奈米柱之間,以達成強化整體結構之目的。Another object of the present invention is to provide a tri-n-nitrogen semiconductor nanostructure and a light-emitting diode thereof, the tri-n-nitrogen semiconductor nanostructure comprising a substrate, a plurality of nano-pillars and an insulating layer, the insulating layer The method is formed by a spin-on glass method, and the insulating layer is filled in between the nano columns to achieve the purpose of strengthening the overall structure.
為了達成上述目的,本發明三族-氮半導體奈米構造包含一基板、數個奈米柱及一絕緣層。該基板具有一第一表面,該奈米柱成長在該基板之第一表面上,而該絕緣層係由旋塗式玻璃方法形成在該基板之第一表面上,且該絕緣層填入形成在該奈米柱之間,以便在該奈米柱之間形成絕緣部。In order to achieve the above object, the trivalent-nitrogen semiconductor nanostructure of the present invention comprises a substrate, a plurality of nano-pillars and an insulating layer. The substrate has a first surface, the nano column is grown on the first surface of the substrate, and the insulating layer is formed on the first surface of the substrate by a spin-on glass method, and the insulating layer is filled in and formed. Between the nanopillars, an insulating portion is formed between the nanopillars.
本發明之較佳實施例係該奈米柱利用分子束磊晶法形成在該基板之第一表面上。In a preferred embodiment of the invention, the nanocolumn is formed on the first surface of the substrate by molecular beam epitaxy.
本發明之較佳實施例係該奈米柱垂直成長在該基板之第一表面上。In a preferred embodiment of the invention, the nanocolum is grown vertically on the first surface of the substrate.
本發明之較佳實施例係該奈米柱具有氮化銦鎵/氮化鎵雙異質結構。In a preferred embodiment of the invention, the nanocolumn has an indium gallium nitride/gallium nitride double heterostructure.
本發明之較佳實施例係該奈米柱之直徑介於10nm至1μm之間。In a preferred embodiment of the invention, the diameter of the nanocolumn is between 10 nm and 1 μm.
本發明之較佳實施例係該奈米柱之高度小於10μm。In a preferred embodiment of the invention, the height of the nanocolumn is less than 10 [mu]m.
本發明之較佳實施例係該奈米柱之頂部表面可形成平面、斜面、尖錐形狀及冠狀之一。In a preferred embodiment of the invention, the top surface of the nanocolumn can be formed into one of a flat surface, a beveled surface, a tapered shape and a crown shape.
本發明之較佳實施例係該絕緣層係採用SOG-600材料製成。In a preferred embodiment of the invention, the insulating layer is made of a SOG-600 material.
本發明之較佳實施例係該奈米柱之結構形成三族-氮半導體奈米發光二極體。A preferred embodiment of the invention is a structure of the nanocolumn forming a trivalent-nitrogen semiconductor nanoluminescent dipole.
本發明之較佳實施例係該奈米柱密度介於106 cm-2 至1011 cm-2 之間。A preferred embodiment of the invention has a nanocolumn density of between 10 6 cm -2 and 10 11 cm -2 .
為了充分瞭解本發明,於下文將例舉較佳實施例並配合所附圖式作詳細說明,且其並非用以限定本發明。In order to fully understand the present invention, the preferred embodiments of the present invention are described in detail below and are not intended to limit the invention.
本發明較佳實施例之三族-氮半導體奈米構造可應用於光電相關技術領域,於此舉例應用於製造本發明較佳實施例之三族-氮半導體奈米發光二極體,其並非用以限定本發明之三族-氮半導體奈米構造之應用範圍。The tri-n-nitrogen semiconductor nanostructure of the preferred embodiment of the present invention can be applied to the field of optoelectronic related technology, and is exemplified herein for the manufacture of the tri-n-nitrogen semiconductor nano-light emitting diode of the preferred embodiment of the present invention, which is not It is used to define the application range of the tri-n-nitrogen semiconductor nanostructure of the present invention.
第1圖揭示本發明第一較佳實施例之三族-氮半導體奈米構造之結構示意圖。請參照第1圖所示,本發明第一較佳實施例之三族-氮半導體奈米構造包含一基板10、數個奈米柱11及一絕緣層12。本發明第一較佳實施例之三族-氮半導體奈米構造之頂部較佳具有一鎳接觸層[厚度約5nm]13a及一金接觸層[厚度約50nm]13b,其做為p型氮化鎵之歐姆接觸[ohmic contact],其並非用以限定本發明之三族-氮半導體奈米構造;而本發明第一較佳實施例之三族-氮半導體奈米構造之底部及側部分別較佳具有一鋁接觸層14a及一銦接觸層14b,其做為n型氮化鎵之歐姆接觸,其並非用以限定本發明之三族-氮半導體奈米構造。Fig. 1 is a view showing the structure of a tri-n-nitrogen semiconductor nanostructure according to a first preferred embodiment of the present invention. Referring to FIG. 1, the tri-n-nitrogen semiconductor nanostructure of the first preferred embodiment of the present invention comprises a substrate 10, a plurality of nano-pillars 11 and an insulating layer 12. The top of the tri-n-nitrogen semiconductor nanostructure of the first preferred embodiment of the present invention preferably has a nickel contact layer [thickness about 5 nm] 13a and a gold contact layer [thickness about 50 nm] 13b as p-type nitrogen. An ohmic contact of gallium, which is not intended to define the tri-n-nitrogen semiconductor nanostructure of the present invention; and the bottom and side portions of the tri-n-nitrogen semiconductor nanostructure of the first preferred embodiment of the present invention It is preferred to have an aluminum contact layer 14a and an indium contact layer 14b as ohmic contacts of n-type gallium nitride, which are not intended to define the tri-n-nitrogen semiconductor nanostructure of the present invention.
請再參照第1圖所示,該基板10較佳由矽製成,其具有一第一表面,即做為該奈米柱11之成長面。該奈米柱11成長在該基板10之第一表面上,該基板10之第二表面則構成本發明之三族-氮半導體奈米構造之底部。該絕緣層12形成在該基板10之第一表面上,且該絕緣層12填入形成在該奈米柱11之間,以便在該奈米柱11之間形成絕 緣部,即該絕緣層12包覆形成在該奈米柱11之周圍。Referring again to FIG. 1, the substrate 10 is preferably made of tantalum and has a first surface as the growth surface of the nano-pillars 11. The nanocolumn 11 is grown on the first surface of the substrate 10, and the second surface of the substrate 10 constitutes the bottom of the trivalent-nitrogen semiconductor nanostructure of the present invention. The insulating layer 12 is formed on the first surface of the substrate 10, and the insulating layer 12 is filled between the nano-pillars 11 so as to form a boundary between the nano-pillars 11 The edge portion, that is, the insulating layer 12 is overlaid around the nano-pillars 11.
第1A圖揭示本發明第一較佳實施例之三族-氮半導體奈米構造之單一個奈米柱之結構示意圖。本發明之三族-氮半導體奈米構造係於此舉例氮化銦鎵/氮化鎵雙異質結構,以說明本發明之奈米柱結構,其並非用以限定本發明於氮化銦鎵/氮化鎵雙異質結構範圍,即本發明之奈米柱結構可選擇應用於單一材料或其他複合材料之三族-氮奈米柱結構,於此不予贅述。請參照第1A圖所示,該奈米柱11包含一p型氮化鎵層11a、一氮化銦鎵層11b及一n型氮化鎵層11c;該p型氮化鎵層11a係形成在該氮化銦鎵層11b上,而該氮化銦鎵層11b係形成在該n型氮化鎵層11c上,以形成該奈米柱11之氮化銦鎵/氮化鎵雙異質結構[double heterostructure]。該奈米柱11之結構形成本發明三族-氮半導體奈米發光二極體。Fig. 1A is a schematic view showing the structure of a single column of a three-nitride-nitride nanostructure of the first preferred embodiment of the present invention. The trivalent-nitrogen semiconductor nanostructure of the present invention is exemplified herein by an indium gallium nitride/gallium nitride double heterostructure to illustrate the nanopillar structure of the present invention, which is not intended to limit the present invention to indium gallium nitride/ The range of the gallium nitride double heterostructure, that is, the nanocolumn structure of the present invention can be selectively applied to the tri-n-nano-column structure of a single material or other composite materials, and details are not described herein. Referring to FIG. 1A, the nano-pillar 11 includes a p-type gallium nitride layer 11a, an indium gallium nitride layer 11b, and an n-type gallium nitride layer 11c. The p-type gallium nitride layer 11a is formed. On the indium gallium nitride layer 11b, the indium gallium nitride layer 11b is formed on the n-type gallium nitride layer 11c to form an indium gallium nitride/gallium nitride double heterostructure of the nano column 11. [double heterostructure]. The structure of the nanocolumn 11 forms the trivalent-nitrogen semiconductor nanoluminescent dipole of the present invention.
附照1揭示本發明第一較佳實施例之三族-氮半導體奈米構造之單一個奈米柱之上視電子顯微影像,其係利用場發射掃瞄式電子顯微鏡放大40000倍顯微影像。請參照第1A圖及附照1所示,該奈米柱11之頂部具有六角型及略六角星狀的對稱形狀,其大致相同於n型氮化鎵之六角星狀的對稱形狀。該奈米柱11較佳係利用分子束磊晶法成長形成在該基板10之第一表面上,該分子束磊晶法係屬本發明較佳實施例而已,其並非用以限制本發明。關於分子束磊晶法達成該奈米柱11之成長操作條件部分,如:金屬源、成長溫度、氮/鎵通量比等,於此不予贅述。Attachment 1 discloses a top electron microscope image of a three-nano-semiconductor nanostructure of the first preferred embodiment of the present invention, which is amplified by a field emission scanning electron microscope by 40,000 times microscopy. image. Referring to FIG. 1A and FIG. 1 , the top of the nano-pillar 11 has a symmetrical shape of a hexagonal shape and a slightly hexagonal star shape, and is substantially the same as a hexagonal star-shaped symmetrical shape of n-type gallium nitride. The nanocolumn 11 is preferably grown on the first surface of the substrate 10 by molecular beam epitaxy. The molecular beam epitaxy method is a preferred embodiment of the present invention and is not intended to limit the present invention. The molecular beam epitaxy method achieves the growth operating condition portion of the nanocolumn 11, such as a metal source, a growth temperature, a nitrogen/gallium flux ratio, and the like, and will not be described herein.
附照2揭示本發明第一較佳實施例之三族-氮半導體奈米構造之數個奈米柱之電子顯微影像,其係利用場發射掃瞄式電子顯微鏡放大40000倍顯微影像。請參照第1圖及附照2所示,在真空環境下,該 奈米柱11垂直成長在該基板10之第一表面上。請再參照附照2所示,該奈米柱11之頂部表面可形成各種形狀,其包含平面、斜面、尖錐形狀及冠狀等。Attachment 2 discloses an electron micrograph of a plurality of nanopillars of a tri-n-nitrogen semiconductor nanostructure according to a first preferred embodiment of the present invention, which is obtained by a field emission scanning electron microscope to magnify 40,000 times of a microscopic image. Please refer to Figure 1 and Attachment 2, in a vacuum environment, The nano-pillar 11 is vertically grown on the first surface of the substrate 10. Referring to FIG. 2 again, the top surface of the nano-pillar 11 can be formed into various shapes including a flat surface, a sloped surface, a tapered shape, a crown shape, and the like.
請再參照第1A圖及附照2所示,本發明第一較佳實施例之該奈米柱11之直徑小於500nm,其較佳介於300nm至500nm之間或介於10nm至1μm之間,以上規格範圍並非用以限制本發明;該奈米柱11之高度小於750nm或10μm,其較佳介於600nm至750nm之間,以上規格範圍並非用以限制本發明。請再參照第1A圖所示,該奈米柱11之p型氮化鎵層11a之厚度約為150nm;而該該奈米柱11之n型氮化鎵層11c之厚度約為400nm,以上規格範圍並非用以限制本發明。Referring to FIG. 1A and FIG. 2 again, the nano column 11 of the first preferred embodiment of the present invention has a diameter of less than 500 nm, preferably between 300 nm and 500 nm or between 10 nm and 1 μm. The above specification range is not intended to limit the present invention; the height of the nano-pillar 11 is less than 750 nm or 10 μm, preferably between 600 nm and 750 nm, and the above specification range is not intended to limit the present invention. Referring to FIG. 1A again, the thickness of the p-type gallium nitride layer 11a of the nano-pillar 11 is about 150 nm; and the thickness of the n-type gallium nitride layer 11c of the nano-pillar 11 is about 400 nm or more. The scope of the specification is not intended to limit the invention.
請再參照第1圖所示,本發明第一較佳實施例之該絕緣層12係由旋塗式玻璃方法形成在該基板10之第一表面上,其可在真空環境之下直接形成,即不需中斷真空作業,因而其能提升製程效率及簡化製程。再者,該絕緣層12係採用SOG-600材料製成,其對於該基板10之基材具有優異的黏附效果,並且在室溫下有穩定的保存性。旋塗式玻璃方法係屬一種局部性平坦化技術,其對於填補該奈米柱11之間細微縫隙具有良好的功效,而其在該奈米柱11之密度較低的情況下可達成強化該奈米柱11的結構。Referring to FIG. 1 again, the insulating layer 12 of the first preferred embodiment of the present invention is formed on the first surface of the substrate 10 by a spin-on glass method, which can be directly formed under a vacuum environment. That is, it does not need to interrupt the vacuum operation, so it can improve the process efficiency and simplify the process. Further, the insulating layer 12 is made of a SOG-600 material, which has an excellent adhesion effect to the substrate of the substrate 10, and has stable storage stability at room temperature. The spin-on glass method is a localized planarization technique which has a good effect for filling the fine gap between the nano-pillars 11, and it can be strengthened when the density of the nano-pillars 11 is low. The structure of the nano column 11.
第2圖揭示本發明第一較佳實施例之三族-氮半導體奈米構造在微光致螢光實驗之微光致螢光曲線圖。請參照第2圖所示,在微光致螢光[Micro-PL]量測實驗中,在室溫下使用波長325nm之激發雷射光進行微光致螢光實驗,其約在370nm顯示氮化鎵的訊號,而約在475nm顯示氮化銦鎵的訊號,即顯示本發明之三族-氮半導體奈米構造具有氮化銦鎵/氮化鎵雙異質結構。Fig. 2 is a view showing a microphotoluminescence curve of a tri-n-nitrogen semiconductor nanostructure according to a first preferred embodiment of the present invention in a microphotoluminescence experiment. Please refer to Figure 2 for the microphoton fluorescence experiment using a 325 nm excitation laser at room temperature in a micro-fluorescence [Micro-PL] measurement experiment, which shows nitridation at about 370 nm. The gallium signal, which shows the indium gallium nitride signal at about 475 nm, shows that the tri-n-nitrogen semiconductor nanostructure of the present invention has an indium gallium nitride/gallium nitride double heterostructure.
第3圖揭示本發明第一較佳實施例之三族-氮半導體奈米構造在能量散布分析實驗之銦/鎵曲線圖。請參照第2圖所示,能量散佈分析儀的量測實驗中,約140nm的位置同時顯示銦及鎵的訊號,即顯示本發明之三族-氮半導體奈米構造具有氮化銦鎵/氮化鎵雙異質結構。上述第2及3圖之實驗數據為僅用以易於瞭解或參考本發明之技術內容而已,其並非用以限制本發明之權利範圍。Fig. 3 is a graph showing the indium/gallium profile of the trivalent-nitrogen semiconductor nanostructure in the energy dispersive analysis experiment of the first preferred embodiment of the present invention. Referring to FIG. 2, in the measurement experiment of the energy dispersive analyzer, the signal of indium and gallium is simultaneously displayed at a position of about 140 nm, which shows that the tri-n-nitrogen semiconductor nanostructure of the present invention has indium gallium nitride/nitrogen. Gallium double heterostructure. The experimental data of the above 2nd and 3rd drawings is for the purpose of easy understanding or reference to the technical content of the present invention, and is not intended to limit the scope of the present invention.
附照3揭示本發明第一較佳實施例之三族-氮半導體奈米發光二極體之發光影像。請參照附照3所示,電致螢光實驗中,本發明之三族-氮半導體奈米發光二極體在提供適當電壓下形成光點,即為奈米發光二極體。Attachment 3 discloses a luminescence image of a tri-n-nitrogen semiconductor nano-light emitting diode according to a first preferred embodiment of the present invention. Referring to the attached photo 3, in the electroluminescence experiment, the tri-n-cell semiconductor light-emitting diode of the present invention forms a light spot at a suitable voltage, that is, a nano-light emitting diode.
第4圖揭示本發明第二較佳實施例之三族-氮半導體奈米構造之結構示意圖。請參照第4圖所示,本發明第二較佳實施例之三族-氮半導體奈米構造包含一基板10、數個奈米柱11。相對於本發明第一較佳實施例,本發明第二較佳實施例之三族-氮半導體奈米構造省略第一較佳實施例之絕緣層,因而具有簡化構造。Fig. 4 is a view showing the structure of a tri-n-nitrogen semiconductor nanostructure according to a second preferred embodiment of the present invention. Referring to FIG. 4, the tri-n-nitrogen semiconductor nanostructure of the second preferred embodiment of the present invention comprises a substrate 10 and a plurality of nano-pillars 11. With respect to the first preferred embodiment of the present invention, the tri-n-nitrogen semiconductor nanostructure of the second preferred embodiment of the present invention omits the insulating layer of the first preferred embodiment, and thus has a simplified configuration.
請再參照第4圖所示,該基板10較佳由矽製成,其具有一第一表面,即做為該奈米柱11之成長面。該奈米柱11成長在該基板10之第一表面上。Referring to FIG. 4 again, the substrate 10 is preferably made of tantalum and has a first surface, that is, a growth surface of the nano-pillars 11. The nano column 11 is grown on the first surface of the substrate 10.
附照4揭示本發明第二較佳實施例實施例之三族-氮半導體奈米構造之數個奈米柱之電子顯微影像,其係利用場發射掃瞄式電子顯微鏡放大40000倍顯微影像。請參照第4圖及附照4所示,在真空環境下,該奈米柱11垂直成長在該基板10之第一表面上。請再參照附照4所示,該奈米柱11之頂部表面可形成各種形狀,其包含平面、斜面、尖錐形狀及冠狀等。Attachment 4 discloses an electron micrograph of a plurality of nanopillars of a tri-n-nitrogen semiconductor nanostructure according to a second preferred embodiment of the present invention, which is obtained by a field emission scanning electron microscope to amplify 40,000 times of microscopy. image. Referring to FIG. 4 and the attached picture 4, the nano-pillar 11 is vertically grown on the first surface of the substrate 10 in a vacuum environment. Referring to FIG. 4 again, the top surface of the nano-pillar 11 can be formed into various shapes including a flat surface, a sloped surface, a tapered shape, a crown shape, and the like.
附照5揭示本發明第二較佳實施例之三族-氮半導體奈米構造之數個奈米柱之另一電子顯微影像,其係利用場發射掃瞄式電子顯微鏡放大40000倍顯微影像。請參照附照5所示,在真空環境下,該奈米柱密度為109 cm-2 。本發明之較佳實施例係該奈米柱密度介於106 cm-2 至1011 cm-2 之間。Attachment 5 discloses another electron micrograph of several nano-column-nitrogen semiconductor nanostructures of the second preferred embodiment of the present invention, which is amplified by a field emission scanning electron microscope by 40,000 times microscopy. image. Please refer to the attached picture 5, the density of the nano column is 10 9 cm -2 in a vacuum environment. A preferred embodiment of the invention has a nanocolumn density of between 10 6 cm -2 and 10 11 cm -2 .
第5圖揭示本發明第二較佳實施例之三族-氮半導體奈米構造在陰極射線螢光實驗之陰極射線螢光曲線圖。請參照第5圖所示,在陰極射線螢光[CL]量測實驗中,在室溫下使用電子束激發進行陰極射線螢光實驗,其約在365nm顯示氮化鎵的訊號,而約在490nm顯示氮化銦鎵的訊號,即顯示本發明之三族-氮半導體奈米構造具有氮化銦鎵/氮化鎵雙異質結構。Fig. 5 is a graph showing a cathode ray fluorescence curve of a tri-n-nitrogen semiconductor nanostructure according to a second preferred embodiment of the present invention in a cathode ray fluorescence experiment. Referring to Figure 5, in the cathode ray fluorescence [CL] measurement experiment, a cathode ray fluorescence experiment was performed using electron beam excitation at room temperature, which showed a signal of gallium nitride at about 365 nm, and The 490 nm shows the signal of indium gallium nitride, which shows that the tri-n-nitrogen semiconductor nanostructure of the present invention has an indium gallium nitride/gallium nitride double heterostructure.
前述較佳實施例僅舉例說明本發明及其技術特徵,該實施例之技術仍可適當進行各種實質等效修飾及/或替換方式予以實施;因此,本發明之權利範圍須視後附申請專利範圍所界定之範圍為準。The foregoing preferred embodiments are merely illustrative of the invention and the technical features thereof, and the techniques of the embodiments can be carried out with various substantial equivalent modifications and/or alternatives; therefore, the scope of the invention is subject to the appended claims. The scope defined by the scope shall prevail.
10‧‧‧基板10‧‧‧Substrate
11‧‧‧奈米柱11‧‧‧Neizhu
11a‧‧‧p型氮化鎵層11a‧‧‧p-type gallium nitride layer
11b‧‧‧氮化銦鎵層11b‧‧‧Indium gallium nitride layer
11c‧‧‧n型氮化鎵層11c‧‧‧n type gallium nitride layer
12‧‧‧絕緣層12‧‧‧Insulation
13a‧‧‧鎳接觸層13a‧‧‧ Nickel contact layer
13b‧‧‧金接觸層13b‧‧‧ gold contact layer
14a‧‧‧鋁接觸層14a‧‧‧Aluminum contact layer
14b‧‧‧銦接觸層14b‧‧‧Indium contact layer
第1圖:本發明第一較佳實施例之三族-氮半導體奈米構造之結構示意圖。Fig. 1 is a schematic view showing the structure of a tri-n-nitrogen semiconductor nanostructure according to a first preferred embodiment of the present invention.
第1A圖:本發明第一較佳實施例之三族-氮半導體奈米構造之單一個奈米柱之結構示意圖。Fig. 1A is a schematic view showing the structure of a single column of a three-nitride-nitride nanostructure of the first preferred embodiment of the present invention.
附照1:本發明第一較佳實施例之三族-氮半導體奈米構造之單一個奈米柱之上視電子顯微影像。Attachment 1: A top electron microscopic image of a single column of a three-n-nitrogen semiconductor nanostructure of the first preferred embodiment of the present invention.
附照2:本發明第一較佳實施例之三族-氮半導體奈米構造之數個奈米柱之電子顯微影像。Attachment 2: Electron microscopic image of several nanocolumns of the tri-n-nitrogen semiconductor nanostructure of the first preferred embodiment of the present invention.
附照3:本發明第一較佳實施例之三族-氮半導體奈米發光二極體之發光影像。Attachment 3: A luminescence image of a tri-n-nitrogen semiconductor nano-light emitting diode according to a first preferred embodiment of the present invention.
第2圖:本發明第一較佳實施例之三族-氮半導體奈米構造在微光致螢光實驗之微光致螢光曲線圖。Fig. 2 is a diagram showing the microphotoluminescence curve of the tri-n-cell semiconductor nanostructure of the first preferred embodiment of the present invention in a microphotoluminescence experiment.
第3圖:本發明第一較佳實施例之三族-氮半導體奈米構造在能量散布分析實驗之銦/鎵曲線圖。Fig. 3 is a graph showing the indium/gallium profile of the trivalent-nitrogen semiconductor nanostructure of the first preferred embodiment of the present invention in an energy dispersive analysis experiment.
第4圖:本發明第二較佳實施例之三族-氮半導體奈米構造之結構示意圖。Fig. 4 is a schematic view showing the structure of a tri-n-nitrogen semiconductor nanostructure according to a second preferred embodiment of the present invention.
附照4:本發明第二較佳實施例之三族-氮半導體奈米構造之數個奈米柱之電子顯微影像。Attachment 4: Electron microscopic image of several nanocolumns of the tri-n-nitrogen semiconductor nanostructure of the second preferred embodiment of the present invention.
附照5:本發明第二較佳實施例之三族-氮半導體奈米構造之數個奈米柱之另一電子顯微影像。Attachment 5: Another electron micrograph of several nanocolumns of the tri-n-nitrogen semiconductor nanostructure of the second preferred embodiment of the present invention.
第5圖:本發明第二較佳實施例之三族-氮半導體奈米構造在陰極射線螢光實驗之陰極射線螢光曲線圖。Fig. 5 is a graph showing a cathode ray fluorescence curve of a trigonal-nitrogen semiconductor nanostructure according to a second preferred embodiment of the present invention in a cathode ray fluorescence experiment.
10‧‧‧基板10‧‧‧Substrate
11‧‧‧奈米柱11‧‧‧Neizhu
12‧‧‧絕緣層12‧‧‧Insulation
13a‧‧‧鎳接觸層13a‧‧‧ Nickel contact layer
13b‧‧‧金接觸層13b‧‧‧ gold contact layer
14a‧‧‧鋁接觸層14a‧‧‧Aluminum contact layer
14b‧‧‧銦接觸層14b‧‧‧Indium contact layer
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW097116441A TWI452719B (en) | 2008-05-05 | 2008-05-05 | Iii-n semiconductor nanostructure and nano-light emitting diode thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW097116441A TWI452719B (en) | 2008-05-05 | 2008-05-05 | Iii-n semiconductor nanostructure and nano-light emitting diode thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200947739A TW200947739A (en) | 2009-11-16 |
TWI452719B true TWI452719B (en) | 2014-09-11 |
Family
ID=44870402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097116441A TWI452719B (en) | 2008-05-05 | 2008-05-05 | Iii-n semiconductor nanostructure and nano-light emitting diode thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI452719B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080010707A1 (en) * | 2004-10-21 | 2008-01-10 | Sharp Laboratories Of America, Inc. | Ambient environment nanowire sensor |
-
2008
- 2008-05-05 TW TW097116441A patent/TWI452719B/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080010707A1 (en) * | 2004-10-21 | 2008-01-10 | Sharp Laboratories Of America, Inc. | Ambient environment nanowire sensor |
Also Published As
Publication number | Publication date |
---|---|
TW200947739A (en) | 2009-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102254969B (en) | Photoelectric device based on nanopillar array and its fabrication method | |
JP6219506B2 (en) | Insulating layer for planarization and definition of the active region of nanowire devices | |
CN105206727B (en) | InGaN/GaN multiple quantum well single nanocolumn LED device and its preparation method | |
TW201338019A (en) | Semiconductor structure for separating substrate and manufacturing method thereof | |
Jang et al. | Electrical and structural properties of GaN films and GaN/InGaN light-emitting diodes grown on porous GaN templates fabricated by combined electrochemical and photoelectrochemical etching | |
CN106409994A (en) | AlGaInP-based light-emitting diode chip and manufacturing method thereof | |
Hsieh et al. | InGaN–GaN nanorod light emitting arrays fabricated by silica nanomasks | |
Gujrati et al. | Multiple shapes micro‐LEDs with defect free sidewalls and simple liftoff and transfer using selective area growth on hexagonal boron nitride template | |
CN106785913A (en) | Composite construction nano laser of GaN base ultra-thin metal oxide semiconductor and preparation method thereof | |
CN117766642A (en) | Preparation method of micro-LED chip array based on maskless secondary epitaxy | |
CN102214750B (en) | Method for fabricating thin film light emitting diode by nano-scale lateral growth epitaxy | |
US9269856B2 (en) | Method for making light emitting diode | |
TW201244156A (en) | Light emitting diode | |
Huang et al. | Enhancement of the light output of GaN-based light-emitting diodes using surface-textured indium-tin-oxide transparent ohmic contacts | |
US9698350B2 (en) | Light emitting diode | |
TWI446579B (en) | Method for preparing light emitting diode | |
TWI452719B (en) | Iii-n semiconductor nanostructure and nano-light emitting diode thereof | |
Huang et al. | Enhanced light output power of GaN-based vertical-injection light-emitting diodes with a 12-fold photonic quasi-crystal by nano-imprint lithography | |
CN101872820A (en) | GaN-based LEDs with nanostructured insertion layers | |
CN111564540A (en) | High-speed InGaN multi-quantum well micro-nano LED light-emitting device array and preparation process thereof | |
Huang et al. | Improved light output power of GaN-based light-emitting diodes using double photonic quasi-crystal patterns | |
CN103943737B (en) | The preparation method of UV LED device | |
CN103178168A (en) | Preparation method of air-gap photonic crystal implanted gallium nitride-based light emitting diode | |
Ma et al. | Fabrication of AlGaN nanostructures by nanolithography on ultraviolet LEDs grown on Si substrates | |
JP2008053422A (en) | Crystal silicon element and method for manufacturing crystal silicon element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |