[go: up one dir, main page]

TWI451474B - Method of fabricating a transferable crystalline thin film - Google Patents

Method of fabricating a transferable crystalline thin film Download PDF

Info

Publication number
TWI451474B
TWI451474B TW098142691A TW98142691A TWI451474B TW I451474 B TWI451474 B TW I451474B TW 098142691 A TW098142691 A TW 098142691A TW 98142691 A TW98142691 A TW 98142691A TW I451474 B TWI451474 B TW I451474B
Authority
TW
Taiwan
Prior art keywords
film layer
thin film
nitride
layer structure
forming
Prior art date
Application number
TW098142691A
Other languages
Chinese (zh)
Other versions
TW201120938A (en
Inventor
Tien Hsi Lee
Original Assignee
Tien Hsi Lee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tien Hsi Lee filed Critical Tien Hsi Lee
Priority to TW098142691A priority Critical patent/TWI451474B/en
Publication of TW201120938A publication Critical patent/TW201120938A/en
Application granted granted Critical
Publication of TWI451474B publication Critical patent/TWI451474B/en

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Description

一種製作可轉移性晶體薄膜的方法 Method for making transferable crystal film

在一任意基板(如石英、玻璃、聚合物薄片等)表面上,合成一低缺陷密度、單晶半導體薄膜是當今微電子、機械光學、微機電、生物感測器等先端科技業在元件製程中所需求之複合基板。以光電領域的矽基薄膜太陽能電池為例:現今常見的製程是以化學氣體沈積製程(CVD)將矽晶薄膜長於玻璃之上,但是一般玻璃基板屬於非晶材料,這項材料上的先天特性限制,使得在其上形成的矽材料無法長成具有單晶晶體結構的薄膜。在玻璃基板上的矽晶薄膜用途非常廣泛,例如也被製成微電子驅動電路用於液晶顯示器之中,工業產值相當龐大。但是無論如何,此種非晶矽薄膜之載子遷移率(0.3~0.7cm2/Vs)受到高度密度晶粒邊界干擾的影響,無法應付現今快速電子運作的要求,也不符高效率太陽能電池所需;而且若在其上製作較為密集的電路,在運作中更是容易產生廢熱,消耗能量。為了減少這類晶體結構中晶粒邊界密度,在玻璃基板上的非晶矽薄膜可經由雷射掃描照射之再結晶加工製程,大量減少晶粒邊界,產生優於非晶矽的多晶矽結構,使載子遷移率提升為1~2cm2/Vs。現今的高效率矽基薄膜太陽能電池所需要的材料性能,是具有高載子遷移率單晶薄膜,得以快速分離電子電洞,避開再復合現象,有效提升光電轉換效率。但是大面積的生產技術,又以在玻璃上生長矽薄膜為主流,以至光電轉換效率偏低。探討這類薄膜晶體組織問題的根源,乃係玻璃為非晶基板,因此,無論採用任何沉積方法,在玻璃上沉積的矽晶薄膜都自然成為非晶矽結構。 On the surface of an arbitrary substrate (such as quartz, glass, polymer sheet, etc.), the synthesis of a low defect density, single crystal semiconductor film is the front-end technology industry in the microelectronics, mechanical optics, micro-electromechanical, biosensors, etc. The composite substrate required in the process. Take the bismuth-based thin film solar cell in the field of optoelectronics as an example: the common process today is to use a chemical vapor deposition process (CVD) to grow a twinned film over glass, but generally the glass substrate is amorphous, and the innate characteristics of this material. The limitation is such that the tantalum material formed thereon cannot grow into a thin film having a single crystal crystal structure. The twinned film on the glass substrate is widely used, for example, it is also used as a microelectronic driving circuit for a liquid crystal display, and the industrial output value is quite large. However, in any case, the carrier mobility of this amorphous germanium film (0.3~0.7cm 2 /Vs) is affected by the high density grain boundary interference, which cannot meet the requirements of today's fast electronic operation, nor the high efficiency solar cell. Need; and if a denser circuit is made on it, it is more likely to generate waste heat and consume energy during operation. In order to reduce the grain boundary density in such a crystal structure, the amorphous germanium film on the glass substrate can be recrystallized by laser scanning irradiation, and the grain boundaries are greatly reduced, resulting in a polycrystalline germanium structure superior to amorphous germanium. The carrier mobility is increased to 1~2cm 2 /Vs. The material properties required for today's high-efficiency bismuth-based thin-film solar cells are single-crystal films with high carrier mobility, which can quickly separate electron holes, avoid recombination, and effectively improve photoelectric conversion efficiency. However, the large-scale production technology is mainly based on the growth of tantalum film on glass, and the photoelectric conversion efficiency is low. The root cause of the crystal structure problem of such a thin film is that the glass is an amorphous substrate. Therefore, the twinned thin film deposited on the glass naturally becomes an amorphous germanium structure regardless of any deposition method.

儘管多晶矽具有比非晶矽較好的晶體結構,但其載子遷移率對高速電子產品而言仍然偏低,原因在於晶粒邊界密度偏高仍是主要問題癥結。相較之下,在沒有或是密度甚為稀少晶粒邊界的單晶矽薄膜結構中,形成的電路之載子遷移率不但遠超多晶矽及 非晶矽甚多,而且穩定度也相當好。本發明即是在一氧化鋁生長基板上磊晶形成一單晶矽薄膜層結構,然後將之與氧化鋁生長基板分離或轉移至其他任意基板上的方法。 Although polycrystalline germanium has a better crystal structure than amorphous germanium, its carrier mobility is still low for high-speed electronic products because the high grain boundary density is still the main problem. In contrast, in a single crystal germanium film structure that does not have a very dense grain boundary, the carrier mobility of the formed circuit is not only much higher than that of polycrystalline germanium. There are many amorphous enamels and the stability is quite good. The present invention is a method of epitaxially forming a single crystal germanium film layer structure on an alumina growth substrate, and then separating it from the alumina growth substrate or transferring it to any other substrate.

現今應用在微電子產業常見的單晶矽薄膜雖有單晶的特徵,亦即是沒有晶粒邊界,但可能內部存在有較高的差排密度。這類薄膜仍然具有足夠高的載子遷移率(200cm2/Vs)。在現今單晶矽薄膜形成技術中,其中一種方法是直接在γ切面的氧化鋁(γ-Al2O3)基板上,以磊晶技術來長矽薄膜。這種磊晶長單晶矽薄膜的原理是γ切面氧化鋁和(100)矽薄膜表面原子空間排列相似。可是雙方晶格常數卻不匹配,長出後的矽晶薄膜層雖有單晶結構,仍存有相當高的差排密度。因此伴隨此技術發展出應用雷射區域熔融、離子佈植損傷、連續退火等方法,使能產生再結晶來釋放應變力,消除這些差排。雖然生長於氧化鋁基板上的單晶矽薄膜層有相當高的差排密度,其載子遷移率之數量級與在前述非晶生長基板上獲得的矽薄膜層相較,仍為相當高,為200至300(cm2/Vs)。 Although the single crystal germanium film commonly used in the microelectronics industry has the characteristics of single crystal, that is, there is no grain boundary, there may be a high difference in density inside. Such films still have a sufficiently high carrier mobility (200 cm 2 /Vs). In today's single crystal germanium film formation technology, one of the methods is to grow the film directly on the gamma-cut alumina (γ-Al 2 O 3 ) substrate by epitaxial technique. The principle of this epitaxial long single crystal germanium film is that the atomic spatial arrangement of the surface of the γ-cut alumina and the (100) germanium film is similar. However, the lattice constants of the two sides are not matched, and although the grown twin film layer has a single crystal structure, there is still a relatively high difference in density. Therefore, along with this technology, the application of laser region melting, ion implantation damage, continuous annealing and the like has been developed to enable recrystallization to release the strain force and eliminate these differences. Although the single crystal germanium film layer grown on the alumina substrate has a relatively high difference in discharge density, the carrier mobility is still on the order of magnitude higher than that of the tantalum film layer obtained on the amorphous growth substrate described above. 200 to 300 (cm 2 /Vs).

從工業生產成本上的考量,氧化鋁基板價格甚為昂貴,若能在單晶矽晶薄膜在上形成之後,轉移至低成本的玻璃基板上,然後此氧化鋁基板回收,再經表面處理,可當作模版重覆使用來長矽晶薄膜,再重覆轉移至其他低成本基板上,便材料成本能大幅降低。更進一步的發展,可合成位於可撓性基板(flexible substrates,例如塑膠)上的單晶矽薄膜。現今在可撓性基板上的矽薄膜,主要為有機矽晶薄膜,其載子遷移率相當低(<1cm2/Vs)。如應用將前述氧化鋁上單晶矽薄膜結構於製作可撓性薄膜型太陽能電池時,能將具有PN結(PN junction)元件之單晶矽薄膜先形成後,再低溫轉移到塑膠或聚合物等可撓性基板上,不但將可提供遠較有機矽薄膜更優異的電氣特性,同時 單晶矽薄膜具有十分優異之機械性質,例如優良的抗破裂韌性(fracture toughness),可配合可繞折基板彎曲折疊而維持其品質。發展此類高效率之太陽能電池技術,或是前面提到的可繞折基板電子產品的應用,關鍵仍然是在於如何以符合經濟效益之方式,形成單晶矽薄膜在大面積之玻璃或是塑膠基板上,才能使載體有高載子漂移速率來製作高速電子元件。這種在單晶矽薄膜的製作的電子元件,當然遠比形成於玻璃上之非晶矽薄膜層或是塑膠上之有機矽基電子元件,有更好電性和可靠性,將是項新興產品的領域。 Considering the cost of industrial production, the alumina substrate is very expensive. If it is formed on a single crystal twin film, it is transferred to a low-cost glass substrate, and then the alumina substrate is recovered and then subjected to surface treatment. It can be used as a stencil to re-use long crystal film, and then transferred to other low-cost substrates, the material cost can be greatly reduced. In a further development, a single crystal germanium film on a flexible substrate such as plastic can be synthesized. The tantalum film on the flexible substrate today is mainly an organic twin film with a relatively low carrier mobility (<1 cm 2 /Vs). When the above-mentioned alumina single crystal germanium film structure is applied to fabricate a flexible thin film type solar cell, a single crystal germanium film having a PN junction element can be formed first, and then transferred to a plastic or polymer at a low temperature. On the flexible substrate, not only can it provide more excellent electrical properties than the organic germanium film, but also the single crystal germanium film has excellent mechanical properties, such as excellent fracture toughness, and can be wrapped with a wrap. The substrate is bent and folded to maintain its quality. The key to developing such high-efficiency solar cell technology, or the application of the previously entangled substrate electronics, is how to form a single-crystal germanium film in a large area of glass or plastic in a cost-effective manner. On the substrate, the carrier can have a high carrier drift rate to produce high-speed electronic components. The electronic component produced in the single crystal germanium film is of course much better than the organic germanium-based electronic component formed on the glass or the organic germanium-based electronic component on the plastic, which has better electrical and reliability. The field of products.

眾所周知,欲磊晶低缺陷單晶矽薄膜的先決條件是要有晶格匹配,可當晶種的生長基板,此外,該生長基板須能忍受一定高的長晶溫度,以達到一定的單晶相變化。因為磊晶的溫度和高度晶格匹配(lattice mismatch<5%)生長基板的限制,直接在低溫玻璃基板上形成單晶矽薄膜的技術障礙很高,在非晶結構的玻璃基板上直接長單晶矽薄膜是種近於不可能的方法。可行的方法是經由一生長基板先長成為良好特性之單晶矽薄膜層,再轉移至塑膠或是玻璃等任意基板上。現今在氧化鋁基板上磊晶生長優質單晶矽薄膜方法如下:先在氧化鋁基板上以低溫生長一層非晶矽薄膜作為緩衝層,然後再昇高製程溫度,成長正常單晶矽薄膜。開始時長晶時,在與非晶緩衝層生長界面有差排產生,然當此單晶矽薄膜長到一定厚度時,差排因應力釋放可逐漸減少。因此越後長出的薄膜內的晶體結構將臻近於完美,而差排集中在矽薄膜與氧化鋁基板介面及其鄰近處。為要解決差排的問題,需要將此區塊晶格造成更大的扭曲變形,以便儲存應變能,在後續高溫退火製程中來驅動再結晶。其中之一的方法便是將矽原子以自我離子佈植方式,以合適的佈植能量植入該矽薄膜,使之植入的矽原子剛好抵達氧化鋁生長介面,將矽薄膜與氧化鋁基板介面處的晶體結構轟擊破壞,成為非晶狀態。隨後以高溫退火處理這塊經矽原子自我佈植後矽薄膜之氧化鋁晶圓。 It is well known that a prerequisite for epitaxial low defect single crystal germanium film is to have lattice matching, which can be used as a seed growth substrate, and in addition, the growth substrate must be able to withstand a certain high crystal temperature to achieve a certain single crystal. Phase change. Because of the limitation of epitaxial temperature and high lattice matching (lattice mismatch<5%) growth substrate, the technical obstacle to form a single crystal germanium film directly on a low temperature glass substrate is very high, and the long single is directly on the amorphous glass substrate. Crystalline films are a near-impossible method. A feasible method is to transfer a single crystal germanium film layer which has a good characteristic to a substrate, and then transfer it to any substrate such as plastic or glass. Nowadays, a method for epitaxially growing a high quality single crystal germanium film on an alumina substrate is as follows: first, an amorphous germanium film is grown on the alumina substrate as a buffer layer at a low temperature, and then the process temperature is raised to grow a normal single crystal germanium film. At the beginning of the growth of the crystal, there is a difference in the growth interface with the amorphous buffer layer. However, when the single crystal germanium film grows to a certain thickness, the differential discharge can be gradually reduced due to the stress release. Therefore, the crystal structure in the film which grows later will be close to perfect, and the difference is concentrated in the vicinity of the tantalum film and the alumina substrate interface. In order to solve the problem of the poor row, it is necessary to cause greater distortion of the block lattice in order to store the strain energy and drive the recrystallization in the subsequent high temperature annealing process. One of the methods is to implant the germanium atom into the germanium film by self-ion implantation, so that the implanted germanium atom just reaches the alumina growth interface, and the germanium film and the aluminum oxide substrate. The crystal structure at the interface is destroyed by bombardment and becomes amorphous. The aluminum oxide wafer of the tantalum film self-assembled by the ruthenium atom is then annealed at a high temperature.

若此矽晶薄膜成功生長在氧化鋁基板上後,下一步便是薄膜轉移技術。九十年代半導體業界對絕緣層矽晶圓(Silicon on Insulator)材料的強烈需求,使單晶矽薄膜轉移技術發展一日千里。現在,將單晶矽層由塊體單晶矽晶圓材料轉移至任意基板,有數種不同的方式,但大部分不符低成本大規模經濟效益或是不切實際。例如一種方法是將矽晶圓內建B/Ge磊晶蝕刻停止層,然後與玻璃或是塑膠基板以晶圓鍵合方式結合,再由背面蝕刻移除大部分的矽基板。此方法對於大面積的覆蓋應用基板而言是不符經濟效益的。一九八零年代,IBM發展應用氧離子直接植入法(Separation by Implantation Oxygen,SIMOX)來發展製作以氧化層隔絕基板之超薄單晶矽薄膜SOI材料。而該氧化層可成為十分優異的蝕刻停止層,將單晶矽薄膜轉移到玻璃或是塑膠基板上。然而SIMOX製程需要植入非常高劑量的氧離子(約5 X 1018/cm2)雖然經過高溫退火處理,仍然無法使因植入氧離子在矽晶薄膜層內造成之缺陷全部消除。一九九二年,法國的布魯爾(Dr.M.Bruel)發明「智切法」(Smart Cut ® Process)。智切法能使形成知單晶矽薄膜厚度亦具有如SIMOX優異的均勻度。依據Bruel於美國專利文件(U.S.Patent 5,374,564)所請求之專利範圍(Claims)描述,該制程步驟是先於一原始基板中植入相當高的劑量(約1 X1017/cm2)如氫、鈍氣等氣體的離子,然後與另一目標基板鍵合成一體,接著再施以加高溫熱處理(heating),使植入之氫離子在植入層中聚合,進而生成許多微氣泡(microbubbles)。隨後這些微氣泡在連成一片氫氣氣膜,進而分離薄膜。由於智切法所得之薄膜均勻度十分良好,缺陷密度小,氫氣逸出後也無毒無害,沒有環境污染問題,且可以回收原始基板材料。以上氧離子直接植入法或是智切法皆以離子植入的能量來控制單晶矽薄膜的膜厚。眾所周知,以離子佈植方法所產生的單晶矽薄膜,生產所需之成本相當昂高,不太能符合生產太陽能電池的成本需要。況且智切法在薄膜分離的製程中,需要攝氏600度的熱處理,無法與常用之玻璃或是塑膠基板 相容。 If the twin film is successfully grown on an alumina substrate, the next step is the film transfer technique. The strong demand for silicon-on-insulator materials in the semiconductor industry in the 1990s has led to the development of single-crystal germanium film transfer technology. Now, there are several different ways to transfer a single crystal germanium layer from a bulk single crystal germanium wafer material to any substrate, but most of them do not conform to low cost large-scale economic benefits or are impractical. For example, one method is to build a B/Ge epitaxial etch stop layer on the germanium wafer, then bond it to the glass or plastic substrate in a wafer bonding manner, and then remove most of the germanium substrate by back etching. This method is not economical for large area coverage substrates. In the 1980s, IBM developed the use of Separation by Implantation Oxygen (SIMOX) to develop ultra-thin single-crystal germanium thin film SOI materials with oxide-insulating substrates. The oxide layer can be a very excellent etch stop layer, and the single crystal germanium film can be transferred to a glass or plastic substrate. However, the SIMOX process requires the implantation of very high doses of oxygen ions (about 5 X 10 18 /cm 2 ). However, after high temperature annealing, the defects caused by the implantation of oxygen ions in the twin film layer are not completely eliminated. In 1992, Dr. M. Bruel of France invented the "Smart Cut ® Process". The wisdom cutting method enables the formation of a known single crystal ruthenium film thickness to have excellent uniformity such as SIMOX. According to the patent scope (Claims) filed by Bruel in U.S. Patent No. 5,374,564, the process is preceded by implanting a relatively high dose (about 1 X 10 17 /cm 2 ) such as hydrogen, helium gas into an original substrate. The ions of the gas are then combined with another target substrate, and then subjected to high temperature heat treatment to polymerize the implanted hydrogen ions in the implant layer to generate a plurality of microbubbles. These microbubbles are then joined into a film of hydrogen gas to separate the film. Since the film uniformity obtained by the wisdom cutting method is very good, the defect density is small, the hydrogen gas is non-toxic and harmless after being escaped, there is no environmental pollution problem, and the original substrate material can be recovered. The above oxygen ion direct implantation method or the wisdom cutting method controls the film thickness of the single crystal germanium film by the energy of ion implantation. It is well known that the cost of production of a single crystal germanium film produced by an ion implantation method is quite high and is not in line with the cost of producing a solar cell. Moreover, the wisdom cutting method requires a heat treatment of 600 degrees Celsius in the process of film separation, and cannot be compatible with commonly used glass or plastic substrates.

總而言之,為得到高品質單晶矽基薄膜,往往需要經由以拉單晶生長方式(如CZ或FZ晶體生長製程)得到的塊體單晶矽晶棒,經由切片得到矽晶圓片,再將矽晶圓片和擬採用之主基板例如玻璃接合,以各種加工技巧,如上述研磨抛光、內建蝕刻停止層、智切法製程等等物理化學方法來減薄單晶矽晶圓。從數百微米厚度減薄至微米甚至奈米等級厚度單晶矽薄膜的研磨或蝕刻的過程之中,99%以上的矽基板被消耗浪費,且在最後製成的單晶矽薄膜,還存在應力破壞造成的損傷及整片基板厚度均勻度的問題。 In summary, in order to obtain a high-quality single crystal germanium-based film, it is often necessary to obtain a germanium wafer through slicing through a bulk single crystal twin rod obtained by pulling a single crystal growth method (such as a CZ or FZ crystal growth process). The wafer is bonded to the main substrate to be used, such as glass, and the single crystal germanium wafer is thinned by various processing techniques such as the above-described polishing and polishing, built-in etch stop layer, and smart process. In the process of grinding or etching from a thickness of hundreds of micrometers to a micron or even nanometer-thickness single crystal germanium film, more than 99% of the germanium substrate is wasted, and the final single crystal germanium film is still present. Damage caused by stress damage and uniformity of thickness of the entire substrate.

IBM的Bojarczuk在美國專利(US Patent # 6210479,Product and process for forming a semiconductor structure on a host substrate)揭露使用藍寶石基板作襯底,然後鍍上氮化物薄膜。接著在該氮化物薄膜上在生長大致近於單晶或多晶之矽晶體結構薄膜。再將該矽晶體結構薄膜表面與另一基板以黏膠結著後,再自藍寶石背面施以雷射光舉起(lift-off)藍寶石基板,分解氮化鎵薄膜而分離矽薄膜與藍寶石。此方法與2000年柏克萊加州大學(Univ.of California,Berkeley)的Cheung發明以雷射光入射在藍寶石上的氮化鎵與其介面,分解氮化鎵成為氮與鎵元素,舉起藍寶石基板而分離氮化鎵和藍寶石十分相似。(U.S.PatentNo.6,071,795;"Separation of Thin Films from Transparent Substrates by Selective Optical Processing," N.W.Cheung,T.D.Sands and W.S.Wong,issued June 6th,2000)。但是矽與氮化鎵之間晶格匹配差距甚大,在生長過程中易產生差排缺陷,與前述尚需再結晶製程來改善晶體結構品質作法所得的薄膜品質,有段差距。且由雷射光來分解氮化鎵薄膜,將受雷射光束面積及輸出功率限制,以及需分解之氮化鎵薄膜要求總量影響之下(使產生得到得氮氣壓力需足夠高),無法進行有效率的大面積薄膜分離。 The use of a sapphire substrate as a substrate and then a nitride film is disclosed in U.S. Patent No. 4,612,479, to the use of a sapphire substrate. Next, a thin crystal structure film which is substantially close to single crystal or polycrystal is grown on the nitride film. After the surface of the tantalum crystal structure film is adhered to another substrate, a laser lift-off sapphire substrate is applied from the back surface of the sapphire, and the gallium nitride film is decomposed to separate the tantalum film and the sapphire. This method and the Cheung in the University of California, Berkeley in 2000, invented the gallium nitride and its interface on the sapphire with laser light, decomposed gallium nitride into nitrogen and gallium elements, and lifted the sapphire substrate. Separating gallium nitride and sapphire is very similar. (U.S. Patent No. 6,071,795; "Separation of Thin Films from Transparent Substrates by Selective Optical Processing," N. W. Cheung, T. D. Sands and W. S. Wong, issued June 6th, 2000). However, the lattice matching between germanium and gallium nitride is very large, and it is easy to produce poor discharge defects during the growth process. There is a gap between the above-mentioned film quality obtained by the recrystallization process to improve the crystal structure quality. And the laser light is used to decompose the gallium nitride film, which is limited by the laser beam area and output power, and the total amount of the gallium nitride film to be decomposed (so that the generated nitrogen pressure needs to be high enough) cannot be performed. Efficient large area membrane separation.

總括來看,在低溫條件限制下(為避免損害己內建完成的電子元件,需小於攝氏450 度),在玻璃上形成單晶矽晶薄膜的關鍵技術為低溫薄膜轉移技術。 In summary, under the constraints of low temperature conditions (to avoid damage to the built-in electronic components, less than 450 Celsius The key technology for forming a single crystal twin film on glass is low temperature film transfer technology.

本發明在製作一種在耐高溫基板如氧化鋁基板上生長,可作低溫薄膜轉移之單晶薄膜如單晶矽薄膜的方法,將晶體生長與薄膜轉移兩者,畢其功於一製程。 The invention is a method for preparing a single crystal film such as a single crystal germanium film which is grown on a high temperature resistant substrate such as an alumina substrate and can be used for low temperature film transfer, and both crystal growth and film transfer are performed in one process.

該單晶薄膜亦可藉由在能耐高溫基板上之優勢,經過一般半導體製程,形成電子元件於其中後,再轉移至其他低成本或低溫之任意基板上。 The single crystal film can also be formed into an electronic component by a general semiconductor process through the advantages of a high temperature resistant substrate, and then transferred to any other low cost or low temperature substrate.

本發明製程第一步生長金屬氮化物薄膜,例如氮化鈦(TiN),氮化鋁(AlN),氮化銦(InN)或氮化鎵(GaN)薄膜在具單晶結構的氧化鋁(Al2O3)基板上,然後在緊接形成非晶層薄膜例如非晶矽於該金屬氮化物上作為緩衝層。此時非晶薄膜層有兩項功用:第一是緩衝層功用,提供該金屬氮化物薄膜和後續長的晶體薄膜,如單晶矽薄膜,晶格漸進緩衝作用,能大幅減少直接由氧化鋁基板生長矽薄膜引發的高密度缺陷;另一是提供其與後續生長其上的晶體薄膜介面處產生差排,使晶格不匹配產出的應力更加得以釋放,來長出近乎完美的單晶結構薄膜的緩衝層作用。非晶層薄膜生成之後,提升製程溫度,將晶體薄膜層,例如單晶矽,直接以液相磊晶(LPE)或化學蒸氣沉澱(CVD)方式,長在此一非晶薄膜層上。待完成磊晶生長後,完成晶體薄膜層結構主體後,使用高溫退火製程將此氧化鋁基板上的晶體薄膜結構進行再結晶,消除晶體薄膜結構與氧化鋁基板之間晶格差異造成的差排,得到低缺陷之結晶晶體薄膜層結構。由於氫離子溶於金屬氮化物的溶解度相當大。在Yafei Li等作者在2009年Journal of Nanotechnology 20 215701發表之Computational studies on hydrogen storage in aluminum nitride nanowires/tubes一文,提到氮化鋁可儲存高達3.66wt%的氫氣。因此,可將一依照本發明精神形成之單晶矽薄膜/氮化鋁薄膜/氧化鋁基板浸沒在常壓氫電漿中,使此氧化鋁基板上的單晶矽薄膜結構表面暴露在高密度氫離子中,使氫離子由單晶矽薄膜接觸氫離子源之表面注入,通過單晶矽薄膜結構進入金屬氮化鋁薄膜層儲存。形成此富含氫離子之氮化鋁之氧化鋁結構體後,再經晶圓鍵合方式與其他基板接合,構成一晶圓鍵合對。輸入適當的能量,例如以350nm波長強紫外光向氧化鋁基板裸面照射,使先前經氫離子表面處理之儲存在金屬氮化鋁的氫離子,聚合成氫氣體分子,也分解金屬氮化物薄膜,最終能有效率分離該單晶矽薄膜層結構與氧化鋁基板。 The first step of the process of the invention is to grow a metal nitride film such as titanium nitride (TiN), aluminum nitride (AlN), indium nitride (InN) or gallium nitride (GaN) film in a single crystal structure of aluminum oxide ( On the Al 2 O 3 ) substrate, an amorphous layer film such as an amorphous germanium is then formed on the metal nitride as a buffer layer. At this time, the amorphous film layer has two functions: the first is the buffer layer function, providing the metal nitride film and the subsequent long crystal film, such as a single crystal germanium film, the lattice progressive buffering effect, which can greatly reduce the direct alumina The substrate grows with high-density defects caused by the thin film; the other is to provide a difference between the crystal film interface and the subsequent growth of the crystal film interface, so that the stress generated by the lattice mismatch is released, and the near-perfect single crystal is grown. The buffer layer function of the structural film. After the amorphous layer film is formed, the process temperature is raised, and the crystalline thin film layer, for example, single crystal germanium, is directly grown on the amorphous thin film layer by liquid phase epitaxy (LPE) or chemical vapor deposition (CVD). After the epitaxial growth is completed, after completing the crystal thin film structure main body, the crystal thin film structure on the alumina substrate is recrystallized by a high temperature annealing process to eliminate the difference in lattice difference between the crystal thin film structure and the alumina substrate. A low-defect crystalline crystal film layer structure is obtained. The solubility of hydrogen ions in metal nitrides is quite large. In the article " Computational studies on hydrogen storage in aluminum nitride nanowires/tubes" published by Yafei Li et al., Journal of Nanotechnology 20 215701, it is mentioned that aluminum nitride can store up to 3.66 wt% of hydrogen. Therefore, a single crystal germanium film/aluminum nitride film/alumina substrate formed according to the spirit of the present invention can be immersed in an atmospheric pressure hydrogen plasma to expose the surface of the single crystal germanium film structure on the alumina substrate to a high density. In the hydrogen ion, hydrogen ions are injected from the surface of the single crystal germanium film contacting the hydrogen ion source, and are stored in the metal aluminum nitride film layer through the single crystal germanium film structure. After forming the aluminum oxide structure of the hydrogen ion-rich aluminum nitride, it is bonded to other substrates by wafer bonding to form a wafer bonding pair. Input appropriate energy, for example, ultraviolet light with a wavelength of 350 nm to the bare side of the alumina substrate, so that hydrogen ions stored in the metal aluminum nitride previously treated by hydrogen ions are polymerized into hydrogen gas molecules, and the metal nitride film is also decomposed. Finally, the single crystal germanium film layer structure and the alumina substrate can be efficiently separated.

此項氫分解金屬氮化物效果也被揭露於在2007年Japanese Journal of Applied Physics(Vol.46,L1114-L1116頁)發表的Study of the Decomposition Processes of (0001)AlN in a Hydrogen Atmosphere一文,描述以氫氣執行氮化鋁金屬化步驟,將磊晶AlN薄膜分解為氫化鋁(AlH)及氨分子(NH3)。在實施例中,氫不但分解AlN薄膜,也形成氣體壓力剝離薄膜。該氧化鋁上的鋁金屬殘留物經過蝕刻步驟移除,可重覆再使用。 The hydrogen decomposition metal nitride effect is also disclosed in the Study of the Decomposition Processes of (0001) AlN in a Hydrogen Atmosphere published in the Japanese Journal of Applied Physics (Vol. 46, page L1114-L1116). Hydrogen performs an aluminum nitride metallization step to decompose the epitaxial AlN film into aluminum hydride (AlH) and ammonia molecules (NH3). In the examples, hydrogen not only decomposes the AlN film but also forms a gas pressure release film. The aluminum metal residue on the alumina is removed by an etching step and can be reused.

另一方面,在金屬氮化物中,氮化鈦則具有阻擋氫離子擴散的功效。若以其為首先沉澱之薄膜,則可有效阻擋氫離子於氮化鈦與晶體薄膜層結構的介面,而使氫離子大量堆積聚集在氮化鈦與矽晶薄膜層結構間。在接下來的紫外光照射製程中,也能產生氫氣薄膜分離矽晶薄膜結構層效果。該氧化鋁上的氮化鈦殘留物經過磷酸蝕刻步驟移除,可重覆再使用。 On the other hand, in metal nitrides, titanium nitride has the effect of blocking the diffusion of hydrogen ions. If it is the first deposited film, it can effectively block the interface of hydrogen ions between the titanium nitride and the crystal thin film layer structure, and a large amount of hydrogen ions accumulate between the titanium nitride and the twin film layer structure. In the next ultraviolet light irradiation process, the effect of the hydrogen film separating the twin film structure layer can also be produced. The titanium nitride residue on the alumina is removed by a phosphoric acid etching step and can be reused.

參閱圖一至圖十二以瞭解本發明的流程。圖一是形成晶體薄膜層結構109於氧化鋁基板101上。該晶體薄膜層結構109係由晶體薄膜層102長在非晶薄膜層104上。此 非晶薄膜層104有緩衝層的功用,但又長在晶格不匹配的金屬氮化物薄膜層105上,由於金屬氮化物薄膜層105與晶體薄膜層102晶格交互扭曲應力的作用,形成較高密度差排層103於晶體薄膜層102與非晶薄膜層104之間。此差排層103將是後續再結晶退火處理過程中,提供再結晶驅動力的來源。 Referring to Figures 1 through 12, the flow of the present invention will be understood. FIG. 1 shows the formation of a crystalline thin film layer structure 109 on an alumina substrate 101. The crystal thin film layer structure 109 is grown on the amorphous thin film layer 104 by the crystalline thin film layer 102. this The amorphous thin film layer 104 has the function of a buffer layer, but grows on the lattice-mismatched metal nitride thin film layer 105. Due to the lattice distortion interaction between the metal nitride thin film layer 105 and the crystalline thin film layer 102, the formation is relatively The high density differential alignment layer 103 is between the crystalline thin film layer 102 and the amorphous thin film layer 104. This differential layer 103 will be the source of the recrystallization driving force during the subsequent recrystallization annealing process.

圖二是已經再結晶處理過程之後,在氧化鋁基板101上的結晶晶體薄膜層106。圖三則是由氫離子源注入氫離子108,經由結晶晶體薄膜層106表面107進入結晶晶體薄膜層106與金屬氮化物薄膜層105,使之成為富含氫離子的結晶晶體薄膜層1061和在表面與氫離子有交互作用的金屬氮化物1051薄膜層。然後將一任意基板110以晶圓鍵合方式和富含氫離子的結晶晶體薄膜層1061的表面接合,如圖四所示。圖五顯示有一能量,如紫外光,由氧化鋁基板101背部無遮蔽表面111輸入,使富含氫離子的結晶晶體薄膜層1061和在表面與氫離子有交互作用的金屬氮化物1051的氫離子釋放出來,且經化學反應成為氫氣體,分解金屬氮化物1051成為分解物1052,也使富含氫離子的結晶晶體薄膜層1061轉成一般性的結晶晶體薄膜層1062。圖六則是當氫氣壓力足夠高,將結晶晶體薄膜層1062自氧化鋁基板101分離後轉移至一任意基板110,而金屬氮化物分解物也可能因被降低強度而斷裂,遺留分解物1052在氧化鋁基板101上。 2 is a crystalline crystalline thin film layer 106 on the alumina substrate 101 after the recrystallization treatment process. In the third embodiment, hydrogen ions 108 are injected from a hydrogen ion source, and enter the crystalline crystal thin film layer 106 and the metal nitride thin film layer 105 via the surface 107 of the crystalline crystal thin film layer 106 to form a crystalline crystal thin film layer 1061 rich in hydrogen ions and A metal nitride 1051 film layer that interacts with hydrogen ions on the surface. Then, an arbitrary substrate 110 is bonded to the surface of the hydrogen ion-rich crystalline crystal thin film layer 1061 by wafer bonding, as shown in FIG. Figure 5 shows an energy source, such as ultraviolet light, input from the unshielded surface 111 of the back of the alumina substrate 101 to cause hydrogen ion-rich crystalline crystalline film layer 1061 and hydrogen ions of metal nitride 1051 having a surface interaction with hydrogen ions. It is released and chemically reacted to become a hydrogen gas, and the metal nitride 1051 is decomposed into a decomposition product 1052, and the hydrogen crystal-rich crystalline crystal thin film layer 1061 is also converted into a general crystalline crystal thin film layer 1062. Figure 6 shows that when the hydrogen pressure is sufficiently high, the crystalline crystalline thin film layer 1062 is separated from the alumina substrate 101 and transferred to an arbitrary substrate 110, and the metal nitride decomposition product may also be broken due to the reduced strength, leaving the decomposition product 1052 at On the alumina substrate 101.

圖七是形成一結晶晶體薄膜層203在氧化鋁基板201上的金屬氮化物薄膜層202上面(例如以前述方法實施)。圖八是在該結晶晶體薄膜層203經過半導體製程,如光罩顯影、離子佈植等製程後,形成元件裝置在該結晶晶體薄膜層203內,成為元件裝置薄膜層204。圖九則是表示由氫離子注入製程。氫離子205,經由元件裝置薄膜層204表面206,進入元件裝置薄膜層204與金屬氮化物薄膜層202,使之成為與氫離子有交互作用的金屬氮化物2021薄膜層和富含氫離子元件裝置薄膜層2041。然後將一任意基板208以晶圓鍵合方式和富含氫離子元件裝置薄膜層2041的表面206接合,如圖十所示。 圖十一顯示有一能量由氧化鋁基板201背部無遮蔽表面207輸入,使富含氫離子元件裝置薄膜層2041和金屬氮化物2021的氫離子釋放出來,經化學反應成為氫氣體,分解金屬氮化物2021成為分解物2022,使富含氫離子元件裝置薄膜層2041轉成一般性的元件裝置薄膜層2042。圖十二則是當氫氣壓力足夠高,將元件裝置薄膜層2042自氧化鋁基板201分離後轉移至一任意基板208,而金屬氮化物分解物也可能因被降低強度而斷裂,遺留分解物2022在氧化鋁基板201上。 Figure 7 is a view of forming a crystalline crystalline thin film layer 203 on the metal nitride thin film layer 202 on the alumina substrate 201 (for example, as described above). 8 is a device device thin film layer 204 after the crystal crystal thin film layer 203 is subjected to a semiconductor process such as photomask development, ion implantation, or the like, and a device is formed in the crystalline crystal thin film layer 203. Figure 9 shows the hydrogen ion implantation process. The hydrogen ion 205 enters the device device film layer 204 and the metal nitride film layer 202 via the surface 206 of the device device film layer 204, and becomes a metal nitride 2021 film layer and a hydrogen ion-rich device device that interact with hydrogen ions. Thin film layer 2041. An optional substrate 208 is then bonded in a wafer bonding manner to the surface 206 of the hydrogen-rich ion device device film layer 2041, as shown in FIG. Figure 11 shows an energy input from the back unshielded surface 207 of the alumina substrate 201 to release hydrogen ions of the hydrogen ion-rich device device thin film layer 2041 and the metal nitride 2021, chemically reacted into hydrogen gas, and decomposed metal nitride. 2021 becomes the decomposition product 2022, and the film layer 2041 rich in the hydrogen ion element device is converted into a general element device film layer 2042. Figure 12 shows that when the hydrogen pressure is sufficiently high, the element device film layer 2042 is separated from the alumina substrate 201 and transferred to an arbitrary substrate 208, and the metal nitride decomposition product may also be broken due to the reduced strength, leaving the decomposition product 2022. On the alumina substrate 201.

【實施例】 [Examples]

本實施例僅是說明流程,但非限制本發明之精神及應用。 This embodiment is merely illustrative of the process, but does not limit the spirit and application of the present invention.

實施例一Embodiment 1

在一γ切面氧化鋁基板,以MOCVD生長120nm厚氮化鋁薄膜,覆蓋在該氧化鋁基板上。然後以PECVD在200℃~500℃條件下,緊接形成50nm非晶矽緩衝層在氮化鋁薄膜層上。接下來,提升製程溫度至950℃,將2500nm厚(100)單晶矽薄膜結構薄膜層主體以液相磊晶(LPE)長在此一非晶矽緩衝層上。完成該單晶矽薄膜結構薄膜層主體後,使用高溫退火製程(約950~1150℃),在氬氣氣氛中將此氧化鋁基板上的單晶矽結構薄膜層進行回復、再結晶、晶粒成長過程,把該單晶矽薄膜層結構與氧化鋁基板間晶格差異造成的差排盡可能的移除。經由此製程,可得到低缺陷之單晶矽結構薄膜層。將此單晶矽結構薄膜層表面以常壓氫離子電漿處理將氫離子擴散進入,儲存於氮化鋁薄膜層內。再將此單晶矽結構薄膜層表面與一含硼離子之低熔點玻璃,以陽極鍵合法鍵合成為一晶圓鍵合體(bonded pair)。將一紫外光自氧化鋁裸面方向入射於氮化鋁與氧化鋁基板介面,藉此將氫離子聚合成氫氣,分解該氮化鋁薄膜層進而分離該單晶矽結構薄膜層與氧化鋁基板,轉移至該低熔點玻璃基版上。 On a γ-cut alumina substrate, a 120 nm thick aluminum nitride film was grown by MOCVD to cover the alumina substrate. Then, a 50 nm amorphous germanium buffer layer is formed on the aluminum nitride thin film layer by PECVD at 200 ° C to 500 ° C. Next, the process temperature was raised to 950 ° C, and a 2500 nm thick (100) single crystal germanium film structure film layer body was grown on the amorphous buffer layer by liquid phase epitaxy (LPE). After completing the main body of the single crystal germanium film structure film layer, the single crystal germanium structure film layer on the alumina substrate is recovered, recrystallized, and crystallized in an argon atmosphere using a high temperature annealing process (about 950 to 1150 ° C). During the growth process, the difference between the crystal lattice difference between the single crystal germanium film layer structure and the alumina substrate is removed as much as possible. Through this process, a low-defect single crystal germanium structure film layer can be obtained. The surface of the single crystal germanium structure film layer is treated by atmospheric pressure hydrogen ion plasma to diffuse hydrogen ions into the aluminum nitride film layer. The surface of the single crystal germanium structure film layer and a low melting point glass containing boron ions are combined into a wafer bonded bond by anodic bonding. An ultraviolet light is incident on the interface between the aluminum nitride and the aluminum oxide substrate from the bare surface of the aluminum oxide, thereby hydrogenating hydrogen ions into hydrogen gas, decomposing the aluminum nitride thin film layer, and separating the single crystal germanium structure thin film layer and the aluminum oxide substrate Transfer to the low melting glass base plate.

實施例二Embodiment 2

在一γ切面氧化鋁基板,以MOCVD生長約120nm厚氮化鎵薄膜,覆蓋在該氧化鋁基板上。然後以PECVD在200℃~500℃條件下,緊接形成50nm非晶矽緩衝層在氮化鎵薄膜層上。接下來,提升製程溫度至750℃~1100℃,將5000nm厚(100)磷摻雜n-type單晶矽薄膜結構主體,以液相磊晶(LPE)長在此一非晶矽緩衝層上。完成 該單晶矽薄膜結構主體後,使用高溫退火製程(約950~1150℃),在氬氣氣氛中將此氧化鋁基板上的單晶矽薄膜結構主體進行回復、再結晶、晶粒成長過程,把該n-type單晶矽薄膜結構主體內部與氧化鋁基板間晶格差異造成的差排移除。再經氣相磊晶(VPE)在此n-type單晶矽薄膜結構薄膜層上,長500nm厚的硼摻雜p-type單晶矽薄膜層。將此含PN結結構之單晶矽薄膜層表面以常壓氫離子電漿處理將氫離子擴散進入,儲存於氮化鎵薄膜層內。再將此含PN結結構之單晶矽薄膜層表面與一含硼離子之低熔點玻璃,以陽極鍵合法鍵合成為一晶圓鍵合體(bonded pair)。將一紫外光自氧化鋁裸面方向入射於氮化鎵與氧化鋁基板介面,藉此將氫離子聚合成氫氣,分解該氮化鎵薄膜層進而分離該含PN結結構之單晶矽薄膜層與氧化鋁基板,轉移至該低熔點玻璃基版上。 On a gamma-cut alumina substrate, a gallium nitride film of about 120 nm thickness was grown by MOCVD to cover the alumina substrate. Then, a 50 nm amorphous germanium buffer layer is formed on the gallium nitride thin film layer by PECVD at 200 ° C to 500 ° C. Next, the process temperature is raised to 750 ° C ~ 1100 ° C, 5000 nm thick (100) phosphorus doped n-type single crystal germanium film structure body, liquid phase epitaxy (LPE) grows on this amorphous buffer layer . After the main body of the single crystal germanium film is completed, a high temperature annealing process (about 950 to 1150 ° C) is used to recover, recrystallize, and grow the crystal structure of the single crystal germanium film on the alumina substrate in an argon atmosphere. The difference between the inside of the n-type single crystal germanium film structure main body and the alumina substrate is removed. Further, through vapor phase epitaxy (VPE) on the n-type single crystal germanium film structure film layer, a boron-doped p-type single crystal germanium film layer having a length of 500 nm is used. The surface of the single crystal germanium film layer containing the PN junction structure is treated by atmospheric pressure hydrogen ion plasma to diffuse hydrogen ions into the gallium nitride film layer. The surface of the single crystal germanium film layer containing the PN junction structure and a low melting point glass containing boron ions are synthesized by anodic bonding into a bonded pair. An ultraviolet light is incident on the interface between the gallium nitride and the aluminum oxide substrate from the bare surface of the aluminum oxide, thereby polymerizing hydrogen ions into hydrogen gas, decomposing the gallium nitride thin film layer, and separating the single crystal germanium thin film layer containing the PN junction structure. Transfer to the low melting glass substrate with an alumina substrate.

實施例三Embodiment 3

在一γ切面氧化鋁基板,以MOCVD生長120nm厚氮化鋁薄膜,覆蓋在該氧化鋁基板上。然後以PECVD在200℃~500℃條件下,緊接形成50nm非晶矽緩衝層在氮化鋁薄膜層上。接下來,提升製程溫度至950℃,將2500nm厚(100)單晶矽薄膜結構薄膜層主體以液相磊晶(LPE)長在此一非晶矽緩衝層上。完成該單晶矽薄膜結構薄膜層主體後,使用高溫退火製程(約950~1150℃),在氫氣氣氛中將此氧化鋁基板上的單晶矽結構薄膜層進行回復、再結晶、晶粒成長過程,把該單晶矽薄膜層結構與氧化鋁基板間晶格差異造成的差排移除。經由此製程,可得到低缺陷之單晶矽結構薄膜層。將此單晶矽結構薄膜層表面以常壓氫離子電漿處理,將氫離子擴散進入,儲存於氮化鋁薄膜層內。再將此單晶矽結構薄膜層表面與一聚合物基板,以膠黏鍵合法鍵合成為一晶圓鍵合體。將一紫外光自氧化鋁裸面方向入射於氮化鋁與氧化鋁基板介面,藉此 將氫離子聚合成氫氣,分解該氮化鋁薄膜層進而分離該單晶矽結構薄膜層與氧化鋁基板,轉移至該聚合物基版上。 On a γ-cut alumina substrate, a 120 nm thick aluminum nitride film was grown by MOCVD to cover the alumina substrate. Then, a 50 nm amorphous germanium buffer layer is formed on the aluminum nitride thin film layer by PECVD at 200 ° C to 500 ° C. Next, the process temperature was raised to 950 ° C, and a 2500 nm thick (100) single crystal germanium film structure film layer body was grown on the amorphous buffer layer by liquid phase epitaxy (LPE). After the main body of the single crystal germanium film structure film layer is completed, the single crystal germanium structure film layer on the alumina substrate is recovered, recrystallized, and grain grown in a hydrogen atmosphere using a high temperature annealing process (about 950 to 1150 ° C). The process removes the difference caused by the lattice difference between the single crystal germanium film layer structure and the alumina substrate. Through this process, a low-defect single crystal germanium structure film layer can be obtained. The surface of the single crystal germanium structure film layer is treated with a normal pressure hydrogen ion plasma to diffuse hydrogen ions into the aluminum nitride film layer. Then, the surface of the single crystal germanium structure film layer and a polymer substrate are bonded into a wafer bond by an adhesive bond. An ultraviolet light is incident on the interface between the aluminum nitride and the aluminum oxide substrate from the bare surface of the aluminum oxide, thereby hydrogenating hydrogen ions into hydrogen gas, decomposing the aluminum nitride thin film layer, and separating the single crystal germanium structure thin film layer and the aluminum oxide substrate Transfer to the polymer substrate.

實施例四Embodiment 4

在一γ切面氧化鋁基板,以MOCVD生長120nm厚氮化鋁薄膜,覆蓋在該氧化鋁基板上。然後以PECVD在200℃~500℃條件下,緊接形成50nm非晶矽緩衝層在氮化鋁薄膜層上。接下來,提升製程溫度至950℃,將5000nm厚p-type(100)單晶矽薄膜結構薄膜層主體以液相磊晶(LPE)長在此一非晶矽緩衝層上。完成該單晶矽薄膜結構薄膜層主體後,使用高溫退火製程(約950~1150℃),在含氫離子之氣氛中將此氧化鋁基板上的單晶矽結構薄膜層進行回復、再結晶、晶粒成長過程,把該單晶矽薄膜層結構與氧化鋁基板間晶格差異造成的差排移除。經由此製程,可得到低缺陷之單晶矽結構薄膜層且能儲存氫離子於氮化鋁薄膜層其中。再將此單晶矽結構薄膜層表面與一聚合物基板,以膠黏鍵合法鍵合成為一晶圓鍵合體。將一紫外光自氧化鋁裸面方向入射於氮化鋁與氧化鋁基板介面,藉此將氫離子聚合成氫氣,分解該氮化鋁薄膜層進而分離該單晶矽結構薄膜層與氧化鋁基板,轉移至該聚合物基版上。 On a γ-cut alumina substrate, a 120 nm thick aluminum nitride film was grown by MOCVD to cover the alumina substrate. Then, a 50 nm amorphous germanium buffer layer is formed on the aluminum nitride thin film layer by PECVD at 200 ° C to 500 ° C. Next, the process temperature was raised to 950 ° C, and a 5000 nm thick p-type (100) single crystal germanium film structure film layer body was grown on the amorphous buffer layer by liquid phase epitaxy (LPE). After the main body of the single crystal germanium film structure film layer is completed, a single crystal germanium structure film layer on the alumina substrate is recovered and recrystallized in a hydrogen ion-containing atmosphere using a high temperature annealing process (about 950 to 1150 ° C). During the grain growth process, the difference between the single crystal germanium film layer structure and the alumina substrate is removed. Through this process, a low-defect monocrystalline germanium structure thin film layer can be obtained and hydrogen ions can be stored in the aluminum nitride thin film layer. Then, the surface of the single crystal germanium structure film layer and a polymer substrate are bonded into a wafer bond by an adhesive bond. An ultraviolet light is incident on the interface between the aluminum nitride and the aluminum oxide substrate from the bare surface of the aluminum oxide, thereby hydrogenating hydrogen ions into hydrogen gas, decomposing the aluminum nitride thin film layer, and separating the single crystal germanium structure thin film layer and the aluminum oxide substrate Transfer to the polymer substrate.

實施例五Embodiment 5

在一c切面氧化鋁基板,以MOCVD生長120nm厚氮化鎵薄膜,覆蓋在該氧化鋁基板上。然後以PECVD在200℃~500℃條件下,緊接形成70nm非晶矽緩衝層在氮化鎵薄膜層上。接下來,提升製程溫度至950℃,將5000nm厚p-type(111)單晶矽薄膜結構薄膜層主體以液相磊晶(LPE)長在此一非晶矽緩衝層上。完成該單晶矽薄膜結構薄膜層主體後,使用高溫退火製程(1100℃),在含氫離子之氣氛中將此氧化鋁基板上的單晶矽結構薄膜層進行回復、再結晶、晶粒成長過程,把該單晶矽薄膜層結構與 氧化鋁基板間晶格差異造成的差排移除。經由此製程,可得到低缺陷之單晶矽結構薄膜層且能儲存氫離子於氮化鎵薄膜層其中。再將此單晶矽結構薄膜層表面與一聚合物基板,以膠黏鍵合法鍵合成為一晶圓鍵合體。將一紫外光脈衝雷射光自氧化鋁裸面方向入射於氮化鎵與氧化鋁基板介面,藉此將氫離子聚合成氫氣,分解該氮化鎵薄膜層進而分離該單晶矽結構薄膜層與氧化鋁基板,轉移至該聚合物基版上。 On a c-cut alumina substrate, a 120 nm thick gallium nitride film was grown by MOCVD to cover the alumina substrate. Then, a 70 nm amorphous germanium buffer layer is formed on the gallium nitride thin film layer by PECVD at 200 ° C to 500 ° C. Next, the process temperature was raised to 950 ° C, and a 5000 nm thick p-type (111) single crystal germanium film structure film layer body was grown on the amorphous buffer layer by liquid phase epitaxy (LPE). After the main body of the single crystal germanium film structure film layer is completed, the single crystal germanium structure film layer on the alumina substrate is recovered, recrystallized, and grain grown in a hydrogen ion-containing atmosphere using a high temperature annealing process (1100 ° C). Process, the single crystal germanium film layer structure and The difference in lattice removal caused by the difference in lattice between the alumina substrates. Through this process, a low-defect monocrystalline germanium structure thin film layer can be obtained and hydrogen ions can be stored in the gallium nitride thin film layer. Then, the surface of the single crystal germanium structure film layer and a polymer substrate are bonded into a wafer bond by an adhesive bond. An ultraviolet pulsed laser light is incident on the interface between the gallium nitride and the aluminum oxide substrate from the bare surface of the aluminum oxide, thereby polymerizing hydrogen ions into hydrogen gas, decomposing the gallium nitride thin film layer, and separating the single crystal germanium structure thin film layer and The alumina substrate is transferred to the polymer substrate.

實施例六Embodiment 6

在一γ切面氧化鋁基板,以MOCVD生長120nm厚氮化鋁薄膜,覆蓋在該氧化鋁基板上。然後以PECVD在200℃~500℃條件下,緊接形成50nm非晶矽緩衝層在氮化鋁薄膜層上。接下來,提升製程溫度至950℃,將2500nm厚(100)單晶矽薄膜結構薄膜層主體以液相磊晶(LPE)長在此一非晶矽緩衝層上。完成該單晶矽薄膜結構薄膜層主體後,使用高溫退火製程(約950~1150℃),在氫氣氣氛中將此氧化鋁基板上的單晶矽結構薄膜層進行回復、再結晶、晶粒成長過程,把該單晶矽薄膜層結構與氧化鋁基板間晶格差異造成的差排移除。經由此製程,可得到低缺陷之單晶矽結構薄膜層。將此單晶矽結構薄膜層表面接以陽極(H2O=2H++½ O2+2e-)電解酸性溶液方式,將氫離子藉電場力擴散進入,儲存於氮化鋁薄膜層內。再將此單晶矽結構薄膜層表面與一聚合物基板,以膠黏鍵合法鍵合成為一晶圓鍵合體。將一紫外光自氧化鋁裸面方向入射於氮化鋁與氧化鋁基板介面,藉此將氫離子聚合成氫氣,分解該氮化鋁薄膜層進而分離該單晶矽結構薄膜層與氧化鋁基板,轉移至該聚合物基版上。 On a γ-cut alumina substrate, a 120 nm thick aluminum nitride film was grown by MOCVD to cover the alumina substrate. Then, a 50 nm amorphous germanium buffer layer is formed on the aluminum nitride thin film layer by PECVD at 200 ° C to 500 ° C. Next, the process temperature was raised to 950 ° C, and a 2500 nm thick (100) single crystal germanium film structure film layer body was grown on the amorphous buffer layer by liquid phase epitaxy (LPE). After the main body of the single crystal germanium film structure film layer is completed, the single crystal germanium structure film layer on the alumina substrate is recovered, recrystallized, and grain grown in a hydrogen atmosphere using a high temperature annealing process (about 950 to 1150 ° C). The process removes the difference caused by the lattice difference between the single crystal germanium film layer structure and the alumina substrate. Through this process, a low-defect single crystal germanium structure film layer can be obtained. The surface of the single crystal germanium structure film layer is connected to an anode (H 2 O=2H + +1⁄2 O 2 + 2e-) electrolytic acidic solution, and hydrogen ions are diffused into the aluminum nitride film layer by the electric field force. Then, the surface of the single crystal germanium structure film layer and a polymer substrate are bonded into a wafer bond by an adhesive bond. An ultraviolet light is incident on the interface between the aluminum nitride and the aluminum oxide substrate from the bare surface of the aluminum oxide, thereby hydrogenating hydrogen ions into hydrogen gas, decomposing the aluminum nitride thin film layer, and separating the single crystal germanium structure thin film layer and the aluminum oxide substrate Transfer to the polymer substrate.

實施例七Example 7

在一c切面氧化鋁基板,以MOCVD生長120nm厚氮化鋁薄膜,覆蓋在該氧化鋁基板上。然後以PECVD在200℃~500℃條件下,緊接形成50nm非晶矽緩衝層在氮 化鎵薄膜層上。接下來,提升製程溫度至950℃,將2500nm厚(111)單晶矽薄膜結構薄膜層主體以液相磊晶(LPE)長在此一非晶矽緩衝層上。完成該單晶矽薄膜結構薄膜層主體後,使用高溫退火製程(約950~1150℃),在氫氣氣氛中將此氧化鋁基板上的單晶矽結構薄膜層進行回復、再結晶、晶粒成長過程,把該單晶矽薄膜層結構與氧化鋁基板間晶格差異造成的差排移除。經由此製程,可得到低缺陷之單晶矽結構薄膜層。將此單晶矽結構薄膜層表面浸於含高濃度氫離子酸性溶液,以加熱方式,將氫離子藉由熱增加之動能擴散進入,儲存於氮化鋁薄膜層內。再將此單晶矽結構薄膜層表面與一聚合物基板,以膠黏鍵合法鍵合成為一晶圓鍵合體。將一紫外光自氧化鋁裸面方向入射於氮化鋁與氧化鋁基板介面,藉此將氫離子聚合成氫氣,分解該氮化鋁薄膜層進而分離該單晶矽結構薄膜層與氧化鋁基板,轉移至該聚合物基版上。 On a c-cut alumina substrate, a 120 nm thick aluminum nitride film was grown by MOCVD to cover the alumina substrate. Then, a 50 nm amorphous germanium buffer layer is formed on the gallium nitride thin film layer by PECVD at 200 ° C to 500 ° C. Next, the process temperature was raised to 950 ° C, and a 2500 nm thick (111) single crystal germanium film structure film layer body was grown on the amorphous buffer layer by liquid phase epitaxy (LPE). After the main body of the single crystal germanium film structure film layer is completed, the single crystal germanium structure film layer on the alumina substrate is recovered, recrystallized, and grain grown in a hydrogen atmosphere using a high temperature annealing process (about 950 to 1150 ° C). The process removes the difference caused by the lattice difference between the single crystal germanium film layer structure and the alumina substrate. Through this process, a low-defect single crystal germanium structure film layer can be obtained. The surface of the single crystal germanium structure film layer is immersed in an acidic solution containing a high concentration of hydrogen ions, and the hydrogen ions are diffused into the aluminum nitride film layer by heating. Then, the surface of the single crystal germanium structure film layer and a polymer substrate are bonded into a wafer bond by an adhesive bond. An ultraviolet light is incident on the interface between the aluminum nitride and the aluminum oxide substrate from the bare surface of the aluminum oxide, thereby hydrogenating hydrogen ions into hydrogen gas, decomposing the aluminum nitride thin film layer, and separating the single crystal germanium structure thin film layer and the aluminum oxide substrate Transfer to the polymer substrate.

實施例八Example eight

在一c切面氧化鋁基板,以MOCVD生長120nm厚氮化鋁薄膜,覆蓋在該氧化鋁基板上。然後以PECVD在200℃~500℃條件下,緊接形成50nm非晶碳化矽緩衝層在氮化鎵薄膜層上。接下來,提升製程溫度至950℃,將2500nm厚單晶碳化矽薄膜結構薄膜層主體以液相磊晶(LPE)長在此一非晶矽緩衝層上。完成該單晶矽薄膜結構薄膜層主體後,使用高溫退火製程(約950~1150℃),在氫氣氣氛中將此氧化鋁基板上的單晶碳化矽結構薄膜層進行回復、再結晶、晶粒成長過程,把該單晶碳化矽薄膜層結構與氧化鋁基板間晶格差異造成的差排移除。經由此製程,可得到低缺陷之單晶碳化矽結構薄膜層。將此單晶碳化矽結構薄膜層表面浸於含高濃度氫離子電漿環境中,以加熱方式,將氫離子藉由熱增加之動能擴散進入,儲存於氮化鋁薄膜層內。再將此單晶碳化矽結構薄膜層表面與一玻璃基板,以晶圓鍵合法鍵合成為一晶圓鍵合體。將 一紫外光自氧化鋁裸面方向入射於氮化鋁與氧化鋁基板介面,藉此將氫離子聚合成氫氣,分解該氮化鋁薄膜層進而分離該單晶碳化矽結構薄膜層與氧化鋁基板,轉移至該玻璃基版上。 On a c-cut alumina substrate, a 120 nm thick aluminum nitride film was grown by MOCVD to cover the alumina substrate. Then, a 50 nm amorphous tantalum carbide buffer layer is formed on the gallium nitride thin film layer by PECVD at 200 ° C to 500 ° C. Next, the process temperature was raised to 950 ° C, and a 2500 nm thick single crystal ruthenium carbide thin film structure film layer body was grown on the amorphous buffer layer by liquid phase epitaxy (LPE). After the main body of the single crystal germanium film structure film layer is completed, the single crystal carbonized ruthenium structure film layer on the alumina substrate is recovered, recrystallized, and crystallized in a hydrogen atmosphere using a high temperature annealing process (about 950 to 1150 ° C). During the growth process, the difference between the lattice structure of the monocrystalline niobium carbide film layer and the alumina substrate is removed. Through this process, a low-defect monocrystalline niobium carbide structural film layer can be obtained. The surface of the monocrystalline niobium carbide structure film layer is immersed in a plasma environment containing a high concentration of hydrogen ions, and the hydrogen ions are diffused into the aluminum nitride film layer by heating. The surface of the monocrystalline niobium carbide structure film layer is bonded to a glass substrate by wafer bonding to form a wafer bond. An ultraviolet light is incident on the interface between the aluminum nitride and the aluminum oxide substrate from the bare surface of the aluminum oxide, thereby hydrogenating hydrogen ions into hydrogen gas, decomposing the aluminum nitride thin film layer, and separating the single crystal silicon carbide structure thin film layer and aluminum oxide. The substrate is transferred to the glass substrate.

實施例九Example nine

在一γ切面氧化鋁基板,以MOCVD生長120nm厚氮化鋁薄膜,覆蓋在該氧化鋁基板上。然後以PECVD在200℃~500℃條件下,緊接形成50nm非晶矽緩衝層在氮化鋁薄膜層上。接下來,提升製程溫度至950℃,將5000nm厚p-type(100)單晶矽薄膜結構薄膜層主體以液相磊晶(LPE)長在此一非晶矽緩衝層上。完成該單晶矽薄膜結構薄膜層主體後,使用高溫退火製程(約950~1150℃),在含氫離子之氣氛中將此氧化鋁基板上的單晶矽結構薄膜層進行回復、再結晶、晶粒成長過程,把該單晶矽薄膜層結構與氧化鋁基板間晶格差異造成的差排移除。經由此製程,可得到低缺陷之單晶矽結構薄膜層且能儲存氫離子於氮化鋁薄膜層其中。再將此單晶矽結構薄膜層經半導體製程,形成電子元件於其中。將此元件表面與一含元件之半導體基板,經過校準,以晶圓鍵合法鍵合成為一晶圓鍵合體。將一紫外光自氧化鋁裸面方向入射於氮化鋁與氧化鋁基板介面,藉此將氫離子聚合成氫氣,分解該氮化鋁薄膜層進而分離該含電子元件單晶矽結構薄膜層與氧化鋁基板,轉移至該半導體基版上,形成三度空間積體電路。 On a γ-cut alumina substrate, a 120 nm thick aluminum nitride film was grown by MOCVD to cover the alumina substrate. Then, a 50 nm amorphous germanium buffer layer is formed on the aluminum nitride thin film layer by PECVD at 200 ° C to 500 ° C. Next, the process temperature was raised to 950 ° C, and a 5000 nm thick p-type (100) single crystal germanium film structure film layer body was grown on the amorphous buffer layer by liquid phase epitaxy (LPE). After the main body of the single crystal germanium film structure film layer is completed, a single crystal germanium structure film layer on the alumina substrate is recovered and recrystallized in a hydrogen ion-containing atmosphere using a high temperature annealing process (about 950 to 1150 ° C). During the grain growth process, the difference between the single crystal germanium film layer structure and the alumina substrate is removed. Through this process, a low-defect monocrystalline germanium structure thin film layer can be obtained and hydrogen ions can be stored in the aluminum nitride thin film layer. The single crystal germanium structure thin film layer is further subjected to a semiconductor process to form electronic components therein. The surface of the component and the semiconductor substrate containing the component are calibrated and bonded to a wafer bond by wafer bonding. An ultraviolet light is incident on the interface between the aluminum nitride and the aluminum oxide substrate from the bare surface of the aluminum oxide, thereby polymerizing hydrogen ions into hydrogen gas, decomposing the aluminum nitride thin film layer, and separating the single crystal germanium structure film layer containing the electronic component and The alumina substrate is transferred onto the semiconductor substrate to form a three-dimensional space integrated circuit.

實施例十Example ten

在一γ切面氧化鋁基板,以MOCVD生長120nm厚氮化鋁薄膜,覆蓋在該氧化鋁基板上。然後以PECVD在200℃~500℃條件下,緊接形成50nm非晶矽緩衝層在氮化鋁薄膜層上。接下來,提升製程溫度至950℃,將5000nm厚p-type(100)單晶矽薄 膜結構薄膜層主體以液相磊晶(LPE)長在此一非晶矽緩衝層上。完成該單晶矽薄膜結構薄膜層主體後,使用高溫退火製程(約950~1150℃),在含氫離子之氣氛中將此氧化鋁基板上的單晶矽結構薄膜層進行回復、再結晶、晶粒成長過程,把該單晶矽薄膜層結構與氧化鋁基板間晶格差異造成的差排移除。經由此製程,可得到低缺陷之單晶矽結構薄膜層且能儲存氫離子於氮化鋁薄膜層其中。再將此單晶矽結構薄膜層經半導體製程,形成電子元件於其中。將此元件表面與一可撓性基板,以晶圓鍵合法鍵合成為一晶圓鍵合體。將一紫外光自氧化鋁裸面方向入射於氮化鋁與氧化鋁基板介面,藉此將氫離子聚合成氫氣,分解該氮化鋁薄膜層進而分離該含電子元件單晶矽結構薄膜層與氧化鋁基板,轉移至該可撓性基版上。 On a γ-cut alumina substrate, a 120 nm thick aluminum nitride film was grown by MOCVD to cover the alumina substrate. Then, a 50 nm amorphous germanium buffer layer is formed on the aluminum nitride thin film layer by PECVD at 200 ° C to 500 ° C. Next, the process temperature was raised to 950 ° C, and a 5000 nm thick p-type (100) single crystal germanium film structure film layer body was grown on the amorphous buffer layer by liquid phase epitaxy (LPE). After the main body of the single crystal germanium film structure film layer is completed, a single crystal germanium structure film layer on the alumina substrate is recovered and recrystallized in a hydrogen ion-containing atmosphere using a high temperature annealing process (about 950 to 1150 ° C). During the grain growth process, the difference between the single crystal germanium film layer structure and the alumina substrate is removed. Through this process, a low-defect monocrystalline germanium structure thin film layer can be obtained and hydrogen ions can be stored in the aluminum nitride thin film layer. The single crystal germanium structure thin film layer is further subjected to a semiconductor process to form electronic components therein. The surface of the component is bonded to a flexible substrate by wafer bonding to form a wafer bond. An ultraviolet light is incident on the interface between the aluminum nitride and the aluminum oxide substrate from the bare surface of the aluminum oxide, thereby polymerizing hydrogen ions into hydrogen gas, decomposing the aluminum nitride thin film layer, and separating the single crystal germanium structure film layer containing the electronic component and The alumina substrate is transferred to the flexible substrate.

101‧‧‧氧化鋁基板 101‧‧‧Alumina substrate

102‧‧‧晶體薄膜層 102‧‧‧crystalline film layer

104‧‧‧非晶薄膜層 104‧‧‧Amorphous film layer

105‧‧‧金屬氮化物薄膜層 105‧‧‧Metal nitride film layer

106‧‧‧結晶晶體薄膜層 106‧‧‧ Crystalline film layer

108‧‧‧氫離子源 108‧‧‧ Hydrogen ion source

109‧‧‧晶體薄膜層結構 109‧‧‧crystal film layer structure

110‧‧‧基板 110‧‧‧Substrate

112‧‧‧能量輸入 112‧‧‧Energy input

1062‧‧‧結晶晶體薄膜層 1062‧‧‧ Crystalline film layer

201‧‧‧氧化鋁基板 201‧‧‧Alumina substrate

202‧‧‧金屬氮化物薄膜層 202‧‧‧Metal nitride film layer

203‧‧‧結晶晶體薄膜層 203‧‧‧ Crystalline film layer

204‧‧‧元件裝置薄膜層 204‧‧‧Component device film layer

205‧‧‧氫離子 205‧‧‧Hydrogen ion

208‧‧‧基板 208‧‧‧Substrate

209‧‧‧能量輸入 209‧‧‧Energy input

2042‧‧‧元件裝置薄膜層 2042‧‧‧Component device film layer

在參閱伴隨下列圖示之詳細說明後,將可了解本發明之其他或另外目的、優點及特徵。其中相同的圖號表示結構中相同的元件。 Other or additional objects, advantages and features of the invention will become apparent upon consideration of the appended claims The same reference numerals indicate the same elements in the structure.

第一圖係本發明所用之氧化鋁基板及其上薄膜結構層的側視圖。 The first figure is a side view of an alumina substrate used in the present invention and a film structural layer thereon.

第二圖係本發明製程使氧化鋁基板上之薄膜結構層再結晶的側視圖。 The second drawing is a side view of the process of the present invention for recrystallizing a thin film structural layer on an alumina substrate.

第三圖係本發明製程使氫離子進入氧化鋁基板其上薄膜結構層的側視圖。 The third figure is a side view of the film structure layer on which the hydrogen ions enter the alumina substrate.

第四圖係本發明製程使氧化鋁基板上薄膜結構層接合其他基板的側視圖。 The fourth drawing is a side view of the process of the present invention for bonding a thin film structural layer on an alumina substrate to another substrate.

第五圖係本發明製程使氧化鋁基板與其上之薄膜結構層分離的側視圖。 The fifth drawing is a side view of the process of the present invention separating the alumina substrate from the film structure layer thereon.

第六圖係本發明製程使氧化鋁基板上之薄膜結構層轉移至其他基板的側視圖。 Figure 6 is a side elevational view of the process of the present invention for transferring a thin film structural layer on an alumina substrate to another substrate.

第七圖係本發明所用之氧化鋁基板及其上薄膜結構層的側視圖。 The seventh drawing is a side view of the alumina substrate used in the present invention and the film structure layer thereon.

第八圖係本發明製程使元件裝置在氧化鋁基板上之薄膜結構層內的側視圖。 The eighth drawing is a side view of the process of the present invention in which the component device is placed in a thin film structural layer on an alumina substrate.

第九圖係本發明製程使氫離子進入氧化鋁基板上含元件裝置薄膜結構層的側視圖。 The ninth drawing is a side view of the process of the present invention for allowing hydrogen ions to enter the film structure layer of the component device on the alumina substrate.

第十圖係本發明製程使氧化鋁基板上含元件裝置薄膜結構層接合其他基板的側視圖。 The tenth drawing is a side view of the process of the present invention for bonding a thin film structural layer of a component device on an alumina substrate to another substrate.

第十一圖係本發明製程使氧化鋁基板與含元件裝置薄膜結構層分離的側視圖。 The eleventh drawing is a side view of the process of the present invention for separating the alumina substrate from the film structure layer containing the component device.

第十二圖係本發明製程使氧化鋁基板上之含元件裝置薄膜結構層轉移至其他基板的側視圖。 Fig. 12 is a side view showing the process of the present invention for transferring a film structure layer containing a component device on an alumina substrate to another substrate.

101‧‧‧氧化鋁基板 101‧‧‧Alumina substrate

1052‧‧‧金屬氮化物薄膜層 1052‧‧‧Metal nitride film layer

110‧‧‧基板 110‧‧‧Substrate

1062‧‧‧結晶晶體薄膜層 1062‧‧‧ Crystalline film layer

Claims (79)

一種形成薄膜層結構之製程方法,該方法至少包含:形成一金屬氮化物薄膜層於一氧化鋁基板之表面上;形成至少一個薄膜層結構於該金屬氮化物材料層上;於該薄膜層結構表面注入氫離子;由該氧化鋁基板裸面輸入能量,使得該氧化鋁基板與該薄膜層結構分離。 A method for forming a thin film layer structure, the method comprising: forming a metal nitride thin film layer on a surface of an aluminum oxide substrate; forming at least one thin film layer structure on the metal nitride material layer; and forming the thin film layer structure Hydrogen ions are implanted into the surface; energy is input from the bare surface of the alumina substrate, so that the alumina substrate is separated from the film layer structure. 如申請專利範圍第1項所述之方法,其中上述金屬氮化物薄膜層係由氮化鈦組成。 The method of claim 1, wherein the metal nitride thin film layer is composed of titanium nitride. 如申請專利範圍第1項所述之方法,其中上述金屬氮化物薄膜層係由氮化鎵、氮化銦或氮化鋁組成。 The method of claim 1, wherein the metal nitride thin film layer is composed of gallium nitride, indium nitride or aluminum nitride. 如申請專利範圍第1項所述之方法,其中上述薄膜層結構包含結晶、多晶或非晶半導體薄膜層。 The method of claim 1, wherein the film layer structure comprises a crystalline, polycrystalline or amorphous semiconductor film layer. 如申請專利範圍第1項所述之方法,其中上述薄膜層結構包含結晶、多晶或非晶矽薄膜層。 The method of claim 1, wherein the film layer structure comprises a crystalline, polycrystalline or amorphous germanium film layer. 如申請專利範圍第1項所述之方法,其中上述薄膜層結構包含結晶、多晶或非晶碳化矽薄膜層。 The method of claim 1, wherein the film layer structure comprises a crystalline, polycrystalline or amorphous tantalum carbide film layer. 如申請專利範圍第1項所述之方法,其中上述薄膜層結構包含結晶、多晶或非晶鍺薄膜層。 The method of claim 1, wherein the film layer structure comprises a crystalline, polycrystalline or amorphous germanium film layer. 如申請專利範圍第1項所述之方法,其中上述薄膜層結構包含結晶、多晶或非晶矽鍺薄膜層。 The method of claim 1, wherein the film layer structure comprises a crystalline, polycrystalline or amorphous germanium film layer. 如申請專利範圍第1項所述之方法,其中上述注入氫離子係藉由氫離子源擴散方式。 The method of claim 1, wherein the implanting hydrogen ions are diffused by a hydrogen ion source. 如申請專利範圍第9項所述之方法,其中上述氫離子源係藉由氫電漿產生。 The method of claim 9, wherein the source of hydrogen ions is produced by hydrogen plasma. 如申請專利範圍第9項所述之方法,其中上述氫離子源係藉由酸性溶液解離產生。 The method of claim 9, wherein the source of hydrogen ions is produced by dissociation from an acidic solution. 如申請專利範圍第9項所述之方法,其中上述氫離子源係藉由電解液中電解產生。 The method of claim 9, wherein the source of hydrogen ions is produced by electrolysis in an electrolyte. 如申請專利範圍第1項所述之方法,其中上述注入氫離子係藉由離子佈植方式。 The method of claim 1, wherein the implanting hydrogen ions is by ion implantation. 如申請專利範圍第1項所述之方法,其中上述輸入能量方式係藉由紫外光照射、脈衝雷射光束照射、或微波照射。 The method of claim 1, wherein the input energy mode is by ultraviolet light irradiation, pulsed laser beam irradiation, or microwave irradiation. 如申請專利範圍第14項所述之方法,其中上述脈衝雷射光束波長範圍為220~400nm。 The method of claim 14, wherein the pulsed laser beam has a wavelength in the range of 220 to 400 nm. 如申請專利範圍第14項所述之方法,其中上述輸入能量方式係藉由熱能同時輸入。 The method of claim 14, wherein the input energy mode is simultaneously input by thermal energy. 如申請專利範圍第1項所述之方法,其中包含在該氧化鋁基板與該薄膜層結構分離之前,上述該薄膜層結構之暴露表面藉由晶圓鍵合方式與一隨意基板表面接合。 The method of claim 1, wherein the exposed surface of the thin film layer structure is bonded to a random substrate surface by wafer bonding before the aluminum oxide substrate is separated from the thin film layer structure. 如申請專利範圍第17項所述之方法,其中上述隨意基板係由玻璃或是聚合物材料所形成的。 The method of claim 17, wherein the random substrate is formed of glass or a polymer material. 如申請專利範圍第17項所述之方法,其中上述隨意基板係由半導體材料所形成的。 The method of claim 17, wherein the random substrate is formed of a semiconductor material. 如申請專利範圍第17項所述之方法,其中上述晶圓鍵合方式係藉由黏著劑媒介層接合。 The method of claim 17, wherein the wafer bonding method is bonded by an adhesive medium layer. 如申請專利範圍第17項所述之方法,其中上述晶圓鍵合方式係藉由低熔點玻璃媒介層熔合接合。 The method of claim 17, wherein the wafer bonding method is fusion bonded by a low melting glass dielectric layer. 如申請專利範圍第1項所述之方法,其中上述薄膜層結構係由矽材料所形成。 The method of claim 1, wherein the film layer structure is formed of a tantalum material. 如申請專利範圍第1項所述之方法,其中上述薄膜層結構係由鍺材料所形成。 The method of claim 1, wherein the film layer structure is formed of a tantalum material. 如申請專利範圍第1項所述之方法,其中上述薄膜層結構係由碳化矽材料所形成。 The method of claim 1, wherein the film layer structure is formed of a tantalum carbide material. 如申請專利範圍第1項所述之方法,其中上述薄膜層結構係由半導體材料所形成。 The method of claim 1, wherein the film layer structure is formed of a semiconductor material. 如申請專利範圍第1項所述之方法,其中上述薄膜層結構包含經過一半導體製程形成元件裝置於其中。 The method of claim 1, wherein the film layer structure comprises a semiconductor process forming component disposed therein. 如申請專利範圍第26項所述之方法,其中上述薄膜層為矽材料。 The method of claim 26, wherein the film layer is a tantalum material. 如申請專利範圍第26項所述之方法,其中上述元件裝置包含PN結、MOS或功率元件。 The method of claim 26, wherein the component device comprises a PN junction, a MOS or a power component. 一種形成薄膜層結構之製程方法,該方法至少包含:形成一金屬氮化物薄膜層於一氧化鋁基板之表面上;形成至少一個薄膜層結構於該金屬氮化物材料層上;於該薄膜層結構表面注入氫離子;自該氧化鋁基板裸面輸入能量,使氫氣形成、分解該金屬氮化物薄膜,進而分離該氧化鋁基板與該薄膜層結構。 A method for forming a thin film layer structure, the method comprising: forming a metal nitride thin film layer on a surface of an aluminum oxide substrate; forming at least one thin film layer structure on the metal nitride material layer; and forming the thin film layer structure Hydrogen ions are implanted into the surface; energy is input from the bare surface of the alumina substrate to form and decompose the metal nitride film, thereby separating the alumina substrate and the film layer structure. 如申請專利範圍第29項所述之方法,其中上述金屬氮化物薄膜層係由氮化鈦組成。 The method of claim 29, wherein the metal nitride thin film layer is composed of titanium nitride. 如申請專利範圍第29項所述之方法,其中上述金屬氮化物薄膜層係由氮化鎵、氮化銦或氮化鋁組成。 The method of claim 29, wherein the metal nitride thin film layer is composed of gallium nitride, indium nitride or aluminum nitride. 如申請專利範圍第29項所述之方法,其中上述薄膜層結構包含結晶、多晶或非晶 半導體薄膜層。 The method of claim 29, wherein the film layer structure comprises crystal, polycrystalline or amorphous Semiconductor thin film layer. 如申請專利範圍第29項所述之方法,其中上述薄膜層結構包含結晶、多晶或非晶矽薄膜層。 The method of claim 29, wherein the film layer structure comprises a crystalline, polycrystalline or amorphous germanium film layer. 如申請專利範圍第29項所述之方法,其中上述薄膜層結構包含結晶、多晶或非晶碳化矽薄膜層。 The method of claim 29, wherein the film layer structure comprises a crystalline, polycrystalline or amorphous tantalum carbide film layer. 如申請專利範圍第29項所述之方法,其中上述薄膜層結構包含結晶、多晶或非晶鍺薄膜層。 The method of claim 29, wherein the film layer structure comprises a crystalline, polycrystalline or amorphous germanium film layer. 如申請專利範圍第29項所述之方法,其中上述薄膜層結構包含結晶、多晶或非晶矽鍺薄膜層。 The method of claim 29, wherein the film layer structure comprises a crystalline, polycrystalline or amorphous germanium film layer. 如申請專利範圍第29項所述之方法,其中上述注入氫離子係藉由氫離子源擴散方式。 The method of claim 29, wherein the implanting hydrogen ions are diffused by a hydrogen ion source. 如申請專利範圍第37項所述之方法,其中上述氫離子源係藉由氫電漿產生。 The method of claim 37, wherein the source of hydrogen ions is produced by hydrogen plasma. 如申請專利範圍第37項所述之方法,其中上述氫離子源係藉由酸性溶液解離產生。 The method of claim 37, wherein the source of hydrogen ions is produced by dissociation from an acidic solution. 如申請專利範圍第37項所述之方法,其中上述氫離子源係藉由電解液中電解產生。 The method of claim 37, wherein the source of hydrogen ions is produced by electrolysis in an electrolyte. 如申請專利範圍第29項所述之方法,其中上述注入氫離子係藉由離子佈植方式。 The method of claim 29, wherein the injecting hydrogen ions is by ion implantation. 如申請專利範圍第29項所述之方法,其中上述輸入能量方式係藉由紫外光照射、脈衝雷射光束照射、或微波照射。 The method of claim 29, wherein the input energy mode is by ultraviolet light irradiation, pulsed laser beam irradiation, or microwave irradiation. 如申請專利範圍第42項所述之方法,其中上述脈衝雷射光束波長範圍為220~400nm。 The method of claim 42, wherein the pulsed laser beam has a wavelength in the range of 220 to 400 nm. 如申請專利範圍第42項所述之方法,其中上述輸入能量方式係藉由熱能同時輸入。 The method of claim 42, wherein the input energy mode is simultaneously input by thermal energy. 如申請專利範圍第29項所述之方法,其中包含在該氧化鋁基板與該薄膜層結構分離之前,上述該薄膜層結構之暴露表面藉由晶圓鍵合方式與一隨意基板表面接合。 The method of claim 29, wherein the exposed surface of the thin film layer structure is bonded to a random substrate surface by wafer bonding before the aluminum oxide substrate is separated from the thin film layer structure. 如申請專利範圍第45項所述之方法,其中上述隨意基板係由玻璃或是聚合物材料所形成的。 The method of claim 45, wherein the random substrate is formed of glass or a polymer material. 如申請專利範圍第45項所述之方法,其中上述隨意基板係由半導體材料所形成的。 The method of claim 45, wherein the random substrate is formed of a semiconductor material. 如申請專利範圍第45項所述之方法,其中上述晶圓鍵合方式係藉由黏著劑媒介層接合。 The method of claim 45, wherein the wafer bonding method is bonded by an adhesive medium layer. 如申請專利範圍第45項所述之方法,其中上述晶圓鍵合方式係藉由低熔點玻璃媒介層熔合接合。 The method of claim 45, wherein the wafer bonding method is fusion bonded by a low melting glass dielectric layer. 如申請專利範圍第29項所述之方法,其中上述薄膜層結構係由矽材料所形成。 The method of claim 29, wherein the film layer structure is formed of a tantalum material. 如申請專利範圍第29項所述之方法,其中上述薄膜層結構係由鍺材料所形成。 The method of claim 29, wherein the film layer structure is formed of a tantalum material. 如申請專利範圍第29項所述之方法,其中上述薄膜層結構係由碳化矽材料所形成。 The method of claim 29, wherein the film layer structure is formed of a tantalum carbide material. 如申請專利範圍第29項所述之方法,其中上述薄膜層結構係由半導體材料所形成。 The method of claim 29, wherein the film layer structure is formed of a semiconductor material. 如申請專利範圍第29項所述之方法,其中上述薄膜層結構包含經過一半導體製程形成元件裝置於其中。 The method of claim 29, wherein the film layer structure comprises a semiconductor process forming component disposed therein. 如申請專利範圍第54項所述之方法,其中上述薄膜層為矽材料。 The method of claim 54, wherein the film layer is a bismuth material. 如申請專利範圍第54項所述之方法,其中上述元件裝置包含PN結、MOS或功率元件。 The method of claim 54, wherein the component device comprises a PN junction, a MOS or a power component. 一種形成矽晶薄膜層結構之製程方法,該方法至少包含:形成一金屬氮化物薄膜層於一氧化鋁基板之表面上;形成至少一個矽晶薄膜層結構於該金屬氮化物材料層上;於該薄膜層結構表面注入氫離子;自該氧化鋁基板裸面以紫外光照射,使氫氣形成、分解該金屬氮化物薄膜,分離該氧化鋁基板與該薄膜層結構。 A method for forming a structure of a twinned thin film layer, the method comprising: forming a metal nitride thin film layer on a surface of an aluminum oxide substrate; forming at least one twinned thin film layer structure on the metal nitride material layer; Hydrogen ions are implanted into the surface of the film layer; ultraviolet light is irradiated from the bare surface of the aluminum oxide substrate to form and decompose the metal nitride film, and the aluminum oxide substrate and the film layer structure are separated. 如申請專利範圍第57項所述之方法,其中上述金屬氮化物薄膜層係由氮化鈦組成。 The method of claim 57, wherein the metal nitride thin film layer is composed of titanium nitride. 如申請專利範圍第57項所述之方法,其中上述金屬氮化物薄膜層係由氮化鎵、氮化銦或氮化鋁組成。 The method of claim 57, wherein the metal nitride thin film layer is composed of gallium nitride, indium nitride or aluminum nitride. 如申請專利範圍第57項所述之方法,其中上述矽晶薄膜層結構製作包含再結晶製程。 The method of claim 57, wherein the crystal thin film layer structure comprises a recrystallization process. 一種形成含元件之薄膜層結構之製程方法,該方法至少包含:形成一金屬氮化物薄膜層於一氧化鋁基板之表面上;形成至少一個晶體薄膜層結構於該金屬氮化物材料層上;經一元件製作程序,形成元件裝置於該晶體薄膜層結構中;於該薄膜層結構表面注入氫離子;自該氧化鋁基板裸面以紫外光照射,使氫氣形成、分解該金屬氮化物薄膜,分離該氧化鋁基板與該含元件之薄膜層結構。 A method for forming a thin film layer structure comprising a component, the method comprising: forming a metal nitride thin film layer on a surface of an aluminum oxide substrate; forming at least one crystalline thin film layer structure on the metal nitride material layer; a component fabrication process, the device is formed in the crystal film layer structure; hydrogen ions are implanted into the surface of the film layer structure; ultraviolet light is irradiated from the bare surface of the aluminum oxide substrate to form and decompose the metal nitride film, and separate The alumina substrate and the film layer structure of the element. 如申請專利範圍第61項所述之方法,其中上述金屬氮化物薄膜層係由氮化鈦組成。 The method of claim 61, wherein the metal nitride thin film layer is composed of titanium nitride. 如申請專利範圍第61項所述之方法,其中上述金屬氮化物薄膜層係由氮化鎵、氮化銦或氮化鋁組成。 The method of claim 61, wherein the metal nitride thin film layer is composed of gallium nitride, indium nitride or aluminum nitride. 如申請專利範圍第57項所述之方法,其中上述晶體薄膜層結構製作包含再結晶製 程。 The method of claim 57, wherein the crystal thin film layer structure comprises recrystallization Cheng. 如申請專利範圍第57項所述之方法,其中上述元件製作程序包含離子佈植、濕式蝕刻、電漿蝕刻製程。 The method of claim 57, wherein the component fabrication process comprises an ion implantation, a wet etching, and a plasma etching process. 一種形成矽晶薄膜層結構之製程方法,該方法至少包含:形成一金屬氮化物薄膜層於一氧化鋁基板之表面上;形成至少一個非晶矽薄膜層於該金屬氮化物薄膜層上;形成一結晶矽薄膜層於該非晶薄膜層上;經再結晶製程,使結晶矽薄膜結構層形成單晶矽薄膜層結構於金屬氧化物薄膜上。 A method for forming a structure of a twinned film layer, the method comprising: forming a metal nitride film layer on a surface of an aluminum oxide substrate; forming at least one amorphous germanium film layer on the metal nitride film layer; forming A crystalline germanium film layer is deposited on the amorphous thin film layer; and the crystalline germanium thin film structural layer is formed into a single crystal germanium thin film layer structure on the metal oxide thin film by a recrystallization process. 如申請專利範圍第66項所述之方法,其中上述金屬氮化物薄膜層係由氮化鈦組成。 The method of claim 66, wherein the metal nitride thin film layer is composed of titanium nitride. 如申請專利範圍第66項所述之方法,其中上述金屬氮化物薄膜層係由氮化鎵、氮化銦或氮化鋁組成。 The method of claim 66, wherein the metal nitride thin film layer is composed of gallium nitride, indium nitride or aluminum nitride. 一種形成碳化矽晶薄膜層結構之製程方法,該方法至少包含:形成一金屬氮化物薄膜層於一氧化鋁基板之表面上;形成至少一個非晶薄膜層於該金屬氮化物薄膜層上;形成一結晶碳化矽薄膜層結構於該非晶薄膜層上;經再結晶製程使薄膜結構層形成單晶碳化矽薄膜層結構於金屬氧化物薄膜上。 A method for forming a carbonized twin film layer structure, the method comprising: forming a metal nitride film layer on a surface of an aluminum oxide substrate; forming at least one amorphous film layer on the metal nitride film layer; forming A crystalline tantalum carbide thin film layer is formed on the amorphous thin film layer; and the thin film structural layer forms a monocrystalline niobium carbide thin film layer structure on the metal oxide thin film through a recrystallization process. 如申請專利範圍第69項所述之方法,其中上述金屬氮化物薄膜層係由氮化鈦組成。 The method of claim 69, wherein the metal nitride thin film layer is composed of titanium nitride. 如申請專利範圍第69項所述之方法,其中上述金屬氮化物薄膜層係由氮化鎵、氮化銦或氮化鋁組成。 The method of claim 69, wherein the metal nitride thin film layer is composed of gallium nitride, indium nitride or aluminum nitride. 如申請專利範圍第69項所述之方法,其中上述結晶碳化矽薄膜層結構材料係由單晶碳化矽或多晶碳化矽構成。 The method of claim 69, wherein the crystalline tantalum carbide thin film layer structural material is composed of monocrystalline niobium carbide or polycrystalline niobium carbide. 一種形成鍺晶薄膜層結構之製程方法,該方法至少包含:形成一金屬氮化物薄膜層於一氧化鋁基板之表面上;形成至少一個非晶薄膜層於該金屬氮化物薄膜層上;形成一鍺薄膜層結構於該非晶薄膜層上;經再結晶製程使薄膜結構層形成單晶鍺薄膜層結構於金屬氧化物薄膜上。 A method for forming a structure of a twinned film layer, the method comprising: forming a metal nitride film layer on a surface of an aluminum oxide substrate; forming at least one amorphous film layer on the metal nitride film layer; forming a The ruthenium film layer is structured on the amorphous film layer; the film structure layer is formed into a single crystal ruthenium film layer structure on the metal oxide film by a recrystallization process. 如申請專利範圍第73項所述之方法,其中上述金屬氮化物薄膜層係由氮化鈦組成。 The method of claim 73, wherein the metal nitride thin film layer is composed of titanium nitride. 如申請專利範圍第73項所述之方法,其中上述金屬氮化物薄膜層係由氮化鎵、氮化銦或氮化鋁組成。 The method of claim 73, wherein the metal nitride thin film layer is composed of gallium nitride, indium nitride or aluminum nitride. 一種形成半導體薄膜層結構之製程方法,該方法至少包含:形成一金屬氮化物薄膜層於一氧化鋁基板之表面上;形成至少一個非晶薄膜層於該金屬氮化物薄膜層上;形成一結晶半導體薄膜層結構於該非晶薄膜層上;經再結晶製程使薄膜結構層形成單晶半導體薄膜層結構於金屬氧化物薄膜上。 A method for forming a semiconductor thin film layer structure, the method comprising: forming a metal nitride thin film layer on a surface of an aluminum oxide substrate; forming at least one amorphous thin film layer on the metal nitride thin film layer; forming a crystal The semiconductor thin film layer is structured on the amorphous thin film layer; and the thin film structural layer forms a single crystal semiconductor thin film layer structure on the metal oxide thin film through a recrystallization process. 如申請專利範圍第76項所述之方法,其中上述金屬氮化物薄膜層係由氮化鈦組成。 The method of claim 76, wherein the metal nitride thin film layer is composed of titanium nitride. 如申請專利範圍第76項所述之方法,其中上述金屬氮化物薄膜層係由氮化鎵、氮化銦或氮化鋁組成。 The method of claim 76, wherein the metal nitride thin film layer is composed of gallium nitride, indium nitride or aluminum nitride. 如申請專利範圍第76項所述之方法,其中上述結晶半導體薄膜層結構材料係由單晶半導體材料或多晶半導體材料構成。 The method of claim 76, wherein the crystalline semiconductor thin film layer structural material is composed of a single crystal semiconductor material or a polycrystalline semiconductor material.
TW098142691A 2009-12-14 2009-12-14 Method of fabricating a transferable crystalline thin film TWI451474B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098142691A TWI451474B (en) 2009-12-14 2009-12-14 Method of fabricating a transferable crystalline thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098142691A TWI451474B (en) 2009-12-14 2009-12-14 Method of fabricating a transferable crystalline thin film

Publications (2)

Publication Number Publication Date
TW201120938A TW201120938A (en) 2011-06-16
TWI451474B true TWI451474B (en) 2014-09-01

Family

ID=45045373

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098142691A TWI451474B (en) 2009-12-14 2009-12-14 Method of fabricating a transferable crystalline thin film

Country Status (1)

Country Link
TW (1) TWI451474B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020069312A1 (en) * 2018-09-28 2020-04-02 The Penn State Research Foundation Method of growing crystalline layers on amorphous substrates using two-dimensional and atomic layer seeds

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490201B2 (en) * 2013-03-13 2016-11-08 Intel Corporation Methods of forming under device interconnect structures
CN112614867B (en) * 2020-12-11 2023-06-02 联合微电子中心有限责任公司 Stacked color image sensor and monolithic integration method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534380B1 (en) * 1997-07-18 2003-03-18 Denso Corporation Semiconductor substrate and method of manufacturing the same
US20050245049A1 (en) * 2004-03-05 2005-11-03 Takeshi Akatsu Atomic implantation and thermal treatment of a semiconductor layer
TW200931503A (en) * 2007-10-10 2009-07-16 Semiconductor Energy Lab Method of manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534380B1 (en) * 1997-07-18 2003-03-18 Denso Corporation Semiconductor substrate and method of manufacturing the same
US20050245049A1 (en) * 2004-03-05 2005-11-03 Takeshi Akatsu Atomic implantation and thermal treatment of a semiconductor layer
TW200931503A (en) * 2007-10-10 2009-07-16 Semiconductor Energy Lab Method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020069312A1 (en) * 2018-09-28 2020-04-02 The Penn State Research Foundation Method of growing crystalline layers on amorphous substrates using two-dimensional and atomic layer seeds
US11551929B2 (en) 2018-09-28 2023-01-10 The Penn State Research Foundation Method of growing crystalline layers on amorphous substrates using two-dimensional and atomic layer seeds

Also Published As

Publication number Publication date
TW201120938A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
TW410477B (en) Process for producing semiconductor article
CN1312781C (en) Method for mfg. semiconductor structural component and method for mfg. solar cell
CN102832117B (en) Spalling methods to form multi-junction photovoltaic structure and photovoltaic device
TW463223B (en) Method of manufacturing semiconductor wafer method of using and utilizing the same
US8921239B2 (en) Process for recycling a substrate
US6602767B2 (en) Method for transferring porous layer, method for making semiconductor devices, and method for making solar battery
JP7025773B2 (en) How to separate the semiconductor substrate body and the functional layer on it
JP5128781B2 (en) Manufacturing method of substrate for photoelectric conversion element
JP3962465B2 (en) Manufacturing method of semiconductor member
JP3501606B2 (en) Method for manufacturing semiconductor substrate and method for manufacturing solar cell
US20200135962A1 (en) Systems and methods for fabricating photovoltaic devices via remote epitaxy
JP2012518290A (en) Formation of thin layers of semiconductor materials
WO2010015878A2 (en) Process for modifying a substrate
CN111883651A (en) Method for preparing high-quality aluminum nitride template
Paupy et al. Wafer-scale detachable monocrystalline germanium nanomembranes for the growth of III–V materials and substrate reuse
WO2015141620A1 (en) Method for producing thin-film solar cell, and thin-film solar cell
TWI451474B (en) Method of fabricating a transferable crystalline thin film
An et al. Fabrication of crystalline Si thin films for photovoltaics
CN112219262B (en) Method for preparing transferable thin layers
JP3927977B2 (en) Manufacturing method of semiconductor member
JP2000277403A (en) Manufacture of semiconductor substrate
JP2002237607A (en) Method of transferring porous layer, method of manufacturing semiconductor element, and method of manufacturing solar battery
Saenger et al. Improving Silicon Crystallinity by Grain Reorientation Annealing
Tsuji et al. Epitaxial Lift-off Technology for Solar Cell Application

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees