TWI443880B - Led pasting method - Google Patents
Led pasting method Download PDFInfo
- Publication number
- TWI443880B TWI443880B TW101103912A TW101103912A TWI443880B TW I443880 B TWI443880 B TW I443880B TW 101103912 A TW101103912 A TW 101103912A TW 101103912 A TW101103912 A TW 101103912A TW I443880 B TWI443880 B TW I443880B
- Authority
- TW
- Taiwan
- Prior art keywords
- emitting diode
- light
- substrate
- bonding
- solder
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 47
- 229910000679 solder Inorganic materials 0.000 claims description 115
- 239000000758 substrate Substances 0.000 claims description 91
- 239000010410 layer Substances 0.000 claims description 43
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 27
- 239000013078 crystal Substances 0.000 claims description 24
- 238000002844 melting Methods 0.000 claims description 23
- 230000008018 melting Effects 0.000 claims description 23
- 230000000694 effects Effects 0.000 claims description 20
- 230000017525 heat dissipation Effects 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 239000000919 ceramic Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 15
- 239000010936 titanium Substances 0.000 claims description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 150000002910 rare earth metals Chemical class 0.000 claims description 12
- 238000007781 pre-processing Methods 0.000 claims description 11
- 238000005476 soldering Methods 0.000 claims description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 9
- 229910052718 tin Inorganic materials 0.000 claims description 9
- 229910052746 lanthanum Inorganic materials 0.000 claims description 7
- 239000002344 surface layer Substances 0.000 claims description 7
- 230000004888 barrier function Effects 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000011777 magnesium Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 239000003792 electrolyte Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 210000004508 polar body Anatomy 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 238000009736 wetting Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000007772 electroless plating Methods 0.000 claims description 2
- 238000009713 electroplating Methods 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 239000011135 tin Substances 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims 3
- 229910052733 gallium Inorganic materials 0.000 claims 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- 239000011149 active material Substances 0.000 claims 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 claims 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 claims 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 description 20
- 239000000956 alloy Substances 0.000 description 20
- 229910001128 Sn alloy Inorganic materials 0.000 description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- 239000004332 silver Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 235000012431 wafers Nutrition 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 229910052797 bismuth Inorganic materials 0.000 description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910052747 lanthanoid Inorganic materials 0.000 description 4
- 150000002602 lanthanoids Chemical class 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 3
- 238000002048 anodisation reaction Methods 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000007745 plasma electrolytic oxidation reaction Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Led Device Packages (AREA)
Description
本發明係關於一種發光二極體之晶粒黏著方法,特別是一種簡單製程且具有低熱阻,能提供較佳散熱效果的發光二極體之晶粒黏著方法。The invention relates to a method for bonding a crystal of a light-emitting diode, in particular to a method for crystallizing a light-emitting diode which has a simple process and has low heat resistance and can provide a better heat dissipation effect.
現有發光二極體元件之製作方式,係先提供一發光二極體[LED]晶粒,接著將該發光二極體晶粒固定於一矽基板之表面塗佈銀膠,藉由銀膠黏著固定發光二極體晶粒,再將該固定完成的發光二極體晶粒連同矽基板另結合於塗佈有銀膠的一熱承載座上,接著以打線連接或軟銲連接之方式,使該發光二極體晶粒與電極端相互連通,再用透明塑膠外殼進行構裝,使之成為一發光二極體元件;再使用該發光二極體元件之熱承載座固定於塗佈有導熱膏的另一電路板上(如PCB電路板或陶瓷電路板),該發光二極體元件之電極端以軟銲接合方式連通於電路板之電路端;並將其含有發光二極體元件之電路板,以導熱膏構裝於散熱鰭片上而完成。The existing light-emitting diode element is manufactured by first providing a light-emitting diode [LED] die, and then fixing the light-emitting diode die on the surface of a substrate to apply silver paste, which is adhered by silver glue. Fixing the light-emitting diode die, and then bonding the fixed light-emitting diode die together with the germanium substrate to a heat carrier coated with silver glue, and then connecting by wire bonding or soldering connection The light-emitting diode die and the electrode end communicate with each other, and then are configured by a transparent plastic casing to make it become a light-emitting diode component; and the heat-carrying seat of the light-emitting diode component is fixed to the coated heat conduction. Another circuit board of the paste (such as a PCB circuit board or a ceramic circuit board), the electrode end of the light emitting diode element is connected to the circuit end of the circuit board by a soft soldering method; and the light emitting diode element is included The circuit board is completed by thermally conductive paste mounted on the heat dissipation fins.
然而,上述習知發光二極體之晶粒黏著方法,其導熱之效果有限,必須於該發光二極體晶粒與基板之間能有效地提高散熱效果,故於各層之表面額外塗佈如銀膠、導熱膏等具散熱效果之黏著劑,如此,該層層堆疊之結構係容易具有較高的熱阻而降低整體的熱傳導效率,甚至增加該LED晶粒黏著於基板過程的繁瑣而提高成本的負擔。However, in the above-mentioned conventional method for bonding a crystal of a light-emitting diode, the heat conduction effect is limited, and the heat dissipation effect must be effectively improved between the light-emitting diode die and the substrate, so that the surface of each layer is additionally coated. Silver adhesive, thermal paste and other adhesives with heat-dissipating effect, so that the layer stack structure is easy to have high thermal resistance and reduce the overall heat transfer efficiency, and even increase the cumbersome and improved process of the LED die adhered to the substrate. The burden of cost.
再者,習用銀膠或導熱膏的黏著均容易因LED晶粒長時間所散發的熱及紫外線影響,而造成該銀膠或導熱膏老化脫落之現象。如此,習知發光二極體晶粒之封裝方法不僅嚴重影響LED晶粒的熱傳導效果而導致散熱性不佳,甚至可能進一步造成LED的損害而降低LED的使用壽命。Furthermore, the adhesion of the conventional silver paste or the thermal paste is easily caused by the heat and ultraviolet rays emitted from the LED die for a long time, and the silver paste or the thermal paste is aging and falling off. Thus, the conventional packaging method of the LED die not only seriously affects the heat conduction effect of the LED die, but also causes poor heat dissipation, and may even further damage the LED and reduce the service life of the LED.
如中華民國公開第200729536號「一種發光二極體封裝之晶片黏著材料」係包含一發光二極體晶片,該晶片係以錫合金為黏著材料作電性偶合於承載體上。如此,係能夠以錫合金有內收縮的內聚力(Cohesive Force),使得該晶片得以黏著於錫合金之上,進而避免傳統銀膠之固晶方式所造成晶粒出光面積縮小甚至因銀膠碰觸P-N架接介面層而造成漏電、缺亮等問題,進一步增加LED晶片發光亮度及晶粒黏著可靠度。For example, the Republic of China Publication No. 200729536 "A wafer adhesive material for a light-emitting diode package" comprises a light-emitting diode wafer electrically coupled to a carrier by a tin alloy as an adhesive material. In this way, the Cohesive Force can be internally contracted by the tin alloy, so that the wafer can be adhered to the tin alloy, thereby avoiding the shrinkage of the grain exit area caused by the solid crystal form of the conventional silver paste or even touching by the silver paste. The PN is connected to the interface layer to cause leakage, lack of brightness, etc., further increasing the brightness of the LED chip and the reliability of the die adhesion.
然而,上述專利案以錫合金作為黏著該發光二極體晶粒與基板之材料時,該發光二極體屬於難以潤濕材料且不容易潤濕接合,又因,該錫合金不具有活性成份,只能接合一般具有高潤濕性金屬材料的接合,對於潤濕性差金屬材料(如鋁合金、鎂合金、鈦合金)或不具潤濕性的陶瓷、晶片、石墨或碳纖材料,則難於潤濕接合,。使得該發光二極體晶粒的表面必須經過一道金屬化處理,使LED晶片表面具有一層金屬層,才能用傳統錫合金接合成功,又因此金屬化層相當薄,容易再接合過程中耗損脫落,以致於該發光二極體與基板之間的結合強度明顯不足。However, in the above patent, when a tin alloy is used as a material for bonding the light-emitting diode die and the substrate, the light-emitting diode is a hard-to-wet material and is not easily wet-bonded, and the tin alloy does not have an active component. It can only join joints with high wettability metal materials. It is difficult for wet metal materials (such as aluminum alloys, magnesium alloys, titanium alloys) or non-wetting ceramics, wafers, graphite or carbon fiber materials. Wet joint,. The surface of the light-emitting diode die must be subjected to a metallization process to have a metal layer on the surface of the LED wafer, so that the bonding can be successful with the conventional tin alloy, and thus the metallized layer is relatively thin, and it is easy to be lost during the re-bonding process. Therefore, the bonding strength between the light emitting diode and the substrate is remarkably insufficient.
再者,該錫合金作為黏著材料,因容易受限於該錫合金本身鈍性金屬不具活性之特性,而僅能選擇具有高潤濕性的金屬材質之基板供該發光二極體晶粒結合,如此,當該錫合金應用潤濕性差之基板,如玻璃、陶瓷等非金屬材質之基板,或表面經過陽極處理或微弧處理形成一具有陶瓷層之鋁基板時,係使得該錫合金無法接合成功而造成銲接效果不佳之情形;為改善銲接不佳之情形係必須再於該不具有潤濕性的材質之基板上披覆一金屬層再進行黏合,惟當該發光二極體晶粒與基板之間進行接合時,會造成不具潤濕性之基板上之披覆金屬層耗損,或熱應力造成剝離,而造成銲接效果不佳之情形。其二,因重覆堆疊該金屬層時,卻反而提升界面熱阻抗係數而降低熱傳導效率。如此,該錫合金係無法將該發光二極體晶粒直接黏著於不同材質之基板而導致使用裕度不佳之情形。Furthermore, the tin alloy as an adhesive material is easily limited by the inactive nature of the tin alloy itself, and only a metal substrate having high wettability can be selected for the light-emitting diode die bonding. Therefore, when the tin alloy is applied to a substrate having poor wettability, such as a non-metallic substrate such as glass or ceramic, or the surface is subjected to anodization or micro-arcing to form an aluminum substrate having a ceramic layer, the tin alloy cannot be made. In the case where the bonding is successful, the welding effect is not good; in order to improve the poor soldering, it is necessary to coat a metal layer on the substrate having no wettability and then bond it, but when the light emitting diode is When the substrates are joined together, the coated metal layer on the substrate having no wettability may be worn out, or the thermal stress may cause peeling, resulting in a poor soldering effect. Second, when the metal layer is repeatedly stacked, the interface thermal resistance coefficient is increased and the heat conduction efficiency is lowered. As a result, the tin alloy system cannot directly adhere the light-emitting diode crystal grains to the substrates of different materials, resulting in a poor use margin.
有鑑於上述缺點,本發明之發光二極體晶粒之封裝方法確實仍有加以改善之必要。In view of the above disadvantages, the packaging method of the light-emitting diode die of the present invention is still necessary to be improved.
本發明之主要目的乃改善上述缺點,以提供一種發光二極體之晶粒黏著方法,其係能將活性銲料加熱至該活性銲料熔點以上,使該活性銲料呈現熔化狀態,並以擾動方式破壞活性銲料之氧化層,並促進活性成份擴散至接合表面層,使活性元素與接合材料發生接合反應,以提升發光二極體晶粒與基板之間的結合強度。The main object of the present invention is to improve the above disadvantages, and to provide a method for crystallizing a light-emitting diode, which can heat the active solder to above the melting point of the active solder, causing the active solder to be in a molten state and destroyed by disturbance. An active oxide layer of the solder promotes diffusion of the active component to the bonding surface layer to cause a bonding reaction between the active element and the bonding material to enhance the bonding strength between the light emitting diode die and the substrate.
本發明之次一目的係提供一種發光二極體之晶粒黏著方法,係能夠使該發光二極體晶粒直接結合於不同材質之基板,以提升該發光二極體的使用裕度。A second object of the present invention is to provide a method for bonding a light-emitting diode to a substrate of a different material to enhance the use margin of the light-emitting diode.
本發明之再一目的係提供一種發光二極體之晶粒黏著方法,係能夠降低該發光二極體與基板之間的界面熱阻抗係數,而提升熱傳導效率。A further object of the present invention is to provide a method for crystallizing a light-emitting diode, which is capable of reducing an interface thermal impedance coefficient between the light-emitting diode and the substrate, thereby improving heat transfer efficiency.
為達到前述發明目的,本發明之發光二極體之晶粒黏著方法,係包含:一前處理步驟,係加熱一活性銲料達到該活性銲料熔點以上,使得該活性銲料呈現熔化態,其中該活性銲料係由一銲料添加至少一活性元素所組成;其一,係於擾動方式將該熔化狀態之活性銲料塗覆於一基板,使得該基板形成一具有熔融活性銲料之電路線及銲點、固晶點;另外,係同時對該發光二極體晶粒,利用上述方法,進行製作一發光二極體晶粒之兩端銲點及固晶點;再將一發光二極體晶粒放置於該基板銲點及固晶點,以降溫固化後黏合於該基板之表面。In order to achieve the foregoing object, the method for crystallizing a light-emitting diode of the present invention comprises: a pre-processing step of heating an active solder to a temperature above the melting point of the active solder such that the active solder exhibits a molten state, wherein the active The solder is composed of at least one active element added by a solder; the first is to apply the molten solder in a molten state to a substrate in a disturbing manner, so that the substrate forms a circuit line and a solder joint with a molten active solder. a crystal point; in addition, the light-emitting diode crystal grains are simultaneously formed by the above method, and the solder joints and the solid crystal dots of the light-emitting diode crystal grains are formed; and then a light-emitting diode crystal grain is placed thereon. The substrate solder joint and the solid crystal point are cured by cooling and adhered to the surface of the substrate.
本發明之發光二極體之晶粒黏著方法,還可以於該前處理步驟中係同時對該基板進行預熱及擾動,以活化該基板之表面;且於前處理步驟中較佳係以超音波輔助擾動方式以增加活性銲料之活性成份與不具潤濕性之基板和晶片反應接合,同時能擾動熔化活性銲料之表層保護用之氧化膜,使熔化活性銲料的表面呈現一乾淨、新鮮表層,並促進活性成份擴散至表面。The method for bonding a light-emitting diode of the present invention may further preheat and perturb the substrate in the pre-processing step to activate the surface of the substrate; and in the pre-processing step, preferably The sonic-assisted perturbation method combines the active component of the active solder with the non-wetting substrate and the wafer, and at the same time disturbs the oxide film for protecting the surface layer of the active solder, so that the surface of the molten active solder presents a clean, fresh surface layer. And promote the diffusion of active ingredients to the surface.
本發明之發光二極體之晶粒黏著方法,更可以先於該基板二端熔融之活性銲料所形成的電路線、銲點及固晶點上,另用電鍍或無電鍍方式,在活性銲料層增加一導電金屬,或於該導電金屬表面再增加一金屬阻絕層,以將該發光二極體晶粒之銲腳分別固定於該阻絕層之表面;甚至於 操作該黏合步驟之同時另操作一輔助黏合步驟,該輔助黏合步驟係將該前處理步驟所活化的活性銲料塗佈於該發光二極體晶粒與基板之間而形成一散熱層,該散熱層與該基板二端所形成的熔融銲點係不互相接觸。The die attaching method of the light emitting diode of the present invention can be preceded by the circuit wire, the solder joint and the solid crystal point formed by the active solder melted at the two ends of the substrate, and the electroplating or electroless plating method is used for the active solder. Adding a conductive metal to the layer, or adding a metal barrier layer to the surface of the conductive metal to fix the soldering legs of the light-emitting diode die to the surface of the barrier layer; The auxiliary bonding step is performed by applying the active solder activated by the pre-processing step to the light-emitting diode die and the substrate to form a heat dissipation layer. The molten solder joints formed by the layers and the ends of the substrate are not in contact with each other.
在本發明之一實施例中,該活性銲料選自錫基合金、鉍基合金、銦基合金或其他銲錫合金,並加入0.01~2重量%之稀土族元素(Re),其稀土族元素係泛指:鈧元素(Sc)、釔元素(Y)及「鑭系元素」,其中「鑭系元素」包括:鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉅(Pm)、釤(Sm)、銪(Eu)釓(Gd)鋱(Td)、鏑Dy、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)或鑥(Lu),但在產業的利用上,稀土族元素通常係以混合物的形態存在,常見之稀土族元素混合物通常係由:鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、釤(Sm)以及極少量的鐵、磷、硫或矽所組成。In an embodiment of the invention, the active solder is selected from the group consisting of a tin-based alloy, a bismuth-based alloy, an indium-based alloy or other solder alloy, and 0.01 to 2% by weight of a rare earth element (Re) is added, and the rare earth element system thereof Refers to: 钪 element (Sc), 钇 element (Y) and "lanthanide element", of which "lanthanum element" includes: 镧 (La), 铈 (Ce), 鐠 (Pr), 钕 (Nd), giant (Pm), 钐 (Sm), 铕 (Eu) 釓 (Gd) 鋱 (Td), 镝 Dy, 鈥 (Ho), 铒 (Er), 銩 (Tm), 镱 (Yb) or 鑥 (Lu), However, in the utilization of the industry, the rare earth elements usually exist in the form of a mixture. The common rare earth element mixture usually consists of: La, Ce, Pr, Nd, Nd ( Sm) and a very small amount of iron, phosphorus, sulfur or antimony.
在本發明之一實施例中,該錫基合金、鉍基合金或銦基合金混摻有6重量%以下之至少一種活性成分,其選自包含4重量%以下之鈦(Ti)、釩(V)、鎂(Mg)、鋰(Li)、鋯(Zr)、鉿(Hf)或其組合;以及其餘重量為稀土族元素,該稀土族元件選自其稀土族元素係泛指:鈧元素(Sc)、釔元素(Y)及「鑭系元素」或其組合。In an embodiment of the present invention, the tin-based alloy, the bismuth-based alloy or the indium-based alloy is blended with at least one active ingredient of at least 6% by weight, which is selected from the group consisting of titanium (Ti) and vanadium (including 4% by weight or less). V), magnesium (Mg), lithium (Li), zirconium (Zr), hafnium (Hf) or a combination thereof; and the remaining weight is a rare earth element selected from the group consisting of rare earth elements thereof: (Sc), yttrium element (Y) and "lanthanide element" or a combination thereof.
該活性銲料較佳係為混合有活性元素及微量稀土元素的錫基合金、銦基合金;特別係指錫-3.5 銀-0.5 銅-4 鈦(0.2%混合稀土)、錫-0.7 銀-0.7 銅-4 鈦(0.2%混合稀土)、銦-48 錫-4 鈦(0.2%混合稀土)、銦-4 鈦(0.2%混合稀土)或錫-58 鉍-4 鈦(0.2%混合稀土)。The active solder is preferably a tin-based alloy or an indium-based alloy mixed with an active element and a trace rare earth element; in particular, tin-3.5 silver-0.5 copper-4 titanium (0.2% mixed rare earth), tin-0.7 silver-0.7 Copper-4 titanium (0.2% mixed rare earth), indium-48 tin-4 titanium (0.2% mixed rare earth), indium-4 titanium (0.2% mixed rare earth) or tin-58 铋-4 titanium (0.2% mixed rare earth).
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:請參照第1及2圖所示,本發明第一實施例之發光二極體之晶粒黏著方法係包含一前處理步驟S1及一黏合步驟S2。The above and other objects, features and advantages of the present invention will become more <RTIgt; The die attaching method of the light emitting diode according to the first embodiment of the present invention includes a pre-processing step S1 and a bonding step S2.
該前處理步驟S1係加熱使活性銲料呈現熔融狀態,並以擾動方式去除一活性銲料表層的氧化膜,使得該活性銲料呈現新鮮活化態,其中該活性銲料係由一銲料添加至少一活性元素所組成。更詳言之,該銲料係選自錫基合金、鉍基合金、銦基合金或其他銲錫合金,並加入0.01~2重量%之稀土族元素(Re),其稀土族元素係泛指:鈧元素(Sc)、釔元素(Y)及「鑭系元素」,其中「鑭系元素」包括:鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉅(Pm)、釤(Sm)、銪(Eu)釓(Gd)鋱(Td)、鏑Dy、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)或鑥(Lu),但在產業的利用上,稀土族元素通常係以混合物的形態存在,常見之稀土族元素混合物通常係由:鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、釤(Sm)以及極少量的鐵、磷、硫或矽所組成。The pre-treatment step S1 is heated to bring the active solder into a molten state, and the oxide film of the active solder skin layer is removed in a disturbing manner, so that the active solder exhibits a fresh activated state, wherein the active solder is added with at least one active element by a solder. composition. More specifically, the solder is selected from a tin-based alloy, a bismuth-based alloy, an indium-based alloy or other solder alloy, and 0.01 to 2% by weight of a rare earth element (Re) is added, and the rare earth element is generally referred to as: Element (Sc), elemental (Y) and "lanthanide", of which "lanthanum" includes: 镧 (La), 铈 (Ce), 鐠 (Pr), 钕 (Nd), giant (Pm),钐 (Sm), 铕 (Eu) 釓 (Gd) 鋱 (Td), 镝 Dy, 鈥 (Ho), 铒 (Er), 銩 (Tm), 镱 (Yb) or 鑥 (Lu), but in the industry In terms of use, the rare earth elements usually exist in the form of a mixture, and the common rare earth element mixture is usually composed of: lanthanum (La), cerium (Ce), praseodymium (Pr), cerium (Nd), cerium (Sm), and A small amount of iron, phosphorus, sulfur or antimony.
在本發明之一實施例中,該錫基合金、鉍基合金或銦基合金混摻有6重量%以下之至少一種活性成分,其選自包含4重量%以下之鈦(Ti)、釩(V)、鎂(Mg)、鋰(Li)、鋯(Zr)、鉿(Hf)或其組合;以及其餘重量為稀土族元素,該稀土族元件選自其稀土族元素係泛指:鈧元素(Sc)、釔元素(Y) 及「鑭系元素」或其組合。In an embodiment of the present invention, the tin-based alloy, the bismuth-based alloy or the indium-based alloy is blended with at least one active ingredient of at least 6% by weight, which is selected from the group consisting of titanium (Ti) and vanadium (including 4% by weight or less). V), magnesium (Mg), lithium (Li), zirconium (Zr), hafnium (Hf) or a combination thereof; and the remaining weight is a rare earth element selected from the group consisting of rare earth elements thereof: (Sc), 钇 element (Y) And "lanthanides" or a combination thereof.
該接合基板係可以選擇為金屬基板(如鋁、銅…等)或非金屬基板(如陶瓷、玻璃、氮化鋁、氧化鋯…等);甚至,該基板還可以直接選擇為一散熱座,以於後續黏著步驟S2中,將該活性銲料塗覆於該散熱座後,直接與一發光二極體晶粒2黏合。The bonding substrate can be selected as a metal substrate (such as aluminum, copper, etc.) or a non-metal substrate (such as ceramic, glass, aluminum nitride, zirconia, etc.); even, the substrate can be directly selected as a heat sink. In the subsequent adhesion step S2, after the active solder is applied to the heat sink, it is directly bonded to a light-emitting diode die 2.
因此,於該前處理步驟S1中必須先破壞該活性銲料表面所產生的一層極薄氧化膜,才能夠使該活性銲料維持較佳的新鮮活化態,並促進活性銲料之活性元素擴散至熔融活性銲料之表層。舉例而言,本實施例係以超音波震盪方式能加速擾動該活性銲料,以破壞該活性銲料表層的極之氧化膜,並促進熔融活性銲料內之活性元素和稀土元素擴散到表層,進而呈現活化態的活性銲料;甚至,可同時對該接合基板1進行震盪,藉以提升於後續黏合步驟S2中的接合效率和接合強度。Therefore, in the pre-treatment step S1, an extremely thin oxide film generated on the surface of the active solder must be destroyed before the active solder can maintain a better fresh activation state, and the active element of the active solder is diffused to the molten activity. The surface layer of the solder. For example, in the embodiment, the ultrasonic vibration can be used to accelerate the disturbance of the active solder to break the oxide film of the active solder surface layer, and promote the diffusion of the active elements and rare earth elements in the molten active solder to the surface layer. Active solder in the activated state; even, the bonded substrate 1 can be oscillated at the same time, thereby improving the bonding efficiency and the bonding strength in the subsequent bonding step S2.
該黏合步驟S2係於該基板1之加熱至該活性銲料之熔點溫度以上25℃,並利用該熔融活性銲料3,使得該基板1具有活性銲料之金屬電路線及二個接點端以上,再將一發光二極體晶粒2之二端銲腳分別放置於該基板1二個接點端的熔融銲點3上,使該發光二極體晶粒2經該熔融銲點3降溫固化後黏合於該基板1之表面。更詳言之,本發明係將該前處理步驟S1及黏合步驟S2之加熱至熔點以上之5℃~75℃,使得該活性銲料均勻形成熔融態而能夠於該基板1之二端各自形成該熔融銲點3。如此,係可以將該發光二極體晶粒2之二端銲腳分別放置於該基板1二端 的熔融銲點3上,而使該發光二極體晶粒2緊密貼覆於該基板1之表面,接著使該發光二極體晶粒2於該熔融銲點3降溫至活性銲料之熔點以下5℃~25℃而固化後能夠黏合於該基板1之表面。本發明較佳係選擇以超音波輔助軟銲方式於該基板1與發光二極體晶粒2之間,在超音波震動過程中,將將熔融活性銲料且直接塗佈接合於該基板1上或是活性接合該發光二極體晶粒2於該基板1上,而能夠待該活性銲料凝固後將該基板1與發光二極體晶粒2緊密黏合,且該基板1之熔點係高於該活性銲料之熔點,藉以避免加熱過程對該基板1造成額外的損害。The bonding step S2 is performed by heating the substrate 1 to 25 ° C above the melting temperature of the active solder, and using the molten active solder 3 to make the substrate 1 have a metal circuit line of active solder and two contact ends or more. The two ends of the light-emitting diode die 2 are respectively placed on the molten solder joints 3 at the two contact ends of the substrate 1, so that the light-emitting diode crystal grains 2 are cooled and solidified by the molten solder joints 3, and then bonded. On the surface of the substrate 1. More specifically, in the present invention, the pre-treatment step S1 and the bonding step S2 are heated to 5 ° C to 75 ° C above the melting point, so that the active solder is uniformly formed into a molten state, and the active solder can be formed at both ends of the substrate 1 . Melt solder joint 3. In this way, the two ends of the LED die 2 can be placed on the two ends of the substrate 1 respectively. On the molten solder joint 3, the light-emitting diode die 2 is closely adhered to the surface of the substrate 1, and then the light-emitting diode die 2 is cooled at the molten solder joint 3 to below the melting point of the active solder. After curing at 5 ° C to 25 ° C, it can be bonded to the surface of the substrate 1 . Preferably, the present invention selects ultrasonic bonding-assisted soldering between the substrate 1 and the light-emitting diode die 2, and during the ultrasonic vibration process, the molten active solder is directly applied and bonded to the substrate 1. Or actively bonding the light-emitting diode die 2 to the substrate 1, and the substrate 1 and the light-emitting diode die 2 are tightly bonded after the active solder is solidified, and the melting point of the substrate 1 is higher than The melting point of the active solder is used to avoid additional damage to the substrate 1 by the heating process.
舉例而言,本實施例係於具有高導熱性之氧化陶瓷基板1二端接點塗覆具有高熔點的活性銲料,使得該活性銲料於高於熔點以上之5℃~75℃時轉為熔融態。此時,係將該發光二極體晶粒2之二端銲腳放置於該基板1二端接點之熔融銲點3上,使得該活性銲料中的活性元素及稀土元素能夠與活化後的氧化陶瓷基板1表面產生新的反應層,並於該發光二極體晶粒完全接合完成後,並於後降溫至該熔融銲點3之熔點5℃~75℃後,而使得該熔融焊點3固化以穩固結合該發光二極體晶粒2於該氧化陶瓷基板1之表面。如此,該活性銲料不僅能夠於該發光二極體晶粒2與氧化陶瓷基板1間生成新的接合反應層,以提高二者間的接合強度及效率;該活性銲料接合氧化陶瓷基板1與發光二極體晶粒2後,能有效地降低該發光二極體晶粒2與氧化陶瓷基板1接合界面的熱阻抗係數,達到提升熱傳導效率且增加散熱效果之功效。For example, in the present embodiment, the active solder having a high melting point is coated on the two-end contact of the oxidized ceramic substrate 1 having high thermal conductivity, so that the active solder is melted at a temperature of 5 ° C to 75 ° C above the melting point. state. At this time, the two ends of the light-emitting diode die 2 are placed on the molten solder joint 3 of the two-end contact of the substrate 1, so that the active element and the rare earth element in the active solder can be activated. A new reaction layer is formed on the surface of the oxidized ceramic substrate 1, and after the light-emitting diode crystal grains are completely joined, and then cooled to a melting point of the molten solder joint 3 of 5 ° C to 75 ° C, the molten solder joint is made 3 curing to firmly bond the light-emitting diode crystal grains 2 to the surface of the oxidized ceramic substrate 1. In this way, the active solder can not only form a new bonding reaction layer between the LED body 2 and the oxidized ceramic substrate 1 to improve the bonding strength and efficiency between the two; the active solder bonding oxidized ceramic substrate 1 and illuminating After the diode die 2, the thermal impedance coefficient of the junction interface between the light-emitting diode die 2 and the oxidized ceramic substrate 1 can be effectively reduced, thereby improving the heat transfer efficiency and increasing the heat dissipation effect.
以上述方法完成該發光二極體晶粒2之黏著且進行應用時,係可以選擇於該發光二極體晶粒2之表面以打線方式連接二電極;或者,還可以選擇以覆晶結合之方式於該發光二極體晶粒2與基板1黏合之接點端面形成二電極,且使該二電極接觸該活性焊料以導通二電極,藉此該發光二極體晶粒2係能夠於該二電極電性連接外部電源後形成通路而發光。When the adhesion of the light-emitting diode die 2 is completed by the above method, the surface of the light-emitting diode die 2 may be selected to be connected to the two electrodes by wire bonding; or alternatively, the flip chip may be selected. The second electrode is formed on the end face of the contact point of the light-emitting diode die 2 and the substrate 1 , and the two electrodes are in contact with the active solder to turn on the two electrodes, thereby the light-emitting diode die 2 can be The two electrodes are electrically connected to the external power source to form a path to emit light.
如上所述,本發明係能夠以均勻熔融態的活性銲料黏合該發光二極體晶粒2於基板1之表面,使得該活性銲料中的活性元素可以與基板1及該發光二極體晶粒2形成新的接合反應層,藉此提升該發光二極體晶粒2於該基板1表面的結合強度;甚至透過本發明對該活性銲料與基板1表面進行超音波輔助接合之技術,使得該活性銲料中的活性元素能夠快速擴散至接合處,並與基板1之表面接合反應層,藉以提升該發光二極體晶粒2結合於基板1表面之效率。再且,本發明更可以利用該活性銲料直接將該發光二極體晶粒2黏合於具有高導熱性材質之基板1,使得經本發明之方法所黏合完成的發光二極體不僅不會有如習知層層堆疊之結構而能夠具有較低熱阻,並本接合活性銲料為高導熱金屬材料進而降低該二者接合界面間的熱阻抗係數,能快速將該發光二極體晶粒2所產生的熱傳導至該基板1之外,藉此增加熱傳導效率而達到較佳的散熱效果;更能避免該發光二極體晶粒2長時間使用產生高溫現象,進而達到延長該發光二極體使用壽命之功效。As described above, the present invention is capable of bonding the light-emitting diode crystal 2 to the surface of the substrate 1 in a uniform molten state, so that the active element in the active solder can be bonded to the substrate 1 and the light-emitting diode. 2 forming a new bonding reaction layer, thereby enhancing the bonding strength of the light emitting diode die 2 on the surface of the substrate 1; even through the technique of ultrasonically assisting bonding the active solder to the surface of the substrate 1 by the present invention, The active element in the active solder can rapidly diffuse to the joint and bond the reaction layer to the surface of the substrate 1, thereby improving the efficiency of bonding the light-emitting diode crystal 2 to the surface of the substrate 1. Furthermore, the present invention can directly bond the light-emitting diode crystal 2 to the substrate 1 having a high thermal conductivity material by using the active solder, so that the light-emitting diode bonded by the method of the present invention is not only not suitable. The structure of the layer stack can be configured to have a lower thermal resistance, and the active solder is a highly thermally conductive metal material, thereby reducing the thermal impedance coefficient between the joint interfaces of the two, and can quickly generate the light-emitting diode crystal 2 The heat is transmitted to the outside of the substrate 1, thereby increasing the heat conduction efficiency to achieve a better heat dissipation effect; more avoiding the high temperature phenomenon of the LED 2 for a long time of use, thereby prolonging the service life of the LED The effect.
再者,請參照第3圖所示,本發明還可以於該基板1 二端熔融之活性銲料所形成的熔融銲點3上黏合一導電金屬4,以增加該活性銲料連接該發光二極體晶粒2的導電及導熱效果,其中該導電金屬4較佳係選擇為銅、鎳、錫或其化合物等;並且於該導電金屬4表面以各式方法(如濺鍍、塗佈…等)形成一阻絕層5,藉以避免該發光二極體晶粒2進行黏著時與該導電金屬4產生過量之介金屬化合物,而降低接合強度。如此,本發明係能夠以該活性銲料於上述方法的應用下,再依不同需求任意結合各種物件,使得本發明可以產生如結合強度、導電性、導熱性等功效上的增進。Furthermore, please refer to FIG. 3, the present invention is also applicable to the substrate 1 A conductive metal 4 is adhered to the molten solder joint 3 formed by the two-end molten active solder to increase the conductive and thermal conductive effect of the active solder connecting the light-emitting diode die 2. The conductive metal 4 is preferably selected as Copper, nickel, tin or a compound thereof; and a barrier layer 5 is formed on the surface of the conductive metal 4 by various methods (such as sputtering, coating, etc.) to prevent the light-emitting diode 2 from being adhered An excess of the intermetallic compound is generated with the conductive metal 4 to lower the bonding strength. Thus, in the present invention, the active solder can be arbitrarily combined with various articles according to different requirements under the application of the above method, so that the present invention can produce an improvement in effects such as bonding strength, electrical conductivity, thermal conductivity and the like.
另外,請參照第4及5圖所示,係為本發明之第二實施例,本實施例與第一實施例具有相同之前處理步驟S1及黏合步驟S2,於本實施例當中,該發光二極體之晶粒黏著方法還可以於操作該黏合步驟S2之同時另操作一輔助黏合步驟S2’,該輔助黏合步驟S2’係選擇以上述方法將該經由前處理步驟S1活化的活性銲料塗佈於該發光二極體晶粒2與基板1之間而形成一散熱層6,更佳者係避免該散熱層4與該基板1二端所形成的熔融銲點3相接觸,以防止該熔融銲點3作為電極導通時造成短路,且於該黏合步驟S2中同樣以活性軟銲接合之方式使該活性銲料形成熔融態而與該發光二極體晶粒2及基板1產生高強度之接合反應層,藉此利用該活性銲料所形成之散熱層6提供較佳的熱傳導效果。其中,該散熱層6較佳係選擇為該活性銲料相同之成份,如上所述該散熱層6係可以選自由錫基合金、鉍基合金、銦基合金、銲錫合金、活性元素及稀土 元素所組成之群組。In addition, referring to the fourth embodiment, the second embodiment of the present invention is the same as the first embodiment. The first step S1 and the bonding step S2 are the same as the first embodiment. The die attaching method of the polar body may further operate an auxiliary bonding step S2' while operating the bonding step S2, and the auxiliary bonding step S2' selects to apply the active solder activated by the pre-processing step S1 in the above manner. A heat dissipation layer 6 is formed between the light-emitting diode die 2 and the substrate 1, and more preferably, the heat dissipation layer 4 is prevented from coming into contact with the molten solder joint 3 formed at both ends of the substrate 1 to prevent the melting. The solder joint 3 causes a short circuit when the electrode is turned on, and in the bonding step S2, the active solder is also formed into a molten state by active soft soldering to form a high-strength bond with the light-emitting diode die 2 and the substrate 1. The reaction layer, whereby the heat dissipation layer 6 formed by the active solder provides a better heat transfer effect. The heat dissipation layer 6 is preferably selected from the same composition as the active solder. The heat dissipation layer 6 may be selected from the group consisting of a tin-based alloy, a bismuth-based alloy, an indium-based alloy, a solder alloy, an active element, and a rare earth. A group of elements.
舉例而言,本實施例係於具有高導熱性之氧化陶瓷基板二端塗覆高熔點之活性銲料的同時,另於該發光二極體2與氧化陶瓷基板1之間塗覆低熔點之活性銲料以形成該散熱層6,使得加熱溫度高於低熔點之活性銲料的熔點5~25℃時位於內側作為散熱層6之活性銲料先轉為熔融態,且繼續升溫至高熔點之之活性銲料的熔點5~50℃時,該基板1二端接點之活性銲料接著轉為熔融態,並於該發光二極體晶粒2之表面貼覆於該散熱層6及該發光二極體晶粒2之二端銲腳貼覆於熔融銲點3後降溫至高熔點之活性銲料的熔點5~25℃,使得該熔融銲點3先行固化而穩固接合該發光二極體晶粒2之二端銲腳,再繼續降溫至該散熱層6固化以完成該發光二極體晶粒2與氧化陶瓷基板1之黏著。藉此,係能夠利用高熔點之熔融銲點3先行固化之特性,將該發光二極體晶粒2之二端銲腳穩固結合於該氧化陶瓷基板1上,以防止該發光二極體晶粒2於黏合過程產生形變之可能。其中,該散熱層6與熔融銲點3所選用的活性銲料亦可以具有相同之熔點,藉以同樣達到如上所述防止該發光二極體晶粒2於黏合過程產生形變之功效。For example, in the present embodiment, the high-melting-point active solder is coated on both ends of the oxidized ceramic substrate having high thermal conductivity, and the low melting point activity is applied between the light-emitting diode 2 and the oxidized ceramic substrate 1. Solder to form the heat dissipation layer 6 so that the heating temperature is higher than the melting point of the low melting point active solder 5 to 25 ° C, and the active solder which is located on the inner side as the heat dissipation layer 6 first turns into a molten state, and continues to heat up to a high melting point of the active solder. When the melting point is 5 to 50 ° C, the active solder of the two-terminal contact of the substrate 1 is then turned into a molten state, and the surface of the light-emitting diode 2 is attached to the heat dissipation layer 6 and the light-emitting diode crystal grains. 2nd end soldering foot is attached to molten solder joint 3 and then cooled to a melting point of high melting point active solder 5~25 ° C, so that the molten solder joint 3 is first solidified to firmly join the two end welding of the light emitting diode die 2 The foot is further cooled down until the heat dissipation layer 6 is cured to complete adhesion of the light emitting diode die 2 to the oxidized ceramic substrate 1. Thereby, the two-end soldering legs of the light-emitting diode die 2 can be firmly bonded to the oxidized ceramic substrate 1 by using the high-melting-point molten solder joint 3 to be cured first to prevent the light-emitting diode crystal. The possibility of deformation of the granule 2 during the bonding process. Wherein, the heat-dissipating layer 6 and the active solder selected for the molten solder joint 3 may have the same melting point, thereby also achieving the effect of preventing deformation of the light-emitting diode crystal 2 during the bonding process as described above.
此外,請參照第6及7圖所示,係為本發明之第二實施例,本實施例與第一實施例具有相同之前處理步驟S1及黏合步驟S2,於本實施例當中,該發光二極體之晶粒黏著方法還可以於該黏合步驟S2之前,另操作一成膜步驟S20,該成膜步驟S20係將該基板1浸漬於一具有改質材 之電解液中且通入電壓,使得該基板1之表面形成一氧化膜7。更詳言之,本實施例係可以選擇以陽極處理、硬式陽極處理或微弧氧化處理等方式,使得該鋁基板1之表面能夠形成該氧化膜7,且該氧化膜7係為一非導電絕緣層,可直接在藉該鋁基板1之表面上,直接製作活性銲料之電路圖案形成具有絕緣膜。其中,該改質材係選擇為三氧化二鋁、氮化鋁…等,如此,更可以提升本發明之發光二極體晶粒2的熱擴散效率,使得本發明具有較佳的散熱效果。In addition, referring to the sixth embodiment, the second embodiment of the present invention is the same as the first embodiment. The first step S1 and the bonding step S2 are the same as the first embodiment. The die attaching method of the polar body may further operate a film forming step S20 before the bonding step S2, the film forming step S20 is to immerse the substrate 1 in a modified material. An electric voltage is applied to the electrolyte to form an oxide film 7 on the surface of the substrate 1. More specifically, in this embodiment, the surface of the aluminum substrate 1 can be formed into an oxide film 7 by anodization, hard anodization or micro-arc oxidation treatment, and the oxide film 7 is a non-conductive film. The insulating layer can be directly formed on the surface of the aluminum substrate 1 to directly form a circuit pattern of active solder to form an insulating film. The modified material is selected from the group consisting of aluminum oxide, aluminum nitride, etc., so that the heat diffusion efficiency of the light-emitting diode crystal 2 of the present invention can be improved, so that the present invention has a better heat dissipation effect.
本發明之發光二極體之晶粒黏著方法係能夠使該發光二極體結合於不同材質之基板,藉以達到提升該發光二極體使用裕度之功效。The die attaching method of the light emitting diode of the present invention is capable of bonding the light emitting diode to a substrate of different materials, thereby achieving the effect of improving the use margin of the light emitting diode.
本發明發光二極體之晶粒黏著方法係能夠減少層層堆疊的結構設計,以減低熱阻而提升熱傳導效率,進而達到增加該發光二極體晶粒使用壽命之功效。The die attaching method of the light emitting diode of the invention can reduce the structural design of the layer stack to reduce the thermal resistance and improve the heat conduction efficiency, thereby achieving the effect of increasing the die life of the light emitting diode.
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described in connection with the preferred embodiments described above, it is not intended to limit the scope of the invention. The technical scope of the invention is protected, and therefore the scope of the invention is defined by the scope of the appended claims.
〔本發明〕〔this invention〕
1‧‧‧基板1‧‧‧Substrate
2‧‧‧發光二極體晶粒2‧‧‧Light-emitting diode grains
3‧‧‧熔融銲點3‧‧‧fused solder joints
4‧‧‧導電金屬層4‧‧‧ Conductive metal layer
5‧‧‧阻絕層5‧‧‧The barrier layer
6‧‧‧散熱層6‧‧‧heat layer
7‧‧‧氧化膜7‧‧‧Oxide film
S1‧‧‧前處理步驟S1‧‧‧Pre-processing steps
S2‧‧‧黏合步驟S2‧‧‧ bonding step
S2’‧‧‧輔助黏合步驟S2’‧‧‧Auxiliary bonding step
S20‧‧‧成膜步驟S20‧‧‧ film forming step
第1圖:本發明第一實施例之操作流程圖。Fig. 1 is a flow chart showing the operation of the first embodiment of the present invention.
第2圖:本發明第一實施例之剖面結構示意圖一。Fig. 2 is a cross-sectional view showing the first embodiment of the present invention.
第3圖:本發明第一實施例之剖面結構示意圖二。Fig. 3 is a cross-sectional view showing the second embodiment of the first embodiment of the present invention.
第4圖:本發明第二實施例之操作流程圖。Figure 4 is a flow chart showing the operation of the second embodiment of the present invention.
第5圖:本發明第二實施例之剖面結構示意圖。Figure 5 is a schematic cross-sectional view showing a second embodiment of the present invention.
第6圖:本發明第三實施例之操作流程圖。Figure 6 is a flow chart showing the operation of the third embodiment of the present invention.
第7圖:本發明第三實施例之剖面結構示意圖。Figure 7 is a schematic cross-sectional view showing a third embodiment of the present invention.
S1...前處理步驟S1. . . Pre-processing steps
S2...黏合步驟S2. . . Bonding step
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101103912A TWI443880B (en) | 2012-02-07 | 2012-02-07 | Led pasting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101103912A TWI443880B (en) | 2012-02-07 | 2012-02-07 | Led pasting method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201334239A TW201334239A (en) | 2013-08-16 |
TWI443880B true TWI443880B (en) | 2014-07-01 |
Family
ID=49479624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101103912A TWI443880B (en) | 2012-02-07 | 2012-02-07 | Led pasting method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI443880B (en) |
-
2012
- 2012-02-07 TW TW101103912A patent/TWI443880B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201334239A (en) | 2013-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101204187B1 (en) | Power Module using Sintering die attach And Manufacturing Method Thereof | |
TWI411691B (en) | Metal thermal interface material and heat dissipation device | |
US8912644B2 (en) | Semiconductor device and method for manufacturing same | |
CN102067298A (en) | Packaging structure and method for manufacturing packaging structure | |
US8569109B2 (en) | Method for attaching a metal surface to a carrier, a method for attaching a chip to a chip carrier, a chip-packaging module and a packaging module | |
TWI404477B (en) | Method for forming circuit patterns on surface of substrate | |
JP2011040715A (en) | Led mounting substrate and method of manufacturing the same | |
JP2009231584A (en) | Method of manufacturing led substrate and the led substrate | |
CN110289340A (en) | Flip-chip LED chip bonding pad and preparation method thereof | |
JP5936407B2 (en) | Power module manufacturing method | |
TWI463710B (en) | Mrthod for bonding heat-conducting substraye and metal layer | |
TWI443880B (en) | Led pasting method | |
CN104183689A (en) | Substrate used for LED flip-chip die bonding and method for manufacturing LED by using substrate through die bonding | |
TWI404495B (en) | Method for forming circuit patterns on substrate | |
TW201214909A (en) | Conduction cooled package laser and packaging method thereof | |
CN103165766A (en) | Package manufacturing method of flip chip light emitting diode | |
CN117438383A (en) | Power module, manufacturing method thereof and power equipment | |
CN201887076U (en) | Improved Combination of Substrate and Heat Dissipation Structure | |
CN210403709U (en) | Heat dissipation device and electronic device comprising same | |
CN209708967U (en) | A kind of LED light module | |
TWI422079B (en) | Method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device | |
JP2000294699A (en) | Insulative heat sink of semiconductor device and method of manufacturing the same | |
CN101818888A (en) | Irradiating block and light-emitting device | |
JP2017168635A (en) | Substrate for power module and manufacturing method of power module | |
CN106025048A (en) | High-power LED lighting package structure for vehicle lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |