TWI422061B - Light emitting diode and fabricating method thereof - Google Patents
Light emitting diode and fabricating method thereof Download PDFInfo
- Publication number
- TWI422061B TWI422061B TW97126803A TW97126803A TWI422061B TW I422061 B TWI422061 B TW I422061B TW 97126803 A TW97126803 A TW 97126803A TW 97126803 A TW97126803 A TW 97126803A TW I422061 B TWI422061 B TW I422061B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- type semiconductor
- light
- forming
- emitting diode
- Prior art date
Links
Landscapes
- Led Devices (AREA)
Description
本發明是有關於一種發光二極體晶片(LED chip)及其製造方法,且特別是有關於一種具有緩衝層(buffer layer)的發光二極體晶片及其製造方法。The present invention relates to a light emitting diode chip (LED chip) and a method of fabricating the same, and more particularly to a light emitting diode chip having a buffer layer and a method of fabricating the same.
隨著半導體科技的進步,現今的發光二極體已具備了高亮度的輸出,加上發光二極體具有省電、體積小、低電壓驅動以及不含汞等優點,因此發光二極體已廣泛地應用在顯示器與照明方面的領域。一般而言,發光二極體晶片的發光效率主要取決於發光層的內部量子效率(internal quantum efficiency),而內部量子效率的提昇與半導體層之磊晶品質以及半導體層之膜層堆疊方式有關。當發光二極體晶片之磊晶品質不佳,如出現大量缺陷(defect)、晶格錯位(dislocation)時,發光二極體晶片中會有內應力存在,導致元件可靠度(reliability)、光電特性以及元件壽命受到影響。With the advancement of semiconductor technology, today's light-emitting diodes have high-intensity output, and the light-emitting diodes have the advantages of power saving, small size, low voltage driving, and no mercury, so the light-emitting diode has Widely used in the field of display and lighting. In general, the luminous efficiency of a light-emitting diode wafer mainly depends on the internal quantum efficiency of the light-emitting layer, and the improvement of the internal quantum efficiency is related to the epitaxial quality of the semiconductor layer and the film layer stacking manner of the semiconductor layer. When the epitaxial quality of the light-emitting diode chip is not good, such as a large number of defects and dislocations, internal stress exists in the light-emitting diode wafer, resulting in component reliability and photoelectricity. Characteristics and component life are affected.
為了改善缺陷與晶格錯位等的問題,習知技術在形成N型半導體層、發光層與P型半導體層之前,會先在基板上製作一緩衝層,以盡量避免缺陷與晶格錯位的產生。然而,一般以氮化鎵為基礎材料的緩衝層(GaN-based buffer layer)仍然面臨嚴重的缺陷與晶格錯位問題,因此緩衝層的選用仍是目前發光二極體晶片在製造上的重要課題之一。In order to improve the defects and lattice misalignment, the prior art forms a buffer layer on the substrate before forming the N-type semiconductor layer, the light-emitting layer and the P-type semiconductor layer, so as to avoid defects and lattice misalignment as much as possible. . However, the GaN-based buffer layer is still facing serious defects and lattice misalignment problems. Therefore, the selection of the buffer layer is still an important issue in the fabrication of current LED chips. one.
本發明提供一種發光二極體晶片,其具有良好的光電特性及可靠度。The invention provides a light emitting diode wafer which has good photoelectric characteristics and reliability.
本發明提供一種發光二極體晶片的製造方法,其所製造的發光二極體晶片良好的光電特性及可靠度。The invention provides a method for manufacturing a light-emitting diode wafer, which has good photoelectric characteristics and reliability of a light-emitting diode wafer.
本發明提出一種發光二極體晶片,包括一基板、一緩衝層、一半導體元件層以及多個電極。緩衝層配置於基板上,半導體元件層配置於緩衝層上,電極則與半導體元件層電性連接,其中緩衝層之材質包括一矽摻雜的III-V族化合物半導體(silicon doped III-V group compound semiconductor)或一鎂摻雜的III-V族化合物半導體(magnesium doped III-V group compound semiconductor)。The invention provides a light emitting diode chip comprising a substrate, a buffer layer, a semiconductor element layer and a plurality of electrodes. The buffer layer is disposed on the substrate, the semiconductor device layer is disposed on the buffer layer, and the electrode is electrically connected to the semiconductor device layer, wherein the buffer layer material comprises a germanium doped III-V compound semiconductor (silicon doped III-V group) Compound semiconductor) or a magnesium doped III-V group compound semiconductor.
在本發明的一實施例中,上述的基板包括一氧化鋁基板。In an embodiment of the invention, the substrate comprises an alumina substrate.
在本發明的一實施例中,上述的緩衝層之材質包括SiAlN、SiAlGaN、SiAlGaInN、SiAlInN、SiAlInBGaN、MgAlN、MgAlGaN、MgAlGaInN、MgAlInN或MgAlInBGaN。In an embodiment of the invention, the material of the buffer layer comprises SiAlN, SiAlGaN, SiAlGaInN, SiAlInN, SiAlInBGaN, MgAlN, MgAlGaN, MgAlGaInN, MgAlInN or MgAlInBGaN.
在本發明的一實施例中,上述的緩衝層包括一磊晶層以及多個呈隨機分佈之氮化矽島狀圖案(SiNx islands)。其中,氮化矽島狀圖案配置於基板上,且被磊晶層所覆蓋。In an embodiment of the invention, the buffer layer includes an epitaxial layer and a plurality of randomly distributed tantalum islands (SiNx islands). The tantalum nitride island pattern is disposed on the substrate and covered by the epitaxial layer.
在本發明的一實施例中,上述的緩衝層包括一磊晶層以及多個呈隨機分佈之氮化矽島狀圖案。其中,磊晶層配置於基板上,多個呈隨機分佈之氮化矽島狀圖案, 配置於磊晶層與半導體元件層之間。In an embodiment of the invention, the buffer layer includes an epitaxial layer and a plurality of randomly distributed tantalum island patterns. Wherein, the epitaxial layer is disposed on the substrate, and the plurality of randomly distributed tantalum island patterns It is disposed between the epitaxial layer and the semiconductor device layer.
在本發明的一實施例中,上述的半導體元件層包括一第一型半導體層、一發光層以及一第二型半導體層。其中,第一型半導體層配置於緩衝層上,發光層配置於第一型半導體層的部分區域上,第二型半導體層配置於發光層上。In an embodiment of the invention, the semiconductor device layer includes a first type semiconductor layer, a light emitting layer, and a second type semiconductor layer. The first type semiconductor layer is disposed on the buffer layer, the light emitting layer is disposed on a partial region of the first type semiconductor layer, and the second type semiconductor layer is disposed on the light emitting layer.
在本發明的一實施例中,上述的第一型半導體層為一N型半導體層,而第二型半導體層為一P型半導體層。當然,第一型半導體層亦可為一P型半導體層,而第二型半導體層為一N型半導體層。In an embodiment of the invention, the first type semiconductor layer is an N type semiconductor layer, and the second type semiconductor layer is a P type semiconductor layer. Of course, the first type semiconductor layer may also be a P type semiconductor layer, and the second type semiconductor layer is an N type semiconductor layer.
在本發明的一實施例中,上述的發光層為一多重量子井發光層(Multiple Quantum Well light-emitting layer)。In an embodiment of the invention, the light emitting layer is a multiple quantum light emitting layer (Multiple Quantum Well light-emitting layer).
在本發明的一實施例中,上述的電極包括一第一電極以及一第二電極。第一電極配置於未被發光層所覆蓋之第一型半導體層上,以與第一型半導體層電性連接。第二電極配置於第二型半導體層上,以與第二型半導體層電性連接。In an embodiment of the invention, the electrode includes a first electrode and a second electrode. The first electrode is disposed on the first type semiconductor layer not covered by the light emitting layer to be electrically connected to the first type semiconductor layer. The second electrode is disposed on the second type semiconductor layer to be electrically connected to the second type semiconductor layer.
本發明提出一種發光二極體晶片的製造方法。首先,於一基板上形成一緩衝層,此緩衝層之材質包括一矽摻雜的III-V族化合物半導體或一鎂摻雜的III-V族化合物半導體。接著,於緩衝層上形成一半導體元件層,之後,再於半導體元件層上形成多個電極。The present invention provides a method of fabricating a light emitting diode wafer. First, a buffer layer is formed on a substrate, and the buffer layer is made of a germanium-doped III-V compound semiconductor or a magnesium-doped III-V compound semiconductor. Next, a semiconductor element layer is formed on the buffer layer, and then a plurality of electrodes are formed on the semiconductor element layer.
在本發明的一實施例中,上述的緩衝層之材質包括SiAlN、SiAlGaN、SiAlGaInN、SiAlInN、SiAlInBGaN、MgAlN、MgAlGaN、MgAlGaInN、MgAlInN或 MgAlInBGaN。In an embodiment of the invention, the material of the buffer layer comprises SiAlN, SiAlGaN, SiAlGaInN, SiAlInN, SiAlInBGaN, MgAlN, MgAlGaN, MgAlGaInN, MgAlInN or MgAlInBGaN.
在本發明的一實施例中,上述形成緩衝層的方法包括先於基板上形成多個呈隨機分佈(be distributed randomly)之氮化矽島狀圖案,之後再於基板上形成一磊晶層,以覆蓋氮化矽島狀圖案。In an embodiment of the invention, the method for forming a buffer layer includes forming a plurality of beaconized hafnium island patterns on a substrate, and then forming an epitaxial layer on the substrate. To cover the tantalum nitride island pattern.
在本發明的一實施例中,上述形成緩衝層的方法包括先於基板上形成一磊晶層,之後再於磊晶層上形成多個呈隨機分佈之氮化矽島狀圖案。In an embodiment of the invention, the method for forming a buffer layer includes forming an epitaxial layer on a substrate, and then forming a plurality of randomly distributed tantalum island patterns on the epitaxial layer.
在本發明的一實施例中,上述形成氮化矽島狀圖案的方法包括磊晶製程。In an embodiment of the invention, the method for forming a tantalum nitride island pattern includes an epitaxial process.
在本發明的一實施例中,上述形成該半導體元件層的方法包括先於緩衝層上依序形成一第一型半導體材料層、一發光材料層以及一第二型半導體材料層。之後,圖案化第二型半導體材料層、發光材料層以及第一型半導體材料層,以形成一第一型半導體層、一發光層以及一第二型半導體,其中發光層配置於第一型半導體層的部分區域上,而第二型半導體層則配置於發光層上。In an embodiment of the invention, the method for forming the semiconductor device layer includes sequentially forming a first type semiconductor material layer, a luminescent material layer, and a second type semiconductor material layer on the buffer layer. Thereafter, the second type semiconductor material layer, the luminescent material layer, and the first type semiconductor material layer are patterned to form a first type semiconductor layer, a light emitting layer, and a second type semiconductor, wherein the light emitting layer is disposed on the first type semiconductor The partial semiconductor layer is disposed on the luminescent layer.
在本發明的一實施例中,上述形成電極的方法包括先於未被發光層所覆蓋之第一型半導體層上形成一第一電極,以與第一型半導體層電性連接。之後,於第二型半導體層上形成一第二電極,以與第二型半導體層電性連接。In an embodiment of the invention, the method of forming an electrode includes forming a first electrode on a first type semiconductor layer not covered by the light emitting layer to be electrically connected to the first type semiconductor layer. Thereafter, a second electrode is formed on the second type semiconductor layer to be electrically connected to the second type semiconductor layer.
由於本發明採用矽摻雜的III-V族化合物半導體或一鎂摻雜的III-V族化合物半導體作為緩衝層的材料,因此本發明之發光二極體晶片中的缺陷與晶格錯位的情形 較為輕微,是以本發明之發光二極體晶片的光電特性及可靠度良好。Since the present invention employs an antimony-doped group III-V compound semiconductor or a magnesium-doped group III-V compound semiconductor as a material of the buffer layer, defects and lattice misalignment in the light-emitting diode wafer of the present invention are employed. It is relatively slight, and the photoelectric characteristics and reliability of the light-emitting diode wafer of the present invention are good.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
圖1A~圖1C為本發明第一實施例之一種發光二極體晶片製造方法的流程圖。本實施例提供一種發光二極體晶片的製造方法,請參照圖1A,首先提供一基板110,一般使用的基板是藍寶石基板(氧化鋁,Al2 O3 )。接著,於基板110上形成一緩衝層120,緩衝層120之材質包括一矽摻雜的III-V族化合物半導體或一鎂摻雜的III-V族化合物半導體,在本實施例中,緩衝層120之材質例如是SiAlN、SiAlGaN、SiAlGaInN、SiAlInN、SiAlInBGaN、MgAlN、MgAlGaN、MgAlGaInN、MgAlInN或MgAlInBGaN。1A to 1C are flowcharts showing a method of manufacturing a light-emitting diode wafer according to a first embodiment of the present invention. This embodiment provides a method for manufacturing a light-emitting diode wafer. Referring to FIG. 1A, a substrate 110 is first provided. The commonly used substrate is a sapphire substrate (alumina, Al 2 O 3 ). Next, a buffer layer 120 is formed on the substrate 110. The material of the buffer layer 120 includes a germanium-doped III-V compound semiconductor or a magnesium-doped III-V compound semiconductor. In this embodiment, the buffer layer The material of 120 is, for example, SiAlN, SiAlGaN, SiAlGaInN, SiAlInN, SiAlInBGaN, MgAlN, MgAlGaN, MgAlGaInN, MgAlInN or MgAlInBGaN.
接著請參照圖1B,在緩衝層120上形成一半導體元件層130,半導體元件層130由III-V族元素化合物半導體材料所構成,而形成半導體元件層130的步驟詳細說明如下。首先,在緩衝層120上以磊晶方式依序形成第一型半導體材料層132a、發光材料層134a以及第二型半導體材料層136a。接著,圖案化第二型半導體材料層136a、發光材料層134a以及第一型半導體材料層132a,以形成第二型半導體層136b、發光層134b以及第一型半 導體132b,其中發光層134b配置於第一型半導體層132b的部分區域上,而第二型半導體層136b則配置於發光層134b上。上述圖案化第二型半導體材料層136a、發光材料層134a以及第一型半導體材料層132a的方法例如是微影蝕刻製程或其他適當的圖案化方法。Next, referring to FIG. 1B, a semiconductor device layer 130 is formed on the buffer layer 120. The semiconductor device layer 130 is composed of a III-V element compound semiconductor material, and the steps of forming the semiconductor device layer 130 are described in detail below. First, a first type semiconductor material layer 132a, a light emitting material layer 134a, and a second type semiconductor material layer 136a are sequentially formed on the buffer layer 120 in an epitaxial manner. Next, the second type semiconductor material layer 136a, the luminescent material layer 134a, and the first type semiconductor material layer 132a are patterned to form the second type semiconductor layer 136b, the light emitting layer 134b, and the first half The conductor 132b, wherein the light-emitting layer 134b is disposed on a partial region of the first-type semiconductor layer 132b, and the second-type semiconductor layer 136b is disposed on the light-emitting layer 134b. The above method of patterning the second type semiconductor material layer 136a, the luminescent material layer 134a, and the first type semiconductor material layer 132a is, for example, a photolithography process or other suitable patterning method.
請接著參照圖1C,在完成上述圖案化的過程之後,本實施例可選擇性地在第二型半導體層136b上製作一電流分散層140,此電流分散層140有助於將電流分散導入第二型半導體層136b,進而提昇發光效率。接著,在未被發光層134b所覆蓋之第一型半導體層132b上形成第一電極150,此第一電極150與第一型半導體層132b形成電性連接,並形成良好的歐姆接觸。此外,在形成第一電極150的同時,可在第二型半導體層136b上形成第二電極152,此第二電極152與第二型半導體層136b形成電性連接,並形成良好的歐姆接觸。Referring to FIG. 1C, after completing the above-described patterning process, the present embodiment selectively forms a current dispersion layer 140 on the second type semiconductor layer 136b. The current dispersion layer 140 helps to introduce current dispersion into the first layer. The second type semiconductor layer 136b further enhances luminous efficiency. Next, a first electrode 150 is formed on the first type semiconductor layer 132b not covered by the light emitting layer 134b, and the first electrode 150 is electrically connected to the first type semiconductor layer 132b and forms a good ohmic contact. Further, while the first electrode 150 is formed, the second electrode 152 may be formed on the second type semiconductor layer 136b, and the second electrode 152 is electrically connected to the second type semiconductor layer 136b and forms a good ohmic contact.
由圖1C可清楚得知,上述之製造方法所製造出的發光二極體晶片100包括一基板110、一緩衝層120、一半導體層130、一電流分散層140以及多個電極150、152,其中半導體元件層130包括第一型半導體層132b、發光層134b以及第二型半導體層136b。當第一型半導體層132b為N型半導體層時,則第二型半導體層136b為P型半導體層;反之,當第一型半導體層132b為P型半導體層時,則第二型半導體層136b為N型半導體層。另外,發光層134b為多重量子井發光層。由於緩衝層120的材料包括一矽摻雜的III-V族化合物半導體或一鎂摻雜的 III-V族化合物半導體,因此本發明之緩衝層120可以有效降低晶格錯位及缺陷發生。相較於習知的發光二極體晶片,本實施例所提供的發光二極體晶片100具有較佳的磊晶品質,且元件應力較為輕微,所以發光二極體晶片100具有較高的可靠度及良好的光電特性。It can be clearly seen from FIG. 1C that the LED assembly 100 manufactured by the above manufacturing method includes a substrate 110, a buffer layer 120, a semiconductor layer 130, a current dispersion layer 140, and a plurality of electrodes 150, 152. The semiconductor element layer 130 includes a first type semiconductor layer 132b, a light emitting layer 134b, and a second type semiconductor layer 136b. When the first type semiconductor layer 132b is an N type semiconductor layer, the second type semiconductor layer 136b is a P type semiconductor layer; otherwise, when the first type semiconductor layer 132b is a P type semiconductor layer, the second type semiconductor layer 136b It is an N-type semiconductor layer. In addition, the light-emitting layer 134b is a multiple quantum well light-emitting layer. Since the material of the buffer layer 120 comprises a germanium doped III-V compound semiconductor or a magnesium doped The III-V compound semiconductor, and thus the buffer layer 120 of the present invention can effectively reduce lattice misalignment and defect occurrence. Compared with the conventional light-emitting diode chip, the light-emitting diode chip 100 provided in this embodiment has better epitaxial quality and the component stress is relatively slight, so the light-emitting diode chip 100 has high reliability. Degree and good photoelectric properties.
圖2A為本發明第二實施例之一種緩衝層的示意圖。請參照圖2A,本實施例之緩衝層220a包括多個呈隨機分佈之氮化矽島狀圖案222a以及一磊晶層224a,而緩衝層220a的製造方法如下。首先,利用磊晶製程在基板210上形成多個呈隨機分佈之氮化矽島狀圖案222a,接著,在基板210上形成一磊晶層224a,以覆蓋氮化矽島狀圖案222a。本實施例中,磊晶層224a之材質例如是矽摻雜的III-V族化合物半導體或一鎂摻雜的III-V族化合物半導體。詳言之,磊晶層224a之材質可以是SiAlN、SiAlGaN、SiAlGaInN、SiAlInN、SiAlInBGaN、MgAlN、MgAlGaN、MgAlGaInN、MgAlInN或MgAlInBGaN。2A is a schematic view of a buffer layer according to a second embodiment of the present invention. Referring to FIG. 2A, the buffer layer 220a of the present embodiment includes a plurality of randomly distributed tantalum nitride island patterns 222a and an epitaxial layer 224a, and the buffer layer 220a is manufactured as follows. First, a plurality of randomly distributed tantalum island patterns 222a are formed on the substrate 210 by an epitaxial process, and then an epitaxial layer 224a is formed on the substrate 210 to cover the tantalum island pattern 222a. In this embodiment, the material of the epitaxial layer 224a is, for example, an antimony-doped III-V compound semiconductor or a magnesium-doped III-V compound semiconductor. In detail, the material of the epitaxial layer 224a may be SiAlN, SiAlGaN, SiAlGaInN, SiAlInN, SiAlInBGaN, MgAlN, MgAlGaN, MgAlGaInN, MgAlInN or MgAlInBGaN.
圖2B為本發明第二實施例之 一種發光二極體晶片的示意圖。請參照圖2B,本實施例之發光二極體晶片200a包括一基板210、一緩衝層220a、一半導體元件層230、一電流分散層240及多個電極250、252。發光二極體晶片200a與第一實施例之發光二極體晶片100在結構上纇似,惟二者主要不同之處在於緩衝層220a的結構。2B is a schematic view of a light emitting diode wafer according to a second embodiment of the present invention. Referring to FIG. 2B, the LED array 200a of the present embodiment includes a substrate 210, a buffer layer 220a, a semiconductor device layer 230, a current dispersion layer 240, and a plurality of electrodes 250, 252. The light-emitting diode wafer 200a is similar in structure to the light-emitting diode wafer 100 of the first embodiment, but the main difference is the structure of the buffer layer 220a.
圖3A為本發明第三實施例之一種緩衝層的示意 圖。請參照圖3A,本實施例之緩衝層220b包括一磊晶層224b及多個氮化矽島狀圖案222b。而緩衝層220b的製造方法如下。首先,在基板210上利用磊晶方式形成一磊晶層224b,接著,於磊晶層224b上形成多個呈隨機分佈之氮化矽島狀圖案222b。3A is a schematic view of a buffer layer according to a third embodiment of the present invention; Figure. Referring to FIG. 3A, the buffer layer 220b of the embodiment includes an epitaxial layer 224b and a plurality of tantalum nitride island patterns 222b. The manufacturing method of the buffer layer 220b is as follows. First, an epitaxial layer 224b is formed on the substrate 210 by epitaxy, and then a plurality of randomly formed tantalum nitride island patterns 222b are formed on the epitaxial layer 224b.
圖3B為本發明第三實施例之一種發光二極體晶片的示意圖。請參照圖3B,本實施例之發光二極體晶片200b包括一基板210、一緩衝層220b、一半導體元件層230、一電流分散層240及多個電極250、252。發光二極體晶片200b與第二實施例之發光二極體晶片100a在結構上纇似,惟二者主要不同之處在於緩衝層220b的結構。3B is a schematic view of a light emitting diode wafer according to a third embodiment of the present invention. Referring to FIG. 3B, the LED package 200b of the present embodiment includes a substrate 210, a buffer layer 220b, a semiconductor device layer 230, a current dispersion layer 240, and a plurality of electrodes 250, 252. The light-emitting diode wafer 200b is similar in structure to the light-emitting diode wafer 100a of the second embodiment, but the two main differences are in the structure of the buffer layer 220b.
上述第二及第三實施例所提到的氮化矽島狀圖案,從結構上來看,具有增加發光二極體晶片光取出率的作用。詳細的說,施加一順向偏壓於第一電極、第二電極之間時,發光層所發出的光線往各個方向發散。當光線碰巧發生全反射,而無法穿透發光二極體晶片時,發光二極體晶片的光取出率就會降低。而氮化矽島狀圖案的結構可以有效降低光線發生全反射的機率,使大部分的光線可以離開發光二極體晶片,以增加發光二極體晶片的光取出率,因此發光二極體晶片的發光效率也會提升。The tantalum nitride island pattern mentioned in the second and third embodiments described above has a function of increasing the light extraction rate of the light emitting diode wafer from the structural viewpoint. In detail, when a forward bias is applied between the first electrode and the second electrode, the light emitted by the light-emitting layer diverges in various directions. When the light happens to be totally reflected and cannot penetrate the light-emitting diode wafer, the light extraction rate of the light-emitting diode wafer is lowered. The structure of the tantalum nitride island pattern can effectively reduce the probability of total reflection of light, so that most of the light can leave the light emitting diode chip to increase the light extraction rate of the light emitting diode chip, and thus the light emitting diode chip The luminous efficiency will also increase.
綜上所述,本發明採用緩衝層的材料,可以大幅降低晶格錯位及缺陷的情況。另外,緩衝層中氮化矽島狀圖案的結構可以增加發光二極體晶片的光取出率。相較習知的發光二極體晶片,本發明所提供的發光二極體晶片因為比較少有晶格錯位及缺陷的情形所以具有良好的 磊晶品質,而且有較高的光取出率,因此具有良好的光電特性、可靠度較高且使用壽命較長。In summary, the present invention uses a buffer layer material to greatly reduce lattice misalignment and defects. In addition, the structure of the tantalum nitride island pattern in the buffer layer can increase the light extraction rate of the light emitting diode wafer. Compared with the conventional light-emitting diode chip, the light-emitting diode chip provided by the invention has good performance because of relatively few lattice misalignments and defects. It has epitaxial quality and high light extraction rate, so it has good photoelectric characteristics, high reliability and long service life.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
100、200a、200b‧‧‧發光二極體晶片100, 200a, 200b‧‧‧Light Emitter Wafer
110、210‧‧‧基板110, 210‧‧‧ substrate
120、220a、220b‧‧‧緩衝層120, 220a, 220b‧‧‧ buffer layer
130、230‧‧‧半導體元件層130, 230‧‧‧ semiconductor device layer
132a‧‧‧第一型半導體材料層132a‧‧‧First type semiconductor material layer
132b、232‧‧‧第一型半導體層132b, 232‧‧‧ first type semiconductor layer
134a‧‧‧發光材料層134a‧‧‧ luminescent material layer
134b、234‧‧‧發光層134b, 234‧‧‧ luminescent layer
136a‧‧‧第二型半導體材料層136a‧‧‧Second type semiconductor material layer
136b、236‧‧‧第二型半導體層136b, 236‧‧‧ second type semiconductor layer
140、240‧‧‧電流分散層140, 240‧‧‧current dispersion layer
150、250‧‧‧第一電極150, 250‧‧‧ first electrode
152、252‧‧‧第二電極152, 252‧‧‧ second electrode
222a、222b‧‧‧氮化矽島狀圖案222a, 222b‧‧‧ nitride island pattern
224a、224b‧‧‧磊晶層224a, 224b‧‧‧ epitaxial layer
圖1A~圖1C為本發明第一實施例之一種發光二極體晶片製造方法的流程圖。1A to 1C are flowcharts showing a method of manufacturing a light-emitting diode wafer according to a first embodiment of the present invention.
圖2A為本發明第二實施例之一種緩衝層的示意圖。2A is a schematic view of a buffer layer according to a second embodiment of the present invention.
圖2B為本發明第二實施例之一種發光二極體晶片的示意圖。2B is a schematic view of a light emitting diode wafer according to a second embodiment of the present invention.
圖3A為本發明第三實施例之一種緩衝層的示意圖。3A is a schematic view of a buffer layer according to a third embodiment of the present invention.
圖3B為本發明第三實施例之一種發光二極體晶片的示意圖。3B is a schematic view of a light emitting diode wafer according to a third embodiment of the present invention.
200a‧‧‧發光二極體晶片200a‧‧‧Light Diode Wafer
210‧‧‧基板210‧‧‧Substrate
220a‧‧‧緩衝層220a‧‧‧buffer layer
222a‧‧‧氮化矽島狀圖案222a‧‧‧ nitride island pattern
224a‧‧‧磊晶層224a‧‧‧ epitaxial layer
230‧‧‧半導體元件層230‧‧‧Semiconductor component layer
232‧‧‧第一型半導體層232‧‧‧First type semiconductor layer
234‧‧‧發光層234‧‧‧Lighting layer
236‧‧‧第二型半導體層236‧‧‧Second type semiconductor layer
240‧‧‧電流分散層240‧‧‧current dispersion layer
250‧‧‧第一電極250‧‧‧first electrode
252‧‧‧第二電極252‧‧‧second electrode
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97126803A TWI422061B (en) | 2008-07-15 | 2008-07-15 | Light emitting diode and fabricating method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97126803A TWI422061B (en) | 2008-07-15 | 2008-07-15 | Light emitting diode and fabricating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201003983A TW201003983A (en) | 2010-01-16 |
TWI422061B true TWI422061B (en) | 2014-01-01 |
Family
ID=44825747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97126803A TWI422061B (en) | 2008-07-15 | 2008-07-15 | Light emitting diode and fabricating method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI422061B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115832139B (en) * | 2023-02-24 | 2023-05-02 | 江西兆驰半导体有限公司 | Epitaxial wafer for Mini-LED, preparation method of epitaxial wafer and Mini-LED |
CN116190522B (en) * | 2023-04-26 | 2023-07-11 | 江西兆驰半导体有限公司 | A high-efficiency light-emitting diode epitaxial wafer and its preparation method |
CN117832347B (en) * | 2024-03-04 | 2024-05-14 | 江西兆驰半导体有限公司 | A Micro-LED epitaxial wafer and a preparation method thereof, and an LED chip |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000049378A (en) * | 1998-07-31 | 2000-02-18 | Rikagaku Kenkyusho | Nitride semiconductor for light emitting device and method of manufacturing the same |
JP2001015803A (en) * | 1999-06-29 | 2001-01-19 | Showa Denko Kk | AlGaInP LIGHT EMITTING DIODE |
JP2006339534A (en) * | 2005-06-03 | 2006-12-14 | Sony Corp | Light emitting diode, manufacturing method therefor, light emitting diode back light, light emitting diode lighting device, light emitting diode display and electronic apparatus |
JP2007043059A (en) * | 2005-03-17 | 2007-02-15 | Hitachi Cable Ltd | Light emitting diode array and light emitting diode |
-
2008
- 2008-07-15 TW TW97126803A patent/TWI422061B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000049378A (en) * | 1998-07-31 | 2000-02-18 | Rikagaku Kenkyusho | Nitride semiconductor for light emitting device and method of manufacturing the same |
JP2001015803A (en) * | 1999-06-29 | 2001-01-19 | Showa Denko Kk | AlGaInP LIGHT EMITTING DIODE |
JP2007043059A (en) * | 2005-03-17 | 2007-02-15 | Hitachi Cable Ltd | Light emitting diode array and light emitting diode |
JP2006339534A (en) * | 2005-06-03 | 2006-12-14 | Sony Corp | Light emitting diode, manufacturing method therefor, light emitting diode back light, light emitting diode lighting device, light emitting diode display and electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW201003983A (en) | 2010-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5283436B2 (en) | Nitride semiconductor light emitting device | |
US7687376B2 (en) | Method of manufacturing vertical gallium nitride-based light emitting diode | |
KR100753518B1 (en) | Nitride-based light emitting device | |
JP6934812B2 (en) | Light emitting element and light emitting element array including it | |
US8772815B2 (en) | Semiconductor light emitting device having a protecting member and method of fabricating the same | |
KR100801617B1 (en) | Light emitting diodes with nanostructures for light extraction and methods of manufacturing the same | |
US7989832B2 (en) | Light emitting device and manufacturing method thereof | |
KR20110128545A (en) | Light emitting device, manufacturing method and light emitting device package | |
JP4359263B2 (en) | Semiconductor light emitting device | |
JP2010098068A (en) | Light emitting diode, manufacturing method thereof, and lamp | |
US7772600B2 (en) | Light emitting device having zener diode therein and method of fabricating the same | |
KR101081129B1 (en) | Light emitting device and fabrication method thereof | |
KR101123010B1 (en) | semi-conductor light emitting device and manufacturing method thereof | |
KR20090076163A (en) | Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device manufactured thereby | |
CN105633229B (en) | Light-emitting diode and method of making the same | |
TWI422061B (en) | Light emitting diode and fabricating method thereof | |
KR100889569B1 (en) | Nitride-based light emitting device and its manufacturing method | |
KR20080000784A (en) | A light emitting device comprising a zener diode and a method of manufacturing the same | |
KR100889568B1 (en) | Nitride-based light emitting device and its manufacturing method | |
KR100716648B1 (en) | A light emitting device having a plurality of light emitting cells and a manufacturing method thereof | |
US11522112B2 (en) | Light emitting diode and manufacturing method thereof | |
KR20150072068A (en) | Led having improved light extraction efficiency and method of fabricating the same | |
JP4995432B2 (en) | Semiconductor light emitting device | |
KR100730752B1 (en) | Compound semiconductor with superlattice layer, light emitting diode using same, and method for manufacturing same | |
TW201304189A (en) | Light-emitting device and fabrication method thereof |