TWI406443B - Hybrid thin-film battery - Google Patents
Hybrid thin-film battery Download PDFInfo
- Publication number
- TWI406443B TWI406443B TW095142611A TW95142611A TWI406443B TW I406443 B TWI406443 B TW I406443B TW 095142611 A TW095142611 A TW 095142611A TW 95142611 A TW95142611 A TW 95142611A TW I406443 B TWI406443 B TW I406443B
- Authority
- TW
- Taiwan
- Prior art keywords
- cathode
- electrochemical device
- microns
- lithium
- group
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Description
本發明係有關於電化學裝置與製造該裝置的方法。更明確而言,係有關於固態(solid-state)、薄膜(thin-film)、輔助(secondary)與主要(primary)電化學裝置,包含電池,之合成、解離與製造方法。The present invention relates to electrochemical devices and methods of making the same. More specifically, there are methods for synthesis, dissociation, and fabrication of solid-state, thin-film, secondary, and primary electrochemical devices, including batteries.
厚的正陰極(positive cathode)適合用於產生高能薄膜電池。厚正陰極實質上可增加每單位面積的活性陰極(active cathode)質量。不過,利用傳統真空氣相製程(vacuum vapor phase process)以生產上述陰極的方法卻存在著問題。A thick positive cathode is suitable for producing a high energy thin film battery. A thick positive cathode substantially increases the mass of active cathode per unit area. However, there is a problem in the method of producing a cathode described above by using a conventional vacuum vapor phase process.
以傳統真空氣相方法生產的陰極具有諸多限制。例如第1圖所示般,真空氣相沈積的材料通常以圓柱(column)方式成長。此圖概要描繪出以真空氣相沈積方法長成的電化學裝置之正陰極層的三個微小圓柱剖面圖。當以該製程長成圓柱時,圓柱底部持續固定在基材表面上;且當圓柱高度增加時,底部的截面積實際上仍維持不變。當圓柱的高度增加時,深寬比(圓柱高度/圓柱寬度)也隨之增加,而由於陰極膜包含這些圓柱,因此整個裝置在機構上不穩定,通常此時的深寬比約為15。因此,以真空沈積製程成長的圓柱高度(也就是厚度)存在諸多限制。陰極的厚度以及利用真空氣相沈積所產生每單位面積之電化學裝置的能量係與高度限制直接相關。再者,真空氣相製程需要相當長時間以長成厚陰極,因此也相當昂貴。例如,由於利用真空氣相沈積方法需要較長的沈積時間以長成約3微米厚的鋰鈷氧化物(LiCoO2 )正陰極,所以其非常昂貴。Cathodes produced by conventional vacuum gas phase methods have a number of limitations. For example, as shown in Fig. 1, vacuum vapor deposited materials are usually grown in a cylindrical manner. This figure outlines three micro-cylindrical cross-sections of the positive cathode layer of an electrochemical device grown by vacuum vapor deposition. When the process is lengthened into a cylinder, the bottom of the cylinder is continuously fixed on the surface of the substrate; and as the height of the cylinder increases, the cross-sectional area of the bottom remains virtually unchanged. As the height of the cylinder increases, the aspect ratio (cylinder height/cylindrical width) also increases, and since the cathode film contains these cylinders, the entire device is mechanically unstable, usually at an aspect ratio of about 15. Therefore, there are many limitations to the height (i.e., thickness) of the cylinder grown by the vacuum deposition process. The thickness of the cathode and the energy system of the electrochemical device per unit area produced by vacuum vapor deposition are directly related to the height limit. Furthermore, the vacuum vapor phase process takes a considerable amount of time to grow into a thick cathode and is therefore quite expensive. For example, since a vacuum deposition method requires a long deposition time to grow a lithium cobalt oxide (LiCoO 2 ) positive cathode of about 3 μm thick, it is very expensive.
因此,需要一種快速且成本便宜的製造方法,以生產具有厚又可靠的陰極之電化學裝置。另外,為了達到上述需求,也可以使用任何已知的非氣相沈積技術與製程,例如,漿液塗佈(slurry coating)、梅耶棒塗佈(Meyer rod coating)、直接與逆滾輪塗佈(direct and reverse roll coating)、刮板塗佈(doctor coating)、旋轉塗佈(spin coating)、電泳沈積(electrophoretic deposition)、溶膠沈積(sol-gel deposition)、噴霧塗佈(spray coating)、濕式塗佈(dip coating)、噴墨(ink-jetting)以及其他方式。Therefore, there is a need for a fast and inexpensive manufacturing process for producing electrochemical devices having thick and reliable cathodes. In addition, in order to achieve the above requirements, any known non-vapor deposition technique and process can be used, for example, slurry coating, Meyer rod coating, direct and reverse roller coating ( Direct and reverse roll coating), doctor coating, spin coating, electrophoretic deposition, sol-gel deposition, spray coating, wet Dip coating, ink-jetting, and other means.
沈積較厚的陰極係為了增加電化學裝置每單位面積的能量,但卻會增加裝置的整體厚度。因為不希望增加毫米(milli)、微米(micro)或奈米(nano)裝置的整體厚度,因此必須找出其他方式以消弭上述的厚度增加。通常所使用的可行方法,係將電化學裝置中非能量供給(non-energy providing)零件的厚度與體積減至最小。The thicker cathode system is deposited to increase the energy per unit area of the electrochemical device, but it increases the overall thickness of the device. Since it is not desirable to increase the overall thickness of a milli, micro or nano device, other ways must be found to eliminate the thickness increase described above. A commonly used method is to minimize the thickness and volume of non-energy providing parts in an electrochemical device.
方法之一為減少電化學裝置中的非能量供給組件。封裝(encapsulation)與基材為組件中固有且大型的零件。One of the methods is to reduce the non-energy supply components in the electrochemical device. The encapsulation and substrate are parts that are inherent and large in the assembly.
例如,將封裝厚度由100微米(此通常為積層封裝(laminate encapulation)的典型厚度)減少至真正薄膜封裝的1至10微米厚,此可使電化學裝置製造商能將承載能量的陰極的厚度增加至少100微米,卻不會增加裝置的整體厚度。上述方法實質上能增進電化學裝置的能量、電容與功率的體積量(volumetric quantities)。由於上述的物理表現量需要呈現在最小的體積中,有可能是毫米、微米或奈米電化學裝置,所以減少電化學裝置中的非能量供給零件相當重要。For example, reducing the package thickness from 100 microns (typically the typical thickness of a laminate encapulation) to 1 to 10 microns thick for a true film package allows the electrochemical device manufacturer to thickness the cathode carrying the energy Increase by at least 100 microns without increasing the overall thickness of the device. The above method substantially enhances the energy, capacitance, and power volume of the electrochemical device. Since the physical performance described above needs to be present in a minimum volume, possibly a millimeter, micron or nano electrochemical device, it is important to reduce the non-energy supply components in the electrochemical device.
另一個方法係將電化學裝置製作在盡可能薄的基材上,如此一來,其可以獨立裝置方式銷售。與非獨立裝置不同的是,上述獨立裝置的製造商可利用電子裝置中存在的非固定表面(free surface)(晶片表面、印刷電路板表面等),並直接整合、組裝或沈積電化學裝置於該非固定表面上。此表面亦可當作電化學裝置的基材。上述的電化學裝置可組裝成具有零厚度的基材,因為電化學裝置未採用其他基材厚度至完成的電子裝置上。然而更常見的是,當獨立裝置尚未能提供合適的化學、物理、機構上的保護或功能以支持電化學裝置時,其基材薄度就已達到臨界值。因為大部分真空沈積陰極材料需要高溫製程以完全發展其物理特性,但卻會產生薄膜應力而影響基材,因此真空氣相沈積陰極材料的機構特性會因為機構變形而影響基材。Another method is to fabricate the electrochemical device on as thin a substrate as possible, so that it can be sold as a stand-alone device. Unlike non-independent devices, manufacturers of the above-described stand-alone devices can utilize the free surface (wafer surface, printed circuit board surface, etc.) present in the electronic device and directly integrate, assemble or deposit the electrochemical device. On the non-fixed surface. This surface can also be used as a substrate for electrochemical devices. The electrochemical devices described above can be assembled into a substrate having a thickness of zero because the electrochemical device does not use other substrate thicknesses to the finished electronic device. More often, however, when a stand-alone device has not yet provided suitable chemical, physical, or institutional protection or functionality to support an electrochemical device, its substrate thickness has reached a critical value. Since most vacuum deposited cathode materials require a high temperature process to fully develop their physical properties, but they cause film stress and affect the substrate, the mechanical properties of the vacuum vapor deposited cathode material can affect the substrate due to mechanical deformation.
真空氣相沈積薄膜配合高溫製程的結果係導致基材甚至整個電化學裝置彎曲、捲曲或變形。若此情形發生,除了變形的電化學裝置不適用在裝置整合上外,也將難以完成電化學裝置的製造。相較之下,非氣相沈積陰極材料在製作過程中仍保有其在沈積過程所發展出的大部分或甚至全部的物理特性,因此不需要額外的高溫製程。因此,非氣相沈積陰極材料與電化學裝置的其他組件在基材上產生較少應力,如此即可使用較薄基材而不會有實質上變形的風險。The result of the vacuum vapor deposition film combined with the high temperature process results in bending, curling or deformation of the substrate or even the entire electrochemical device. If this happens, it will be difficult to complete the fabrication of the electrochemical device, except that the deformed electrochemical device is not suitable for device integration. In contrast, non-vapor deposited cathode materials retain most or all of their physical properties during the deposition process, so no additional high temperature processes are required. Thus, the non-vapor deposited cathode material and other components of the electrochemical device create less stress on the substrate, so that a thinner substrate can be used without the risk of substantial deformation.
據此,對於呈現相當高溫特性的封裝存在著需求。Accordingly, there is a need for packages that exhibit relatively high temperature characteristics.
因此,需要一種電化學裝置(i)其陰極係可在快速且便宜的製作過程中又能保持厚度與可靠性;(ii)其基材厚度盡可能的薄,同時不會受電化學裝置的零件層影響而變形;(iii)其封裝盡可能的薄,且同時仍可為裝置提供足夠的保護;以及/或(iv)其封裝係由高溫材料所組成,並可提供整個電化學裝置抗熱能力(thermal resilience)。Therefore, there is a need for an electrochemical device (i) whose cathode system can maintain thickness and reliability in a fast and inexpensive manufacturing process; (ii) its substrate thickness is as thin as possible while not being subjected to electrochemical device parts. (iii) its package is as thin as possible while still providing adequate protection for the device; and/or (iv) its package is composed of high temperature materials and provides thermal resistance to the entire electrochemical device Thermal resilience.
如後文中所闡述與列舉之本發明的各種態樣與實施例系陳述出先前技術的缺點與相關產業上的新興需求。Various aspects and embodiments of the invention as set forth and enumerated below set forth the disadvantages of the prior art and the emerging needs of the related art.
本發明的其中一個態樣為,一個電化學裝置包含:一厚度大於約0.5微米(μm)且小於約200微米的正陰極,一厚度小於約10微米的薄電解質,以及一厚度小於約30微米的陽極。該裝置亦可包含一基材、一集流器(current collector)、一接頭(terminal)、一防潮層(moisture protection layer)、以及一封裝(encapsulation)。在本發明實施例中,陰極的厚度可以大於約5微米且小於約100微米。陰極的厚度亦可大於約30微米且小於約80微米。In one aspect of the invention, an electrochemical device comprises: a positive cathode having a thickness greater than about 0.5 micrometers (μm) and less than about 200 microns, a thin electrolyte having a thickness less than about 10 microns, and a thickness less than about 30 microns. The anode. The device can also include a substrate, a current collector, a terminal, a moisture protection layer, and an encapsulation. In embodiments of the invention, the thickness of the cathode can be greater than about 5 microns and less than about 100 microns. The thickness of the cathode can also be greater than about 30 microns and less than about 80 microns.
本發明的另一個態樣為,一電化學裝置包含一非氣相沈積陰極、一陽極、以及一厚度小於10微米的電解質。在本發明的實施例中,陰極的厚度可大於約0.5微米且小於約200微米,以及陽極的厚度可小於約30微米。In another aspect of the invention, an electrochemical device includes a non-vapor deposited cathode, an anode, and an electrolyte having a thickness of less than 10 microns. In embodiments of the invention, the thickness of the cathode can be greater than about 0.5 microns and less than about 200 microns, and the thickness of the anode can be less than about 30 microns.
根據本發明實施例的陰極可為非氣相沈積。可利用下列方法之一以沈積該陰極:漿液塗佈(slurry coating)、梅耶棒塗佈(Meyerrod coating)、直接與逆滾輪塗佈(direct and reverse roll coating)、刮板塗佈(doctor blade coating)、旋轉塗佈(spin coating)、電泳沈積(electrophoretic deposition)、或噴墨(ink-jetting)。The cathode according to an embodiment of the invention may be non-vapor deposited. One of the following methods can be used to deposit the cathode: slurry coating, Meyerrod coating, direct and reverse roll coating, doctor blade Coating), spin coating, electrophoretic deposition, or ink-jetting.
該陰極可包含鋰鈷氧化物(LiCoO2 )、鋰錳氧化物(LiMn2 O4 )、鋰錳氧化物(LiMnO2 )、鋰鎳氧化物(LiNiO2 )、鋰鐵磷酸鹽(LiFePO4 )、鋰釩氧化物(LiVO2 )、以及上述的混合物或化學衍生物。或者,這些陰極材料可摻雜選自週期表上第1族至第17族的元素。The cathode may comprise lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMn 2 O 4 ), lithium manganese oxide (LiMnO 2 ), lithium nickel oxide (LiNiO 2 ), lithium iron phosphate (LiFePO 4 ) , lithium vanadium oxide (LiVO 2 ), and mixtures or chemical derivatives thereof. Alternatively, these cathode materials may be doped with an element selected from Groups 1 to 17 of the periodic table.
在實施例中,該電解質可包含鋰磷氮氧化物(lithium phosphorus oxynitride(LiPON))該電解質可包含一薄膜電解質。該電解質可利用一真空氣相成長方式或非氣相方式加以沈積。In an embodiment, the electrolyte may comprise lithium phosphorus oxynitride (LiPON). The electrolyte may comprise a thin film electrolyte. The electrolyte can be deposited using a vacuum vapor phase growth mode or a non-gas phase mode.
該陽極可包含鋰(lithium)、一鋰合金或一金屬,該金屬係可形成固態溶液或含鋰化合物、或所謂的鋰離子化合物,該化合物適合在含鋰電池,例如鋰鈦氧化物(Li4 Ti5 O1 2 ),中當作負陽極(negative anode)材料。The anode may comprise lithium, a lithium alloy or a metal which may form a solid solution or a lithium-containing compound, or a so-called lithium ion compound suitable for use in a lithium-containing battery, such as lithium titanium oxide (Li 4 Ti 5 O 1 2 ), used as a negative anode material.
在本發明的另一個態樣中,電化學裝置亦可以密封製程(encapsulation process)進行封裝,該密封製程係選自由授予Snyder等人之美國專利第6916679號案中所揭露的真空氣相成長薄膜封裝、壓力-熱積層(pressure-heat lamination)之群組中(在此係併入該案全部內容以供參考)、金屬薄片貼附(metal foil attachment)以及金屬護套方式(metal canning)。In another aspect of the invention, the electrochemical device can also be encapsulated by a sealing process selected from the vacuum vapor grown film disclosed in U.S. Patent No. 6,916,679 issued to Snyder et al. In the group of encapsulation, pressure-heat lamination (here incorporated by reference in its entirety for reference), metal foil attachment and metal canning.
此裝置更包含一陰極集流器(current collector)與一非必須的陽極集流器,位於該薄膜電解質層的頂部或底部。緊接在非必須的陽極集流器底部的電解質可由一濕氣阻障層(moisture barrier)保護,例如二氧化鋅(ZrO2 ),若封裝具有開口,則會使非必須的陽極集流器直接接觸大氣環境。The apparatus further includes a cathode current collector and a non-essential anode current collector located at the top or bottom of the thin film electrolyte layer. The electrolyte immediately adjacent the bottom of the optional anode current collector may be protected by a moisture barrier, such as zinc dioxide (ZrO 2 ), which may have an optional anode current collector if the package has openings. Direct contact with the atmosphere.
根據本發明實施例的一個態樣,非氣相組裝方法可用以形成正陰極,以及所有或部分之陰極與電化學裝置的電池零件係由真空氣相方式組裝。結合上述不同方式的範例實施例係被視為一種混合製作方法,而其所製造出的裝置係例如為「混合薄膜電池」(hybrid thin-film battery)。According to one aspect of an embodiment of the present invention, a non-gas phase assembly method can be used to form a positive cathode, and all or a portion of the cathode and electrochemical device battery components are assembled by vacuum gas phase. The exemplary embodiment in combination with the above various modes is regarded as a hybrid manufacturing method, and the device manufactured by the method is, for example, a "hybrid thin-film battery".
在本發明實施例的一個態樣中,以非氣相製作正陰極係不需高溫的製作步驟,此高溫步驟會限制電化學裝置的零件層堆疊內部的應力發展。進而可使用較薄的基材。儘管較薄的基材在一定的應力強度下容易發生形變,但是使用薄基材可使較薄的電化學裝置仍具有一定的能量、電容與功率表現。換句話說,使用較薄基材可增加電化學裝置的能量、電容與功率的體積量。In one aspect of an embodiment of the invention, the fabrication of the positive cathode system in a non-gas phase does not require high temperature, and the high temperature step limits the development of stress within the stack of parts of the electrochemical device. Further, a thinner substrate can be used. Although thinner substrates tend to deform at a certain stress intensity, the use of thin substrates allows for a relatively thin energy electrochemical device with a certain energy, capacitance and power performance. In other words, the use of a thinner substrate can increase the amount of energy, capacitance, and power of the electrochemical device.
在另一個態樣中,該陰極可以真空氣相長成、或以非氣相方式製成,並且接著以機構壓紋(embossed)或其他方式形成結構於該陰極內,此方式增加其在前述相同的塗佈覆蓋區中的表面積,但是具有增加的最大厚度與減少的最小厚度。此結構或構造可減少陰極內部任何體積元素(volume element)與鄰近固態薄膜電解質層的平均距離,不同於具有膠狀或液狀電解質的電化學裝置,其通常不會滲透至陰極主體。因此,將陰極中任何體積元素至固態薄膜電解質之間的平均距離減至最小,可降低電化學裝置操作過程中的離子擴散長度,進而改善功率能力(power capability)。In another aspect, the cathode can be grown in a vacuum vapor phase, or in a non-gaseous manner, and then embossed or otherwise formed into the cathode in a manner that increases its The same coating covers the surface area in the footprint, but with an increased maximum thickness and a reduced minimum thickness. This structure or configuration can reduce the average distance of any volume element inside the cathode from the adjacent solid film electrolyte layer, unlike electrochemical devices having a gel or liquid electrolyte that typically do not penetrate the cathode body. Therefore, minimizing the average distance between any volume element in the cathode to the solid film electrolyte can reduce the ion diffusion length during operation of the electrochemical device, thereby improving the power capability.
在本發明實施例的另一個態樣中,混合導電材料(electronic conducting material),例如碳,至具有壓紋或其他表面增加的陰極結構中,以降低在陰極主體中的電子擴散長度,進而改善電化學裝置的功率能力。In another aspect of an embodiment of the present invention, an electronic conducting material, such as carbon, is mixed into a cathode structure having an embossing or other surface increase to reduce electron diffusion length in the cathode body, thereby improving The power capability of an electrochemical device.
本發明實施例的另一個態樣中,電化學裝置包含薄膜封裝,該薄膜封裝包含或由可呈現出相當好的高溫特性之無機材料所組成。In another aspect of an embodiment of the invention, the electrochemical device comprises a thin film encapsulation comprising or consisting of an inorganic material that exhibits relatively good high temperature properties.
本發明實施例的另一個態樣中,薄膜封裝係用以將封裝厚度對電化學裝置整體厚度的影響減至最小。In another aspect of an embodiment of the invention, a thin film encapsulation is used to minimize the effect of package thickness on the overall thickness of the electrochemical device.
在另一個態樣中,薄型封裝,例如薄膜封裝,可過度補償或至少全部或部分補償陰極厚度相對於電化學裝置整體厚度的增加。此外,例如與壓力-熱積層相較,使用較薄封裝可直接增加電化學裝置的能量、電容與功率的體積量。In another aspect, a thin package, such as a thin film package, can overcompensate or at least partially or partially compensate for an increase in cathode thickness relative to the overall thickness of the electrochemical device. In addition, the use of a thinner package can directly increase the amount of energy, capacitance, and power of the electrochemical device, as compared to a pressure-heat laminate.
在本發明實施例的另一個態樣中,薄膜封裝包含多層無機層,該無機層呈現出本體的高溫穩定性,這是一種使整個電化學裝置的溫度穩定性與恢復力升高至某種程度的特性。In another aspect of the embodiments of the present invention, the thin film encapsulation comprises a plurality of inorganic layers, the inorganic layer exhibiting high temperature stability of the body, which is an increase in temperature stability and restoring force of the entire electrochemical device to some kind The nature of the degree.
第1圖繪示位於基材100上方金屬集流器101上的傳統陰極層120的剖面圖。在一個以真空氣相沈積製程所生成的電化學裝置中,陰極可以圓柱120的方式長成並具有柱形內部(inter-columnar)孔洞空間111。亦如第1圖所示,在製作薄膜電化學裝置的下一層中,電解質110具有傳統架橋結構(bridging structure)且位於柱形內部孔洞空間111上方。1 is a cross-sectional view of a conventional cathode layer 120 on a metal current collector 101 above a substrate 100. In an electrochemical device formed by a vacuum vapor deposition process, the cathode can be grown in the form of a cylinder 120 and has an inter-columnar void space 111. As also shown in Fig. 1, in the next layer in which the thin film electrochemical device is fabricated, the electrolyte 110 has a conventional bridging structure and is located above the cylindrical inner cavity space 111.
第2圖顯示具有非使用真空氣相製程所沈積的陰極210之混合薄膜電化學裝置。在此實施例中,陰極210係直接沈積在基材200上。若有金屬傳導情形,例如,在實施例中的基材200亦可當作陰極集流器。在其他方式中,可設置一種金屬傳導集流器(未顯示)於基材200與陰極210之間。陰極210可包含,例如,鋰鈷氧化物(LiCoO2 )、鋰錳氧化物(LiMn2 O4 )、鋰錳氧化物(LiMnO2 )、鋰鎳氧化物(LiNiO2 )、鋰鐵磷酸鹽(LiFePO4 )、鋰釩氧化物(LiVO2 )、以及上述的混合物或化學衍生物。如實施例所示般,陰極210的厚度可介於約0.5微米與約200微米之間。在一個較佳實施例中,例如,陰極210的厚度可介於約5微米與約100微米之間。在一個更佳實施例中,例如,陰極210的厚度可介於約30微米與約80微米之間。Figure 2 shows a hybrid thin film electrochemical device having a cathode 210 deposited without a vacuum vapor phase process. In this embodiment, the cathode 210 is deposited directly on the substrate 200. If there is a metal conduction, for example, the substrate 200 in the embodiment can also function as a cathode current collector. In other modes, a metal conduction current collector (not shown) may be disposed between the substrate 200 and the cathode 210. The cathode 210 may include, for example, lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMn 2 O 4 ), lithium manganese oxide (LiMnO 2 ), lithium nickel oxide (LiNiO 2 ), lithium iron phosphate ( LiFePO 4 ), lithium vanadium oxide (LiVO 2 ), and mixtures or chemical derivatives thereof. As shown in the embodiment, the cathode 210 can have a thickness between about 0.5 microns and about 200 microns. In a preferred embodiment, for example, cathode 210 can have a thickness between about 5 microns and about 100 microns. In a more preferred embodiment, for example, the thickness of the cathode 210 can be between about 30 microns and about 80 microns.
如第2圖所示般,可沈積電解質層220於陰極層210的上表面。電解質層可以,例如,包含鋰磷氮氧化物(LiPON)或其他固態薄膜電解質,例如在美國專利4367267中所述的鋰鋁鐵化合物(LiAlF4 ),或由Yamamura等人申請之美國專利5217826中所述摻雜鋰矽硫化物(Li4 SiS4 )之磷酸鋰(Li3 PO4 )。上述的專利皆以參考方式納入本文。電解質層220的厚度,例如,小於約10微米。As shown in FIG. 2, an electrolyte layer 220 may be deposited on the upper surface of the cathode layer 210. The electrolyte layer may, for example, comprise a lithium phosphorus oxynitride (LiPON) or other solid state thin film electrolyte, such as the lithium aluminum iron compound (LiAlF 4 ) described in U.S. Patent 4,367,267, or U.S. Patent 5,217,826, issued to Yamamura et al. the silicon doped with lithium sulfide (Li 4 SiS 4) of lithium phosphate (Li 3 PO 4). The above patents are incorporated herein by reference. The thickness of the electrolyte layer 220 is, for example, less than about 10 microns.
與電解質220、基材200以及形成在電解質220上方的陽極230相較時,陰極210較厚。在其他實施例中,與陽極集流器240以及薄膜封裝250相較時,陰極210的相對尺寸也較厚。Cathode 210 is thicker when compared to electrolyte 220, substrate 200, and anode 230 formed over electrolyte 220. In other embodiments, the cathode 210 is also relatively thicker when compared to the anode current collector 240 and the thin film package 250.
電解質220可利用各種方式而沈積在陰極210上。這些方法可包含,例如,真空氣相成長方法或非氣相方法。真空氣相方法可以包含,例如,反應性或非反應性RF磁電管濺鍍(RF magnetron sputtering)、反應性或非反應性DC二極體濺鍍(DC diode supttering)、反應性或非反應性熱(阻)蒸鍍、反應性或非反應性電子束蒸鍍(electron beam evaporation)、離子束助鍍(ion-beam assisted deposition)、電漿增強化學氣相沈積(plasma enhanced chemical vapor deposition)等方式。非氣相方法可以包含,例如,旋轉塗佈、噴墨、熱噴霧沈積(thermal spray deposition)或濕式塗佈(dip coating)。旋轉塗佈係闡述於授予Stetter等人的美國專利第4795543號案、授予Venkatasetty的美國專利第4948490號案或授予Schmidt的美國專利第6005705號案中。噴墨製程係揭露於授予Delnick的美國專利第5865860號案中。熱噴霧沈積製程係揭露於Inda申請的美國專利公開號2004/0106046中。濕式塗佈係揭露於授予Kejha的美國專利第5443602號案與美國專利第6134773號案中。上述每件專利與專利公開案係以參考方式納入本文中。Electrolyte 220 can be deposited on cathode 210 in a variety of ways. These methods may include, for example, a vacuum vapor phase growth method or a non-gas phase method. The vacuum gas phase process may comprise, for example, reactive or non-reactive RF magnetron sputtering, reactive or non-reactive DC diode supttering, reactive or non-reactive Thermal (resistance) evaporation, reactive or non-reactive electron beam evaporation, ion-beam assisted deposition, plasma enhanced chemical vapor deposition, etc. the way. Non-gas phase processes can include, for example, spin coating, ink jet, thermal spray deposition, or dip coating. Rotary coatings are described in U.S. Patent No. 4,795,543 issued to Stetter et al., U.S. Patent No. 4,948,490 issued to Venkataset, or U.S. Patent No. 6,005,705 issued to Schmidt. The ink jet process is disclosed in U.S. Patent No. 5,865,860 issued to Delnick. The thermal spray deposition process is disclosed in U.S. Patent Publication No. 2004/0106046 to Inda. Wet coatings are disclosed in U.S. Patent No. 5,443,602 issued toKejha and U.S. Patent No. 6,134,773. Each of the above patents and patent publications is incorporated herein by reference.
如第2圖所示般,在電解質頂部的下一層係為薄的負陽極層230。薄陽極230可包含,例如,鋰、鋰合金、可形成含鋰的固態溶液或化合物的金屬、或是在含鋰電池中可當作負陽極材料的鋰離子化合物(例如,鋰鈦氧化物(Li4 Ti5 O1 2 ))。例如,薄陽極層230的厚度可小於約30微米。薄陽極可與陽極集流器240接觸,此可使電性通過位於封裝250中的開口(opening)260。在實施例中,陽極集流器的厚度係小於約2微米。薄膜封裝250在某些區域可導電,因此在一些實施例中係當作陽極集流器。在上述實施例中,可以不需要另外沈積的陽極集流器240。薄膜封裝250的厚度可小於約250微米。As shown in Fig. 2, the lower layer on top of the electrolyte is a thin negative anode layer 230. The thin anode 230 may comprise, for example, lithium, a lithium alloy, a metal that can form a lithium-containing solid solution or compound, or a lithium ion compound that can be used as a negative anode material in a lithium-containing battery (eg, lithium titanium oxide (eg, lithium titanium oxide ( Li 4 Ti 5 O 1 2 )). For example, the thin anode layer 230 can have a thickness of less than about 30 microns. The thin anode can be in contact with the anode current collector 240, which can electrically pass through an opening 260 located in the package 250. In an embodiment, the anode current collector has a thickness of less than about 2 microns. The thin film package 250 is electrically conductive in certain areas and thus acts as an anode current collector in some embodiments. In the above embodiments, an additional anode current collector 240 may not be required. The thickness of the thin film package 250 can be less than about 250 microns.
可利用各種方式沈積第2圖中的陰極210於基材200上。在一個特定的實施例中,係使用非氣相沈積方式以沈積陰極材料210。非氣相沈積方法不需在真空環境中執行。一些非氣相沈積方法係為已知。這些方法包含:漿液塗佈、梅耶棒塗佈、直接與逆滾輪塗佈、刮板塗佈、旋轉塗佈、電泳沈積、溶膠沈積、噴霧塗佈、濕式塗佈、與噴墨等其他方式。亦可使用其他非氣相沈積方法或其他不需在真空內沈積的方法,且不會悖離本發明的精神、範圍與實施例。這些非氣相、非真空沈積方法可產生一個單一相的陰極或複合陰極(composite cathode)。複合陰極可沈積成奈米、微米或毫米大小,且可由有機以及/或無機物所組成,此外,也可經由聚合化成為,例如’聚乙烯吡咯烷酮(poly(vinyl pyrrolidone))、氮化硫(sulfur nitride (SN)x )、碳奈米管(nano-tubed carbon)或乙炔黑(acetylene black)。The cathode 210 of FIG. 2 can be deposited on the substrate 200 in a variety of ways. In a particular embodiment, a non-vapor deposition process is used to deposit the cathode material 210. The non-vapor deposition method does not need to be performed in a vacuum environment. Some non-vapor deposition methods are known. These methods include: slurry coating, Meyer bar coating, direct and reverse roller coating, blade coating, spin coating, electrophoretic deposition, sol deposition, spray coating, wet coating, inkjet, etc. the way. Other non-vapor deposition methods or other methods that do not require deposition in a vacuum may also be used without departing from the spirit, scope and embodiments of the invention. These non-gas phase, non-vacuum deposition methods produce a single phase cathode or composite cathode. The composite cathode can be deposited in nanometer, micrometer or millimeter size and can be composed of organic and/or inorganic materials, and can also be polymerized, for example, 'poly(vinyl pyrrolidone), sulfur sulfide (sulfur) Nitrile (SN) x ), nano-tubed carbon or acetylene black.
所有在本文中指出的沈積步驟之後可接著使用溫度低於約150度的乾燥步驟,以及/或溫度介於約150度與400度之間的低溫乾燥與貼合改善(adhesion improving)步驟,以及/或溫度約由400度至約1000度的高溫退火步驟。這些步驟有助於乾燥、貼合增強、電流膜相的形成、以及/或結晶。可使用純質的陰極沈積材料或與包含(或不包含)碳、金屬或合金型導電增強劑的黏結料(binder material)混合。當陰極材料為混合形式時,該陰極材料係為複合陰極材料。All of the deposition steps noted herein may be followed by a drying step having a temperature of less than about 150 degrees, and/or a low temperature drying and adhesion improving step having a temperature between about 150 and 400 degrees, and / or a high temperature annealing step with a temperature of from about 400 degrees to about 1000 degrees. These steps aid in drying, adhesion enhancement, formation of a current film phase, and/or crystallization. A pure cathode deposition material may be used or mixed with a binder material containing (or not including) a carbon, metal or alloy type conductivity enhancer. When the cathode material is in a mixed form, the cathode material is a composite cathode material.
將漿液塗佈用於電池製作的方法係揭露在由授予Hikaru的美國專利第6114062號案或授予Kinsman的美國專利第4125686號案中,在此以參考方式納入上述案件的全文。漿液塗佈引導沈積由電化學活性材料所組成的複合電極,該活性材料係為以聚合黏結料結合在一起的粉末微粒型態,以及一些則形成導電增強物,例如碳黑(carbon black)等型態。漿液亦包含在膜沈積之後需加以揮發(evaporated)以及/或熱解(pyrolyzed)的溶劑。The method of coating a slurry for use in the manufacture of a battery is disclosed in the U.S. Patent No. 6,110,062 issued to Hikaru, or to U.S. Patent No. 4,125, 686 issued toK. The slurry coating directs deposition of a composite electrode composed of an electrochemically active material, which is a powder particle type in which a polymeric binder is bonded together, and some forms a conductive reinforcement such as carbon black or the like. Type. The slurry also contains a solvent that needs to be evaporated and/or pyrolyzed after film deposition.
根據範例實施例,複合陰極可由漿液沈積,該漿液包含或由結晶鋰鈷氧化物粉末、聚亞醯胺(polyimide)黏結料與石墨導電增強物所組成。接著塗佈此漿液於鋁薄片基材上,且在溫度低於150度的空氣中乾燥約兩天以下的時間。隨後,在此實施例中,可利用例如厚約2微米的LiPON薄膜電解質、約3微米厚的鋰負陽極以及約0.3微米厚的Cu陽極集流器以塗佈該陰極。最後,約100微米厚的熱及壓力感應的金屬聚合物積層,可塗敷在電化學裝置上,使得可在空氣中測試該裝置的電化學表現,其中該金屬聚合物積層係用以密封該電化學裝置。According to an exemplary embodiment, the composite cathode may be deposited from a slurry comprising or consisting of crystalline lithium cobalt oxide powder, polyimide binder, and graphite conductive reinforcement. This slurry is then applied to an aluminum foil substrate and dried in air at a temperature below 150 degrees for a period of less than two days. Subsequently, in this embodiment, the cathode can be coated with, for example, a LiPON thin film electrolyte having a thickness of about 2 microns, a lithium negative anode of about 3 microns thick, and a Cu anode current collector of about 0.3 microns thick. Finally, a heat and pressure induced metal polymer laminate of about 100 microns thick can be applied to an electrochemical device such that the electrochemical performance of the device can be tested in air, wherein the metal polymer laminate is used to seal the Electrochemical device.
在另一個實施例中,乾燥的漿液塗佈可以需要在溫度高達約1000度的環境中進行額外的乾燥、貼合、成形以及/或結晶步驟,以完成陰極或複合陰極的結構。此方法可快速簡單地生產厚的陰極而不需使用真空氣相方法。再者,所產生的陰極不會具有以真空氣相沈積方法生成時的機構不穩定性。In another embodiment, dry slurry coating may require additional drying, lamination, forming, and/or crystallization steps in an environment at temperatures up to about 1000 degrees to complete the structure of the cathode or composite cathode. This method can produce a thick cathode quickly and easily without using a vacuum gas phase method. Furthermore, the resulting cathode does not have mechanical instability when generated by a vacuum vapor deposition method.
透過機構移位或移除方式,包含壓紋(embossing)、印花(stamping)、磨損(abrading)、碎屑(scraping)、形成(forming)等,在第2圖中的陰極210可變更為如第14圖中所示般。可在濕式或完全乾糙的陰極上進行此層的變更。陰極表面變更增進離子在陰極主體與薄膜電解質(例如,由LiPON層所組成(未顯示))之間的傳送效率,並因此改進電化學裝置的功率表現。By means of mechanism displacement or removal, including embossing, stamping, abrading, scraping, forming, etc., the cathode 210 in Figure 2 is more variable. As shown in Figure 14. This layer change can be made on a wet or completely dry cathode. The change in cathode surface enhances the transfer efficiency of ions between the cathode body and the thin film electrolyte (e.g., composed of a LiPON layer (not shown), and thus improves the power performance of the electrochemical device.
另一項進步為,當陰極210包含或至少由電化學活性陰極材料(例如,LiCoO2 )以及含碳導電增強物所組成時,其可達成功率能力,該含碳導電增強物係用以減少在複合陰極主體中的電子擴散長度。Another improvement is that when the cathode 210 comprises or consists at least of an electrochemically active cathode material (eg, LiCoO 2 ) and a carbon-containing conductive reinforcement, it can achieve power capabilities, and the carbon-containing conductive reinforcement is used The electron diffusion length in the composite cathode body is reduced.
第3圖顯示LiPON塗佈複合陰極的掃瞄式電子顯微剖面圖。在左圖最左側的尺規(dimension calibration bar)係代表約9微米的長度,而在右側插圖中的則代表約3微米的長度。Figure 3 shows a scanning electron micrograph of a LiPON coated composite cathode. The dimension calibration bar on the far left of the left figure represents a length of about 9 microns, while the illustration on the right side represents a length of about 3 microns.
根據本發明範例實施例的電化學裝置的電化學週期表現係顯示於第14圖中。The electrochemical cycle performance of an electrochemical device according to an exemplary embodiment of the present invention is shown in FIG.
根據本發明的實施例,複合陰極可利用含各種含懸浮物或溶液,例如授予Principe的美國專利第6079352號案中所揭露的鋰鈷氧化物粉末,的梅耶棒塗佈而加以沈積,在此係以參考方式納入該案內容。或者,可加以混合聚合黏結料,例如聚亞醯胺,以及/或導電增強物,例如石墨。基材(例如,鋁薄片基材)上的塗佈可在溫度低於約150度的空氣中乾燥兩天。隨後,在此實施例中,可以約2微米厚的LiPON薄膜電解質、約3微米厚的鋰負陽極以及約0.3微米厚的銅陽極集流器塗佈陰極。最後,塗敷大約100微米厚的熱及壓力感應的金屬聚合物積層品在電化學裝置上,使得該裝置的電化學表現可在空氣中加以測試,其中該金屬聚合物積層品可用以密封電化學裝置。In accordance with an embodiment of the present invention, the composite cathode can be deposited by coating with a variety of suspensions or solutions, such as the lithium cobalt oxide powder disclosed in U.S. Patent No. 6,907,352 issued to Principe. This is included in the case by reference. Alternatively, a polymeric binder such as polyamine, and/or a conductive reinforcement such as graphite may be blended. Coating on a substrate (eg, an aluminum foil substrate) can be dried in air at a temperature below about 150 degrees for two days. Subsequently, in this embodiment, the cathode can be coated with a LiPON thin film electrolyte of about 2 microns thick, a lithium negative anode of about 3 microns thick, and a copper anode current collector of about 0.3 microns thick. Finally, approximately 100 micron thick heat and pressure sensitive metal polymer laminates are applied to the electrochemical device such that the electrochemical performance of the device can be tested in air, wherein the metal polymer laminate can be used to seal the electrification Learning device.
在另一個實施例中,乾燥的梅耶刮棒塗佈(Meyer rod coating)可以需要在溫度高達約1000度環境中的額外乾燥、貼合、成形以及/或結晶步驟以完成陰極或複合陰極的結構。此方法可快速簡單地生產厚陰極而不需使用真空氣相方法。再者,所產生的陰極不會具有以真空氣相沈積方法生成時的機構不穩定性。In another embodiment, a dry Meyer rod coating may require additional drying, lamination, forming, and/or crystallization steps in an environment at temperatures up to about 1000 degrees to complete the cathode or composite cathode. structure. This method can produce thick cathodes quickly and easily without using a vacuum gas phase method. Furthermore, the resulting cathode does not have mechanical instability when generated by a vacuum vapor deposition method.
根據本發明的實施例,複合陰極可利用含各種含懸浮物或溶液(例如,授予Davis的美國專利第3535295號案中所揭露的鋰鈷氧化物粉末,在此係以參考方式納入該案內容)之直接以及或逆滾輪塗佈而加以沈積。或者,可混合聚合黏結料,例如聚亞醯胺,以及/或電子傳導增強物,例如石墨。在基材(例如,鋁薄片基材)上的塗佈可在溫度低於約150度的空氣中乾燥兩天以下的時間。隨後,在此實施例中,可以利用例如約2微米厚的LiPON薄膜電解質、約3微米厚的鋰負陽極、以及約0.3微米厚的銅陽極集流器以塗佈陰極。最後,大約100微米厚的熱及壓力感應的金屬聚合物積層品,可塗敷在電化學裝置上,使得該裝置的電化學表現可在空氣中加以測試,其中該金屬聚合物積層品係用以密封該電化學裝置。In accordance with an embodiment of the present invention, the composite cathode may utilize a lithium cobalt oxide powder as disclosed in U.S. Patent No. 3,535, 295 issued to Davis, which is incorporated herein by reference. ) deposited directly or in reverse roller coating. Alternatively, a polymeric binder, such as polyamidamine, and/or an electron conduction enhancer, such as graphite, may be mixed. Coating on a substrate (e.g., an aluminum foil substrate) can be dried in air at a temperature below about 150 degrees for less than two days. Subsequently, in this embodiment, a cathode can be coated using, for example, a LiPON thin film electrolyte of about 2 microns thick, a lithium negative anode of about 3 microns thick, and a copper anode current collector of about 0.3 microns thick. Finally, a heat and pressure induced metal polymer laminate of approximately 100 microns thickness can be applied to an electrochemical device such that the electrochemical performance of the device can be tested in air where the metal polymer layer is used. To seal the electrochemical device.
在另一個實施例中,乾燥的直接或逆滾輪塗佈可以需要溫度高達約1000度的額外乾燥、貼合、成形以及/或結晶步驟,以完成陰極或複合陰極的結構。此方法可快速簡單地生產厚陰極而不需使用真空氣相方法。再者,所製造的陰極不會具有以真空氣相沈積方法生成時的機構不穩定性。In another embodiment, dry direct or reverse roller coating may require additional drying, lamination, forming, and/or crystallization steps at temperatures up to about 1000 degrees to complete the structure of the cathode or composite cathode. This method can produce thick cathodes quickly and easily without using a vacuum gas phase method. Furthermore, the fabricated cathode does not have mechanical instability when formed by a vacuum vapor deposition method.
根據本發明的實施例,可利用授予Brow的英國專利第947518號案中所揭露的刮板技術以沈積厚陰極於基材上,在此係以參考方式納入該案的內容。沈積方法類似塗抹奶油的方式。因此,例如,刮刀將陰極材料膠(由電化學活性材料組成)分成先驅物(precursor)或最後型態,並與溶劑、黏結料與導電增強物材料混合,接著塗佈一定厚度的陰極材料膠在基材上。視陰極材料膠的成分而定,可另外使用溫度高達約1000度的其他乾燥、貼合、成形以及/或結晶步驟以形成最後的陰極或複合陰極。此方法可快速簡單地生產厚陰極而不需使用真空氣相方法。再者,所製造的陰極不會具有以真空氣相沈積方法生成時的機構不穩定性。In accordance with an embodiment of the present invention, the squeegee technique disclosed in U.S. Patent No. 947,518, the disclosure of which is incorporated herein by reference. The deposition method is similar to the way cream is applied. Thus, for example, a doctor blade separates a cathode material (composed of an electrochemically active material) into a precursor or final form, and mixes with a solvent, a binder, and a conductive reinforcement material, and then coats a certain thickness of the cathode material paste. On the substrate. Depending on the composition of the cathode material paste, other drying, laminating, forming, and/or crystallization steps up to about 1000 degrees may be additionally employed to form the final cathode or composite cathode. This method can produce thick cathodes quickly and easily without using a vacuum gas phase method. Furthermore, the fabricated cathode does not have mechanical instability when formed by a vacuum vapor deposition method.
使用各種由知名製造商所供應的標準旋轉塗佈儀(spin coater)的旋轉塗佈技術係用於薄膜塗佈工業上,例如,該塗佈儀係揭露在授予Hitachi的日本專利1320728中,在此係以參考方式納入該案內容。利用旋轉塗佈技術,陰極粉末在低沸點(高揮發度)的溶劑中懸浮或分散,該溶劑例如水、低分子量酒精、低分子量醚類、低分子量酮類、低分子量酯類、低分子量碳氫化合物等。接著將此懸浮液滴在快速旋轉的基材上(通常為1000至3000 rpm),而由於施加在液滴上的高離心力,可使懸浮液快速散佈成薄膜於基材上。由於每單位面積極低的質量或體積,揮發溶劑的薄膜會快速蒸發離開凝結在基材上的溶質或懸浮物或分散材料。旋轉塗佈製程可重複多次以增加一給定膜的厚度。為了加速蒸發溶劑與溶質或懸浮、分散材料的沈澱物,可加熱該旋轉基材。或者,旋轉塗佈懸浮物可額外包含黏結料或黏結料先驅物材料以及導電增強物材料。上述所有材料在旋轉塗佈製程中,不論是在大氣環境或在升高的溫度以及/或真空中,都不易蒸發。視陰極材料膠的成分而定,可使用在溫度高達約1000度的其他乾燥、貼合、成形以及/或結晶步驟以形成最後的陰極或複合陰極。Rotary coating technology using various standard spin coaters supplied by well-known manufacturers is used in the film coating industry, for example, disclosed in Japanese Patent No. 1320728 to Hitachi, This is included in the case by reference. The cathode powder is suspended or dispersed in a low boiling (high volatility) solvent such as water, low molecular weight alcohol, low molecular weight ethers, low molecular weight ketones, low molecular weight esters, low molecular weight carbon by spin coating techniques Hydrogen compounds, etc. This suspension is then dropped onto a rapidly rotating substrate (typically 1000 to 3000 rpm), and due to the high centrifugal force exerted on the droplets, the suspension can be quickly dispersed into a film onto the substrate. Due to the aggressively low mass or volume per unit surface, the film of volatile solvent will quickly evaporate away from the solute or suspension or dispersion material that condenses on the substrate. The spin coating process can be repeated multiple times to increase the thickness of a given film. In order to accelerate the evaporation of the solvent and the solute or the suspension of the dispersed material, the rotating substrate can be heated. Alternatively, the spin coated suspension may additionally comprise a binder or binder precursor material and a conductive reinforcement material. All of the above materials are not easily vaporized during the spin coating process, whether in the atmosphere or at elevated temperatures and/or vacuum. Depending on the composition of the cathode material paste, other drying, lamination, forming, and/or crystallization steps at temperatures up to about 1000 degrees can be used to form the final cathode or composite cathode.
根據本發明的實施例,可利用如Kanamura等人在Electrochem Solid State Letters 期刊(3Electrochem.Solid State Letters 259-62(2000))或Lusk在英國專利1298746一文中所討論的電泳沈積方式以長成非氣相鋰鈷氧化物陰極膜,在此係以參考方式納入該些案件的內容。例如,微米大小、完全結晶的鋰鈷氧化物微粒可在丙酮(acetone)、異丙酮(isopropanol)以及/或碘(iodine)的溶液中懸浮,以及可以電泳沈積大約9微米厚的完全結晶鋰鈷氧化物膜於不銹鋼基材上而不具任何柱狀結構。此製程可在室溫且小於約120VDC的環境下進行約30分鐘以內。According to an embodiment of the present invention may be utilized electrophoretic deposition means such as Kanamura et al. In Journal Electrochem Solid State Letters (3 Electrochem.Solid State Letters 259-62 (2000 )) or a Lusk in British Patent 1,298,746 discussed herein to grow into Non-gas phase lithium cobalt oxide cathode films are incorporated herein by reference. For example, micron-sized, fully crystalline lithium cobalt oxide particles can be suspended in a solution of acetone, isopropanol, and/or iodine, and electrophoretically deposited fully crystalline lithium cobalt approximately 9 microns thick. The oxide film is on a stainless steel substrate without any columnar structure. This process can be carried out within about 30 minutes at room temperature and less than about 120 VDC.
第5圖繪示以電泳沈積的正陰極膜之掃瞄式電子顯微剖面圖。在圖中所示的碘雜質濃度係低於X射線能量散佈分析儀(energy dispersive x-ray spectroscopic)方法所能偵測的臨界值(小於1 wt%)。亦可利用電泳沈積以製作具有較薄鋰鈷氧化物複合陰極的電化學電池,例如,在含大約200毫升丙酮、大約23毫克碘(I2 )、大約38毫克碳黑與大約53毫克聚四氟乙烯(PTEF)的溶液中有大約1克的完全結晶鋰鈷氧化物微粒粉末懸浮。在上述實施例中,可施加50VDC的驅動電壓於電泳沈積中大約30秒。接著,已沈積的鋰鈷氧化物複合膜可在溫度大約377度的空氣中退火約4小時,以增進與導電基材的貼合性。接著,以RF磁電管濺鍍沈積大約2微米厚的鋰磷氮氧化物電解質於鋰鈷氧化物複合陰極上,接著以電子束蒸鍍製作大約0.3微米厚的銅陽極集流器膜,最後以熱(阻)真空沈積大約3微米厚的金屬鋰陽極,藉此以完成電化學裝置。上述電化學裝置的電流放電電壓表現係顯示於第6圖中,而電化學週期穩定性係顯示於第7圖中。視電泳懸浮物的成分而定,溫度高達大約1000度的其他乾燥、貼合、成形以及/或結晶步驟可加以使用,以形成最後的陰極或複合陰極。Figure 5 is a scanning electron micrograph of a positive cathode film deposited by electrophoresis. The iodine impurity concentration shown in the figure is lower than the critical value (less than 1 wt%) detectable by the energy dispersive x-ray spectroscopic method. Also using electrophoretic deposition to make a composite having a relatively thin lithium cobalt oxide cathode electrochemical cell, e.g., containing about 200 ml of acetone, about 23 mg of iodine (I 2), about 38 mg and about 53 mg of carbon black polytetramethylene A solution of about 1 gram of fully crystalline lithium cobalt oxide fine particle powder is suspended in a solution of fluoroethylene (PTEF). In the above embodiment, a driving voltage of 50 VDC can be applied for about 30 seconds in electrophoretic deposition. Next, the deposited lithium cobalt oxide composite film can be annealed in air at a temperature of about 377 degrees for about 4 hours to improve the adhesion to the conductive substrate. Next, a lithium-phosphorus oxynitride electrolyte of about 2 μm thick was deposited by RF magnetron sputtering on a lithium cobalt oxide composite cathode, followed by electron beam evaporation to form a copper anode current collector film of about 0.3 μm thick, and finally Thermal (resistance) vacuum deposition of a metal lithium anode of approximately 3 microns thickness is used to complete the electrochemical device. The current discharge voltage representation of the above electrochemical device is shown in Fig. 6, and the electrochemical cycle stability is shown in Fig. 7. Depending on the composition of the electrophoretic suspension, other drying, lamination, shaping and/or crystallization steps up to about 1000 degrees can be used to form the final cathode or composite cathode.
根據本發明的範例實施例,可利用溶膠法以沈積厚陰極。在此實施例中,例如,提供先驅物態的待沈積氧化陰極膜材料,例如,水溶液或可被陰離子相反離子(counter ions)或螯合物所中和的鋰或鈷離子的酒精膠體溶液。這些陰離子相反離子或螯合物可包含,例如,硝酸鹽、甘醇酸鹽(glycolate)、氫氧化物(hydroxide)、檸檬酸鹽(citrate)、碳氫氧化合物(carboxylates)、草酸鹽(oxalate)、醇鹽(alcoholate)或乙醯丙酮鹽(acetylacetonate),上述成分可以濕式塗佈或噴灑於基材上,並接著在高溫下乾燥一段時間,例如,兩天以內。此外,將製成的膜置於高溫熱解製程中,以將陰離子相反離子或螯合物轉換成純氧化物。此方法係出現於1994年德國司圖加特之Bernd J.Neudecker的博士論文、Plichta等人所發表於J.Electrochem.Soc 的期刊論文(139JElectrochem.Soc .1509-13(1992))、以及Nazri申請的美國專利5604057中。或者,溶膠可另外包含黏結料或黏結先驅物材料以及導電增強物材料。上述所有添加物在乾燥製程中,不論是在大氣環境或在升高的溫度中,都不易蒸發。視溶膠成分而定,溫度高達大約1000度的其他乾燥、貼合、成形以及/或結晶步驟可加以使用以形成最後的陰極或複合陰極。According to an exemplary embodiment of the present invention, a sol method may be utilized to deposit a thick cathode. In this embodiment, for example, a precursor material of an oxide cathode film material to be deposited, such as an aqueous solution or an alcohol colloidal solution of lithium or cobalt ions neutralized by an anion counter ion or a chelate, is provided. These anionic counterions or chelates may comprise, for example, nitrates, glycolates, hydroxides, citrates, carboxylates, oxalates ( An oxalate, an alcoholate or an acetylacetonate, the above ingredients may be wet coated or sprayed onto a substrate and then dried at elevated temperatures for a period of time, for example, within two days. In addition, the finished film is placed in a high temperature pyrolysis process to convert the anionic counterion or chelate to a pure oxide. This method is presented in the Ph.D. paper by Bernd J. Neudecker, Stuttgart, Germany, 1994, and in the journal paper by J. Electrochem. Soc , published by Plichta et al. (139 J Electrotron. Soc . 1509-13 (1992)), and U.S. Patent 5,604,057 issued to Nazri. Alternatively, the sol may additionally comprise a binder or a binder precursor material and a conductive reinforcement material. All of the above additives are not easily evaporated during the drying process, whether in the atmosphere or at elevated temperatures. Depending on the composition of the sol, other drying, laminating, forming and/or crystallization steps up to about 1000 degrees can be used to form the final cathode or composite cathode.
在本發明的實施例中,可利用噴墨方法以沈積厚陰極。氧化膜的噴墨法係闡述於Watanabe Kyoichi等人所申請的日本專利2005011656、授予Speakman的美國專利第6713389號案以及授予Hopkins的美國專利第6780208號案中,在此係以參考方式納入該些案件的全部內容。在本發明的實施例中,可研磨完全結晶的鋰鈷氧化物粉末直到具有平均粒徑大約0.55微米,接著將其散佈於含大約0.05 vol%異辛醇(iso-octanol)、大約5 vol%異丙醇(isopropanol)、大約10 vol%乙二醇單丁醚(ethylene glycol monobutyl ether)以及大約10 vol%乙二醇(ethylene glycol)的溶液中。此溶液可利用超音波震動大約1小時以形成合適的噴墨溶液。鋰鈷氧化物膜可透過噴墨頭與濕式陶瓷(例如,大約250微米厚的氧化鋁板)與不銹鋼基材井(substrate well)(例如,大約50微米薄片)而加以沈積。列印(printing)之後,已沈積的鋰鈷氧化物膜可在大約200度的溫度下乾燥約兩個小時,以移除過多的溶劑並改進鋰鈷氧化物膜與基材的貼合度。在十個噴頭通過相同基材區域之後,可形成大約15微米厚的乾燥鋰鈷氧化物膜。第8圖顯示上述鋰鈷氧化物膜的掃瞄式電子顯微剖面圖。或者,噴墨溶液或懸浮物可包含黏結料、黏結先驅物材料、以及/或導電增強物材料。上述所有添加物在乾燥製程中,不論是在大氣環境或在升高的溫度中,都不易蒸發。視噴墨溶液或懸浮液的成分而定,溫度高達大約1000度的其他乾燥、黏合、形成以及/或結晶步驟可加以使用,以形成最後的陰極或複合陰極。In an embodiment of the invention, an inkjet method can be utilized to deposit a thick cathode. The inkjet method of the oxide film is described in Japanese Patent No. 2005011656 to Watanabe Kyoichi et al., U.S. Patent No. 6,713,389 to Speakman, and U.S. Patent No. 6,780,208 to Hopkins, incorporated herein by reference. The entire content of the case. In an embodiment of the invention, the fully crystalline lithium cobalt oxide powder can be ground until it has an average particle size of about 0.55 microns, which is then dispersed in about 0.05 vol% iso-octanol, about 5 vol%. Isopropanol, about 10 vol% ethylene glycol monobutyl ether, and about 10 vol% ethylene glycol in a solution. This solution can be ultrasonically shaken for about 1 hour to form a suitable inkjet solution. The lithium cobalt oxide film can be deposited through an inkjet head and a wet ceramic (for example, an alumina plate of about 250 micrometers thick) and a stainless steel substrate well (for example, a sheet of about 50 micrometers). After printing, the deposited lithium cobalt oxide film can be dried at a temperature of about 200 degrees for about two hours to remove excess solvent and improve the fit of the lithium cobalt oxide film to the substrate. After the ten nozzles pass through the same substrate region, a dry lithium cobalt oxide film of about 15 microns thickness can be formed. Fig. 8 is a view showing a scanning electron micrograph of the above lithium cobalt oxide film. Alternatively, the inkjet solution or suspension may comprise a binder, a binder precursor material, and/or a conductive reinforcement material. All of the above additives are not easily evaporated during the drying process, whether in the atmosphere or at elevated temperatures. Depending on the composition of the inkjet solution or suspension, other drying, bonding, forming and/or crystallization steps up to about 1000 degrees can be used to form the final cathode or composite cathode.
根據範例實施例,利用非氣相沈積製作的陰極可在其完成或未完成狀態時,以惰性、金屬導電層(例如,金)加以包覆。隨後,當惰性金屬傳導塗層接續地被吸收至陰極的細孔、孔洞與裂縫時,已完成或未完成的陰極與惰性金屬傳導塗層可一起加熱以進行乾燥、貼合、成形以及/或結晶,藉此改進陰極的導電性。According to an exemplary embodiment, a cathode fabricated using non-vapor deposition may be coated with an inert, metallic conductive layer (eg, gold) in its completed or unfinished state. Subsequently, when the inert metal conductive coating is successively absorbed into the pores, pores and cracks of the cathode, the completed or unfinished cathode and the inert metal conductive coating may be heated together for drying, lamination, forming, and/or Crystallization, thereby improving the conductivity of the cathode.
可利用各種方法沈積上述範例實施例中的陽極。例如,可利用真空氣相成長方法或非氣相成長方法,例如,噴墨或濕式塗佈,加以沈積陽極材料。The anodes of the above exemplary embodiments can be deposited by various methods. For example, the anode material may be deposited using a vacuum vapor phase growth method or a non-vapor phase growth method such as inkjet or wet coating.
本發明的實施例包含透過真空氣相成長方法以沈積負陽極材料。典型真空氣相長成負陽極的方法包含但不限於,反應性或非反應性RF磁電管濺鍍、反應性或非反應性DC二極體濺鍍、反應性或非反應性熱(阻)蒸鍍、反應性或非反應性電子束蒸鍍、離子束助鍍、電漿增強化學氣相沈積等方式。負陽極可為,例如,金屬鋰、鋰合金或可形成固態溶液或含鋰化合物的金屬。Embodiments of the invention include a vacuum vapor phase growth process to deposit a negative anode material. Typical vacuum gas phase growth methods for negative anodes include, but are not limited to, reactive or non-reactive RF magnetron sputtering, reactive or non-reactive DC diode sputtering, reactive or non-reactive heat (resistance) Evaporation, reactive or non-reactive electron beam evaporation, ion beam assisted plating, plasma enhanced chemical vapor deposition, and the like. The negative anode can be, for example, metallic lithium, a lithium alloy, or a metal that can form a solid solution or a lithium-containing compound.
其他用以沈積負陽極的實施例可包含非氣相成長方法。例如,非氣相成長方法,例如可利用金屬鋰粉末混合的噴墨法以沈積負陽極。上述方法係闡述於由Nelson等人所申請的美國專利公開號2005/0239917中。還有,吾人可在受保護的大氣環境下將樣品浸在熔解的鋰金屬中,並使在樣品上生成的膜冷卻與固化。同樣地,利用在大氣中將樣品浸濡在熔解的錫金屬中或將熔解或熱錫金屬轉移至棒表面上,並接著將錫金屬蓋在樣品上,吾人即可製作鋰離子陽極,例如,金屬鋰。Other embodiments for depositing a negative anode can include a non-gaseous growth process. For example, a non-vapor phase growth method, for example, an inkjet method in which metal lithium powder is mixed to deposit a negative anode. The above method is described in U.S. Patent Publication No. 2005/0239917, filed by Nelson et al. Also, we can immerse the sample in the molten lithium metal in a protected atmosphere and cool and solidify the film formed on the sample. Similarly, by diluting the sample in the molten tin metal in the atmosphere or transferring the molten or hot tin metal onto the surface of the rod, and then covering the tin metal on the sample, we can make a lithium ion anode, for example, Metal lithium.
可類似地運作具有溶膠的濕式塗佈技術以沈積負陽極材料,此部分係闡述於由Patrusheva等人所申請的俄羅斯專利2241281C2中,在此係以參考方式納入該案。例如,利用醇氧化物(alkoxide)的合適陰離子成分之二氧化錫(SnO2 )為主的鋰離子陽極可加以使用,此部分係闡述於授予Toki Motoyuki的美國專利第6235260號案中,在此係以參考方式納入該案的內容。A wet coating technique with a sol can be similarly operated to deposit a negative anode material, which is described in Russian Patent No. 2,241,281, issued to Patrick, et al., which is incorporated herein by reference. For example, a lithium ion anode based on tin oxide (SnO 2 ), which is a suitable anion component of an alkoxide, can be used, as described in U.S. Patent No. 6,235,260, to Toki Motoyuki, here. The content of the case is included by reference.
第9圖繪示根據本發明範例實施例中,不需基材所製作的混合薄膜電化學裝置。此裝置係與第2圖所示的類似,但不具有基材。此裝置反而以薄金屬層300終結空間,此薄金屬層可當作集流器與電性終端(electrical terminal)。除了金屬層300之外,在第9圖中的裝置包含至少一個陰極310、電解質320以及陽極330。Figure 9 is a diagram showing a hybrid thin film electrochemical device fabricated without a substrate according to an exemplary embodiment of the present invention. This device is similar to that shown in Figure 2 but does not have a substrate. Instead of terminating the space with a thin metal layer 300, the thin metal layer acts as a current collector and an electrical terminal. In addition to the metal layer 300, the device in FIG. 9 includes at least one cathode 310, an electrolyte 320, and an anode 330.
上述的實施例可利用一封裝350而予以密封,該封裝350係選自由真空氣相成長薄膜封裝、保護性聚合複合物的壓力-熱積層(闡述於授予Snyder的美國專利第6916679號案中)、以壓力-熱感應黏合表面包覆的金屬薄片壓力-熱積層,以及金屬護套(canning)所組成之群。The above-described embodiments can be sealed by a package 350 selected from a vacuum-glow-growth film package, a pressure-heat laminate of a protective polymeric composite (described in U.S. Patent No. 6,916,679 issued to Snyder). a pressure-heat-sensing adhesive surface coated foil pressure-heat laminate, and a group of canning.
陽極集流器340,例如鋯(Zr),可設置在電解質320、陽極330與封裝350之間。再者,濕氣阻障層可置於陽極集流器340與下層濕氣感應電解質320之間,以保護後者。可選擇具有濕氣阻擋特性的材料有:(1)選自由金屬、半金屬(semi-metal)、合金、硼化物(borides)、碳化物、鑽石、類鑽石碳(diamond-like carbon)、矽化物(silicides)、氮化物(nitrides)、磷化物(phosphides)、氧化物、氟化物、氯化物、溴化物、碘化物所組成之群;(2)選自由任何碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物與碘化物所合成之化合物所組成之群;(3)選自由高溫穩定有機聚合物與高溫穩定聚矽氧烷(silicone)所組成之群。濕氣阻障層可以包含二氧化鋯(ZrO2 )或氮化鋯(ZrN),以及可為陽極集流器340的一部份,該陽極集流器就其氧化物或氮化物組成而具有梯度,因此達成在電解質介面處的二氧化鋯或氮化鋯的化學劑量。An anode current collector 340, such as zirconium (Zr), may be disposed between the electrolyte 320, the anode 330, and the package 350. Further, a moisture barrier layer may be placed between the anode current collector 340 and the lower moisture sensing electrolyte 320 to protect the latter. Materials with moisture barrier properties may be selected: (1) selected from the group consisting of metals, semi-metals, alloys, borides, carbides, diamonds, diamond-like carbon, and bismuth. a group of silicides, nitrides, phosphides, oxides, fluorides, chlorides, bromides, iodides; (2) selected from any carbides, tellurides, nitrides a group of compounds synthesized from phosphides, oxides, fluorides, chlorides, bromides and iodides; (3) selected from the group consisting of high temperature stable organic polymers and high temperature stable polysiloxanes. group. The moisture barrier layer may comprise zirconium dioxide (ZrO 2 ) or zirconium nitride (ZrN), and may be part of an anode current collector 340 having an oxide or nitride composition Gradient, thus achieving a stoichiometric amount of zirconium dioxide or zirconium nitride at the electrolyte interface.
第10圖顯示具有多層薄膜封裝材料的電化學裝置實施例。多層薄膜封裝400可由交替的非晶矽或玻璃質氧化物或氮化物層420之多層強金屬吸收層(matallic getter layer)410所組成。強金屬吸收層410由於具有優越的水與氧氣吸收能力,所以可用以保護裝置免受濕氣與氧氣的影響。強金屬吸收層可由鋯、釔(Y)、鈦(Ti)、鉻(Cr)、鋁(Al)或上述金屬之合金所組成。玻璃質或非晶矽層420可為用在吸收層的金屬氧化物或金屬氮化物或金屬,例如,二氧化鋯、氮化鋯、氧化釔(Y2 O3 )、氮化釔(YN)、二氧化鈦(TiO2 )、氮化鈦(TiN)、三氧化二鉻(Cr2 O3 )、氮化鉻(CrN)、三氧化二鋁(Al2 O3 )、氮化鋁(AlN)或任何上述的多元素化合物。實質上無晶界(grain boundaries)的機構密集玻璃質或非晶矽層可有效阻擋任何濕氣或氧氣擴散通過氧化物或氮化物。所以,多層薄膜封裝可有效保護位於下方、對空氣敏感的金屬陽極。Figure 10 shows an electrochemical device embodiment with a multilayer film encapsulation material. The multilayer film package 400 can be comprised of a plurality of materic getter layers 410 of alternating amorphous germanium or vitreous oxide or nitride layers 420. The strong metal absorbing layer 410 can be used to protect the device from moisture and oxygen due to its superior water and oxygen absorption capacity. The strong metal absorbing layer may be composed of zirconium, hafnium (Y), titanium (Ti), chromium (Cr), aluminum (Al) or an alloy of the above metals. The vitreous or amorphous germanium layer 420 can be a metal oxide or metal nitride or metal used in the absorber layer, for example, zirconium dioxide, zirconium nitride, hafnium oxide (Y 2 O 3 ), tantalum nitride (YN). Titanium dioxide (TiO 2 ), titanium nitride (TiN), chromium oxide (Cr 2 O 3 ), chromium nitride (CrN), aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN) or Any of the above multi-element compounds. A densely packed glassy or amorphous layer of material that is substantially free of grain boundaries is effective to block any moisture or oxygen from diffusing through the oxide or nitride. Therefore, the multilayer film package effectively protects the underlying, air sensitive metal anode.
在另一個實施例中,例如,多層薄膜封裝由無機高溫穩定或恢復材料所組成。相較於在封裝中採用聚合物成分(例如闡述於授予Snyder的美國專利第6916679號案中的壓力-熱積層封裝),使用上述封裝可增加電化學裝置的高溫穩定性。In another embodiment, for example, the multilayer film package is comprised of an inorganic high temperature stable or recovery material. The use of the above described package can increase the high temperature stability of the electrochemical device as compared to the use of a polymer component in a package, such as the pressure-heat laminate package described in U.S. Patent No. 6,916,679 to Snyder.
另一個無機高溫穩定或恢復材料的範例實施例可包含多層薄膜封裝,其具有真空氣相沈積的交替層(alternating layer)。例如,薄膜封裝可包含或由30層厚度為1000埃的層交替組成,這些層可以二氧化鋯/鋯/二氧化鋯/鋯...(ZrO2 /Zr/ZrO2 /Zr/...)或氮化鋯/鋯/氮化鋯/鋯...(ZrN/Zr/ZrN/Zr/...)的方式交替,可理解的是不同厚度、週期與材料皆可使用。例如,交替層可在真空反應室中以小於約100度的基材溫度沈積。上述30層薄膜封裝可僅為大約3微米厚,且高溫穩定度可達大約300度以上。Another example embodiment of an inorganic high temperature stabilization or recovery material can comprise a multilayer film package having an alternating layer of vacuum vapor deposition. For example, the thin film encapsulation may comprise or consist of 30 layers of layers having a thickness of 1000 angstroms, which may be zirconium dioxide/zirconium/zirconia/zirconium... (ZrO 2 /Zr/ZrO 2 /Zr/... ) or zirconium nitride / zirconium / zirconium nitride / zirconium ... (ZrN / Zr / ZrN / Zr / ...) alternate, it is understood that different thicknesses, cycles and materials can be used. For example, alternating layers can be deposited in a vacuum reaction chamber at a substrate temperature of less than about 100 degrees. The 30-layer film package described above can be only about 3 microns thick and has a high temperature stability of up to about 300 degrees.
上述薄型的薄膜封裝直接增加電化學裝置每單位體積的能量、電容與功率(體積能量、體積電容、與體積功率),而使用壓力-熱積層封裝的電化學裝置則比目前約3微米的薄膜封裝通常厚上至少一個量級。例如,一個原本總厚度為150微米的電化學裝置中(例如,可包含實際10微米厚的電化學電池、35微米厚的基材與100微米厚的壓熱封裝),將其封裝以厚度為3微米的薄膜取代,此時電化學裝置的總厚度僅為48微米,而其能量、電容與功率的體積量會增加三倍。The thin film package directly increases the energy, capacitance and power per unit volume of the electrochemical device (volume energy, volumetric capacitance, and volumetric power), while the electrochemical device using the pressure-thermal laminate package is about 3 microns longer than the current film. The package is typically at least one order of magnitude thick. For example, in an electrochemical device with a total thickness of 150 microns (for example, an actual 10 micron thick electrochemical cell, a 35 micron thick substrate, and a 100 micron thick autoclave package) can be packaged to a thickness of The 3 micron film is replaced, at which point the total thickness of the electrochemical device is only 48 microns, and the volume of energy, capacitance and power is increased by a factor of three.
第11圖顯示根據本發明實施例的電化學裝置。除了導電基材500、正陰極510、電解質膜520、負陽極530、陽極集流器540以及電絕緣層550外,此實施例尚包含一封裝層570。該封裝可如第10圖所示般的多層封裝。在封裝層570與陽極530之間可置入,例如,第二LiPON層560。封裝層570可製作在陽極530上,該陽極包含金屬鋰。由於柔軟陽極530以及/或在陽極530與封裝570介面處的應力不平衡所產生的機構疲弱底部,所以陽極材料530的柔軟度會造成封裝層570破裂。一旦破裂,封裝570會使得易受影響的陽極530暴露在大氣中而破壞陽極。當使用玻璃LiPON(或其衍生物)調節層560以密封陽極時,其可機構性地穩定柔軟的陽極表面,第11圖中,比起電解質520、基材500(與一些實施例中的陰極集流器)、陽極530、陽極集流器540、電絕緣層550、調節LiPON層560以及薄膜封裝570的相對厚度時,陰極510的厚度可較厚。Figure 11 shows an electrochemical device in accordance with an embodiment of the present invention. In addition to the conductive substrate 500, the positive cathode 510, the electrolyte membrane 520, the negative anode 530, the anode current collector 540, and the electrically insulating layer 550, this embodiment also includes an encapsulation layer 570. The package can be as multi-layered as shown in Figure 10. A second LiPON layer 560 can be placed between the encapsulation layer 570 and the anode 530. Encapsulation layer 570 can be fabricated on anode 530, which contains metallic lithium. The softness of the anode material 530 can cause the encapsulation layer 570 to rupture due to the weakened bottom of the soft anode 530 and/or the stress imbalance at the interface between the anode 530 and the package 570. Once ruptured, the package 570 can expose the susceptible anode 530 to the atmosphere and destroy the anode. When glass LiPON (or a derivative thereof) is used to condition layer 560 to seal the anode, it can mechanically stabilize the soft anode surface, in Figure 11, compared to electrolyte 520, substrate 500 (and cathodes in some embodiments) When the relative thickness of the current collector, the anode 530, the anode current collector 540, the electrically insulating layer 550, the LiPON layer 560, and the thin film package 570 are adjusted, the thickness of the cathode 510 may be thick.
下層LiPON電解質層520與上方LiPON調節層560於保護中間陽極層530的同時也會在機構與化學上限制陽極。在此組態中,金屬陽極530,例如金屬鋰,在加熱超過其大約181度的熔點時會被熔化。由於其空間限制,對LiPON的化學保護與惰性會使其超過鋰的熔點,因此金屬鋰陽極530仍維持在固定位置上且仍完整的作為電化學裝置的負陽極材料。此工程設計亦使上述電化學裝置可用於回流焊接(solder reflow)製程或覆晶封裝(flip chip)製程。The lower LiPON electrolyte layer 520 and the upper LiPON conditioning layer 560 also mechanically and chemically limit the anode while protecting the intermediate anode layer 530. In this configuration, the metal anode 530, such as metallic lithium, is melted when heated above its melting point of about 181 degrees. Due to its space limitations, the chemical protection and inertness of LiPON will exceed the melting point of lithium, so the metallic lithium anode 530 remains in a fixed position and remains intact as a negative anode material for the electrochemical device. This engineering design also enables the above electrochemical device to be used in a solder reflow process or a flip chip process.
許多材料皆可當作陽極,例如銅鋰合金或固態溶液,諸如鋰銅合金(Lix Cu)、鋰鉻合金(Lix Zr)、鋰釩合金(Lix V)、鋰鎢合金(Lix W)、鋰鈹合金(Lix Be)、鋰鈹銅合金(Lix Bey Cu)等。熟知此技藝的人士瞭解上述與其他材料可當陽極使用。與柔軟金屬鋰相較,這些鋰合金或固態溶液可提供較強的機構特性,因此可允許多層薄膜封裝570的直接沈積而不需要使用上述置於柔軟負金屬陽極530與多層薄膜封裝570之間的LiPON調節層560。在這樣的情形中,LiPON調節層560是多餘的。Many materials can be used as anodes, such as copper-lithium alloys or solid solutions, such as lithium copper alloy (Li x Cu), lithium chromium alloy (Li x Zr), lithium vanadium alloy (Li x V), lithium tungsten alloy (Li x W), lithium niobium alloy (Li x Be), lithium niobium copper alloy (Li x Be y Cu), and the like. Those skilled in the art will appreciate that the above and other materials can be used as anodes. These lithium alloys or solid solutions provide strong mechanical properties compared to soft metallic lithium, thus allowing direct deposition of the multilayer thin film package 570 without the need to be placed between the soft negative metal anode 530 and the multilayer thin film package 570. LiPON conditioning layer 560. In such a case, the LiPON conditioning layer 560 is redundant.
在第11圖所示的實施例中,電化學裝置可製作在大小為25.4毫米x 25.4毫米且厚度為25微米的鋁基材上,該基材披覆80微米x 3.3平方公分的鋰鈷氧化物複合正陰極,該正陰極由62%體積濃度的鋰鈷氧化物粉末與體積平衡之聚合黏結料及導電碳黑粉末(510)、1.5微米薄膜的固態LiPON電解質(520)、10微米厚的負金屬鋰陽極(530)、0.5微米厚的鎳陽極集流器(540)、0.5微米厚的氧化鋅電絕緣層(550)、0.5微米厚的LiPON調節層(560)以及3微米厚的多層薄膜封裝層所組成,該薄膜封裝層由15層厚度為1000埃的鋯/1000埃的氧化鋯雙堆疊(570)所組成。在此範例中,電化學裝置在其最厚的剖面處係為120微米,且在電壓範圍4.2至3.0伏特而平均電壓為4.0伏特(V)時,可提供每小時10毫安培(mAh)的連續電容,此為完整電化學裝置產生520體積能量密度(Wh/liter)。當使用厚度10微米的鋁基材取代25微米的基材時,此裝置的體積能量密度由520增加至590瓦小時/升(Wh/litter)。In the embodiment shown in Fig. 11, the electrochemical device can be fabricated on an aluminum substrate having a size of 25.4 mm x 25.4 mm and a thickness of 25 μm, which is coated with lithium cobalt oxide of 80 μm x 3.3 cm 2 . Composite positive cathode, the positive cathode consists of 62% volume concentration of lithium cobalt oxide powder and volume balanced polymeric binder and conductive carbon black powder (510), 1.5 micron thin film solid LiPON electrolyte (520), 10 micron thick negative Metal lithium anode (530), 0.5 micron thick nickel anode current collector (540), 0.5 micron thick zinc oxide electrically insulating layer (550), 0.5 micron thick LiPON conditioning layer (560) and 3 micron thick multilayer film The encapsulation layer consists of 15 layers of zirconium/1000 angstrom zirconia double stack (570) having a thickness of 1000 angstroms. In this example, the electrochemical device is 120 microns at its thickest profile and provides 10 milliamps per hour (mAh) at voltages ranging from 4.2 to 3.0 volts and an average voltage of 4.0 volts (V). Continuous capacitance, which produces 520 volumetric energy density (Wh/liter) for a complete electrochemical device. When a 25 micron thick aluminum substrate was used in place of a 25 micron substrate, the volumetric energy density of the device increased from 520 to 590 watt hours per liter (Wh/litter).
在另一個實施例中,可包含阻障層(barrier layer)。阻障層可沈積在基材上,例如金屬薄片基材,其中阻障層係化學分隔電池部分(即,電化學活性電池)與電化學裝置的基材部分。在電池製作與電池操作及儲存狀態時,阻障層可避免任何污染物由基材進入電池,以及可阻擋離子脫離電池而擴散至基材中。一些可當作阻障層的材料可包含非良好離子傳導材料,例如,硼化物、碳化物、鑽石、類鑽石碳、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、碘化物與任何上述組成的化合物。以上的化合物中,電絕緣材料可進一步避免在基材與電池層之間發生可能的反應。例如,若包含離子與電子擴散的化學反應發生時,絕緣阻障層可阻擋電子,因此避免任何化學反應。然而,阻障層也可包含導電材料,只要此材料不接觸任何基材或電池層材料的離子。例如,氮化鋯係為可避免離子傳導的有效傳導層。在一些範例中,視施加在電池製作過程的退火溫度與基材材料而定,金屬、合金以及/或半金屬亦可當作阻障層。擴散阻障層可為單一或多相、結晶、玻璃質、非晶矽或任何上述混合物,不過由於玻璃質與非晶矽結構缺乏晶界,所以在一些應用中係為較佳結構,其中晶界將當作增多(但不需要)的離子與電子傳導的位置。In another embodiment, a barrier layer can be included. The barrier layer can be deposited on a substrate, such as a foil substrate, wherein the barrier layer chemically separates the battery portion (ie, the electrochemically active battery) from the substrate portion of the electrochemical device. The barrier layer prevents any contaminants from entering the cell from the substrate during cell fabrication and battery handling and storage, as well as preventing ions from escaping into the cell and diffusing into the substrate. Some materials that can be used as barrier layers can contain non-good ion-conducting materials such as borides, carbides, diamonds, diamond-like carbons, tellurides, nitrides, phosphides, oxides, fluorides, chlorides, bromine. a compound, an iodide, and a compound of any of the above composition. Among the above compounds, the electrically insulating material can further avoid possible reactions between the substrate and the battery layer. For example, if a chemical reaction involving the diffusion of ions and electrons occurs, the insulating barrier layer blocks electrons, thus avoiding any chemical reaction. However, the barrier layer may also comprise a conductive material as long as the material does not contact ions of any substrate or battery layer material. For example, zirconium nitride is an effective conductive layer that avoids ion conduction. In some examples, depending on the annealing temperature applied to the cell fabrication process and the substrate material, the metal, alloy, and/or semi-metal may also serve as a barrier layer. The diffusion barrier layer may be single or multi-phase, crystalline, vitreous, amorphous germanium or any mixture of the above, but since the vitreous and amorphous germanium structures lack grain boundaries, they are preferred structures in some applications, wherein The boundary will be considered as an increased (but not required) position for ion and electron conduction.
如第10圖與第11圖所示的薄膜封裝層可位於裝置上方。因此,具彈性的封裝可使裝置延展與收縮。上述玻璃金屬多層封裝係呈現適當的彈性特性,利用改變濺鍍沈積參數即可改變該彈性特性,並因此改變玻璃以及/或金屬的密度。另一個改變薄膜封裝組成的機構特性與薄膜封裝的方法,可包含改變薄膜封裝的一或多種組成的化學劑量。例如,氮化鋯(ZrN)可改變成氮化二鋯(Zr2 N),其等於改變氮化物層的特定組成。另外,可改變堆疊的金屬。例如,除了鋯/氮化鋯/鋯/氮化鋯的堆疊外,可製作由鋯/氮化鋁/鉻/氮化鈦所組成的多層薄膜封裝。The thin film encapsulation layers as shown in Figures 10 and 11 can be located above the device. Therefore, the flexible package allows the device to be stretched and contracted. The above-described glass-metal multilayer package exhibits appropriate elastic properties, which can be changed by changing the sputtering deposition parameters, and thus the density of the glass and/or metal. Another method of altering the mechanical properties of the film package composition and the film package can include varying the chemical dose of one or more components of the film package. For example, zirconium nitride (ZrN) can be changed to zirconium nitride (Zr 2 N), which is equivalent to changing the specific composition of the nitride layer. In addition, the stacked metal can be changed. For example, in addition to the stack of zirconium/zirconium nitride/zirconium/zirconium nitride, a multilayer film package composed of zirconium/aluminum nitride/chromium/titanium nitride can be fabricated.
上述實施例中的厚正陰極不但便宜且可靠。厚陰極亦可由薄電解質、薄陽極與薄封裝所構成,以最大化電化學裝置的電容、能量與功率的體積密度。The thick positive cathode in the above embodiment is not only inexpensive but also reliable. The thick cathode can also be composed of a thin electrolyte, a thin anode and a thin package to maximize the bulk density of the capacitance, energy and power of the electrochemical device.
第12圖顯示本發明的另一個實施例,其繪示第12圖中的電化學裝置的不同組態以及轉化的薄膜電池組態。當負陽極610直接沈積在基材600上時,該陽極選自於第2圖中所述的相同材料並以相同方法製作,因此基材(例如,銅箔)係對陽極610具導電與化學惰性。在此特定組態中,基材亦可當作電池的陽極集流器與負終端。若基材600電性絕緣,那麼另一個由,例如銅或鎳,所組成的陽極集流器可置於基材600與負陽極610(未顯示)之間。利用延伸陽極集流器超過封裝650的邊緣或在基材600上提供開口,可完成通至陽極集流器的電通路。基材上的開口可以導電材料填充,例如銅膠,以此方式,該材料可與陽極集流器有電性接觸。也使用如第2圖所述的電解質的相同材料與方法,電解質620係設置在陽極610上方。也使用如第2圖所述的正陰極的相同材料與方法,正陰極630係設置在電解質620上方。為了使電通路至正陰極630處,陰極集流器640,例如鋁或金,係位於正陰極630的頂部。若封裝650係用於電化學裝置上,那麼可提供開口660於封裝650上,以使電通路至正陰極630處。Figure 12 shows another embodiment of the invention showing the different configurations of the electrochemical device of Figure 12 and the converted thin film battery configuration. When the negative anode 610 is directly deposited on the substrate 600, the anode is selected from the same material as described in FIG. 2 and fabricated in the same manner, so that the substrate (eg, copper foil) is electrically conductive and chemical to the anode 610. Inert. In this particular configuration, the substrate can also be used as the anode current collector and negative terminal of the battery. If the substrate 600 is electrically insulated, another anode current collector, such as copper or nickel, can be placed between the substrate 600 and the negative anode 610 (not shown). The electrical path to the anode current collector can be accomplished by extending the anode current collector over the edge of the package 650 or providing an opening in the substrate 600. The opening in the substrate can be filled with a conductive material, such as copper glue, in such a manner that the material can be in electrical contact with the anode current collector. The same materials and methods as the electrolyte described in FIG. 2 are also used, and the electrolyte 620 is disposed above the anode 610. The same material and method of the positive cathode as described in FIG. 2 is also used, and the positive cathode 630 is disposed above the electrolyte 620. In order to electrically route the positive cathode 630, a cathode current collector 640, such as aluminum or gold, is located on top of the positive cathode 630. If the package 650 is used on an electrochemical device, an opening 660 can be provided on the package 650 to allow electrical path to the positive cathode 630.
同樣地,可使用第11圖中所述的元件、材料與方法製作具有轉化薄膜電池組態的電化學裝置。該電化學裝置係顯示於第13圖中。第一,負陽極710係直接位於化學惰性基材700上。為了避免電化學裝置的短路,可製作電絕緣層750,其可部分披覆著電解質720且可整個覆蓋於陽極710上。在沈積電解質720之後,沈積正陰極730並接著沈積陰極集流器740。在電化學裝置製作過程中為了採用薄膜封裝770於存在層上,機構與化學調節層760可位於電化學裝置的電池部分區域中,其係定義為陰極。熟悉此技藝的人士將瞭解本發明涵蓋其他經由結合上述非轉化電池而完成的轉化組態。Similarly, an electrochemical device having a converted thin film battery configuration can be fabricated using the elements, materials, and methods described in FIG. The electrochemical device is shown in Figure 13. First, the negative anode 710 is directly on the chemically inert substrate 700. To avoid shorting of the electrochemical device, an electrically insulating layer 750 can be fabricated that can partially cover the electrolyte 720 and can entirely cover the anode 710. After depositing the electrolyte 720, a positive cathode 730 is deposited and then a cathode current collector 740 is deposited. In order to utilize the thin film encapsulation 770 on the existing layer during fabrication of the electrochemical device, the mechanism and chemical conditioning layer 760 can be located in the cell portion of the electrochemical device, which is defined as the cathode. Those skilled in the art will appreciate that the present invention encompasses other conversion configurations that are accomplished via the combination of the non-converted batteries described above.
在其他實施例中,阻障層可位於基材與電化學裝置的電池部之間,如2005年8月23日申請,名稱為「具有阻障層保護基材的電化學裝置(Electrochemical Apparatus with Barrier Layer Protected Substrate)」的美國專利申請號11/209536中所述,在此係以參考方式納入該案的內容。視阻障層的材料與組態而定,可製作一或多層額外的集流器在阻障層上,以便改進對正陰極與負陽極的電性接觸。In other embodiments, the barrier layer can be located between the substrate and the battery portion of the electrochemical device, as claimed in the August 23, 2005 application entitled "Electrochemical Apparatus with a barrier protective substrate" Barrier Layer Protected Substrate) is described in U.S. Patent Application Serial No. 11/209,536, the disclosure of which is incorporated herein by reference. Depending on the material and configuration of the barrier layer, one or more additional current collectors can be fabricated on the barrier layer to improve electrical contact between the positive and negative anodes.
上述的實施例僅為範例說明之用。熟悉此技藝的人士可在上述實施例中延伸出其他仍屬於本發明範圍的實施例。因此,本發明係以後附的專利申請範圍界定。本發明係涵蓋所有落入後附之專利申請範圍與等效實施例的變更與修飾。再者,本發明之電化學裝置的形成或表現的特定說明與理論係僅供說明之用,並非用以限定本揭露書或專利申請範圍的精神與範圍。The above embodiments are for illustrative purposes only. Those skilled in the art can extend other embodiments that are still within the scope of the invention in the above-described embodiments. Accordingly, the invention is defined by the scope of the appended claims. The invention is to cover all modifications and variations of the scope of the appended claims. In addition, the specific description and the theory of the present invention are not intended to limit the scope of the disclosure or the scope of the patent application.
100...基材100. . . Substrate
101...集流器101. . . Current collector
120...陰極層120. . . Cathode layer
110...電解質110. . . Electrolyte
200...基材200. . . Substrate
210...陰極210. . . cathode
220...電解質層220. . . Electrolyte layer
230...陽極230. . . anode
240...陽極集流器240. . . Anode current collector
250...封裝250. . . Package
260...開口260. . . Opening
300...金屬層300. . . Metal layer
310...陰極310. . . cathode
320...電解質320. . . Electrolyte
330...陽極330. . . anode
350...封裝350. . . Package
340...陽極集流器340. . . Anode current collector
400...多層薄膜封裝400. . . Multilayer film package
410...金屬吸收層410. . . Metal absorbing layer
500...導電基材500. . . Conductive substrate
510...陰極510. . . cathode
520...電解質膜520. . . Electrolyte membrane
530...陽極530. . . anode
540...陽極集流器540. . . Anode current collector
550...絕緣層550. . . Insulation
570...封裝層570. . . Encapsulation layer
560...調節層560. . . Adjustment layer
600...基材600. . . Substrate
610...陽極610. . . anode
620...電解質620. . . Electrolyte
630...陰極630. . . cathode
640...陰極集流器640. . . Cathode current collector
650...封裝650. . . Package
660...開口660. . . Opening
700...基材700. . . Substrate
710...陽極710. . . anode
720...電解質720. . . Electrolyte
730...陰極730. . . cathode
740...陰極集流器740. . . Cathode current collector
760...調節層760. . . Adjustment layer
770...薄膜封裝770. . . Thin film package
本發明所附的圖式與說明係為了解釋本發明所用。圖式如下:第1圖繪示具有依據先前技術長成之圓柱的陰極;第2圖繪示根據本發明範例實施例之混合薄膜電化學裝置;第3圖繪示合成物鋰鈷氧化物(LiCoO2 )陰極的掃瞄式電子顯微剖面圖(SEM),依據本發明範例實施例,該陰極係以漿液塗佈沈積並以鋰磷氮氧化物(LiPON)薄膜電解質包覆;第4圖繪示根據本發明範例實施例中使用合成物LiCoO2 陰極與第3圖的LiPON薄膜之電化學裝置的電化學週期反應;第5圖繪示根據本發明實施例,以電泳沈積(electrophoretic deposition)製作的9微米厚、完全結晶之LiCoO2 正陰極膜的掃瞄式電子顯微圖;第6圖繪示薄膜電化學裝置的電流放電電壓表現,該電化學裝置的LiCoO2 正陰極係利用本發明實施例的電泳沈積所製成;第7圖繪示薄膜電化學裝置的可逆放電電容(reversible discharge capacity)與薄膜電化學裝置週期數(cycle number)的關係,該電化學裝置的LiCoO2 正陰極係利用本發明實施例的電泳沈積所製成;第8圖繪示根據本發明實施例,以噴墨製作的15微米厚、完全結晶之LiCoO2 正陰極膜的掃瞄式電子顯微圖;第9圖繪示根據本發明範例實施例之混合薄膜電化學裝置;第10圖繪示根據本發明範例實施例之用以密封電化學裝置的多層薄膜;第11圖繪示如第2圖所示的電化學裝置,其包含一調節LiPON膜與多層薄膜封裝層;第12圖繪示根據本發明範例實施例之轉化薄膜電池(inverted thin-film battery)組態;第13圖繪示轉化薄膜電池的實施例;以及第14圖繪示具表面壓紋的陰極層實施例。The drawings and descriptions of the invention are used to explain the invention. The drawings are as follows: Figure 1 shows a cathode having a cylinder grown according to the prior art; Figure 2 illustrates a hybrid thin film electrochemical device according to an exemplary embodiment of the present invention; and Figure 3 illustrates a composite lithium cobalt oxide (Fig. 3) LiCoO 2 ) Scanning electron micrograph (SEM) of a cathode according to an exemplary embodiment of the invention, the cathode is deposited by slurry coating and coated with a lithium phosphorus oxynitride (LiPON) thin film electrolyte; An electrochemical cycle reaction of an electrochemical device using a composite LiCoO 2 cathode and a LiPON thin film of FIG. 3 according to an exemplary embodiment of the present invention is shown; and FIG. 5 illustrates an electrophoretic deposition according to an embodiment of the present invention. Scanning electron micrograph of a 9 micron thick, fully crystalline LiCoO 2 positive cathode film; Figure 6 shows the current discharge voltage performance of a thin film electrochemical device, the LiCoO 2 positive cathode system of the electrochemical device The electrophoretic deposition of the embodiment of the invention is made; FIG. 7 is a diagram showing the relationship between the reversible discharge capacity of the thin film electrochemical device and the cycle number of the thin film electrochemical device. The LiCoO 2 positive cathode system is fabricated by electrophoretic deposition of the embodiment of the present invention; and FIG. 8 is a scanning diagram of a 15 μm thick, fully crystallized LiCoO 2 positive cathode film fabricated by inkjet according to an embodiment of the present invention. Electron micrograph; Fig. 9 is a view showing a hybrid thin film electrochemical device according to an exemplary embodiment of the present invention; Fig. 10 is a view showing a multilayer film for sealing an electrochemical device according to an exemplary embodiment of the present invention; An electrochemical device as shown in FIG. 2, comprising a regulating LiPON film and a multilayer thin film encapsulation layer; and FIG. 12 is a view showing an inverted thin-film battery configuration according to an exemplary embodiment of the present invention; The figure illustrates an embodiment of a converted thin film battery; and Figure 14 illustrates an embodiment of a cathode layer having surface embossing.
200...基材200. . . Substrate
210...陰極210. . . cathode
220...電解質層220. . . Electrolyte layer
230...陽極230. . . anode
240...陽極集流器240. . . Anode current collector
250...封裝250. . . Package
260...開口260. . . Opening
Claims (171)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US73761305P | 2005-11-17 | 2005-11-17 | |
US75947906P | 2006-01-17 | 2006-01-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200746499A TW200746499A (en) | 2007-12-16 |
TWI406443B true TWI406443B (en) | 2013-08-21 |
Family
ID=49484549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095142611A TWI406443B (en) | 2005-11-17 | 2006-11-17 | Hybrid thin-film battery |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI406443B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI485905B (en) * | 2014-07-18 | 2015-05-21 | Iner Aec Executive Yuan | Thin film battery structure and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5569520A (en) * | 1994-01-12 | 1996-10-29 | Martin Marietta Energy Systems, Inc. | Rechargeable lithium battery for use in applications requiring a low to high power output |
US5612153A (en) * | 1995-04-13 | 1997-03-18 | Valence Technology, Inc. | Battery mask from radiation curable and thermoplastic materials |
US6664006B1 (en) * | 1999-09-02 | 2003-12-16 | Lithium Power Technologies, Inc. | All-solid-state electrochemical device and method of manufacturing |
-
2006
- 2006-11-17 TW TW095142611A patent/TWI406443B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5569520A (en) * | 1994-01-12 | 1996-10-29 | Martin Marietta Energy Systems, Inc. | Rechargeable lithium battery for use in applications requiring a low to high power output |
US5612153A (en) * | 1995-04-13 | 1997-03-18 | Valence Technology, Inc. | Battery mask from radiation curable and thermoplastic materials |
US6664006B1 (en) * | 1999-09-02 | 2003-12-16 | Lithium Power Technologies, Inc. | All-solid-state electrochemical device and method of manufacturing |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI485905B (en) * | 2014-07-18 | 2015-05-21 | Iner Aec Executive Yuan | Thin film battery structure and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW200746499A (en) | 2007-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8445130B2 (en) | Hybrid thin-film battery | |
US8431264B2 (en) | Hybrid thin-film battery | |
EP1961060B1 (en) | Hybrid thin-film battery | |
US20160308173A1 (en) | Hybrid thin-film battery | |
JP2009516359A5 (en) | ||
US11569491B2 (en) | Method for manufacturing all-solid-state batteries in a multilayer structure | |
US10734674B2 (en) | Solid-state thin film hybrid electrochemical cell | |
US10333123B2 (en) | High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same | |
JP5211527B2 (en) | All-solid lithium ion secondary battery and method for producing the same | |
CN101276941B (en) | All-solid-state lithium-ion secondary battery and manufacture method thereof | |
AU2002242732B2 (en) | Mesoporous network electrode for electrochemical cell | |
EP1207572A1 (en) | Mesoporous electrodes for electrochemical cells and their production method | |
CN108475765A (en) | All-solid-state battery having solid electrolyte and ion conductive material layer | |
US20230238502A1 (en) | Method for manufacturing a porous electrode, and microbattery containing such an electrode | |
JP4705583B2 (en) | Electrode material and manufacturing method thereof | |
US20230085658A1 (en) | Method for manufacturing a porous electrode, and battery containing such an electrode | |
KR102470105B1 (en) | Solid-state thin-film hybrid electrochemical cells | |
TWI406443B (en) | Hybrid thin-film battery | |
JP2002298849A (en) | Secondary electric power source | |
CN118435373A (en) | Method for manufacturing porous electrode and battery containing such electrode | |
CN119318033A (en) | Covered active material, battery using the same, and method for producing covered active material | |
JP2025502735A (en) | Methods for producing porous electrodes and batteries containing such electrodes |