TWI426694B - Soft switching power converter - Google Patents
Soft switching power converter Download PDFInfo
- Publication number
- TWI426694B TWI426694B TW099110284A TW99110284A TWI426694B TW I426694 B TWI426694 B TW I426694B TW 099110284 A TW099110284 A TW 099110284A TW 99110284 A TW99110284 A TW 99110284A TW I426694 B TWI426694 B TW I426694B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- power converter
- coupled
- circuit
- frequency
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 26
- 230000010355 oscillation Effects 0.000 claims description 12
- 238000007599 discharging Methods 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 19
- 230000007423 decrease Effects 0.000 description 8
- 230000003071 parasitic effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Dc-Dc Converters (AREA)
Description
本發明係有關於一種功率轉換器,尤其是指一種柔性切換式功率轉換器。The present invention relates to a power converter, and more particularly to a flexible switched power converter.
相移式功率轉換器(Phase Shift Power Converter)是一種柔性切換式功率轉換器,其包含全橋式相位移(full-bridge phase shift)、非對稱半橋式(asymmetrical half bridge)和主動箝位式(active clamp)架構等等。相移式功率轉換器之優點為高效率和低電磁干擾(Electromagnetic Interference,EMI)。在近來的發展中,已提出許多相位移技術,例如:Christopher、P. Henze、Ned Mohan以及John G. Hayes在西元1989年8月8日所申請之美國專利第4,855,888號“Constant frequency resonant power converter with zero voltage switching”;Guichao C. Hua以及Fred C. Lee在西元1995年8月15日所申請之美國專利第5,442,540號“Soft-switching PWM converters”;Yungtaek Jang以及Milan M. Jovanovic在西元2002年3月12日所申請的美國專利第6,356,462號“Soft-switched full-bridge converters”;Rui Liu在西元2000年5月30日所申請的美國專利第6,069,798號“Asymmetrical power converter and method of operation thereof”。在各種不同的相移式功率轉換器中,變壓器及/或外加磁性元件之寄生漏電感(parasitic leakage inductance)是用以作為一共振電感,其被切換而產生循環電流,以達到零電壓切換(Zero Voltage Switching,ZVS)。Phase Shift Power Converter is a flexible switching power converter that includes full-bridge phase shift, asymmetrical half bridge and active clamp Active clamp architecture and so on. The advantages of phase-shifting power converters are high efficiency and low electromagnetic interference (EMI). In the recent developments, a number of phase shifting techniques have been proposed, for example: Christopher, P. Henze, Ned Mohan, and John G. Hayes, U.S. Patent No. 4,855,888, filed on August 8, 1989, entitled "Constant Frequency resonant power converter" With zero voltage switching"; Guichao C. Hua and Fred C. Lee, "Soft-switching PWM converters", U.S. Patent No. 5,442,540, filed on August 15, 1995; Yungtaek Jang and Milan M. Jovanovic in 2002 U.S. Patent No. 6,356,462, "Soft-switched full-bridge converters", which is filed on March 12, 2000; U.S. Patent No. 6,069,798, entitled "Asymmetrical power converter and method of operation thereof", filed on May 30, 2000. . In various phase-shifting power converters, the parasitic leakage inductance of the transformer and/or the applied magnetic component is used as a resonant inductor that is switched to generate a circulating current to achieve zero voltage switching ( Zero Voltage Switching, ZVS).
然而,這些相移式功率轉換器的缺點為操作範圍狹窄。因此,本發明之目的為提出一種控制方式,以擴展功率轉換器之操作範圍並增加工作效率。However, these phase shift power converters have the disadvantage of a narrow operating range. Accordingly, it is an object of the present invention to provide a control scheme that extends the operating range of the power converter and increases operating efficiency.
本發明之目的,在於提供一種功率轉換器,用於擴展其操作範圍與增加工作效率。It is an object of the present invention to provide a power converter for expanding its operating range and increasing operational efficiency.
本發明之功率轉換器包含一諧振電路、複數電晶體與一控制電路。該些電晶體用以切換諧振電路,控制電路產生複數切換訊號以控制該些電晶體,該些切換訊號之脈波寬度受調變,以調整功率轉換器之一輸出電壓,控制電路偵測功率轉換器之一輸入電壓,切換訊號之頻率依據功率轉換器之輸入電壓或/及功率轉換器之一輸出負載的變化而改變。The power converter of the present invention comprises a resonant circuit, a plurality of transistors and a control circuit. The transistors are used to switch the resonant circuit, and the control circuit generates a plurality of switching signals to control the transistors. The pulse widths of the switching signals are modulated to adjust an output voltage of the power converter, and the control circuit detects the power. One of the input voltages of the converter, the frequency of the switching signal changes depending on the input voltage of the power converter or/and the output load of one of the power converters.
茲為使 貴審查委員對本發明之結構特徵及所達成之功效更有進一步之瞭解與認識,謹佐以較佳之實施例圖及配合詳細之說明,說明如後:請參閱第一圖,係本發明之一較佳實施例之功率轉換器的電路圖。如圖所示,一電容50和一感應裝置(例如一變壓器30、其寄生電感35與負載)形成一諧振電路(Resonant Tank)。電容50耦接於變壓器30之一次側繞組之一端與接地端之間。因此,電容50耦接於感應裝置。電晶體10、20耦接於諧振電路,以切換諧振電路。電晶體10之一汲極耦接於一輸入電壓VIN ,電晶體10之一源極連接於電晶體20之一汲極。電晶體10之源極與電晶體20之汲極經由寄生電感35耦接於變壓器30之一次側繞組的另一端。電晶體20之一源極耦接於接地端。整流器71與72連接於變壓器30之二次側繞組,且經由一電感73而連接至功率轉換器之輸出電壓VO 。一電容75用於產生輸出電壓VO 。In order to provide a better understanding and understanding of the structural features and the achievable effects of the present invention, please refer to the preferred embodiment and the detailed description, as explained below: please refer to the first figure, A circuit diagram of a power converter in accordance with a preferred embodiment of the invention. As shown, a capacitor 50 and an inductive device (e.g., a transformer 30, its parasitic inductance 35 and load) form a resonant tank (Resonant Tank). The capacitor 50 is coupled between one end of the primary winding of the transformer 30 and the ground. Therefore, the capacitor 50 is coupled to the sensing device. The transistors 10, 20 are coupled to the resonant circuit to switch the resonant circuit. One of the transistors 10 is electrically coupled to an input voltage V IN , and one source of the transistor 10 is connected to one of the drains of the transistor 20 . The source of the transistor 10 and the drain of the transistor 20 are coupled to the other end of the primary winding of the transformer 30 via a parasitic inductance 35. One source of the transistor 20 is coupled to the ground. The rectifiers 71 and 72 are connected to the secondary winding of the transformer 30 and are connected to the output voltage V O of the power converter via an inductor 73. A capacitor 75 is used to generate the output voltage V O .
一控制電路100產生切換訊號SH 與SL ,切換訊號SH 與SL 分別耦接電晶體10與20之閘極以控制電晶體10與20。切換訊號SH 與SL 之脈波寬度係會依據回授訊號VFB 而被調變,以調整功率轉換器之輸出電壓VO 。回授訊號VFB 產生於一VFB端。一回授電路包含一齊納二極體80、一電阻81與一光耦合器85,其耦接功率轉換器之輸出電壓VO 以產生回授訊號VFB 。此外,控制電路100之一VA端經由電阻61與62耦接至功率轉換器之輸入電壓VIN ,並偵測輸入電壓VIN 。電阻61連接輸入電壓VIN ,且電阻61與電阻62相互串聯。控制電路100之VA端連接於電阻61與電阻62的一連接點。切換訊號SH 與SL 之頻率會依據輸入電壓VIN 與回授訊號VFB 之變化而改變。因此,即可允許功率轉換器運作於一寬廣的輸入電壓操作範圍。A control circuit 100 generates switching signals S H and S L , and switching signals S H and S L are coupled to the gates of transistors 10 and 20, respectively, to control transistors 10 and 20. The pulse widths of the switching signals S H and S L are modulated according to the feedback signal V FB to adjust the output voltage V O of the power converter. The feedback signal V FB is generated at a VFB terminal. A feedback circuit includes a Zener diode 80, a resistor 81 and an optocoupler 85 coupled to the output voltage V O of the power converter to generate a feedback signal V FB . In addition, one of the VA terminals of the control circuit 100 is coupled to the input voltage V IN of the power converter via the resistors 61 and 62 and detects the input voltage V IN . The resistor 61 is connected to the input voltage V IN , and the resistor 61 and the resistor 62 are connected in series with each other. The VA terminal of the control circuit 100 is connected to a connection point of the resistor 61 and the resistor 62. The frequency of the switching signals S H and S L changes depending on the change of the input voltage V IN and the feedback signal V FB . Therefore, the power converter can be allowed to operate over a wide range of input voltage operating ranges.
切換訊號SH 與SL 之頻率會隨著輸入電壓VIN 之減少而降低。切換訊號SH 與SL 之頻率亦會隨著回授訊號VFB 之增加而降低。回授訊號VFB 之變化係相關聯於功率轉換器之輸出負載。因此,控制電路100是用於偵測功率轉換器之輸出負載,以依據功率轉換器之輸出負載的增加,而減少切換訊號SH 與SL 之頻率。一電阻53連接於控制電路100之一RT端以決定延遲時間。延遲時間位於切換訊號SH 與SL 之間,以達到柔性切換電晶體10與20。因此,控制電路100更產生延遲時間以達到柔性切換。電阻53用於作為一延遲時間電阻,以決定切換訊號SH 與SL 之延遲時間。一電阻51連接於控制電路100之一RF端以決定切換訊號SH 與SL 之最大切換頻率。電阻51用於作為一頻率設定電阻以決定切換訊號SH 與SL 之最大切換頻率。另一電阻52連接於控制電路100之一RM端,其決定切換訊號SH 與SL 之最小切換頻率。電阻52用於作為一頻率調整電阻以決定切換訊號SH 與SL 之最小切換頻率。The frequency of the switching signals S H and S L decreases as the input voltage V IN decreases. The frequency of the switching signals S H and S L also decreases as the feedback signal V FB increases. The change in the feedback signal V FB is related to the output load of the power converter. Therefore, the control circuit 100 is configured to detect the output load of the power converter to reduce the frequency of the switching signals S H and S L according to the increase of the output load of the power converter. A resistor 53 is coupled to one of the RT terminals of the control circuit 100 to determine the delay time. The delay time is between the switching signals S H and S L to reach the flexible switching transistors 10 and 20. Therefore, the control circuit 100 further generates a delay time to achieve flexible switching. The resistor 53 is used as a delay time resistor to determine the delay time of the switching signals S H and S L . A resistor 51 is coupled to one of the RF terminals of the control circuit 100 to determine the maximum switching frequency of the switching signals S H and S L . The resistor 51 is used as a frequency setting resistor to determine the maximum switching frequency of the switching signals S H and S L . Another resistor 52 is coupled to one of the RM terminals of the control circuit 100, which determines the minimum switching frequency of the switching signals S H and S L . The resistor 52 is used as a frequency adjustment resistor to determine the minimum switching frequency of the switching signals S H and S L .
請參閱第二圖,係本發明之一較佳實施例之控制電路的電路圖。如圖所示,其包含一回授輸入電路,其耦接於輸出電壓VO 以接收回授訊號VFB ,以產生一準位偏移訊號VF 。準位偏移訊號VF 相關於回授訊號VFB 。電晶體110與電阻112、115與116形成回授輸入電路。電晶體110之一汲極接收一供應電壓VCC ,電晶體110之一閘極耦接VFB端以接收回授訊號VFB 。電阻112連接於電晶體110之汲極與閘極之間。電阻115連接於電晶體110之一源極。電阻116連接於電阻115與接地端之間。Referring to the second figure, a circuit diagram of a control circuit in accordance with a preferred embodiment of the present invention. As shown, it includes a feedback input circuit coupled to the output voltage V O to receive the feedback signal V FB to generate a level shift signal V F . The level shift signal V F is related to the feedback signal V FB . The transistor 110 and the resistors 112, 115 and 116 form a feedback input circuit. One of the gates of the transistor 110 receives a supply voltage V CC , and one of the gates of the transistor 110 is coupled to the VFB terminal to receive the feedback signal V FB . The resistor 112 is connected between the drain of the transistor 110 and the gate. The resistor 115 is connected to one of the sources of the transistor 110. The resistor 116 is connected between the resistor 115 and the ground.
一振盪器(OSC)200偵測準位偏移訊號VF 和經由VA端偵測輸入電壓VIN ,以產生一振盪訊號PLS。因此,振盪器200偵測回授訊號VFB 與輸入電壓VIN ,以產生振盪訊號PLS。位於RF端之電阻51和位於RM端之電阻52耦接振盪器200,以決定振盪訊號PLS之最大頻率與最小頻率。一脈波寬度調變電路(PWM)300耦接振盪器200以依據振盪訊號PLS產生脈波寬度調變訊號SW 。脈波寬度調變電路300依據準位偏移訊號VF 調變脈波寬度調變訊號SW 之脈波寬度。因此,脈波寬度調變訊號SW 之脈波寬度隨著回授訊號VFB 而被調變。An oscillator (OSC) 200 detects the level shift signal V F and detects the input voltage V IN via the VA terminal to generate an oscillation signal PLS. Therefore, the oscillator 200 detects the feedback signal V FB and the input voltage V IN to generate the oscillation signal PLS. The resistor 51 at the RF terminal and the resistor 52 at the RM terminal are coupled to the oscillator 200 to determine the maximum frequency and the minimum frequency of the oscillation signal PLS. A pulse width modulation circuit (PWM) 300 is coupled to the oscillator 200 to generate a pulse width modulation signal S W according to the oscillation signal PLS. The pulse width modulation circuit 300 modulates the pulse width of the pulse width modulation signal S W according to the level shift signal V F . Therefore, the pulse width of the pulse width modulation signal S W is modulated with the feedback signal V FB .
一輸出電路(OUT)500耦接脈波寬度調變電路300,並依據脈波頻寬訊號SW 以產生切換訊號SH 與SL 。此外,延遲時間位於切換訊號SH 與SL 之間,以達到柔性切換電晶體10與20。位於RT端之電阻53耦接輸出電路500,以決定延遲時間之值。延遲時間包含一第一延遲時間與一第二延遲時間。第一延遲時間產生於切換訊號SH 截止之後而切換訊號SL 導通之前。第二延遲時間產生於切換訊號SL 截止之後而切換訊號SH 導通之前。An output circuit (OUT) 500 is coupled to the pulse width modulation circuit 300 and generates switching signals S H and S L according to the pulse width signal S W . In addition, the delay time is between the switching signals S H and S L to reach the flexible switching transistors 10 and 20. The resistor 53 at the RT terminal is coupled to the output circuit 500 to determine the value of the delay time. The delay time includes a first delay time and a second delay time. The first delay time is generated after the switching signal S H is turned off and before the switching signal S L is turned on. The second delay time is generated after the switching signal S L is turned off and before the switching signal S H is turned on.
請參閱第三圖,係本發明之一較佳實施例之振盪器的電路圖。如圖所示,振盪器200包含一頻率調變電路(MIN -F)210、一頻率產生電路(FSW)240和一振盪電路。頻率調變電路210耦接VA端並接收準位偏移訊號VF 。頻率調變電路210依據回授訊號VFB 與輸入電壓VIN 產生一頻率調變訊號VM 。頻率產生電路240依據電阻51與頻率調變訊號VM 產生一充電電流IC 與一放電電流ID 。復參閱第一圖,電阻51耦接控制電路100之RF端。頻率產生電路240亦產生一調變電流IM 以充電RM端並流經於電阻52。復參閱第一圖,電阻52耦接於控制電路100之RM端。Referring to the third figure, a circuit diagram of an oscillator in accordance with a preferred embodiment of the present invention. As shown, the oscillator 200 includes a frequency modulation circuit (M IN -F) 210, a frequency generation circuit (FSW) 240, and an oscillating circuit. The frequency modulation circuit 210 is coupled to the VA terminal and receives the level offset signal V F . The frequency modulation circuit 210 generates a frequency modulation signal V M according to the feedback signal V FB and the input voltage V IN . The frequency generating circuit 240 generates a charging current I C and a discharging current I D according to the resistor 51 and the frequency modulation signal V M . Referring to the first figure, the resistor 51 is coupled to the RF terminal of the control circuit 100. The frequency generating circuit 240 also generates a modulation current I M to charge the RM terminal and flow through the resistor 52. Referring to the first figure, the resistor 52 is coupled to the RM terminal of the control circuit 100.
振盪電路包含一電容270、開關271與272、比較器275與276、反及閘281與282以及反相器283與285。開關271之一第一端接收充電電流IC 以充電電容270。開關271之一第二端耦接開關272之一第一端和電容270之一第一端。開關272之一第二端接收放電電流ID 以放電電容270。電容270之一第二端耦接於接地端。比較器275之一正輸入端接收上限門檻值VH 。比較器275之一負輸入端和比較器276之一正輸入端耦接電容270之第一端、開關271之第二端與開關272之第一端。比較器276之一負輸入端接收一下限門檻值VL ,且上限門檻值VH 高於下限門檻值VL 。The oscillating circuit includes a capacitor 270, switches 271 and 272, comparators 275 and 276, NAND gates 281 and 282, and inverters 283 and 285. The first terminal of one of the switches 271 receives the charging current I C to charge the capacitor 270. The second end of one of the switches 271 is coupled to a first end of the switch 272 and a first end of the capacitor 270. The second terminal of one of the switches 272 receives the discharge current I D to discharge the capacitor 270. The second end of one of the capacitors 270 is coupled to the ground. One of the comparators 275 receives the upper threshold value V H at the positive input. One of the negative input of comparator 275 and one of the positive input of comparator 276 is coupled to the first end of capacitor 270, the second end of switch 271, and the first end of switch 272. One negative input of comparator 276 receives a lower limit threshold value V L, and the upper limit threshold value V H is higher than the lower limit threshold value V L.
反及閘281之一第一端耦接比較器275之一輸出端。反及閘282之一第一端耦接比較器276之一輸出端。反及閘281之一輸出端耦接反及閘282之一第二端。反及閘282之一輸出端耦接反及閘281之一第二端。反相器283之一輸入端耦接反及閘281之輸出端並控制開關272。反相器285之一輸入端耦接反相器283之一輸出端並控制開關271。反相器285之一輸出端產生振盪訊號PLS。因此,振盪電路接收充電電流IC 與放電電流ID 以產生振盪訊號PLS。The first end of one of the opposite gates 281 is coupled to one of the outputs of the comparator 275. The first end of one of the gates 282 is coupled to one of the outputs of the comparator 276. The output end of one of the opposite gates 281 is coupled to the second end of the gate 282. The output end of one of the gates 282 is coupled to the second end of the gate 281. One input of the inverter 283 is coupled to the output of the NAND gate 281 and controls the switch 272. One of the inputs of the inverter 285 is coupled to an output of the inverter 283 and controls the switch 271. An output of one of the inverters 285 generates an oscillation signal PLS. Therefore, the oscillating circuit receives the charging current I C and the discharging current I D to generate the oscillation signal PLS.
請參閱第四圖,係本發明之一較佳實施例之頻率調變電路的電路圖。如圖所示,頻率調變電路210包含一第一放大器211、一第二放大器221、一第三放大器230和一第四放大器235。第一放大器211之一正輸入端接收準位偏移訊號VF ,第一放大器211之一負輸入端經由一電阻212接收一門檻值VT1 。第一放大器211之一輸出端經由一電阻213耦接第一放大器211之負輸入端。第二放大器221之一正輸入端耦接VA端,第二放大器221之一負輸入端耦接其輸出端,而形成一緩衝電路。電流源220之一端耦接供應電壓VCC ,電流源220之另一端經由一電阻224耦接第二放大器221之輸出端。第三放大器230之一正輸入端經由一電阻214耦接第一放大器211之輸出端。一電阻215之一端耦接第三放大器230之正輸入端,且電阻215之另一端耦接於接地端。第三放大器230之一負輸入端耦接電流源220之另一端並經由一電阻225耦接於其輸出端。Please refer to the fourth figure, which is a circuit diagram of a frequency modulation circuit according to a preferred embodiment of the present invention. As shown, the frequency modulation circuit 210 includes a first amplifier 211, a second amplifier 221, a third amplifier 230, and a fourth amplifier 235. The positive input terminal of one of the first amplifiers 211 receives the level shift signal V F , and the negative input terminal of the first amplifier 211 receives a threshold value V T1 via a resistor 212. An output of one of the first amplifiers 211 is coupled to a negative input terminal of the first amplifier 211 via a resistor 213. A positive input terminal of the second amplifier 221 is coupled to the VA terminal, and a negative input terminal of the second amplifier 221 is coupled to the output terminal thereof to form a buffer circuit. One end of the current source 220 is coupled to the supply voltage V CC , and the other end of the current source 220 is coupled to the output of the second amplifier 221 via a resistor 224 . The positive input terminal of one of the third amplifiers 230 is coupled to the output of the first amplifier 211 via a resistor 214. One end of a resistor 215 is coupled to the positive input terminal of the third amplifier 230, and the other end of the resistor 215 is coupled to the ground terminal. The negative input terminal of the third amplifier 230 is coupled to the other end of the current source 220 and coupled to the output terminal via a resistor 225.
第四放大器235之一正輸入端耦接第三放大器230之輸出端。第四放大器235之一負輸入端耦接其輸出端,第四放大器235之輸出端耦接RM端並產生頻率調變訊號VM 。調變電流IM 提供至第四放大器235之輸出端並充電RM端。當準位偏移訊號VF 高於門檻值VT1 時,頻率調變訊號VM 會依據準位偏移訊號VF 之增加而增加。頻率調變電路210更經由VA端偵測輸入電壓VIN 。當VA端之電壓降低且低於電流源220所提供之一門檻值時,頻率調變訊號VM 將會依據輸入電壓VIN 之減少而增加。One of the positive inputs of the fourth amplifier 235 is coupled to the output of the third amplifier 230. A negative input terminal of the fourth amplifier 235 is coupled to the output end thereof, and an output terminal of the fourth amplifier 235 is coupled to the RM terminal and generates a frequency modulation signal V M . The modulation current I M is supplied to the output of the fourth amplifier 235 and charges the RM terminal. When the level shift signal V F is higher than the threshold value V T1 , the frequency modulation signal V M increases according to the increase of the level shift signal V F . The frequency modulation circuit 210 detects the input voltage V IN via the VA terminal. When the voltage at the VA terminal decreases and is lower than a threshold value provided by the current source 220, the frequency modulation signal V M will increase according to the decrease of the input voltage V IN .
請參閱第五圖,係本發明之一較佳實施例之頻率產生電路的電路圖。如圖所示,頻率產生電路240包含一第一電壓電流轉換器、一第二電壓電流轉換器、一電流源250、電晶體244與245形成之一第一電流鏡、電晶體246與247形成之一第二電流鏡、電晶體254與255形成之一第三電流鏡、電晶體254與256形成之一第四電流鏡、電晶體261與262形成之一第五電流鏡、電晶體261與263形成之一第六電流鏡以及電晶體264與265形成之一第七電流鏡。頻率產生電路240依據耦接RF端之電阻51(如第一圖所示)產生充電電流IC 與放電電流ID 。充電電流IC 與放電電流ID 依據頻率調變訊號VM 之增加而降低。Referring to FIG. 5, a circuit diagram of a frequency generating circuit in accordance with a preferred embodiment of the present invention. As shown, the frequency generating circuit 240 includes a first voltage current converter, a second voltage current converter, a current source 250, and transistors 244 and 245 forming a first current mirror, and transistors 246 and 247. One of the second current mirrors, the transistors 254 and 255 form a third current mirror, the transistors 254 and 256 form a fourth current mirror, and the transistors 261 and 262 form a fifth current mirror, the transistor 261 and 263 forms a sixth current mirror and transistors 264 and 265 form a seventh current mirror. The frequency generating circuit 240 generates a charging current I C and a discharging current I D according to the resistor 51 coupled to the RF terminal (as shown in the first figure). The charging current I C and the discharging current I D decrease in accordance with an increase in the frequency modulation signal V M .
第一電壓電流轉換器包含一運算放大器241、一電晶體243與一電阻242。運算放大器241之一正輸入端接收頻率調變訊號VM ,運算放大器241之一輸出端耦接電晶體243之一閘極。運算放大器241之一負輸入端耦接電晶體243之一源極。電阻242連接於電晶體243之源極與接地端之間。電晶體243之一汲極耦接第一電流鏡。第一電流鏡之電晶體244與245之源極耦接供應電壓VCC 。電晶體244與245之閘極以及電晶體244與243之汲極相互連接。電晶體245之一汲極耦接第二電流鏡。第二電流鏡之電晶體246與247之源極耦接於接地端。電晶體246與247之閘極以及電晶體246與245之汲極相互連接。電晶體247之一汲極耦接於第五電流鏡。The first voltage current converter includes an operational amplifier 241, a transistor 243, and a resistor 242. One of the operational amplifiers 241 receives a frequency modulation signal V M , and an output of the operational amplifier 241 is coupled to one of the gates of the transistor 243 . One of the negative input terminals of the operational amplifier 241 is coupled to one of the sources of the transistor 243. The resistor 242 is connected between the source of the transistor 243 and the ground. One of the transistors 243 is electrically coupled to the first current mirror. The sources of the transistors 244 and 245 of the first current mirror are coupled to the supply voltage V CC . The gates of transistors 244 and 245 and the drains of transistors 244 and 243 are interconnected. One of the transistors 245 is coupled to the second current mirror. The sources of the transistors 246 and 247 of the second current mirror are coupled to the ground. The gates of transistors 246 and 247 and the drains of transistors 246 and 245 are interconnected. One of the transistors 247 is electrically coupled to the fifth current mirror.
第二電壓電流轉換器包含一運算放大器251、一電晶體253和一電阻252。運算放大器251之一正輸入端耦接電流源250。電流源250更耦接供應電壓VCC 。運算放大器251之正輸入端更連接於耦接在RF端的電阻51(如第一圖所示)。運算放大器251之一輸出端耦接電晶體253之一閘極,運算放大器251之一負輸入端耦接電晶體253之一源極。電阻252連接於電晶體253之源極與接地端之間。電晶體253之一汲極耦接第三電流鏡。第三電流鏡之電晶體254與255之源極耦接供應電壓VCC 。電晶體254與255之閘極與電晶體254與253之汲極相互連接。電晶體255之一汲極耦接第五電流鏡。The second voltage current converter includes an operational amplifier 251, a transistor 253, and a resistor 252. One of the operational amplifiers 251 has a positive input coupled to the current source 250. The current source 250 is further coupled to the supply voltage V CC . The positive input terminal of the operational amplifier 251 is further connected to the resistor 51 coupled to the RF terminal (as shown in the first figure). One output of the operational amplifier 251 is coupled to one of the gates of the transistor 253, and one of the negative input terminals of the operational amplifier 251 is coupled to a source of the transistor 253. The resistor 252 is connected between the source of the transistor 253 and the ground. One of the transistors 253 is electrically coupled to the third current mirror. The sources of the transistors 254 and 255 of the third current mirror are coupled to the supply voltage V CC . The gates of transistors 254 and 255 are connected to the drains of transistors 254 and 253. One of the transistors 255 is coupled to the fifth current mirror.
第四電流鏡之電晶體256之一源極耦接供應電壓VCC 。電晶體256之一閘極耦接電晶體254之閘極。電晶體256之一汲極產生調變電流IM 。第五電流鏡之電晶體261與262之源極耦接於接地端。電晶體261與262之閘極和電晶體261、247與255之汲極相互連接。電晶體262之一汲極耦接第七電流鏡。第六電流鏡之電晶體263之一源極耦接於接地端。電晶體263之一閘極耦接電晶體261之閘極。電晶體263之一汲極產生放電電流ID 。第七電流鏡之電晶體264與265之源極耦接供應電壓VCC 。電晶體264與265的閘極和電晶體264與262的汲極相互連接。電晶體265之一汲極產生充電電流IC 。One source of the transistor 256 of the fourth current mirror is coupled to the supply voltage V CC . One of the gates of the transistor 256 is coupled to the gate of the transistor 254. One of the gates of the transistor 256 generates a modulation current I M . The sources of the transistors 261 and 262 of the fifth current mirror are coupled to the ground. The gates of the transistors 261 and 262 and the drains of the transistors 261, 247 and 255 are connected to each other. One of the transistors 262 is electrically coupled to the seventh current mirror. One source of the sixth crystal of the sixth current mirror is coupled to the ground. One of the gates of the transistor 263 is coupled to the gate of the transistor 261. One of the gates of the transistor 263 generates a discharge current I D . The sources of the transistors 264 and 265 of the seventh current mirror are coupled to the supply voltage V CC . The gates of transistors 264 and 265 and the drains of transistors 264 and 262 are interconnected. One of the gates of the transistor 265 generates a charging current I C .
請參閱第六圖,係本發明之一較佳實施例之脈波寬度調變電路的電路圖。如圖所示,振盪訊號PLS耦接一T型正反器310與一D型正反器315,以觸發T型正反器310與D型正反器315。D型正反器315之一輸入端D接收供應電壓VCC 。T型正反器310之一輸出端Q和D型正反器315之一輸出端Q連接一及閘350之兩輸入端,以產生脈波寬度調變訊號SW 。T型正反器310提供一50%最大工作週期(Duty Cycle)予脈波寬度調變訊號SW 。T型正反器310之輸出端Q更連接一反相器331之一輸入端。反相器331、一電晶體332、一電流源335與一電容340構成一斜坡產生器,以依據T型正反器310之輸出的致能而產生一斜坡訊號。Please refer to a sixth diagram, which is a circuit diagram of a pulse width modulation circuit according to a preferred embodiment of the present invention. As shown, the oscillation signal PLS is coupled to a T-type flip-flop 310 and a D-type flip-flop 315 to trigger the T-type flip-flop 310 and the D-type flip-flop 315. One of the input terminals D of the D-type flip-flop 315 receives the supply voltage V CC . One output terminal Q of the T-type flip-flop 310 and one output terminal Q of the D-type flip-flop 315 are connected to two input terminals of a gate 350 to generate a pulse width modulation signal S W . The T-type flip-flop 310 provides a 50% maximum duty cycle (Duty Cycle) to the pulse width modulation signal S W . The output terminal Q of the T-type flip-flop 310 is further connected to an input terminal of an inverter 331. The inverter 331, a transistor 332, a current source 335 and a capacitor 340 form a ramp generator for generating a ramp signal according to the enable of the output of the T-type flip-flop 310.
電流源335之一端耦接供應電壓VCC ,電流源335之另一端耦接電容340之一第一端。電容340之一第二端耦接於接地端。電晶體332之一汲極耦接電容340之第一端。電晶體332之一源極耦接於接地端,電晶體332之一閘極耦接反相器331之一輸出端。當T型正反器310之輸出致能時,電流源335對電容340充電。當T型正反器310之輸出禁能時,電容340經由電晶體332與接地端進行放電。因此,電容340即產生斜坡訊號。One end of the current source 335 is coupled to the supply voltage V CC , and the other end of the current source 335 is coupled to one of the first ends of the capacitor 340 . The second end of one of the capacitors 340 is coupled to the ground. One of the transistors 332 is coupled to the first end of the capacitor 340. One source of the transistor 332 is coupled to the ground, and one of the gates of the transistor 332 is coupled to an output of the inverter 331. Current source 335 charges capacitor 340 when the output of T-type flip-flop 310 is enabled. When the output of the T-type flip-flop 310 is disabled, the capacitor 340 is discharged through the transistor 332 and the ground. Therefore, the capacitor 340 generates a ramp signal.
斜坡訊號耦接一比較器320之一正輸入端,比較器320之一負輸入端接收準位偏移訊號VF ,且比較器320比較斜坡訊號與準位偏移訊號VF ,以產生一脈波寬度調變重置訊號,脈波寬度調變重置訊號經由一反及閘325耦接D型正反器315之一重置輸入端R,以重置D型正反器315與達到調變該脈波寬度調變訊號SW 之脈波寬度。一消隱電路(BLK)400耦接脈波寬度調變訊號SW 並依據脈波寬度調變訊號SW 之致能而產生一消隱訊號SB 。消隱訊號SB 連接反及閘325以禁止D型正反器315之重置,以確保脈波寬度調變訊號SW 之一最小導通時間。The ramp signal is coupled to a positive input terminal of a comparator 320. One of the negative inputs of the comparator 320 receives the level offset signal V F , and the comparator 320 compares the ramp signal with the level offset signal V F to generate a The pulse width modulation reset signal, the pulse width modulation reset signal is coupled to one of the D-type flip-flops 315 via a reverse gate 325 to reset the input terminal R to reset the D-type flip-flop 315 and reach Modulate the pulse width of the pulse width modulation signal S W . A blanking circuit (BLK) 400 is coupled to the pulse width modulation signal S W and generates a blanking signal S B according to the enable of the pulse width modulation signal S W . The blanking signal S B is connected to the anti-gate 325 to disable the reset of the D-type flip-flop 315 to ensure a minimum on-time of the pulse width modulation signal S W .
請參閱第七圖,係本發明之一較佳實施例之消隱電路的電路圖。如圖所示,消隱電路400包含一充電電流430、一反相器410、一電晶體420、一電容450與一及閘460。本發明之一較佳實施例中,電晶體420可為一N型電晶體。N型電晶體420之一閘極端經由反相器410接收脈波寬度調變訊號SW 。及閘460之一第一輸入端接收脈波寬度調變訊號SW 。N型電晶體420之一源極耦接於接地端。及閘460之一第二輸入端耦接N型電晶體420之一汲極與電容450之一端。N型電晶體420之汲極經由充電電流430耦接供應電壓VCC 。電容450之另一端耦接於接地端。及閘460之一輸出端產生消隱訊號SB 。因此,消隱電路400接收脈波寬度調變訊號SW 並依據脈波寬度調變訊號SW 之致能產生消隱訊號SB 。電容450之電容值與充電電流430之電流係決定消隱時間。Please refer to the seventh figure, which is a circuit diagram of a blanking circuit in accordance with a preferred embodiment of the present invention. As shown, the blanking circuit 400 includes a charging current 430, an inverter 410, a transistor 420, a capacitor 450, and a gate 460. In a preferred embodiment of the invention, the transistor 420 can be an N-type transistor. A gate terminal of the N-type transistor 420 receives the pulse width modulation signal S W via the inverter 410. The first input of one of the gates 460 receives the pulse width modulation signal S W . One source of the N-type transistor 420 is coupled to the ground. The second input end of the gate 460 is coupled to one of the drain of the N-type transistor 420 and one end of the capacitor 450. The drain of the N-type transistor 420 is coupled to the supply voltage V CC via a charging current 430. The other end of the capacitor 450 is coupled to the ground. The output of one of the gates 460 produces a blanking signal S B . Therefore, the blanking circuit 400 receives the pulse width modulation signal S W and generates the blanking signal S B according to the pulse width modulation signal S W . The capacitance of capacitor 450 and the current of charging current 430 determine the blanking time.
請參閱第八圖,係本發明之一較佳實施例之輸出電路的電路圖。如圖所示,電阻53(如圖一所示)配合於一電流源510,以產生一電壓於RT端。電流源510耦接供應電壓VCC 並經由RT端耦接電阻53。RT端之電壓連接一運算放大器520之一正輸入端。運算放大器520、一電阻525與一電晶體550形成一電壓電流轉換器,以產生一電流並耦接電晶體551、552與553。運算放大器520之正輸入端接收RT端之電壓,運算放大器520之一輸出端耦接電晶體550之一閘極。運算放大器520之一負輸入端耦接電晶體550之一源極。電阻525連接於電晶體550之源極與接地端之間。電晶體550之一汲極產生電流並耦接電晶體551、552與553。Please refer to the eighth drawing, which is a circuit diagram of an output circuit of a preferred embodiment of the present invention. As shown, resistor 53 (shown in Figure 1) is coupled to a current source 510 to generate a voltage at the RT terminal. The current source 510 is coupled to the supply voltage V CC and coupled to the resistor 53 via the RT terminal. The voltage at the RT terminal is coupled to a positive input of an operational amplifier 520. The operational amplifier 520, a resistor 525 and a transistor 550 form a voltage current converter to generate a current and are coupled to the transistors 551, 552 and 553. The positive input terminal of the operational amplifier 520 receives the voltage of the RT terminal, and the output terminal of one of the operational amplifiers 520 is coupled to one of the gates of the transistor 550. One of the negative input terminals of the operational amplifier 520 is coupled to one of the sources of the transistor 550. A resistor 525 is coupled between the source of the transistor 550 and the ground. One of the gates of the transistor 550 generates a current and is coupled to the transistors 551, 552, and 553.
電晶體551、552與553形成二個電流鏡以產生電流IT1 與IT2 ,電流IT1 與IT2 並分別耦接延遲時間電路700與701。電晶體551、552與553之源極耦接供應電壓VCC 。電晶體551、552與553之閘極與電晶體551、550之汲極相互連接。電晶體553之一汲極產生電流IT1 並耦接延遲時間電路700之一輸入端。電晶體552之一汲極產生電流IT2 並耦接延遲時間電路701之一輸入端。延遲時間電路700與701產生切換訊號SH 與SL 之延遲時間。脈波寬度調變訊號SW 連接延遲時間電路700與一及閘650之一輸入端。延遲時間電路700之一輸出端連接及閘650之另一輸入端。及閘650之一輸出端連接一緩衝器670以產生切換訊號SH 。切換訊號SH 係依據脈波寬度調變訊號SW 之致能,而產生於延遲時間電路700所產生的延遲時間之後。The transistors 551, 552 and 553 form two current mirrors to generate currents I T1 and I T2 , and currents I T1 and I T2 are coupled to delay time circuits 700 and 701, respectively. The sources of the transistors 551, 552 and 553 are coupled to the supply voltage V CC . The gates of the transistors 551, 552 and 553 are connected to the drains of the transistors 551, 550. One of the gates of the transistor 553 generates a current I T1 and is coupled to one of the inputs of the delay time circuit 700. One of the gates of transistor 552 generates current I T2 and is coupled to one of the inputs of delay time circuit 701. Delay time circuits 700 and 701 generate delay times for switching signals S H and S L . The pulse width modulation signal S W is connected to one of the input terminals of the delay time circuit 700 and a gate 650. One of the delay time circuits 700 is coupled to the other input of the gate 650. An output of one of the gates 650 is coupled to a buffer 670 to generate a switching signal S H . The switching signal S H is generated based on the pulse width modulation signal S W and is generated after the delay time generated by the delay time circuit 700.
此外,脈波寬度調變訊號SW 經由一反相器610而連接延遲時間電路701與一及閘660之一輸入端。延遲時間電路701之輸出端連接及閘660之另一輸入端。及閘660之一輸出端連接一緩衝器680以產生切換訊號SL 。切換訊號SL 係依據脈波寬度調變訊號SW 之禁能,而產生於延遲時間電路701所產生的延遲時間之後。In addition, the pulse width modulation signal S W is connected to the input terminal of one of the delay time circuit 701 and a gate 660 via an inverter 610. The output of the delay time circuit 701 is connected to the other input of the gate 660. An output of one of the gates 660 is coupled to a buffer 680 to generate a switching signal S L . The switching signal S L is generated after the delay time generated by the delay time circuit 701 according to the disable of the pulse width modulation signal S W .
請參閱第九圖,係本發明之一較佳實施例之延遲時間電路700與701的電路圖。如圖所示,延遲時間電路包含一充電電流IT 、一反相器715、一電晶體720、一電容750和一及閘790。充電電流IT 係指第八圖所示之電流IT1 與IT2 。本發明之一較佳實施例中,電晶體720可為N型電晶體。N型電晶體720之一閘極經由反相器715接收一輸入訊號IP。對於第八圖所示之延遲時間電路700之輸入端而言,輸入訊號IP為脈波寬度調變訊號SW 。對於第八圖所示之延遲時間電路701之輸入端而言,輸入訊號IP亦為脈波寬度調變訊號SW ,但是脈波寬度調變訊號SW 必須經過反相器610反相。及閘790之一第一輸入端接收輸入訊號IP。N型電晶體720之一源極耦接於接地端。及閘790之一第二輸入端耦接N型電晶體720之一汲極與電容750之一端。N型電晶體720之汲極耦接充電電流IT 。電容750之另一端耦接於接地端。及閘790之一輸出端產生一輸出訊號OP。因此,延遲時間電路接收輸入訊號IP,並依據輸入訊號IP的致能而產生輸出訊號OP(延遲時間)。電容750之電容值與充電電流IT 之電流決定延遲時間。Please refer to the ninth drawing, which is a circuit diagram of delay time circuits 700 and 701 in accordance with a preferred embodiment of the present invention. As shown, the delay time circuit includes a charging current I T , an inverter 715 , a transistor 720 , a capacitor 750 , and a gate 790 . The charging current I T refers to the currents I T1 and I T2 shown in the eighth figure. In a preferred embodiment of the invention, the transistor 720 can be an N-type transistor. One of the gates of the N-type transistor 720 receives an input signal IP via the inverter 715. For the input of the delay time circuit 700 shown in the eighth figure, the input signal IP is the pulse width modulation signal S W . For the input end of the delay time circuit 701 shown in the eighth figure, the input signal IP is also the pulse width modulation signal S W , but the pulse width modulation signal S W must be inverted by the inverter 610. The first input of one of the gates 790 receives the input signal IP. One source of the N-type transistor 720 is coupled to the ground. The second input end of the gate 790 is coupled to one of the drain of the N-type transistor 720 and one end of the capacitor 750. The drain of the N-type transistor 720 is coupled to the charging current I T . The other end of the capacitor 750 is coupled to the ground. An output signal OP is generated at one of the outputs of the gate 790. Therefore, the delay time circuit receives the input signal IP and generates an output signal OP (delay time) according to the enable of the input signal IP. The capacitance of the capacitor 750 and the current of the charging current I T determine the delay time.
請參閱第十圖,係轉換功能曲線圖,其顯示增益對應切換頻率之變化。圖示中之電壓VSW 為跨於電晶體20(參閱第一圖)之電壓,其為諧振電路之輸入電壓。n為變壓器30(參閱第一圖)之一匝數比(turn ratio)。頻率fP 為切換訊號SH 號與SL 之最大切換頻率。切換訊號SH 之最小脈波寬度必須提供足夠能量與循環電流以達到電晶體10與20的柔性切換。頻率fR 為諧振電路之一諧振頻率。切換訊號SH 與SL 之最小切換頻率應高於以及接近共振頻率fR ,以達到柔性切換與最大功率轉換。第十圖顯示當輸入電壓減少及/或負載增加時,切換頻率從頻率fP 降低至頻率fR ,如此即可擴展操作範圍與增進效率。Please refer to the tenth figure, which is a conversion function graph showing the change of the gain corresponding to the switching frequency. The voltage V SW in the figure is the voltage across the transistor 20 (see the first figure), which is the input voltage of the resonant circuit. n is one of the turn ratios of the transformer 30 (see the first figure). The frequency f P is the maximum switching frequency of the switching signals S H and S L . The minimum pulse width of the switching signal S H must provide sufficient energy and circulating current to achieve flexible switching of the transistors 10 and 20. The frequency f R is one of the resonant frequencies of the resonant circuit. The minimum switching frequency of the switching signals S H and S L should be higher than and close to the resonant frequency f R to achieve flexible switching and maximum power conversion. The tenth graph shows that as the input voltage decreases and/or the load increases, the switching frequency decreases from the frequency f P to the frequency f R , thus expanding the operating range and improving efficiency.
故本發明實為一具有新穎性、進步性及可供產業上利用者,應符合我國專利法專利申請要件無疑,爰依法提出發明專利申請,祈 鈞局早日賜准專利,至感為禱。Therefore, the present invention is a novelty, progressive and available for industrial use. It should be in accordance with the requirements of patent applications for patent law in China. It is undoubtedly to file an invention patent application according to law, and the Prayer Council will grant patents as soon as possible.
惟以上所述者,僅為本發明一較佳實施例而已,並非用來限定本發明實施之範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。However, the above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, so that the shapes, structures, features, and spirits described in the claims of the present invention are equally changed. Modifications are intended to be included in the scope of the patent application of the present invention.
10...電晶體10. . . Transistor
100...控制電路100. . . Control circuit
110...電晶體110. . . Transistor
112...電阻112. . . resistance
115...電阻115. . . resistance
116...電阻116. . . resistance
20...電晶體20. . . Transistor
200...振盪器200. . . Oscillator
210...頻率調變電路210. . . Frequency modulation circuit
220...電流源220. . . Battery
211...第一放大器211. . . First amplifier
250...電流源250. . . Battery
251...運算放大器251. . . Operational Amplifier
254...電晶體254. . . Transistor
255...電晶體255. . . Transistor
256...電晶體256. . . Transistor
261...電晶體261. . . Transistor
262...電晶體262. . . Transistor
263...電晶體263. . . Transistor
264...電晶體264. . . Transistor
265...電晶體265. . . Transistor
270...電容270. . . capacitance
271...開關271. . . switch
275...比較器275. . . Comparators
276...比較器276. . . Comparators
281...反及閘281. . . Reverse gate
282...反及閘282. . . Reverse gate
283...反相器283. . . inverter
285...反相器285. . . inverter
30...變壓器30. . . transformer
300...脈波寬度調變電路300. . . Pulse width modulation circuit
310...T型正反器310. . . T-type flip-flop
315...D型正反器315. . . D-type flip-flop
320...比較器320. . . Comparators
331...反相器331. . . inverter
332...電晶體332. . . Transistor
335...電流源335. . . Battery
680...緩衝器680. . . buffer
700...延遲時間電路700. . . Delay time circuit
701...延遲時間電路701. . . Delay time circuit
71...整流器71. . . Rectifier
715...反相器715. . . inverter
72...整流器72. . . Rectifier
720...電晶體720. . . Transistor
73...電感73. . . inductance
75...電容75. . . capacitance
750...電容750. . . capacitance
790...及閘790. . . Gate
80...齊納二極體80. . . Zener diode
81...電阻81. . . resistance
85...光耦合器85. . . Optocoupler
IC ...充電電流I C . . . recharging current
ID ...放電電流I D . . . Discharge current
IM ...調變電流I M . . . Modulated current
IT ...充電電流I T . . . recharging current
221...第二放大器221. . . Second amplifier
230...第三放大器230. . . Third amplifier
235...第四放大器235. . . Fourth amplifier
240...頻率產生電路240. . . Frequency generation circuit
241...運算放大器241. . . Operational Amplifier
242...電阻242. . . resistance
243...電晶體243. . . Transistor
244...電晶體244. . . Transistor
245...電晶體245. . . Transistor
246...電晶體246. . . Transistor
247...電晶體247. . . Transistor
340...電容340. . . capacitance
35...寄生電感35. . . Parasitic inductance
400...消隱電路400. . . Blanking circuit
410...反相器410. . . inverter
420...電晶體420. . . Transistor
430...充電電流430. . . recharging current
450...電容450. . . capacitance
460...及閘460. . . Gate
50...電容50. . . capacitance
500...輸出電路500. . . Output circuit
51...電阻51. . . resistance
510...電流源510. . . Battery
52...電阻52. . . resistance
520...運算放大器520. . . Operational Amplifier
525...電阻525. . . resistance
53...電阻53. . . resistance
550...電晶體550. . . Transistor
551...電晶體551. . . Transistor
552...電晶體552. . . Transistor
553...電晶體553. . . Transistor
61...電阻61. . . resistance
610...反相器610. . . inverter
62...電阻62. . . resistance
650...及閘650. . . Gate
660...及閘660. . . Gate
670...緩衝器670. . . buffer
IT1 ...電流I T1 . . . Current
IT2 ...電流I T2 . . . Current
IP...輸入訊號IP. . . Input signal
OP...輸出訊號OP. . . Output signal
SB ...消隱訊號S B . . . Blanking signal
SH ...切換訊號S H . . . Switching signal
SL ...切換訊號S L . . . Switching signal
SW ...頻率調變訊號S W . . . Frequency modulation signal
VCC ...供應電壓V CC . . . Supply voltage
VF ...準位偏移訊號V F . . . Level shift signal
VFB ...回授訊號V FB . . . Feedback signal
VH ...上限門檻值V H . . . Upper threshold
VIN ...輸入電壓V IN . . . Input voltage
VL ...下限門檻值V L . . . Lower threshold
VM ...頻率調變訊號V M . . . Frequency modulation signal
VO ...輸出電壓V O . . . The output voltage
IM ‧‧‧調變電流I M ‧‧‧ modulated current
IT ‧‧‧充電電流I T ‧‧‧Charging current
VSW ‧‧‧電壓V SW ‧‧‧ voltage
PLS‧‧‧振盪訊號PLS‧‧‧ oscillation signal
第一圖係本發明之一較佳實施例之功率轉換器的電路圖;The first figure is a circuit diagram of a power converter according to a preferred embodiment of the present invention;
第二圖係本發明之一較佳實施例之控制電路的電路圖;2 is a circuit diagram of a control circuit of a preferred embodiment of the present invention;
第三圖係本發明之一較佳實施例之振盪器的電路圖;Figure 3 is a circuit diagram of an oscillator of a preferred embodiment of the present invention;
第四圖係本發明之一較佳實施例之頻率調變電路的電路圖;Figure 4 is a circuit diagram of a frequency modulation circuit in accordance with a preferred embodiment of the present invention;
第五圖係本發明之一較佳實施例之頻率產生電路的電路圖;Figure 5 is a circuit diagram of a frequency generating circuit in accordance with a preferred embodiment of the present invention;
第六圖係本發明之一較佳實施例之脈波寬度調變電路的電路圖;Figure 6 is a circuit diagram of a pulse width modulation circuit of a preferred embodiment of the present invention;
第七圖係本發明之一較佳實施例之消隱電路的電路圖;Figure 7 is a circuit diagram of a blanking circuit in accordance with a preferred embodiment of the present invention;
第八圖係本發明之一較佳實施例之輸出電路的電路圖;Figure 8 is a circuit diagram of an output circuit of a preferred embodiment of the present invention;
第九圖係本發明之一較佳實施例之延遲時間電路的電路圖;以及Figure 9 is a circuit diagram of a delay time circuit in accordance with a preferred embodiment of the present invention;
第十圖係顯示增益對應切換頻率之變化的轉換功能曲線圖。The tenth figure shows a conversion function graph showing the change of the gain corresponding to the switching frequency.
10...電晶體10. . . Transistor
100...控制電路100. . . Control circuit
20...電晶體20. . . Transistor
30...變壓器30. . . transformer
35...寄生電感35. . . Parasitic inductance
50...電容50. . . capacitance
51...電阻51. . . resistance
52...電阻52. . . resistance
53...電阻53. . . resistance
61...電阻61. . . resistance
62...電阻62. . . resistance
71...整流器71. . . Rectifier
72...整流器72. . . Rectifier
73...電感73. . . inductance
75...電容75. . . capacitance
80...齊納二極體80. . . Zener diode
81...電阻81. . . resistance
85...光耦合器85. . . Optocoupler
VIN ...輸入電壓V IN . . . Input voltage
VFB ...回授訊號V FB . . . Feedback signal
VO ...輸出電壓V O . . . The output voltage
SH ...切換訊號S H . . . Switching signal
SL ...切換訊號S L . . . Switching signal
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099110284A TWI426694B (en) | 2010-04-02 | 2010-04-02 | Soft switching power converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099110284A TWI426694B (en) | 2010-04-02 | 2010-04-02 | Soft switching power converter |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201123703A TW201123703A (en) | 2011-07-01 |
TWI426694B true TWI426694B (en) | 2014-02-11 |
Family
ID=45046791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099110284A TWI426694B (en) | 2010-04-02 | 2010-04-02 | Soft switching power converter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI426694B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6366476B1 (en) * | 2000-05-17 | 2002-04-02 | Sony Corporation | Switching power supply apparatus with active clamp circuit |
US7212415B2 (en) * | 2004-01-19 | 2007-05-01 | Sanken Electric Co., Ltd. | Resonance type switching power source |
US7286376B2 (en) * | 2005-11-23 | 2007-10-23 | System General Corp. | Soft-switching power converter having power saving circuit for light load operations |
US7313004B1 (en) * | 2006-12-21 | 2007-12-25 | System General Corp. | Switching controller for resonant power converter |
TWI297977B (en) * | 2005-07-05 | 2008-06-11 | Delta Electronics Inc | Soft switching dc-dc converter |
-
2010
- 2010-04-02 TW TW099110284A patent/TWI426694B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6366476B1 (en) * | 2000-05-17 | 2002-04-02 | Sony Corporation | Switching power supply apparatus with active clamp circuit |
US7212415B2 (en) * | 2004-01-19 | 2007-05-01 | Sanken Electric Co., Ltd. | Resonance type switching power source |
TWI297977B (en) * | 2005-07-05 | 2008-06-11 | Delta Electronics Inc | Soft switching dc-dc converter |
US7286376B2 (en) * | 2005-11-23 | 2007-10-23 | System General Corp. | Soft-switching power converter having power saving circuit for light load operations |
US7313004B1 (en) * | 2006-12-21 | 2007-12-25 | System General Corp. | Switching controller for resonant power converter |
Also Published As
Publication number | Publication date |
---|---|
TW201123703A (en) | 2011-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI499191B (en) | Active clamp circuits | |
TWI472131B (en) | Active-clamp circuit for quasi-resonant flyback power converter | |
US8094468B2 (en) | Control circuit having off-time modulation to operate power converter at quasi-resonance and in continuous current mode | |
TWI509970B (en) | Control circuit for flyback power converter with predicted timing control | |
US9252676B2 (en) | Adaptive active clamp of flyback power converter with high efficiency for heavy load and light load | |
TWI484736B (en) | Control circuit with burst mode and extended valley switching for quasi-resonant power converter | |
JP6069957B2 (en) | Switching power supply | |
US7286376B2 (en) | Soft-switching power converter having power saving circuit for light load operations | |
TWI406482B (en) | A control circuit and method of resonant power converter | |
CN102969874B (en) | Control circuit with deep burst mode for power converter | |
KR100660403B1 (en) | Switching Power Supply | |
JP5434371B2 (en) | Resonant switching power supply | |
CN114123784B (en) | Resonant half-bridge flyback power supply and primary side control circuit and control method thereof | |
TWI587620B (en) | Synchronous buck dc-dc converter with high conversion efficiency | |
WO2014034531A1 (en) | Switching power supply apparatus | |
US11139730B2 (en) | Burst controller and burst control method of resonance converter | |
US10924021B2 (en) | Control apparatus for controlling switching power supply | |
US20100202167A1 (en) | Soft switching power converter with a variable switching frequency for improving operation and efficiency | |
TWI792036B (en) | Switching power converters, and methods and packaged integrated circuits for controlling the same | |
TW201308844A (en) | Control circuit with ZVS-lock and asymmetrical PWM for resonant power converter and control method thereof | |
KR20090011715A (en) | Converter and driving method | |
JP2013236428A (en) | Dc conversion device | |
CN101789701B (en) | Flexible Switching Power Converter | |
TWI426694B (en) | Soft switching power converter | |
JP2003125582A (en) | Power unit |