[go: up one dir, main page]

TWI416169B - Switchable fresnel lens - Google Patents

Switchable fresnel lens Download PDF

Info

Publication number
TWI416169B
TWI416169B TW99111104A TW99111104A TWI416169B TW I416169 B TWI416169 B TW I416169B TW 99111104 A TW99111104 A TW 99111104A TW 99111104 A TW99111104 A TW 99111104A TW I416169 B TWI416169 B TW I416169B
Authority
TW
Taiwan
Prior art keywords
refractive index
fresnel lens
liquid crystal
variable
axis
Prior art date
Application number
TW99111104A
Other languages
Chinese (zh)
Other versions
TW201135290A (en
Inventor
Ren Wei Liao
Yi Jun Chen
Ching Sheng Cheng
Chih Hung Shih
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW99111104A priority Critical patent/TWI416169B/en
Publication of TW201135290A publication Critical patent/TW201135290A/en
Application granted granted Critical
Publication of TWI416169B publication Critical patent/TWI416169B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

A switchable Fresnel lens allowing a polarized light passing through is provided. The switchable Fresnel lens includes a Fresnel lens part and an optical material layer. The Fresnel lens part has a light incident surface and a light emergence surface. The Fresnel lens part has birefringence. The polarized light enters the Fresnel lens part from the light incident surface and leaves the Fresnel lens part through the light emergence surface. The refractive index of the Fresnel lens part with respect to the polarized light is capable of being adjusted via an electric field. The optical material layer is disposed on the light emergence surface of the Fresnel lens part, and the optical material layer has a fixed refractive index nx.

Description

可調變式菲涅耳透鏡Adjustable variable Fresnel lens

本發明是有關於一種菲涅耳透鏡(Fresnel lens),且特別是有關於一種可調變式(switchable)的菲涅耳透鏡。The present invention relates to a Fresnel lens, and more particularly to a variable-switchable Fresnel lens.

菲涅耳透鏡(Fresnel lens),又稱螺紋透鏡,其保留了傳統透鏡的曲面和弧度,並利用微分原理製作效果相當於傳統厚玻璃透鏡的薄型透鏡,故能夠節省透鏡材料,進而使得在製作大型透鏡時能以體積輕薄取勝。Fresnel lens, also known as threaded lens, retains the curved surface and curvature of the traditional lens, and uses the differential principle to produce a thin lens that is equivalent to a traditional thick glass lens, so it can save lens material and make it in production. Large lenses can be used to win in size.

菲涅耳透鏡最早是被應用於燈塔,目前亦多被應用於顯示裝置上。一般而言,在顯示領域中,菲涅耳透鏡可以用來放大顯示螢幕的顯示畫面,特別是應用於由多個面板所拼湊而成的大型面板時,透過菲涅耳透鏡的光學修飾效果,可以使面板間之接合縫隙較不會被人眼察覺。然而,菲涅耳透鏡的使用會降低顯示畫面的品質以及限制顯示器的視角,因此,是否要使用菲涅耳透鏡來達到特定的光學效果是設計者經常面對的抉擇之一。Fresnel lenses were first used in lighthouses and are currently used in display devices. In general, in the display field, the Fresnel lens can be used to magnify the display screen of the screen, especially when applied to a large panel which is made up of a plurality of panels, and the optical modification effect through the Fresnel lens. It is possible to make the joint gap between the panels less noticeable to the human eye. However, the use of Fresnel lenses can degrade the quality of the display and limit the viewing angle of the display. Therefore, whether or not to use a Fresnel lens to achieve a specific optical effect is one of the choices that designers often face.

本發明提供一種可調變式菲涅耳透鏡,其可依據需求決定是否要被開啟。The present invention provides an adjustable variable Fresnel lens that can be deactivated depending on demand.

本發明提出一種可調變式菲涅耳透鏡,其適於讓一偏振光通過。可調變式菲涅耳透鏡包括一菲涅耳透鏡部以及 一光學材料層。菲涅耳透鏡部具有一入光面以及一出光面。菲涅耳透鏡部具有雙折射性。偏振光由入光面進入菲涅耳透鏡部,並從出光面離開菲涅耳透鏡部。菲涅耳透鏡部對偏振光之折射率適於透過一電場來調變。光學材料層配置於菲涅耳透鏡部的出光面上,其中光學材料層具有單一折射率nxThe present invention provides an adjustable variable Fresnel lens adapted to pass a polarized light. The variable variable Fresnel lens includes a Fresnel lens portion and an optical material layer. The Fresnel lens portion has a light incident surface and a light exit surface. The Fresnel lens portion has birefringence. The polarized light enters the Fresnel lens portion from the light incident surface and exits the Fresnel lens portion from the light exit surface. The refractive index of the Fresnel lens portion for polarized light is adapted to be modulated by an electric field. The layer of optical material is disposed on the light exit surface of the Fresnel lens portion, wherein the layer of optical material has a single refractive index n x .

在本發明之一實施例中,上述之菲涅耳透鏡部之材料包括一雙折射性液晶。In an embodiment of the invention, the material of the Fresnel lens portion comprises a birefringent liquid crystal.

在本發明之一實施例中,上述之雙折射性液晶包括一正型液晶。正型液晶具有一長軸折射率ne 與一短軸折射率no ,而長軸折射率ne 大於短軸折射率no 。舉例而言,上述之短軸折射率no <單一折射率nx <長軸折射率neIn an embodiment of the invention, the birefringent liquid crystal comprises a positive liquid crystal. The positive-type liquid crystal has a long-axis refractive index n e and a short-axis refractive index n o , and the long-axis refractive index n e is larger than the short-axis refractive index n o . For example, the short-axis refractive index n o < single refractive index n x < long-axis refractive index n e described above .

在本發明之一實施例中,上述之單一折射率nx 實質上等於短軸折射率no 或長軸折射率neIn an embodiment of the invention, the single refractive index n x is substantially equal to the short-axis refractive index n o or the long-axis refractive index n e .

在本發明之一實施例中,上述之雙折射性液晶包括一負型液晶。負型液晶具有一長軸折射率ne 與一短軸折射率no ,而長軸折射率ne 小於短軸折射率noIn an embodiment of the invention, the birefringent liquid crystal comprises a negative liquid crystal. The negative liquid crystal has a long-axis refractive index n e and a short-axis refractive index n o , and the long-axis refractive index n e is smaller than the short-axis refractive index n o .

在本發明之一實施例中,上述之長軸折射率ne <單一折射率nx <短軸折射率no 。舉例而言,上述之單一折射率nx 實質上等於短軸折射率no 或長軸折射率neIn an embodiment of the invention, the long-axis refractive index n e < single refractive index n x < short-axis refractive index n o . For example, the single refractive index n x described above is substantially equal to the short-axis refractive index n o or the long-axis refractive index n e .

在本發明之一實施例中,上述之可調變式菲涅耳透鏡更包括二電極層。菲涅耳透鏡部及光學材料層配置於二電極之間,而菲涅耳透鏡部對偏振光之折射率適於透過二電極層所提供的電場來調變。In an embodiment of the invention, the adjustable variable Fresnel lens further includes a two-electrode layer. The Fresnel lens portion and the optical material layer are disposed between the two electrodes, and the refractive index of the Fresnel lens portion for the polarized light is adapted to be modulated by the electric field provided by the two electrode layers.

在本發明之一實施例中,上述之光學材料層具有一接 合表面以及一頂表面。接合表面與菲涅耳透鏡部的出光面接合,而頂表面為一平面。In an embodiment of the invention, the optical material layer has a connection The surface and a top surface. The joint surface is joined to the light exit surface of the Fresnel lens portion, and the top surface is a flat surface.

除此之外,本發明提出另一種可調變式菲涅耳透鏡,其適於讓一光線通過。可調變式菲涅耳透鏡包括一可調變式偏振單元、一菲涅耳透鏡部以及一光學材料層。可調變式偏振單元適於將光線轉換成一偏振光,其中可調變式偏振單元決定偏振光的偏振方向。菲涅耳透鏡部具有一入光面以及一出光面,其中菲涅耳透鏡部具有雙折射性。偏振光由入光面進入菲涅耳透鏡部,並從出光面離開菲涅耳透鏡部。可調變式偏振單元適於提供不同偏振方向的偏振光,以使菲涅耳透鏡部對偏振光的折射率改變。光學材料層配置於菲涅耳透鏡部的出光面上,其中光學材料層具有單一折射率nxIn addition to this, the present invention proposes another adjustable variable Fresnel lens adapted to pass a light. The variable variable Fresnel lens includes an adjustable variable polarization unit, a Fresnel lens portion, and an optical material layer. The variably variable polarization unit is adapted to convert light into a polarized light, wherein the variably variable polarization unit determines the polarization direction of the polarized light. The Fresnel lens portion has a light incident surface and a light exit surface, wherein the Fresnel lens portion has birefringence. The polarized light enters the Fresnel lens portion from the light incident surface and exits the Fresnel lens portion from the light exit surface. The variably variable polarization unit is adapted to provide polarized light of different polarization directions such that the Fresnel lens portion changes the refractive index of the polarized light. The layer of optical material is disposed on the light exit surface of the Fresnel lens portion, wherein the layer of optical material has a single refractive index n x .

在本發明之一實施例中,上述之可調變式偏振單元包括一液晶胞。In an embodiment of the invention, the variably variable polarization unit comprises a liquid crystal cell.

基於上述,由於前述之可調變式菲涅耳透鏡可以透過電場或可調變式偏振單元來改變菲涅耳透鏡部對偏振光的折射率,故能依據設計需求決定是否要將可調變式菲涅耳透鏡開啟。Based on the above, since the variably variable Fresnel lens can change the refractive index of the Fresnel lens portion to the polarized light through an electric field or a variable polarization unit, it can be determined according to design requirements. The Fresnel lens is turned on.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

【第一實施例】[First Embodiment]

圖1A與圖1B繪示為本發明第一實施例之可調變式菲 涅耳透鏡(switchable Fresnel lens)與顯示面板的剖面示意圖。圖1A與圖1B分別為可調變式菲涅耳透鏡在被施加電場之前與之後的剖面示意圖。請參照圖1A,本實施例的可調變式菲涅耳透鏡100適於讓一偏振光(例如為偏振光L1),且菲涅耳透鏡100通過包括菲涅耳透鏡部(Fresnel lens part)110以及光學材料層120。在本實施例中,偏振光L1例如為通過顯示面板200的偏振光,且顯示面板200例如是液晶顯示面板。1A and FIG. 1B illustrate an adjustable variant of the first embodiment of the present invention. Schematic diagram of a switchable Fresnel lens and a display panel. 1A and 1B are schematic cross-sectional views of a variable-varying Fresnel lens before and after an applied electric field, respectively. Referring to FIG. 1A, the variable-varying Fresnel lens 100 of the present embodiment is adapted to allow a polarized light (for example, polarized light L1), and the Fresnel lens 100 includes a Fresnel lens part. 110 and an optical material layer 120. In the present embodiment, the polarized light L1 is, for example, polarized light that passes through the display panel 200, and the display panel 200 is, for example, a liquid crystal display panel.

如圖1A所示,菲涅耳透鏡部110具有一入光面S1以及一出光面S2。除此之外,菲涅耳透鏡部110具有雙折射性(birefringence),且偏振光L1由入光面S1進入菲涅耳透鏡部110,並從出光面S2離開菲涅耳透鏡部110。在本實施例中,菲涅耳透鏡部110的材料為雙折射性液晶112。As shown in FIG. 1A, the Fresnel lens portion 110 has a light incident surface S1 and a light exit surface S2. In addition to this, the Fresnel lens portion 110 has birefringence, and the polarized light L1 enters the Fresnel lens portion 110 from the light incident surface S1 and exits the Fresnel lens portion 110 from the light exit surface S2. In the present embodiment, the material of the Fresnel lens portion 110 is the birefringent liquid crystal 112.

圖1C繪示為雙折射液晶的放大示意圖。如圖1C所示,雙折射液晶112分別具有一長軸d1與一短軸d2,當光線通過雙折射液晶112且其偏振方向與長軸d1平行時,雙折射液晶112對光線的折射率定義為一長軸折射率ne ,而當光線通過雙折射液晶112且其偏振方向與短軸d2平行時,雙折射液晶112對光線的折射率定義為一短軸折射率no 。在本實施例中,雙折射性液晶112例如為一正型液晶,也就是說,在圖1A中,雙折射性液晶112的長軸折射率ne 大於短軸折射率no 。因此,當施加電場於雙折射性液晶112(正型液晶)時,雙折射性液晶112的長軸d1會平行於電場的方向,如圖1B所示。FIG. 1C is an enlarged schematic view of a birefringent liquid crystal. As shown in FIG. 1C, the birefringent liquid crystals 112 respectively have a long axis d1 and a short axis d2. When light passes through the birefringent liquid crystal 112 and its polarization direction is parallel to the long axis d1, the refractive index of the birefringent liquid crystal 112 defines the light. It is a long-axis refractive index n e , and when light passes through the birefringent liquid crystal 112 and its polarization direction is parallel to the minor axis d2, the refractive index of the birefringent liquid crystal 112 to light is defined as a short-axis refractive index n o . In the present embodiment, the birefringent liquid crystal 112 is, for example, a positive type liquid crystal, that is, in FIG. 1A, the long-axis refractive index n e of the birefringent liquid crystal 112 is larger than the short-axis refractive index n o . Therefore, when an electric field is applied to the birefringent liquid crystal 112 (positive liquid crystal), the long axis d1 of the birefringent liquid crystal 112 is parallel to the direction of the electric field as shown in FIG. 1B.

請繼續參照圖1A,光學材料層120配置於菲涅耳透鏡部110的出光面S2上,且光學材料層120具有單一折射率nx 。另外,在本實施例中,折射率nx 實質上等於雙折射性液晶112的短軸折射率no 。除此之外,如圖1A所示,光學材料層120具有一接合表面S3以及一頂表面S4。接合表面S3與菲涅耳透鏡部110的出光面S2接合,而頂表面S4例如為一平面。在本實施例中,光學材料層120例如是利用壓模(stamper)以翻模(replica)的方式製作而成,而菲涅耳透鏡部110則例如是藉由將雙折射性液晶112注入由接合表面S3所形成的不規則空腔內而形成。Referring to FIG. 1A, the optical material layer 120 is disposed on the light exit surface S2 of the Fresnel lens portion 110, and the optical material layer 120 has a single refractive index n x . Further, in the present embodiment, the refractive index n x is substantially equal to the short-axis refractive index n o of the birefringent liquid crystal 112. In addition, as shown in FIG. 1A, the optical material layer 120 has a bonding surface S3 and a top surface S4. The joint surface S3 is joined to the light exit surface S2 of the Fresnel lens portion 110, and the top surface S4 is, for example, a flat surface. In the present embodiment, the optical material layer 120 is formed by, for example, a stamper using a stamper, and the Fresnel lens portion 110 is injected, for example, by injecting the birefringent liquid crystal 112. Formed in the irregular cavity formed by the joint surface S3.

除此之外,本實施例的可調變式菲涅耳透鏡100更包括二電極層130。在本實施例中,二電極層130的材料例如為銦錫氧化物(Indium Tin Oxide,ITO)、銦鋅氧化物(Indium Zinc Oxide,IZO)或其他透光導電材料。如圖1A所示,菲涅耳透鏡部110及光學材料層120皆配置於二電極130之間,而菲涅耳透鏡部110對偏振光L1之折射率適於透過二電極層130所提供的電場來調變。In addition, the adjustable variable Fresnel lens 100 of the present embodiment further includes a two-electrode layer 130. In this embodiment, the material of the two-electrode layer 130 is, for example, Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), or other light-transmitting conductive material. As shown in FIG. 1A, the Fresnel lens portion 110 and the optical material layer 120 are disposed between the two electrodes 130, and the refractive index of the Fresnel lens portion 110 for the polarized light L1 is adapted to be transmitted through the second electrode layer 130. The electric field is modulated.

舉例來說,請參照圖1A,當二電極層130之間未被施加偏壓而使得二電極層130之間的電場等於0(即E=0)時,菲涅耳透鏡部110中的雙折射性液晶112(例如為正型液晶)之長軸方向d1(繪示於圖1C)為垂直紙面的方向且與偏振光L1的偏振方向平行。換句話說,雙折射性液晶112短軸方向d2與偏振光L1的偏振方向垂直,因此當偏振光L1通過雙折射性液晶112時,雙折射性液晶112的等效折射率為長軸折射率ne 。當偏振光L1從菲涅耳透 鏡部110的出光面S2離開並進入光學材料層120時,由於本實施例之光學材料層120的折射率為no ,其不同於菲涅耳透鏡部110的等效折射率ne (對於偏振光L1而言),故偏振光L1會在菲涅耳透鏡部110與光學材料層120的介面發生折射現象。換句話說,在本實施例中,當二電極層130之間的電場等於0時,可調變式菲涅耳透鏡100處於開啟狀態,而此時的可調變式菲涅耳透鏡100具有類似傳統透鏡(凸透鏡、凹透鏡)的功能。在本實施例中,處於開啟狀態的可調變式菲涅耳透鏡100可放大顯示面板200的影像畫面。如此一來,當需要將多個小尺寸顯示面板200組合成單一大型面板時,便可藉由將可調變式菲涅耳透鏡100開啟以放大顯示面板200的顯示影像,進而使面板間的接合縫隙較不會被人眼察覺。For example, referring to FIG. 1A, when the electric field between the two electrode layers 130 is not applied between the two electrode layers 130 such that the electric field between the two electrode layers 130 is equal to 0 (ie, E=0), the double in the Fresnel lens portion 110 The major axis direction d1 (shown in FIG. 1C) of the refractive liquid crystal 112 (for example, a positive liquid crystal) is a direction perpendicular to the paper surface and is parallel to the polarization direction of the polarized light L1. In other words, the short-axis direction d2 of the birefringent liquid crystal 112 is perpendicular to the polarization direction of the polarized light L1, so when the polarized light L1 passes through the birefringent liquid crystal 112, the equivalent refractive index of the birefringent liquid crystal 112 is a long-axis refractive index. n e . When the polarized light L1 exits from the light exiting surface S2 of the Fresnel lens portion 110 and enters the optical material layer 120, since the refractive index of the optical material layer 120 of the present embodiment is n o , it is different from the Fresnel lens portion 110 Since the equivalent refractive index n e (for the polarized light L1), the polarized light L1 is refracted at the interface between the Fresnel lens portion 110 and the optical material layer 120. In other words, in the present embodiment, when the electric field between the two electrode layers 130 is equal to 0, the adjustable variable Fresnel lens 100 is in an on state, and the adjustable variable Fresnel lens 100 at this time has Similar to the function of a conventional lens (convex lens, concave lens). In the present embodiment, the adjustable variable Fresnel lens 100 in an open state can enlarge the image frame of the display panel 200. In this way, when a plurality of small-sized display panels 200 need to be combined into a single large panel, the display image of the display panel 200 can be enlarged by opening the adjustable variable Fresnel lens 100, thereby The joint gap is less noticeable by the human eye.

圖1B為可調變式菲涅耳透鏡於被施加電場後的剖面示意圖。如圖1B所示,當施加電壓於二電極層130而使二電極層130間產生電場E時,菲涅耳透鏡部110的雙折射性液晶112(例如為正型液晶)之長軸方向d1會平行於電場E方向並與偏振光L1的偏振方向垂直。換句話說,雙折射性液晶112短軸方向d2與偏振光L1的偏振行進方向平行,因此當偏振光L1通過雙折射性液晶112時,雙折射性液晶112的等效折射率為短軸折射率no 。當偏振光L1從菲涅耳透鏡部110的出光面S2離開並進入光學材料層120時,由於本實施例之光學材料層120的折射率為no ,其相同於偏振光L1於菲涅耳透鏡部110內所看到的折射 率no ,故偏振光L1不會在菲涅耳透鏡部110與光學材料層120的介面發生折射現象,而是直接穿透菲涅耳透鏡部110與光學材料層120。換句話說,在本實施例中,當二電極層130提供電場給可調變式菲涅耳透鏡100時,可調變式菲涅耳透鏡100處於關閉的狀態,故不會影響影像畫面。FIG. 1B is a schematic cross-sectional view of a variable-varying Fresnel lens after an electric field is applied. As shown in FIG. 1B, when a voltage is applied to the two-electrode layer 130 to generate an electric field E between the two electrode layers 130, the long-axis direction d1 of the birefringent liquid crystal 112 (for example, a positive-type liquid crystal) of the Fresnel lens portion 110 is as shown. It will be parallel to the direction of the electric field E and perpendicular to the polarization direction of the polarized light L1. In other words, the short-axis direction d2 of the birefringent liquid crystal 112 is parallel to the polarization traveling direction of the polarized light L1, so when the polarized light L1 passes through the birefringent liquid crystal 112, the equivalent refractive index of the birefringent liquid crystal 112 is short-axis refraction. Rate n o . When the polarized light L1 exits from the light exiting surface S2 of the Fresnel lens portion 110 and enters the optical material layer 120, since the refractive index of the optical material layer 120 of the present embodiment is n o , it is the same as the polarized light L1 in the Fresnel. The refractive index n o seen in the lens portion 110 is such that the polarized light L1 does not refract the interface between the Fresnel lens portion 110 and the optical material layer 120, but directly penetrates the Fresnel lens portion 110 and the optical Material layer 120. In other words, in the present embodiment, when the two-electrode layer 130 provides an electric field to the variably variable Fresnel lens 100, the variably variable Fresnel lens 100 is in a closed state, so that the image picture is not affected.

值得一提的是,在本實施例中,雙折射性液晶112雖為正型液晶且光學材料層120的單一折射率nx 實質上相同於雙折射性液晶112的短軸折射率no 。然而,在其他實施例中,單一折射率nx 也可以介於短軸折射率no 與長軸折射率ne 之間,亦即,短軸折射率no <單一折射率nx <長軸折射率ne 。在此情況下,設計者同樣也可依據單一折射率nx 來調整電場大小,進而調變菲涅耳透鏡部110對偏振光L1之折射率。如此一來,同樣能夠利用電場的變化來開啟或關閉菲涅耳透鏡100,由於所應用原理與前述例子相同,故在此不加贅述。It should be noted that in the present embodiment, the birefringent liquid crystal 112 is a positive liquid crystal and the single refractive index n x of the optical material layer 120 is substantially the same as the short-axis refractive index n o of the birefringent liquid crystal 112. However, in other embodiments, the single refractive index n x may also be between the short-axis refractive index n o and the long-axis refractive index n e , that is, the short-axis refractive index n o <single refractive index n x long The axial refractive index n e . In this case, the designer can also adjust the electric field size according to the single refractive index n x , thereby modulating the refractive index of the Fresnel lens portion 110 with respect to the polarized light L1. In this way, the Fresnel lens 100 can also be turned on or off by using the change of the electric field. Since the applied principle is the same as the foregoing example, it will not be described here.

另一方面,在其他實施例中,雙折射性液晶112也可以是一負型液晶,其中負型液晶的長軸折射率ne 小於短軸折射率no 。換句話說,當施加電場於負型液晶的兩端時,負型液晶的短軸d2(繪示於圖1C)會沿著電場的方向排列而形成如圖1A的狀態。亦即,負型液晶的長軸d1方向在有施加電場的情況與偏振光L1的偏振方向平行,故負型液晶的等效折射率為長軸折射率ne 。由此可知,當菲涅耳透鏡部110中的雙折射性液晶112為負型液晶,且二電極層130又提供電場給菲涅耳透鏡部110時,可調變式菲涅耳透鏡100處於開啟的狀態。On the other hand, in other embodiments, the birefringent liquid crystal 112 may also be a negative liquid crystal in which the long-axis refractive index n e of the negative liquid crystal is smaller than the short-axis refractive index n o . In other words, when an electric field is applied to both ends of the negative liquid crystal, the short axis d2 of the negative liquid crystal (shown in FIG. 1C) is aligned in the direction of the electric field to form a state as shown in FIG. 1A. That is, the negative axis d1 direction of the negative liquid crystal is parallel to the polarization direction of the polarized light L1 when an electric field is applied, so the equivalent refractive index of the negative liquid crystal is the long-axis refractive index n e . It can be seen that when the birefringent liquid crystal 112 in the Fresnel lens portion 110 is a negative liquid crystal, and the two electrode layer 130 provides an electric field to the Fresnel lens portion 110, the adjustable variable Fresnel lens 100 is at Open state.

相對地,當沒有施加電場於負型液晶的兩端時,負型液晶的短軸d2會垂直於紙面的方向,如圖1B所示。亦即,負型液晶的短軸d2方向在沒有施加電場的情況下與偏振光L1的偏振方向相同,故負型液晶的等效折射率為短軸折射率no 。由此可知,當菲涅耳透鏡部110中的雙折射性液晶112為負型液晶,且二電極層130無提供電場給菲涅耳透鏡部110時,可調變式菲涅耳透鏡100處於關閉的狀態。In contrast, when no electric field is applied to both ends of the negative liquid crystal, the short axis d2 of the negative liquid crystal is perpendicular to the direction of the paper surface as shown in FIG. 1B. That is, the short axis d2 direction of the negative liquid crystal is the same as the polarization direction of the polarized light L1 when no electric field is applied, so the equivalent refractive index of the negative liquid crystal is the short axis refractive index n o . It can be seen that when the birefringent liquid crystal 112 in the Fresnel lens portion 110 is a negative liquid crystal, and the two electrode layer 130 does not provide an electric field to the Fresnel lens portion 110, the variable variable Fresnel lens 100 is at The status of the shutdown.

在其他實施例中,雙折射性液晶112也可以為負型液晶,且光學材料層120的單一折射率nx 是介於長軸折射率ne 與短軸折射率no 之間,亦即,長軸折射率ne <單一折射率nx <短軸折射率no 。在此情況下,設計者同樣也可依據單一折射率nx 來調整電場大小,進而調變菲涅耳透鏡部110對偏振光L1之折射率。如此一來,同樣能夠利用電場的變化來開啟或關閉菲涅耳透鏡100,由於所應用原理與前述例子相同,故在此不加贅述。In other embodiments, the birefringent liquid crystal 112 may also be a negative liquid crystal, and the single refractive index n x of the optical material layer 120 is between the long-axis refractive index n e and the short-axis refractive index n o , that is, The long-axis refractive index n e < single refractive index n x < short-axis refractive index n o . In this case, the designer can also adjust the electric field size according to the single refractive index n x , thereby modulating the refractive index of the Fresnel lens portion 110 with respect to the polarized light L1. In this way, the Fresnel lens 100 can also be turned on or off by using the change of the electric field. Since the applied principle is the same as the foregoing example, it will not be described here.

【第二實施例】[Second embodiment]

圖2A與圖2B繪示為本發明第二實施例之可調變式菲涅耳透鏡與顯示面板的剖面示意圖,其中圖2A與圖2B分別為可調變式菲涅耳透鏡在被施加電場之前與之後的剖面示意圖。請參照圖2A,本實施例的可調變式菲涅耳透鏡300與圖1A的可調變式菲涅耳透鏡100類似,惟二者主要差異之處在於:可調變式菲涅耳透鏡300的光學材料層320所具有的單一折射率nx 實質上等於雙折射性液晶312的長 軸折射率ne2A and FIG. 2B are schematic cross-sectional views showing a variable-variable Fresnel lens and a display panel according to a second embodiment of the present invention, wherein FIGS. 2A and 2B are respectively an adjustable variable Fresnel lens applied with an electric field. Schematic diagram of the profile before and after. Referring to FIG. 2A, the adjustable variable Fresnel lens 300 of the present embodiment is similar to the variable-variable Fresnel lens 100 of FIG. 1A, but the main difference is that the variable-variable Fresnel lens The optical material layer 320 of 300 has a single refractive index n x substantially equal to the long-axis refractive index n e of the birefringent liquid crystal 312.

在本實施例中,雙折射性液晶312例如為一正型液晶,也就是說,在圖2A中,雙折射性液晶312的長軸折射率ne 大於短軸折射率no 。因此,當施加電場於雙折射性液晶312時,正型液晶312的長軸d1與電場的方向平行,如圖2B所示。In the present embodiment, the birefringent liquid crystal 312 is, for example, a positive liquid crystal, that is, in FIG. 2A, the long-axis refractive index n e of the birefringent liquid crystal 312 is larger than the short-axis refractive index n o . Therefore, when an electric field is applied to the birefringent liquid crystal 312, the long axis d1 of the positive liquid crystal 312 is parallel to the direction of the electric field as shown in FIG. 2B.

詳細來說,請參照圖2A,當二電極層130之間未被施加偏壓而使得二電極層130之間的電場等於0(即E=0)時,菲涅耳透鏡部310中雙折射性液晶312(例如為正型液晶)的長軸方向d1與偏振光L1的偏振方向平行,因此當偏振光L1通過雙折射性液晶312時,雙折射性液晶312的等效折射率為長軸折射率ne 。由於雙折射性液晶312的等效折射率ne 和光學材料層320的折射率ne 相同,故偏振光L1不會在菲涅耳透鏡部310與光學材料層320的介面發生折射現象。亦即,在本實施例中,當二電極層130之間的電場等於0時,可調變式菲涅耳透鏡300處於關閉的狀態,故不會影響影像畫面。In detail, referring to FIG. 2A, when the electric field between the two electrode layers 130 is not applied between the two electrode layers 130 such that the electric field between the two electrode layers 130 is equal to 0 (ie, E=0), the birefringence in the Fresnel lens portion 310 The long-axis direction d1 of the liquid crystal 312 (for example, a positive-type liquid crystal) is parallel to the polarization direction of the polarized light L1. Therefore, when the polarized light L1 passes through the birefringent liquid crystal 312, the equivalent refractive index of the birefringent liquid crystal 312 is a long axis. Refractive index n e . Since the equivalent refractive index of birefringence of liquid crystal 312 n e and the refractive index optical material layer 320 is the same as n e, so that the polarized light L1 does not occur in the interface refraction Fresnel lens portion 310 and the optical layer 320 material. That is, in the present embodiment, when the electric field between the two electrode layers 130 is equal to 0, the variable-variation Fresnel lens 300 is in a closed state, so that the image picture is not affected.

圖2B為可調變式菲涅耳透鏡於被施加電場之後的剖面示意圖。如圖2B所示,當施加電壓於二電極層130而使二電極層130間產生電場E時,菲涅耳透鏡部310的雙折射性液晶312(例如為正型液晶)之長軸方向d1會平行於電場E方向並與偏振光L1的偏振方向垂直。換句話說,雙折射性液晶312的短軸方向d2與偏振光L1的偏振方向平行,因此當偏振光L1通過雙折射性液晶312時,雙折 射性液晶312的等效折射率為短軸折射率no 。由於光學材料層320的折射率ne 與雙折射性液晶312的等效折射率為短軸折射率no 不同,故偏振光L1會在菲涅耳透鏡部310與光學材料層320的介面發生折射現象。亦即,在本實施例中,當二電極層130提供電場給可調變式菲涅耳透鏡300時,可調變式菲涅耳透鏡300處於開啟狀態。2B is a schematic cross-sectional view of the variable-variable Fresnel lens after an electric field is applied. As shown in FIG. 2B, when a voltage is applied to the two-electrode layer 130 to generate an electric field E between the two electrode layers 130, the long-axis direction d1 of the birefringent liquid crystal 312 (for example, a positive-type liquid crystal) of the Fresnel lens portion 310 is as shown. It will be parallel to the direction of the electric field E and perpendicular to the polarization direction of the polarized light L1. In other words, the short-axis direction d2 of the birefringent liquid crystal 312 is parallel to the polarization direction of the polarized light L1, so when the polarized light L1 passes through the birefringent liquid crystal 312, the equivalent refractive index of the birefringent liquid crystal 312 is short-axis refraction. Rate n o . Since the refractive index n e of the optical material layer 320 and the equivalent refractive index of the birefringent liquid crystal 312 are different from the short-axis refractive index n o , the polarized light L1 may occur at the interface between the Fresnel lens portion 310 and the optical material layer 320. Refraction phenomenon. That is, in the present embodiment, when the two-electrode layer 130 supplies an electric field to the variable-varying Fresnel lens 300, the variable-variable Fresnel lens 300 is in an open state.

值得一提的是,在本實施例中,雙折射性液晶312雖為正型液晶且光學材料層320的單一折射率nx 實質上相同於雙折射性液晶312的長軸折射率ne 。然而,在其他實施例中,單一折射率nx 也可以介於短軸折射率no 與長軸折射率ne 之間,亦即,短軸折射率no <單一折射率nx <長軸折射率ne 。在此情況下,設計者同樣也可依據單一折射率nx 來調整電場大小,進而調變菲涅耳透鏡部310對偏振光L1之折射率。如此一來,同樣能夠利用電場來開關菲涅耳透鏡300,由於所應用原理與前述例子相同,故在此不加贅述。It should be noted that in the present embodiment, the birefringent liquid crystal 312 is a positive liquid crystal and the single refractive index n x of the optical material layer 320 is substantially the same as the long-axis refractive index n e of the birefringent liquid crystal 312. However, in other embodiments, the single refractive index n x may also be between the short-axis refractive index n o and the long-axis refractive index n e , that is, the short-axis refractive index n o <single refractive index n x long The axial refractive index n e . In this case, the designer can also adjust the electric field size according to the single refractive index n x , thereby modulating the refractive index of the Fresnel lens portion 310 with respect to the polarized light L1. In this way, the Fresnel lens 300 can also be switched by the electric field. Since the applied principle is the same as the above example, it will not be described here.

除此之外,在本實施例中,雙折射性液晶312雖為正型液晶,然而在其他實施例中,雙折射性液晶312也可以是一負型液晶,其中負型液晶的長軸折射率ne 小於短軸折射率no 。換句話說,當施加電場於負型液晶的兩端時,負型液晶的短軸d2平行於電場的方向,如圖2A所示。亦即,負型液晶的長軸d1在有施加電場的情況下與偏振光L1的偏振方向平行,故負型液晶的等效折射率為長軸折射率ne 。由此可知,當菲涅耳透鏡部110中的雙折射性液晶312為負型液晶,且二電極層130又提供電場給菲涅耳透鏡部 310時,可調變式菲涅耳透鏡300處於關閉狀態。In addition, in this embodiment, although the birefringent liquid crystal 312 is a positive liquid crystal, in other embodiments, the birefringent liquid crystal 312 may also be a negative liquid crystal, wherein the long axis refraction of the negative liquid crystal The rate n e is smaller than the short-axis refractive index n o . In other words, when an electric field is applied to both ends of the negative liquid crystal, the short axis d2 of the negative liquid crystal is parallel to the direction of the electric field as shown in Fig. 2A. That is, the long axis d1 of the negative liquid crystal is parallel to the polarization direction of the polarized light L1 when an electric field is applied, so the equivalent refractive index of the negative liquid crystal is the long-axis refractive index n e . It can be seen that when the birefringent liquid crystal 312 in the Fresnel lens portion 110 is a negative liquid crystal, and the two electrode layer 130 provides an electric field to the Fresnel lens portion 310, the adjustable variable Fresnel lens 300 is Disabled.

相對地,當沒有施加電場於負型液晶的兩端時,負型液晶的短軸d2會垂直紙面的方向,如圖2B所示。亦即,負型液晶的短軸d2方向在沒有施加電場的情況下與偏振光L1的偏振方向平行。因此,當偏振光L1通過負型液晶時,負型液晶的等效折射率為短軸折射率no 。由此可知,當菲涅耳透鏡部110中的雙折射性液晶312為負型液晶,且二電極層130無提供電場給菲涅耳透鏡部310時,可調變式菲涅耳透鏡300處於開啟的狀態。In contrast, when no electric field is applied to both ends of the negative liquid crystal, the short axis d2 of the negative liquid crystal is perpendicular to the direction of the paper as shown in FIG. 2B. That is, the short axis d2 direction of the negative liquid crystal is parallel to the polarization direction of the polarized light L1 without applying an electric field. Therefore, when the polarized light L1 passes through the negative liquid crystal, the equivalent refractive index of the negative liquid crystal is the short-axis refractive index n o . It can be seen that when the birefringent liquid crystal 312 in the Fresnel lens portion 110 is a negative liquid crystal, and the two electrode layer 130 does not provide an electric field to the Fresnel lens portion 310, the adjustable variable Fresnel lens 300 is Open state.

另一方面,在其他實施例中,雙折射性液晶312也可以為負型液晶且光學材料層320的單一折射率nx 例如是介於長軸折射率ne 與短軸折射率no 之間。亦即,長軸折射率ne <單一折射率nx <短軸折射率no 。在此情況下,設計者同樣也可依據單一折射率nx 來調整電場大小,進而調變菲涅耳透鏡部310對偏振光L1之折射率。如此一來,同樣能夠利用電場的變化來開啟或關閉菲涅耳透鏡300,由於所應用原理與前述例子相同,故在此不加贅述。On the other hand, in other embodiments, the birefringent liquid crystal 312 may also be a negative liquid crystal and the single refractive index n x of the optical material layer 320 is, for example, between the long-axis refractive index n e and the short-axis refractive index n o . between. That is, the long-axis refractive index n e < single refractive index n x < short-axis refractive index n o . In this case, the designer can also adjust the electric field size according to the single refractive index n x , thereby modulating the refractive index of the Fresnel lens portion 310 with respect to the polarized light L1. In this way, the Fresnel lens 300 can also be turned on or off by using the change of the electric field. Since the applied principle is the same as the foregoing example, it will not be described here.

【第三實施例】[Third embodiment]

圖3A與圖3B繪示為本發明第三實施例之可調變式菲涅耳透鏡與顯示面板的剖面示意圖,其中圖3A與圖3B分別為可調變式菲涅耳透鏡有無施加電場的剖面示意圖。請參照圖3A,本實施例的可調變式菲涅耳透鏡400適於讓一光線L2通過,且可調變式菲涅耳透鏡400通過包括可調變式偏振單元410、菲涅耳透鏡部420以及光學材料層 430。在本實施例中,光線L2例如為通過顯示面板500的光線,且顯示面板500例如是液晶顯示面板。3A and FIG. 3B are schematic cross-sectional views showing a variable-variable Fresnel lens and a display panel according to a third embodiment of the present invention, wherein FIG. 3A and FIG. 3B respectively show whether an adjustable variable Fresnel lens applies an electric field. Schematic diagram of the section. Referring to FIG. 3A, the adjustable variable Fresnel lens 400 of the present embodiment is adapted to pass a light L2, and the adjustable variable Fresnel lens 400 includes a variable polarization unit 410 and a Fresnel lens. Portion 420 and optical material layer 430. In the present embodiment, the light ray L2 is, for example, light passing through the display panel 500, and the display panel 500 is, for example, a liquid crystal display panel.

如圖3A所示,可調變式偏振單元410適於將光線L2轉換成一偏振光L3。可調變式偏振單元410決定偏振光L3的偏振方向,其中偏振光L3的偏振方向例如為垂直紙面的方向或平行紙面的方向。另外,菲涅耳透鏡部420具有一入光面S1以及一出光面S2。除此之外,菲涅耳透鏡部420具有雙折射性,且偏振光L3由入光面S1進入菲涅耳透鏡部420,並從出光面S2離開菲涅耳透鏡部420。As shown in FIG. 3A, the variable-variation polarization unit 410 is adapted to convert the light L2 into a polarized light L3. The variable-variation polarization unit 410 determines the polarization direction of the polarized light L3, wherein the polarization direction of the polarized light L3 is, for example, a direction perpendicular to the paper surface or a direction parallel to the paper surface. In addition, the Fresnel lens portion 420 has a light incident surface S1 and a light exit surface S2. In addition to this, the Fresnel lens portion 420 has birefringence, and the polarized light L3 enters the Fresnel lens portion 420 from the light incident surface S1 and exits the Fresnel lens portion 420 from the light exit surface S2.

在本實施例中,菲涅耳透鏡部420的材料包括一雙折射性液晶422,其中雙折射性液晶422例如為一正型液晶或負型液晶。也就是說,在圖3A中,雙折射性液晶412的長軸折射率ne 大於或小於短軸折射率no 。除此之外,如圖3A與3B所示,本實施例之雙折射性液晶412之長軸d1的方向是固定在與偏振光L3之偏振方向垂直的方向,且雙折射性液晶412的排列是固定的。In the present embodiment, the material of the Fresnel lens portion 420 includes a birefringent liquid crystal 422, wherein the birefringent liquid crystal 422 is, for example, a positive liquid crystal or a negative liquid crystal. That is, in FIG. 3A, the long-axis refractive index n e of the birefringent liquid crystal 412 is larger or smaller than the short-axis refractive index n o . In addition, as shown in FIGS. 3A and 3B, the direction of the major axis d1 of the birefringent liquid crystal 412 of the present embodiment is fixed in a direction perpendicular to the polarization direction of the polarized light L3, and the arrangement of the birefringent liquid crystal 412 is arranged. It is fixed.

請繼續參照圖3A,光學材料層430配置於菲涅耳透鏡部420的出光面S2上,且光學材料層420具有單一折射率nx 。另外,在本實施例中,單一折射率nx 實質上等於雙折射性液晶422的短軸折射率no 。除此之外,如圖3A所示,光學材料層430具有一接合表面S3以及一頂表面S4。接合表面S3與菲涅耳透鏡部420的出光面S2接合,而頂表面S4例如為一平面。在本實施例中,光學材料層430例如是利用壓模(stamper)以翻模(replica)的方式製作而成,而菲涅耳透鏡部420則例如是藉由將雙折射性 液晶422注入由接合表面S3所形成的不規則空腔內而形成。Referring to FIG. 3A, the optical material layer 430 is disposed on the light exit surface S2 of the Fresnel lens portion 420, and the optical material layer 420 has a single refractive index n x . Further, in the present embodiment, the single refractive index n x is substantially equal to the short-axis refractive index n o of the birefringent liquid crystal 422. In addition, as shown in FIG. 3A, the optical material layer 430 has a bonding surface S3 and a top surface S4. The joint surface S3 is joined to the light exit surface S2 of the Fresnel lens portion 420, and the top surface S4 is, for example, a flat surface. In the present embodiment, the optical material layer 430 is formed by, for example, a stamper using a stamper, and the Fresnel lens portion 420 is injected, for example, by injecting the birefringent liquid crystal 422. Formed in the irregular cavity formed by the joint surface S3.

除此之外,本實施例的可調變式偏振單元410包括液晶胞(liquid crystal cell)412。另外,二電極層230還分別配置於液晶胞412的相對兩表面。其中電極層230的材料例如為銦錫氧化物(Indium Tin Oxide,ITO)或銦鋅氧化物(Indium Zinc Oxide,IZO)等透光導電材料。如圖3A所示,可調變式偏振單元410適於提供不同偏振方向的偏振光L3,以使菲涅耳透鏡部420對偏振光L3的折射率改變。In addition, the variable polarization unit 410 of the present embodiment includes a liquid crystal cell 412. In addition, the two electrode layers 230 are also disposed on opposite surfaces of the liquid crystal cells 412, respectively. The material of the electrode layer 230 is, for example, a light-transmitting conductive material such as Indium Tin Oxide (ITO) or Indium Zinc Oxide (IZO). As shown in FIG. 3A, the variable-variation polarization unit 410 is adapted to provide polarized light L3 of different polarization directions such that the Fresnel lens portion 420 changes the refractive index of the polarized light L3.

舉例來說,請參照圖3A,當有電壓施加於二電極層230而使得二電極層230提供的電場給可調變式偏振單元410時,液晶胞412內的雙折射性液晶412a(例如為正型液晶)之長軸d1會沿電場方向(也就是平行紙面的方向)排列,故偏振光L3的偏振方向與光線L2的偏振方向相同,並不會發生改變。舉例來說,當光線L2的偏振方向是垂直紙面的方向時,通過可調變式偏振單元410之偏振光L3的偏振方向也是垂直紙面的方向。如此一來,當偏振光L3進入菲涅耳透鏡部420時,雙折射性液晶422的等效折射率為短軸折射率no 。由於光學材料層430的折射率no 和雙折射性液晶422的等效折射率no 相同,故偏振光L3不會在菲涅耳透鏡部420與光學材料層430的介面發生折射現象,而是直接穿透菲涅耳透鏡部420與光學材料層430。換句話說,在本實施例中,當二電極層230提 供的電場給可調變式偏振單元410時,可調變式菲涅耳透鏡400是處於關閉狀態,故不會影響影像畫面。For example, referring to FIG. 3A, when a voltage is applied to the two-electrode layer 230 such that the electric field provided by the two-electrode layer 230 is applied to the variable-polarization unit 410, the birefringent liquid crystal 412a in the liquid crystal cell 412 (for example, The long axis d1 of the positive liquid crystal is arranged in the direction of the electric field (that is, the direction parallel to the paper surface), so the polarization direction of the polarized light L3 is the same as the polarization direction of the light L2, and does not change. For example, when the polarization direction of the light ray L2 is the direction perpendicular to the paper surface, the polarization direction of the polarized light L3 passing through the variable polarization unit 410 is also the direction of the vertical paper surface. As a result, when the polarized light L3 enters the Fresnel lens portion 420, the equivalent refractive index of the birefringent liquid crystal 422 is the short-axis refractive index n o . Since the refractive index n o of the optical material layer 430 and the equivalent refractive index n o of the birefringent liquid crystal 422 are the same, the polarized light L3 does not refract in the interface between the Fresnel lens portion 420 and the optical material layer 430, and It is directly penetrating the Fresnel lens portion 420 and the optical material layer 430. In other words, in the present embodiment, when the electric field provided by the two electrode layer 230 is applied to the variable polarization unit 410, the variable-variable Fresnel lens 400 is in a closed state, so that the image frame is not affected.

圖3B為可調變式菲涅耳透鏡未施加電場時的剖面示意圖。如圖3B所示,當二電極層230之間未被施加偏壓而使得二電極層230之間的電場等於0(即E=0)時,液晶胞412中的雙折射性液晶412a會改變光線L2的偏振方向。舉例來說,當光線L2的偏振方向是垂直紙面的方向時,通過可調變式偏振單元410之偏振光L3的偏振方向會平行紙面的方向。如此一來,當偏振光L3進入菲涅耳透鏡部420時,雙折射性液晶422的等效折射率為長軸折射率ne 。由於光學材料層430的折射率no 和雙折射性液晶422的等效折射率ne 不同,故偏振光L3會在菲涅耳透鏡部420與光學材料層430的介面發生折射現象。換句話說,在本實施例中,當二電極層230提供電場給可調變式偏振單元410時,可調變式菲涅耳透鏡400處於開啟狀態,而此時的可調變式菲涅耳透鏡400具有類似傳統透鏡(凸透鏡、凹透鏡)的功能。FIG. 3B is a schematic cross-sectional view of the variable-variable Fresnel lens when no electric field is applied. As shown in FIG. 3B, when no bias is applied between the two electrode layers 230 such that the electric field between the two electrode layers 230 is equal to 0 (ie, E=0), the birefringent liquid crystal 412a in the liquid crystal cell 412 changes. The polarization direction of the light L2. For example, when the polarization direction of the light ray L2 is the direction perpendicular to the paper surface, the polarization direction of the polarized light L3 passing through the variable polarization unit 410 is parallel to the direction of the paper surface. As a result, when the polarized light L3 enters the Fresnel lens portion 420, the equivalent refractive index of the birefringent liquid crystal 422 is the long-axis refractive index n e . Since the refractive index n o of the optical material layer 430 and the equivalent refractive index n e of the birefringent liquid crystal 422 are different, the polarized light L3 is refracted at the interface between the Fresnel lens portion 420 and the optical material layer 430. In other words, in the present embodiment, when the two-electrode layer 230 provides an electric field to the variable-variation polarization unit 410, the adjustable variable Fresnel lens 400 is in an open state, and the adjustable variable Fresnel at this time The ear lens 400 has a function similar to a conventional lens (a convex lens, a concave lens).

在本實施例中,處於開啟狀態的可調變式菲涅耳透鏡400可放大顯示面板500的影像畫面。如此一來,當需要將多個小尺寸顯示面板500組合成單一大型面板時,便可藉由將可調變式菲涅耳透鏡400開啟以放大顯示影像,進而使面板間的接合縫隙較不會被人眼察覺。In the present embodiment, the adjustable variable Fresnel lens 400 in an open state can enlarge the image frame of the display panel 500. In this way, when a plurality of small-sized display panels 500 need to be combined into a single large panel, the adjustable variable Fresnel lens 400 can be opened to enlarge the displayed image, thereby making the joint gap between the panels less. Will be perceived by the human eye.

值得一提的是,在本實施例中,雙折射性液晶422例如是正型液晶,且光學材料層430的單一折射率nx 實質上 相同於雙折射性液晶422的長軸折射率ne 。然而,在其他實施例中,單一折射率nx 也可以介於短軸折射率no 與長軸折射率ne 之間,亦即,短軸折射率no <單一折射率nx <長軸折射率neIt is worth mentioning that in the present embodiment, the birefringent liquid crystal 422 is, for example, a positive liquid crystal, and the single refractive index n x of the optical material layer 430 is substantially the same as the long-axis refractive index n e of the birefringent liquid crystal 422. However, in other embodiments, the single refractive index n x may also be between the short-axis refractive index n o and the long-axis refractive index n e , that is, the short-axis refractive index n o <single refractive index n x long The axial refractive index n e .

另外,在其他實施例中,雙折射性液晶422也可以是一負型液晶,其中負型液晶的長軸折射率ne 小於短軸折射率no 。另外,光學材料層430的單一折射率nx 例如介於長軸折射率ne 與短軸折射率no 之間,亦即,長軸折射率ne <單一折射率nx <短軸折射率no 。在上述情況的下,設計者同樣也可依據單一折射率nx 來設計雙折射性液晶422於菲涅耳透鏡部420的排列,並藉由可調變式偏振單元410提供不同偏振方向的偏振光,以使菲涅耳透鏡部420對偏振光L1的折射率改變。如此一來,同樣能利用電場的變化來開啟或關閉菲涅耳透鏡400,由於所應用原理與前述例子相同,故在此不加贅述。In addition, in other embodiments, the birefringent liquid crystal 422 may also be a negative liquid crystal, wherein the negative-axis liquid crystal has a long-axis refractive index n e smaller than the short-axis refractive index n o . In addition, the single refractive index n x of the optical material layer 430 is, for example, between the long-axis refractive index n e and the short-axis refractive index n o , that is, the long-axis refractive index n e <single refractive index n x < short-axis refraction Rate n o . Under the above circumstances, the designer can also design the arrangement of the birefringent liquid crystal 422 in the Fresnel lens portion 420 according to the single refractive index n x and provide polarization of different polarization directions by the variable polarization unit 410. Light is caused to cause the Fresnel lens portion 420 to change the refractive index of the polarized light L1. In this way, the Fresnel lens 400 can also be turned on or off by using the change of the electric field. Since the applied principle is the same as the foregoing example, it will not be described here.

除此之外,雖然本實施例的雙折射性液晶412a是在沒有加電場的情況下改變光線L2的偏振方向,然而在其他實施例中,雙折射性液晶422a也可以在有施加電場的情況下改變光線L2的偏振方向。In addition, although the birefringent liquid crystal 412a of the present embodiment changes the polarization direction of the light ray L2 without applying an electric field, in other embodiments, the birefringence liquid crystal 422a may also have an applied electric field. The polarization direction of the light ray L2 is changed.

【第四實施例】Fourth Embodiment

圖4A與圖4B繪示為本發明第四實施例之可調變式菲涅耳透鏡與顯示面板的剖面示意圖,其中圖4A與圖4B分別為可調變式菲涅耳透鏡有無施加電場的剖面示意圖。請參照圖4A,本實施例的可調變式菲涅耳透鏡600與圖3A 的可調變式菲涅耳透鏡400類似,惟二者主要差異之處在於:可調變式菲涅耳透鏡600的光學材料層630所具有的單一折射率nx 實質上等於雙折射性液晶622的長軸折射率ne4A and FIG. 4B are cross-sectional views showing a variable-variable Fresnel lens and a display panel according to a fourth embodiment of the present invention, wherein FIG. 4A and FIG. 4B respectively show whether an adjustable variable Fresnel lens applies an electric field. Schematic diagram of the section. Referring to FIG. 4A, the adjustable variable Fresnel lens 600 of the present embodiment is similar to the adjustable variable Fresnel lens 400 of FIG. 3A, but the main difference is that the variable-variable Fresnel lens The optical material layer 630 of 600 has a single refractive index n x substantially equal to the long-axis refractive index n e of the birefringent liquid crystal 622.

如圖4A所示,可調變式偏振單元610適於提供不同偏振方向的偏振光L3,以使菲涅耳透鏡部620對偏振光L3的折射率改變。舉例來說,請參照圖4A,當有電壓施加於二電極層230而使得二電極層230間產生電場E時,液晶胞612內的雙折射性液晶612a(例如為正型液晶)之長軸會沿電場方向(也就是平行紙面的方向)排列,故偏振光L3的偏振方向與光線L2的偏振方向相同,並不會發生改變。如此一來,當偏振光L3進入菲涅耳透鏡部620時,雙折射性液晶622的等效折射率為短軸折射率no 。由於光學材料層630的折射率ne 和雙折射性液晶622的等效折射率no 不同,故偏振光L3會在菲涅耳透鏡部620與光學材料層630的介面發生折射現象。亦即,在本實施例中,當二電極層230提供電場給可調變式偏振單元610時,可調變式菲涅耳透鏡600處於開啟狀態。As shown in FIG. 4A, the variable-variation polarization unit 610 is adapted to provide polarized light L3 of different polarization directions such that the Fresnel lens portion 620 changes the refractive index of the polarized light L3. For example, referring to FIG. 4A, when a voltage is applied to the two-electrode layer 230 to generate an electric field E between the two electrode layers 230, the long axis of the birefringent liquid crystal 612a (for example, a positive liquid crystal) in the liquid crystal cell 612. It will be arranged in the direction of the electric field (that is, in the direction parallel to the paper surface), so the polarization direction of the polarized light L3 is the same as the polarization direction of the light ray L2, and does not change. As a result, when the polarized light L3 enters the Fresnel lens portion 620, the equivalent refractive index of the birefringent liquid crystal 622 is the short-axis refractive index n o . Since the refractive index n e of the optical material layer 630 and the equivalent refractive index n o of the birefringent liquid crystal 622 are different, the polarized light L3 is refracted at the interface between the Fresnel lens portion 620 and the optical material layer 630. That is, in the present embodiment, when the two-electrode layer 230 supplies an electric field to the variable-variation polarization unit 610, the variable-variation Fresnel lens 600 is in an on state.

圖4B為可調變式菲涅耳透鏡於施加電場之前的剖面示意圖。如圖4B所示,當二電極層230間的電場等於0(即E=0)時,液晶胞612內的雙折射性液晶612a會改變光線L2的偏振方向。如此一來,當偏振光L3進入菲涅耳透鏡部620時,雙折射性液晶622的等效折射率為長軸折射率ne 。由於光學材料層630的折射率ne 和雙折射性液 晶622的等效折射率ne 相同,故偏振光L3不會在菲涅耳透鏡部620與光學材料層630的介面發生折射現象,而是直接穿透菲涅耳透鏡部620與光學材料層630。亦即,在本實施例中,當二電極層230提供的電場給可調變式偏振單元610時,可調變式菲涅耳透鏡600的處於關閉狀態,故不會影響影像畫面。4B is a schematic cross-sectional view of a variable-varying Fresnel lens prior to application of an electric field. As shown in FIG. 4B, when the electric field between the two electrode layers 230 is equal to 0 (i.e., E = 0), the birefringent liquid crystal 612a in the liquid crystal cell 612 changes the polarization direction of the light beam L2. As a result, when the polarized light L3 enters the Fresnel lens portion 620, the equivalent refractive index of the birefringent liquid crystal 622 is the long-axis refractive index n e . Since the refractive index n e of the optical material layer 630 and the equivalent refractive index n e of the birefringent liquid crystal 622 are the same, the polarized light L3 does not refract in the interface between the Fresnel lens portion 620 and the optical material layer 630, and It is directly penetrating the Fresnel lens portion 620 and the optical material layer 630. That is, in the present embodiment, when the electric field provided by the two electrode layer 230 is applied to the variable polarization unit 610, the adjustable variable Fresnel lens 600 is in a closed state, so that the image frame is not affected.

值得一提的是,在本實施例中,雙折射性液晶622例如是正型液晶,且光學材料層630的單一折射率nx 實質上相同於雙折射性液晶622的長軸折射率ne 。然而,在其他實施例中,單一折射率nx 也可以介於短軸折射率no 與長軸折射率ne 之間,亦即,短軸折射率no <單一折射率nx <長軸折射率neIt is worth mentioning that in the present embodiment, the birefringent liquid crystal 622 is, for example, a positive liquid crystal, and the single refractive index n x of the optical material layer 630 is substantially the same as the long-axis refractive index n e of the birefringent liquid crystal 622. However, in other embodiments, the single refractive index n x may also be between the short-axis refractive index n o and the long-axis refractive index n e , that is, the short-axis refractive index n o <single refractive index n x long The axial refractive index n e .

另外,在其他實施例中,雙折射性液晶422也可以是一負型液晶,其中負型液晶的長軸折射率ne 小於短軸折射率no 。另外,光學材料層630的單一折射率nx 例如介於長軸折射率ne 與短軸折射率no 之間,亦即,長軸折射率ne <單一折射率nx <短軸折射率no 。在上述情況的下,設計者同樣也可依據單一折射率nx 來設計雙折射性液晶622於菲涅耳透鏡部620的排列,並藉由可調變式偏振單元610提供不同偏振方向的偏振光,以使菲涅耳透鏡部620對偏振光L1的折射率改變。如此一來,同樣能利用電場來開關菲涅耳透鏡600,由於所應用原理與前述例子相同,故在此不加贅述。In addition, in other embodiments, the birefringent liquid crystal 422 may also be a negative liquid crystal, wherein the negative-axis liquid crystal has a long-axis refractive index n e smaller than the short-axis refractive index n o . In addition, the single refractive index n x of the optical material layer 630 is, for example, between the long-axis refractive index n e and the short-axis refractive index n o , that is, the long-axis refractive index n e <single refractive index n x < short-axis refraction Rate n o . Under the above circumstances, the designer can also design the arrangement of the birefringent liquid crystal 622 on the Fresnel lens portion 620 according to the single refractive index n x and provide polarization of different polarization directions by the variable polarization unit 610. Light is caused to cause the Fresnel lens portion 620 to change the refractive index of the polarized light L1. In this way, the electric field can also be used to switch the Fresnel lens 600. Since the applied principle is the same as the foregoing example, it will not be described here.

除此之外,雖然本實施例的雙折射性液晶622a是在無加電場的情況下改變光線L2的偏振方向,然而在其他 實施例中,雙折射性液晶622a也可以在有施加電場的情況下改變光線L2的偏振方向。In addition, although the birefringent liquid crystal 622a of the present embodiment changes the polarization direction of the light ray L2 without an applied electric field, in other In the embodiment, the birefringent liquid crystal 622a may also change the polarization direction of the light ray L2 in the presence of an applied electric field.

綜上所述,由於本發明之實施例的可調變式菲涅耳透鏡適於透過電場的變化或可調變式偏振單元來改變菲涅耳透鏡部對偏振光的折射率,故能依據設計需求決定要將可調變式菲涅耳透鏡開啟或關閉。In summary, since the adjustable variable Fresnel lens of the embodiment of the present invention is adapted to change the refractive index of the Fresnel lens portion to polarized light by changing the electric field or adjusting the variable polarization unit, The design requirements decided to turn the adjustable Fresnel lens on or off.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100、300、400、600‧‧‧菲涅耳透鏡100, 300, 400, 600‧‧ Fresnel lenses

110、310、420‧‧‧菲涅耳透鏡部110, 310, 420‧‧ Fresnel lens

112、312、412a、422、612a、622‧‧‧雙折射性液晶112, 312, 412a, 422, 612a, 622‧‧‧ birefringent liquid crystal

120、320、430、630‧‧‧光學材料層120, 320, 430, 630‧‧ ‧ optical material layer

130、230‧‧‧電極層130, 230‧‧‧ electrode layer

200、500‧‧‧顯示面板200, 500‧‧‧ display panel

410、610‧‧‧可調變式偏振單元410, 610‧‧‧ adjustable variable polarization unit

412、612‧‧‧液晶胞412, 612‧‧‧ liquid crystal cell

d1‧‧‧長軸D1‧‧‧ long axis

d2‧‧‧短軸D2‧‧‧ short axis

L1、L3‧‧‧偏振光L1, L3‧‧‧ polarized light

L2‧‧‧光線L2‧‧‧Light

S1‧‧‧入光面S1‧‧‧ into the glossy surface

S2‧‧‧出光面S2‧‧‧ shiny surface

S3‧‧‧接合表面S3‧‧‧ joint surface

S4‧‧‧頂表面S4‧‧‧ top surface

ne ‧‧‧長軸折射率n e ‧‧‧Long-axis refractive index

no ‧‧‧短軸折射率n o ‧‧‧Short-axis refractive index

nx ‧‧‧折射率n x ‧‧‧refractive index

圖1A為本發明第一實施例之可調變式菲涅耳透鏡與顯示面板的剖面示意圖。1A is a cross-sectional view showing a variable-variable Fresnel lens and a display panel according to a first embodiment of the present invention.

圖1B繪示為本發明第一實施例之可調變式菲涅耳透鏡與顯示面板的另一剖面示意圖。FIG. 1B is another schematic cross-sectional view of a variable-variable Fresnel lens and a display panel according to a first embodiment of the present invention.

圖1C繪示為雙折射液晶的放大示意圖。FIG. 1C is an enlarged schematic view of a birefringent liquid crystal.

圖2A為本發明第二實施例之可調變式菲涅耳透鏡與顯示面板的剖面示意圖。2A is a cross-sectional view showing a variable-variable Fresnel lens and a display panel according to a second embodiment of the present invention.

圖2B繪示為本發明第二實施例之可調變式菲涅耳透鏡與顯示面板的另一剖面示意圖。2B is another schematic cross-sectional view of a variable-variable Fresnel lens and a display panel according to a second embodiment of the present invention.

圖3A為本發明第三實施例之可調變式菲涅耳透鏡與顯示面板的剖面示意圖。3A is a cross-sectional view showing a variable-variable Fresnel lens and a display panel according to a third embodiment of the present invention.

圖3B繪示為本發明第三實施例之可調變式菲涅耳透鏡與顯示面板的另一剖面示意圖。FIG. 3B is another schematic cross-sectional view of the adjustable variable Fresnel lens and the display panel according to the third embodiment of the present invention.

圖4A為本發明第四實施例之可調變式菲涅耳透鏡與顯示面板的剖面示意圖。4A is a cross-sectional view showing a variably variable Fresnel lens and a display panel according to a fourth embodiment of the present invention.

圖4B繪示為本發明第四實施例之可調變式菲涅耳透鏡與顯示面板的另一剖面示意圖。4B is another schematic cross-sectional view of a variable-variable Fresnel lens and a display panel according to a fourth embodiment of the present invention.

100‧‧‧菲涅耳透鏡100‧‧‧ Fresnel lens

110‧‧‧菲涅耳透鏡部110‧‧‧ Fresnel lens section

112‧‧‧雙折射性液晶112‧‧‧birefringent liquid crystal

120‧‧‧光學材料層120‧‧‧Optical material layer

130‧‧‧電極層130‧‧‧electrode layer

200‧‧‧顯示面板200‧‧‧ display panel

d2‧‧‧短軸D2‧‧‧ short axis

L1‧‧‧偏振光L1‧‧‧ polarized light

S1‧‧‧入光面S1‧‧‧ into the glossy surface

S2‧‧‧出光面S2‧‧‧ shiny surface

S3‧‧‧接合表面S3‧‧‧ joint surface

S4‧‧‧頂表面S4‧‧‧ top surface

no ‧‧‧短軸折射率n o ‧‧‧Short-axis refractive index

nx ‧‧‧折射率n x ‧‧‧refractive index

Claims (18)

一種可調變式菲涅耳透鏡,適於讓一偏振光通過,該可調變式菲涅耳透鏡包括:一菲涅耳透鏡部,具有一入光面以及一出光面,其中該菲涅耳透鏡部具有雙折射性,該菲涅耳透鏡部之材料包括一雙折射性液晶,該偏振光由該入光面進入該菲涅耳透鏡部,並從該出光面離開該菲涅耳透鏡部,且該菲涅耳透鏡部對該偏振光之折射率適於透過一電場來調變;以及一光學材料層,配置於該菲涅耳透鏡部的該出光面上,其中該光學材料層具有單一折射率nxAn adjustable variable Fresnel lens adapted to pass a polarized light, the adjustable variable Fresnel lens comprising: a Fresnel lens portion having a light incident surface and a light exit surface, wherein the Fresnel The lenticular lens portion has birefringence, and the material of the Fresnel lens portion includes a birefringent liquid crystal, the polarized light enters the Fresnel lens portion from the light incident surface, and exits the Fresnel lens from the illuminating surface And the refractive index of the Fresnel lens portion is adapted to be modulated by an electric field; and an optical material layer disposed on the light exit surface of the Fresnel lens portion, wherein the optical material layer Has a single refractive index n x . 如申請專利範圍第1項所述之可調變式菲涅耳透鏡,其中該雙折射性液晶包括一正型液晶,該正型液晶具有一長軸折射率ne 與一短軸折射率no ,而該長軸折射率ne 大於該短軸折射率noThe variably variable Fresnel lens of claim 1, wherein the birefringent liquid crystal comprises a positive liquid crystal having a major axis refractive index n e and a short axis refractive index n o , and the long-axis refractive index n e is greater than the short-axis refractive index n o . 如申請專利範圍第2項所述之可調變式菲涅耳透鏡,其中短軸折射率no <單一折射率nx <長軸折射率neThe variable-variable Fresnel lens of claim 2, wherein the short-axis refractive index n o < single refractive index n x < long-axis refractive index n e . 如申請專利範圍第2項所述之可調變式菲涅耳透鏡,其中單一折射率nx 實質上等於短軸折射率no 或長軸折射率neThe variably variable Fresnel lens of claim 2, wherein the single refractive index n x is substantially equal to the short-axis refractive index n o or the long-axis refractive index n e . 如申請專利範圍第1項所述之可調變式菲涅耳透鏡,其中該雙折射性液晶包括一負型液晶,該負型液晶具有一長軸折射率ne 與一短軸折射率no ,而該長軸折射率ne 小於該短軸折射率noThe variably variable Fresnel lens of claim 1, wherein the birefringent liquid crystal comprises a negative liquid crystal having a major axis refractive index n e and a short axis refractive index n o , and the long-axis refractive index n e is smaller than the short-axis refractive index n o . 如申請專利範圍第5項所述之可調變式菲涅耳透鏡,其中長軸折射率ne <單一折射率nx <短軸折射率noThe variable-variable Fresnel lens of claim 5, wherein the long-axis refractive index n e < single refractive index n x < short-axis refractive index n o . 如申請專利範圍第5項所述之可調變式菲涅耳透鏡,其中單一折射率nx 實質上等於短軸折射率no 或長軸折射率neThe variably variable Fresnel lens of claim 5, wherein the single refractive index n x is substantially equal to the short-axis refractive index n o or the long-axis refractive index n e . 如申請專利範圍第1項所述之可調變式菲涅耳透鏡,更包括二電極層,其中該菲涅耳透鏡部及該光學材料層配置於該二電極之間,而該菲涅耳透鏡部對該偏振光之折射率適於透過該二電極層所提供的該電場來調變。 The variably variable Fresnel lens of claim 1, further comprising a two-electrode layer, wherein the Fresnel lens portion and the optical material layer are disposed between the two electrodes, and the Fresnel The refractive index of the polarized light of the lens portion is adapted to be modulated by the electric field provided by the two electrode layers. 如申請專利範圍第1項所述之可調變式菲涅耳透鏡,其中該光學材料層具有一接合表面以及一頂表面,該接合表面與該菲涅耳透鏡部的該出光面接合,而該頂表面為一平面。 The variegated Fresnel lens of claim 1, wherein the optical material layer has an engaging surface and a top surface, the engaging surface engaging the light exiting surface of the Fresnel lens portion, and The top surface is a flat surface. 一種可調變式菲涅耳透鏡,適於讓一光線通過,該可調變式菲涅耳透鏡包括:一可調變式偏振單元,適於將該光線轉換成一偏振光,其中該可調變式偏振單元決定該偏振光的偏振方向;一菲涅耳透鏡部,具有一入光面以及一出光面,其中該菲涅耳透鏡部具有雙折射性,該菲涅耳透鏡部之材料包括一雙折射性液晶,該偏振光由該入光面進入該菲涅耳透鏡部,並從該出光面離開該菲涅耳透鏡部,且該可調變式偏振單元適於提供不同偏振方向的該偏振光,以使該菲涅耳透鏡部對該偏振光的折射率改變;以及一光學材料層,配置於該菲涅耳透鏡部的該出光面上,其中該光學材料層具有單一折射率nxAn adjustable variable Fresnel lens adapted to pass a light beam, the adjustable variable Fresnel lens comprising: an adjustable variable polarization unit adapted to convert the light into a polarized light, wherein the adjustable The variable polarization unit determines a polarization direction of the polarized light; a Fresnel lens portion having a light incident surface and a light exit surface, wherein the Fresnel lens portion has birefringence, and the material of the Fresnel lens portion includes a birefringent liquid crystal that enters the Fresnel lens portion from the light incident surface and exits the Fresnel lens portion from the light exit surface, and the adjustable variable polarization unit is adapted to provide different polarization directions The polarized light is such that the refractive index of the Fresnel lens portion changes to the polarized light; and an optical material layer disposed on the light exiting surface of the Fresnel lens portion, wherein the optical material layer has a single refractive index n x . 如申請專利範圍第10項所述之可調變式菲涅耳透鏡,其中該雙折射性液晶包括一正型液晶,該正型液晶 具有一長軸折射率ne 與一短軸折射率no ,而該長軸折射率ne 大於該短軸折射率noThe variably variable Fresnel lens of claim 10, wherein the birefringent liquid crystal comprises a positive liquid crystal having a major axis refractive index n e and a short axis refractive index n o , and the long-axis refractive index n e is greater than the short-axis refractive index n o . 如申請專利範圍第11項所述之可調變式菲涅耳透鏡,其中短軸折射率no <單一折射率nx <長軸折射率neThe variably variable Fresnel lens of claim 11, wherein the short-axis refractive index n o < single refractive index n x < long-axis refractive index n e . 如申請專利範圍第11項所述之可調變式菲涅耳透鏡,其中單一折射率nx 實質上等於短軸折射率no 或長軸折射率neThe application of the adjustable item Variant patentable scope of the Fresnel lens 11, wherein the single refractive index n x minor axis substantially equal to the major axis of the refractive index of the refractive index n o or n e. 如申請專利範圍第10項所述之可調變式菲涅耳透鏡,其中該雙折射性液晶包括一負型液晶,該負型液晶具有一長軸折射率ne 與一短軸折射率no ,而該長軸折射率ne 小於該短軸折射率noThe variably variable Fresnel lens of claim 10, wherein the birefringent liquid crystal comprises a negative liquid crystal having a major axis refractive index n e and a short axis refractive index n o , and the long-axis refractive index n e is smaller than the short-axis refractive index n o . 如申請專利範圍第14項所述之可調變式菲涅耳透鏡,其中長軸折射率ne <單一折射率nx <短軸折射率noThe variable-variable Fresnel lens of claim 14, wherein the long-axis refractive index n e < single refractive index n x < short-axis refractive index n o . 如申請專利範圍第14項所述之可調變式菲涅耳透鏡,其中單一折射率nx 實質上等於短軸折射率no 或長軸折射率neThe variably variable Fresnel lens of claim 14, wherein the single refractive index n x is substantially equal to the short-axis refractive index n o or the long-axis refractive index n e . 如申請專利範圍第10項所述之可調變式菲涅耳透鏡,其中該光學材料層具有一接合表面以及一頂表面,該接合表面與該菲涅耳透鏡部的該出光面接合,而該頂表面為一平面。 The variegated Fresnel lens of claim 10, wherein the optical material layer has an engaging surface and a top surface that engages the light exiting surface of the Fresnel lens portion, and The top surface is a flat surface. 如申請專利範圍第10項所述之可調變式菲涅耳透鏡,其中該可調變式偏振單元包括一液晶胞。 The variably variable Fresnel lens of claim 10, wherein the variably variable polarization unit comprises a liquid crystal cell.
TW99111104A 2010-04-09 2010-04-09 Switchable fresnel lens TWI416169B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99111104A TWI416169B (en) 2010-04-09 2010-04-09 Switchable fresnel lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99111104A TWI416169B (en) 2010-04-09 2010-04-09 Switchable fresnel lens

Publications (2)

Publication Number Publication Date
TW201135290A TW201135290A (en) 2011-10-16
TWI416169B true TWI416169B (en) 2013-11-21

Family

ID=46751820

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99111104A TWI416169B (en) 2010-04-09 2010-04-09 Switchable fresnel lens

Country Status (1)

Country Link
TW (1) TWI416169B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662320B (en) 2018-06-08 2019-06-11 友達光電股份有限公司 Display device having design of adjustable light direction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200538793A (en) * 2004-04-30 2005-12-01 Asahi Glass Co Ltd Liquid crystal lens element and optical head
TW200609554A (en) * 2004-08-04 2006-03-16 Asahi Glass Co Ltd Liquid crystal lens element and optical head
TW200928445A (en) * 2007-12-18 2009-07-01 Univ Nat Chunghsing Liquid crystal lens with multiple modes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200538793A (en) * 2004-04-30 2005-12-01 Asahi Glass Co Ltd Liquid crystal lens element and optical head
TW200609554A (en) * 2004-08-04 2006-03-16 Asahi Glass Co Ltd Liquid crystal lens element and optical head
TW200928445A (en) * 2007-12-18 2009-07-01 Univ Nat Chunghsing Liquid crystal lens with multiple modes

Also Published As

Publication number Publication date
TW201135290A (en) 2011-10-16

Similar Documents

Publication Publication Date Title
US8564874B2 (en) Transmission mode switching device and 2D/3D switchable display apparatus
US9046710B2 (en) Stereoscopic image conversion panel and stereoscopic image display apparatus having the same
TWI666468B (en) Display
JP2004302135A (en) Reflective liquid crystal display
WO2012048485A1 (en) Two dimension/three dimension switchable liquid crystal lens assembly and display device
US20120280953A1 (en) Display device
JP2012145941A (en) Optical film for reducing color shift for liquid crystal display device and liquid crystal display device having the film
US9210412B2 (en) Active shutter glasses and a stereoscopic image projection system wherein viewing angles of a shutter section for the left and right eyes are wider on right and left sides than on upper and lower sides
WO2017161656A1 (en) Display glasses and driving method therefor
CN110109272A (en) A kind of display device
KR20070118539A (en) Super Bright Color Polarization Filter Module Used in Liquid Crystal Display and Liquid Crystal Display Using the Same
WO2022160280A1 (en) Liquid crystal display panel and manufacturing method therefor, and display device
KR20120123840A (en) Liquid crystal display
CN105259708A (en) Transparent displayer
US20180284539A1 (en) Transflective lcd
CN101806967B (en) Adjustable fresnel lens
US10788720B2 (en) Display device
TWI416169B (en) Switchable fresnel lens
US20150293406A1 (en) Single-Layered Biaxial Compensation Structure For Liquid Crystal Panels And The Liquid Crystal Displays
CN110501835B (en) Display panel, driving method thereof and display device
CN108287423B (en) Curved surface liquid crystal display
WO2017197595A1 (en) Display device
CN109407371B (en) Anti-reflection thin liquid crystal display screen
US20130050606A1 (en) Liquid Crystal Lens and Liquid Crystal Display Device
US20080297712A9 (en) IPS-LCD device having optical compensation films

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees