TWI402548B - Fiber system having multi mode fiber amplifier and single mode fiber and the wide band coupling method thereof - Google Patents
Fiber system having multi mode fiber amplifier and single mode fiber and the wide band coupling method thereof Download PDFInfo
- Publication number
- TWI402548B TWI402548B TW97132394A TW97132394A TWI402548B TW I402548 B TWI402548 B TW I402548B TW 97132394 A TW97132394 A TW 97132394A TW 97132394 A TW97132394 A TW 97132394A TW I402548 B TWI402548 B TW I402548B
- Authority
- TW
- Taiwan
- Prior art keywords
- fiber
- single mode
- multimode
- core
- diameter
- Prior art date
Links
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Lasers (AREA)
Description
本發明係關於一種光纖系統及其耦光方法,特別是一種具有多模光纖放大器及單模光纖之光纖系統及其寬頻耦光方法。The present invention relates to a fiber optic system and a light coupling method thereof, and more particularly to a fiber optic system having a multimode fiber amplifier and a single mode fiber and a wide frequency coupling method thereof.
目前習知在多模光纖對單模光纖的耦光方法上,主要是利用透鏡組合,舉例如下。中華民國專利公告第00521169號揭示一種混合光纖透鏡與球透鏡,中華民國專利公開第200300215號揭示一種梯度折射棒透鏡,中華民國專利第I230812號揭示一種多透鏡裝置。以上三種習知方式皆可用以降低多模光纖與單模光纖間模態的不匹配,進而增加耦光效率。然而這些習知方式的缺點是需要用到較多的元件,因而增加元件的對準與構裝之困難度,並且只能用在單一波長的耦光,而不適用於寬頻多模光纖放大器的耦光。At present, in the coupling method of a multimode fiber to a single mode fiber, a lens combination is mainly used, as exemplified below. A hybrid optical fiber lens and a ball lens are disclosed in the Republic of China Patent Publication No. 00521169. A gradient refracting rod lens is disclosed in the Republic of China Patent Publication No. 200300215, and a multi-lens device is disclosed in the Republic of China Patent No. I230812. The above three conventional methods can be used to reduce the mismatch between the modal modes of the multimode fiber and the single mode fiber, thereby increasing the coupling efficiency. However, the disadvantage of these conventional methods is that more components are needed, which increases the difficulty of alignment and assembly of the components, and can only be used for coupling light at a single wavelength, and is not suitable for broadband multimode fiber amplifiers. Coupled light.
因此,有必要提供一創新且富進步性的具有多模光纖放大器及單模光纖之光纖系統及其寬頻耦光方法,以解決上述問題。Therefore, it is necessary to provide an innovative and progressive fiber system with multimode fiber amplifiers and single mode fibers and a wide frequency coupling method to solve the above problems.
本發明係提供一種具有多模光纖放大器及單模光纖之光纖系統之寬頻耦光方法,包括以下步驟:(a)提供一第一單模光纖及一第二單模光纖,該第一單模光纖具有一第一模場直徑(Mode Field Diameter,MFD),該第二單模光纖具有 一第二模場直徑;(b)提供一多模光纖放大器,該多模光纖放大器具有一第三模場直徑、一第三纖核、一輸入端及一輸出端,該第三纖核具有一第三纖核直徑,其中該多模光纖放大器之第三纖核直徑係由該第一單模光纖之第一模場直徑所決定,以使得該多模光纖放大器之第三模場直徑與該第一單模光纖之第一模場直徑相同;(c)將該第一單模光纖之一端緊靠該多模光纖放大器之輸入端,且將該第二單模光纖之一端緊靠該多模光纖放大器之輸出端;及(d)提供一泵浦(Pump)光至該多模光纖放大器,使得該多模光纖放大器接受來自該第一單模光纖之光而放大輸出至該第二單模光纖。The present invention provides a broadband frequency coupling method for a fiber system having a multimode fiber amplifier and a single mode fiber, comprising the steps of: (a) providing a first single mode fiber and a second single mode fiber, the first single mode The optical fiber has a first Mode Field Diameter (MFD), and the second single mode fiber has a second mode field diameter; (b) providing a multimode fiber amplifier having a third mode field diameter, a third core, an input, and an output, the third core having a third core diameter, wherein the third core diameter of the multimode fiber amplifier is determined by a first mode field diameter of the first single mode fiber such that a third mode field diameter of the multimode fiber amplifier is The first mode fiber has a first mode field having the same diameter; (c) one end of the first single mode fiber is abutted to the input end of the multimode fiber amplifier, and one end of the second single mode fiber is adjacent to the An output of the multimode fiber amplifier; and (d) providing a pumping light to the multimode fiber amplifier such that the multimode fiber amplifier receives light from the first single mode fiber and amplifies the output to the second Single mode fiber.
本發明另提供一種具有多模光纖放大器及單模光纖之光纖系統,其包括一第一單模光纖、一第二單模光纖及一多模光纖放大器。該第一單模光纖具有一第一模場直徑。該第二單模光纖具有一第二模場直徑。該多模光纖放大器具有一第三模場直徑、一第三纖核、一輸入端及一輸出端,該第三纖核具有一第三纖核直徑,其中該多模光纖放大器之第三纖核直徑係由該第一單模光纖之第一模場直徑所決定,以使得該多模光纖放大器之第三模場直徑與該第一單模光纖之第一模場直徑相同,該第一單模光纖之一端係緊靠該多模光纖放大器之輸入端,且該第二單模光纖之一端係緊靠該多模光纖放大器之輸出端。The present invention further provides a fiber optic system having a multimode fiber amplifier and a single mode fiber, comprising a first single mode fiber, a second single mode fiber, and a multimode fiber amplifier. The first single mode fiber has a first mode field diameter. The second single mode fiber has a second mode field diameter. The multimode fiber amplifier has a third mode field diameter, a third core, an input end and an output end, the third core having a third core diameter, wherein the third fiber of the multimode fiber amplifier The core diameter is determined by the first mode field diameter of the first single mode fiber such that the third mode field diameter of the multimode fiber amplifier is the same as the first mode field diameter of the first single mode fiber, the first One end of the single mode fiber is immediately adjacent to the input of the multimode fiber amplifier, and one end of the second single mode fiber is adjacent to the output of the multimode fiber amplifier.
本發明係調整該多模光纖放大器的第三纖核直徑使其可以與該第一單模光纖及該第二單模光纖達成模態匹配,進 而提高耦光效率。藉此,可以降低該多模光纖放大器的插入損失(Insertion Loss),進而提高該多模光纖放大器的增益。此外,本發明之方法簡單,重複性高且成本低廉。The invention adjusts the third core diameter of the multimode fiber amplifier so as to achieve modal matching with the first single mode fiber and the second single mode fiber. And improve the coupling efficiency. Thereby, the insertion loss (Insertion Loss) of the multimode fiber amplifier can be reduced, thereby increasing the gain of the multimode fiber amplifier. Furthermore, the method of the invention is simple, highly reproducible and low in cost.
參考圖1,顯示本發明之具有多模光纖放大器及單模光纖之光纖系統之示意圖。該光纖系統1包括一第一單模光纖(Single Mode Fiber)11、一第二單模光纖12及一多模光纖放大器13。該第一單模光纖11具有一第一模場直徑、一第一纖核(Core)111、一第一端112及一第二端113。該第一纖核111具有一第一纖核直徑。該第二單模光纖12具有一第二模場直徑及一第二纖核121,該第二纖核121具有一第二纖核直徑。該第一纖核直徑與該第二纖核直徑係為物理直徑,其可以經由量測得出;該第一模場直徑與該第二模場直徑則係經由演算得出。在本實施例中,該第一纖核直徑與該第二纖核直徑相同,皆為8微米(μm);該第一模場直徑與該第二模場直徑相同,皆為10微米(μm)。Referring to Figure 1, there is shown a schematic diagram of a fiber optic system having a multimode fiber amplifier and a single mode fiber of the present invention. The fiber optic system 1 includes a first single mode fiber 11 , a second single mode fiber 12 , and a multimode fiber amplifier 13 . The first single mode fiber 11 has a first mode field diameter, a first core 111, a first end 112 and a second end 113. The first core 111 has a first core diameter. The second single mode fiber 12 has a second mode field diameter and a second core 121 having a second core diameter. The first core diameter and the second core diameter are physical diameters, which can be measured by measurement; the first mode field diameter and the second mode field diameter are calculated by calculation. In this embodiment, the diameter of the first core is the same as the diameter of the second core, which is 8 micrometers (μm); the diameter of the first mode field is the same as the diameter of the second mode field, and each is 10 micrometers (μm). ).
該多模光纖放大器13較佳為一摻鉻多模光纖放大器(Multi-mode Cr4+ -doped Fiber(MMCDF)Optical Amplifier)。該多模光纖放大器13具有一第三模場直徑、一第三纖核131、一輸入端132、一輸出端133及一側面134。該第三纖核131具有一第三纖核直徑,其中該多模光纖放大器13之第三纖核直徑係由該第一單模光纖11之第一模場直徑所決定,以使得該多模光纖放大器13之第三模場直徑與該第一單模光纖11之第一模場直徑相同。亦即,在 確定該第一單模光纖11之第一模場直徑後,該多模光纖放大器13之第三模場直徑與該第一單模光纖11之第一模場直徑相同,再利用該多模光纖放大器13之第三模場直徑推算出該多模光纖放大器13之第三纖核直徑。在本實施例中,該多模光纖放大器13之第三纖核直徑係介於12微米(μm)至19微米(μm)之間,且該第三模場直徑係為10微米(μm)。The multimode fiber amplifier 13 is preferably a multi-mode Cr 4+ -doped fiber (MMCDF) Optical Amplifier. The multimode fiber amplifier 13 has a third mode field diameter, a third core 131, an input 132, an output 133, and a side 134. The third core 131 has a third core diameter, wherein the third core diameter of the multimode fiber amplifier 13 is determined by the first mode field diameter of the first single mode fiber 11 to make the multimode The third mode field diameter of the fiber amplifier 13 is the same as the first mode field diameter of the first single mode fiber 11. That is, after determining the first mode field diameter of the first single mode fiber 11, the third mode field diameter of the multimode fiber amplifier 13 is the same as the first mode field diameter of the first single mode fiber 11, and is reused. The third mode field diameter of the multimode fiber amplifier 13 derives the third core diameter of the multimode fiber amplifier 13. In this embodiment, the third core diameter of the multimode fiber amplifier 13 is between 12 micrometers (μm) and 19 micrometers (μm), and the third mode field diameter is 10 micrometers (μm).
該第一單模光纖11之一端(該第二端113)係緊靠該多模光纖放大器13之輸入端132,該第二單模光纖12之一端係緊靠該多模光纖放大器13之輸出端133。較佳地,該第一單模光纖11之一端(該第二端113)係黏貼於該多模光纖放大器13之輸入端132,該第二單模光纖12之一端係黏貼於該多模光纖放大器13之輸出端133。該多模光纖放大器13係接受來自該第一單模光纖11之光而放大輸出至該第二單模光纖12。One end of the first single mode fiber 11 (the second end 113) abuts the input end 132 of the multimode fiber amplifier 13, and one end of the second single mode fiber 12 abuts the output of the multimode fiber amplifier 13 End 133. Preferably, one end of the first single mode fiber 11 (the second end 113) is adhered to the input end 132 of the multimode fiber amplifier 13, and one end of the second single mode fiber 12 is adhered to the multimode fiber. The output 133 of the amplifier 13. The multimode fiber amplifier 13 receives light from the first single mode fiber 11 and amplifies the output to the second single mode fiber 12.
較佳地,該光纖系統1更包括一泵浦(Pump)光輸入元件,用以提供一泵浦光至該多模光纖放大器13,使得該多模光纖放大器13具有放大之功能。該泵浦光可以經由該多模光纖放大器13之側面134或是輸入端132進入該多模光纖放大器13。在本實施例中,該泵浦光係經由該多模光纖放大器13之輸入端132進入該多模光纖放大器13,該泵浦光輸入元件包括一光纖耦合器(Coupler)14、一第三單模光纖15及一第四單模光纖16。該光纖耦合器14具有一輸入端141及一輸出端142。該第三單模光纖15及該第四單模光纖16皆連接至該光纖耦合器14之輸入端141。該第一單模光 纖11之第一端112係連接至該光纖耦合器14之輸出端142。該第三單模光纖15係用以傳送一信號光,該第四單模光纖16係用以傳送一泵浦光。該第一單模光纖11係用以傳送耦合後之信號光及泵浦光至該多模光纖放大器13。在通常情況下,該多模光纖放大器13會吸收該泵浦光且放大該信號光。放大後之信號光則輸出至該第二單模光纖12。Preferably, the fiber optic system 1 further includes a pumping optical input element for providing a pumping light to the multimode fiber amplifier 13 such that the multimode fiber amplifier 13 has an amplification function. The pump light can enter the multimode fiber amplifier 13 via the side 134 or the input 132 of the multimode fiber amplifier 13. In the present embodiment, the pumping light enters the multimode fiber amplifier 13 via the input 132 of the multimode fiber amplifier 13, the pumping light input component comprising a fiber coupler, a third The mode fiber 15 and a fourth single mode fiber 16. The fiber coupler 14 has an input end 141 and an output end 142. The third single mode fiber 15 and the fourth single mode fiber 16 are both connected to the input end 141 of the fiber coupler 14. The first single mode light The first end 112 of the fiber 11 is coupled to the output 142 of the fiber optic coupler 14. The third single mode fiber 15 is for transmitting a signal light, and the fourth single mode fiber 16 is for transmitting a pump light. The first single mode fiber 11 is used to transmit the coupled signal light and pump light to the multimode fiber amplifier 13. Under normal circumstances, the multimode fiber amplifier 13 absorbs the pump light and amplifies the signal light. The amplified signal light is output to the second single mode fiber 12.
參考圖2,顯示本發明中第一纖核直徑為8微米(μm)之第一單模光纖與具有不同第三纖核直徑之多模光纖放大器在三種不同光波長之情況下之耦光效率圖。其中曲線a代表波長為1310奈米(nm)之光,曲線b代表波長為1450奈米(nm)之光,曲線c代表波長為1550奈米(nm)之光。由圖中可看出,以曲線b為例,如果入射光之波長為1450奈米(nm),該多模光纖放大器之第三纖核直徑為14.5微米(μm)時會有最大的耦光效率94.5%;而當該多模光纖放大器之第三纖核直徑為7.0微米(μm)時,耦光效率則下降至59.3%Referring to FIG. 2, the coupling efficiency of the first single mode fiber having a first core diameter of 8 micrometers (μm) and the multimode fiber amplifier having different third core diameters at three different optical wavelengths in the present invention is shown. Figure. Where curve a represents light having a wavelength of 1310 nanometers (nm), curve b represents light having a wavelength of 1450 nanometers (nm), and curve c represents light having a wavelength of 1550 nanometers (nm). As can be seen from the figure, taking curve b as an example, if the wavelength of the incident light is 1450 nanometers (nm), the third fiber core of the multimode fiber amplifier has a maximum coupling angle of 14.5 micrometers (μm). The efficiency is 94.5%; when the third core diameter of the multimode fiber amplifier is 7.0 micrometers (μm), the coupling efficiency decreases to 59.3%.
參考圖3a至圖3c,顯示本發明中不同尺寸之多模光纖放大器之第三纖核直徑之情況下,光纖系統內部之光場分佈示意圖,其中每一圖中左右二側分別為該第一單模光纖及該第二單模光纖之內部光場,中間區域為該多模光纖放大器之內部光場。圖3a中該多模光纖放大器之第三纖核直徑為7.0微米(μm),圖3b中該多模光纖放大器之第三纖核直徑為14.5微米(μm),圖3c中該多模光纖放大器之第三纖核直徑為28.0微米(μm)。比較上述三圖可看出,當該多模光纖放大器之第三纖核直徑為14.5微米(μm)時(圖3b),其內 部光場會與該第一單模光纖及該第二單模光纖之內部光場較一致,而接近單模激發(Single-mode Excitation)。Referring to FIG. 3a to FIG. 3c, there is shown a schematic diagram of light field distribution inside the optical fiber system in the case of the third core diameter of the multi-mode fiber amplifier of different sizes in the present invention, wherein the left and right sides of each figure are respectively the first The internal light field of the single mode fiber and the second single mode fiber, and the middle region is the internal light field of the multimode fiber amplifier. The third core of the multimode fiber amplifier of Figure 3a has a diameter of 7.0 micrometers (μm), and the third core of the multimode fiber amplifier of Fig. 3b has a diameter of 14.5 micrometers (μm). The multimode fiber amplifier of Fig. 3c The third core has a diameter of 28.0 micrometers (μm). Comparing the above three figures, it can be seen that when the third core of the multimode fiber amplifier has a diameter of 14.5 micrometers (μm) (Fig. 3b), The light field is more consistent with the internal light field of the first single mode fiber and the second single mode fiber, and is close to single-mode excitation.
參考圖4,顯示本發明中第一纖核直徑為8微米(μm)之第一單模光纖與具有不同第三纖核直徑之多模光纖放大器在不同光波長之情況下之耦光效率模擬與實際量測圖。其中曲線d代表該多模光纖放大器之第三纖核直徑為12微米(μm)之模擬曲線,曲線e代表該多模光纖放大器之第三纖核直徑為19微米(μm)之模擬曲線,黑點(●)代表該多模光纖放大器之第三纖核直徑為15.5±3.4微米(μm)之實際量測數值。由圖可看出,實際量測數值十分接近模擬曲線,而且該多模光纖放大器之第三纖核直徑為15.5±3.4微米(μm)之範圍內在不同波長之情況下皆有相當高之耦光效率。Referring to FIG. 4, there is shown a coupling efficiency simulation of a first single mode fiber having a first core diameter of 8 micrometers (μm) and a multimode fiber amplifier having a different third core diameter at different wavelengths of light in the present invention. With the actual measurement chart. Wherein curve d represents a simulation curve of a third core diameter of the multimode fiber amplifier of 12 micrometers (μm), and curve e represents a simulation curve of a third core diameter of the multimode fiber amplifier of 19 micrometers (μm), black The dot (•) represents the actual measured value of the third core diameter of the multimode fiber amplifier of 15.5±3.4 micrometers (μm). As can be seen from the figure, the actual measured value is very close to the analog curve, and the third core of the multimode fiber amplifier has a relatively high coupling light at different wavelengths in the range of 15.5±3.4 micrometers (μm). effectiveness.
本發明另外關於一種具有多模光纖放大器及單模光纖之光纖系統之寬頻耦光方法,包括以下步驟。首先,提供一第一單模光纖11及一第二單模光纖12(圖1),該第一單模光纖11具有一第一模場直徑、一第一纖核(Core)111、一第一端112及一第二端113。該第一纖核111具有一第一纖核直徑。該第二單模光纖12具有一第二模場直徑及一第二纖核121,該第二纖核121具有一第二纖核直徑。在本實施例中,該第一纖核直徑與該第二纖核直徑相同,皆為8微米(μm);該第一模場直徑與該第二模場直徑相同,皆為10微米(μm)。The invention further relates to a broadband frequency coupling method for a fiber optic system having a multimode fiber amplifier and a single mode fiber, comprising the following steps. First, a first single mode fiber 11 and a second single mode fiber 12 (FIG. 1) are provided. The first single mode fiber 11 has a first mode field diameter, a first core (Core) 111, and a first One end 112 and one second end 113. The first core 111 has a first core diameter. The second single mode fiber 12 has a second mode field diameter and a second core 121 having a second core diameter. In this embodiment, the diameter of the first core is the same as the diameter of the second core, which is 8 micrometers (μm); the diameter of the first mode field is the same as the diameter of the second mode field, and each is 10 micrometers (μm). ).
接著,提供一多模光纖放大器。該多模光纖放大器13較佳為一摻鉻多模光纖放大器(Multi-mode Cr4+ -doped Fiber (MMCDF)Optical Amplifier)。該多模光纖放大器13具有一第三模場直徑、一第三纖核131、一輸入端132、一輸出端133及一側面134。該第三纖核131具有一第三纖核直徑,其中該多模光纖放大器13之第三纖核直徑係由該第一單模光纖11之第一模場直徑所決定,以使得該多模光纖放大器13之第三模場直徑與該第一單模光纖11之第一模場直徑相同。亦即,在確定該第一單模光纖11之第一模場直徑後,由於該多模光纖放大器13之第三模場直徑與該第一單模光纖11之第一模場直徑相同,再利用該多模光纖放大器13之第三模場直徑推算出該多模光纖放大器13之第三纖核直徑,進而生長出具有該第三纖核直徑之多模光纖放大器13。在本實施例中,該多模光纖放大器13之第三纖核直徑係介於12微米(μm)至19微米(μm)之間,且該第三模場直徑係為10微米(μm)。Next, a multimode fiber amplifier is provided. The multimode fiber amplifier 13 is preferably a multi-mode Cr 4+ -doped fiber (MMCDF) Optical Amplifier. The multimode fiber amplifier 13 has a third mode field diameter, a third core 131, an input 132, an output 133, and a side 134. The third core 131 has a third core diameter, wherein the third core diameter of the multimode fiber amplifier 13 is determined by the first mode field diameter of the first single mode fiber 11 to make the multimode The third mode field diameter of the fiber amplifier 13 is the same as the first mode field diameter of the first single mode fiber 11. That is, after determining the first mode field diameter of the first single mode fiber 11, since the third mode field diameter of the multimode fiber amplifier 13 is the same as the first mode field diameter of the first single mode fiber 11, The third core diameter of the multimode fiber amplifier 13 is derived using the third mode field diameter of the multimode fiber amplifier 13, and a multimode fiber amplifier 13 having the third core diameter is grown. In this embodiment, the third core diameter of the multimode fiber amplifier 13 is between 12 micrometers (μm) and 19 micrometers (μm), and the third mode field diameter is 10 micrometers (μm).
接著,將該第一單模光纖11之一端(該第二端113)緊靠該多模光纖放大器13之輸入端132,且將該第二單模光纖12之一端緊靠該多模光纖放大器13之輸出端133。較佳地,該第一單模光纖11之一端(該第二端113)係黏貼於該多模光纖放大器13之輸入端132,該第二單模光纖12之一端係黏貼於該多模光纖放大器13之輸出端133。Next, one end of the first single mode fiber 11 (the second end 113) abuts the input end 132 of the multimode fiber amplifier 13, and one end of the second single mode fiber 12 abuts the multimode fiber amplifier Output 133 of 13. Preferably, one end of the first single mode fiber 11 (the second end 113) is adhered to the input end 132 of the multimode fiber amplifier 13, and one end of the second single mode fiber 12 is adhered to the multimode fiber. The output 133 of the amplifier 13.
接著,提供一泵浦(Pump)光至該多模光纖放大器13,使得該多模光纖放大器13接受來自該第一單模光纖11之光而放大輸出至該第二單模光纖12。該泵浦光可以經由該多模光纖放大器13之側面134或是輸入端132進入該多模光纖放 大器13。在本實施例中,該泵浦光係經由該多模光纖放大器13之輸入端132進入該多模光纖放大器13,該泵浦光輸入元件包括一光纖耦合器(Coupler)14、一第三單模光纖15及一第四單模光纖16。該光纖耦合器14具有一輸入端141及一輸出端142。該第三單模光纖15及該第四單模光纖16皆連接至該光纖耦合器14之輸入端141。該第一單模光纖11之第一端112係連接至該光纖耦合器14之輸出端142。該第三單模光纖15係用以傳送一信號光,該第四單模光纖16係用以傳送一泵浦光。該第一單模光纖11係用以傳送耦合後之信號光及泵浦光至該多模光纖放大器13。在通常情況下,該多模光纖放大器13會吸收該泵浦光且放大該信號光。放大後之信號光則輸出至該第二單模光纖12。Next, a pump light is supplied to the multimode fiber amplifier 13 such that the multimode fiber amplifier 13 receives light from the first single mode fiber 11 and amplifies the output to the second single mode fiber 12. The pump light can enter the multimode fiber via the side 134 of the multimode fiber amplifier 13 or the input terminal 132. Big 13 In the present embodiment, the pumping light enters the multimode fiber amplifier 13 via the input 132 of the multimode fiber amplifier 13, the pumping light input component comprising a fiber coupler, a third The mode fiber 15 and a fourth single mode fiber 16. The fiber coupler 14 has an input end 141 and an output end 142. The third single mode fiber 15 and the fourth single mode fiber 16 are both connected to the input end 141 of the fiber coupler 14. The first end 112 of the first single mode fiber 11 is coupled to the output 142 of the fiber coupler 14. The third single mode fiber 15 is for transmitting a signal light, and the fourth single mode fiber 16 is for transmitting a pump light. The first single mode fiber 11 is used to transmit the coupled signal light and pump light to the multimode fiber amplifier 13. Under normal circumstances, the multimode fiber amplifier 13 absorbs the pump light and amplifies the signal light. The amplified signal light is output to the second single mode fiber 12.
本發明係調整該多模光纖放大器13的第三纖核直徑使其可以與該第一單模光纖11及該第二單模光纖12達成模態匹配,進而提高耦光效率。藉此,可以降低該多模光纖放大器13的插入損失(Insertion Loss),進而提高該多模光纖放大器13的增益。此外,本發明之方法簡單,重複性高且成本低廉。The present invention adjusts the third core diameter of the multimode fiber amplifier 13 to achieve modal matching with the first single mode fiber 11 and the second single mode fiber 12, thereby improving the coupling efficiency. Thereby, the insertion loss (Insertion Loss) of the multimode fiber amplifier 13 can be reduced, thereby increasing the gain of the multimode fiber amplifier 13. Furthermore, the method of the invention is simple, highly reproducible and low in cost.
上述實施例僅為說明本發明之原理及其功效,並非限制本發明,因此習於此技術之人士對上述實施例進行修改及變化仍不脫本發明之精神。本發明之權利範圍應如後述之申請專利範圍所列。The above embodiments are merely illustrative of the principles and effects of the present invention, and are not intended to limit the scope of the present invention. The scope of the invention should be as set forth in the appended claims.
1‧‧‧光纖系統1‧‧‧Fiber optic system
11‧‧‧第一單模光纖11‧‧‧First single mode fiber
12‧‧‧第二單模光纖12‧‧‧Second single mode fiber
13‧‧‧多模光纖放大器13‧‧‧Multimode fiber amplifier
14‧‧‧光纖耦合器14‧‧‧Fiber coupler
15‧‧‧第三單模光纖15‧‧‧ Third single mode fiber
16‧‧‧第四單模光纖16‧‧‧fourth single mode fiber
111‧‧‧第一纖核111‧‧‧First core
112‧‧‧第一端112‧‧‧ first end
113‧‧‧第二端113‧‧‧ second end
121‧‧‧第二纖核121‧‧‧Second core
131‧‧‧第三纖核131‧‧‧ Third core
132‧‧‧輸入端132‧‧‧ input
133‧‧‧輸出端133‧‧‧output
134‧‧‧側面134‧‧‧ side
141‧‧‧輸入端141‧‧‧ input
142‧‧‧輸出端142‧‧‧ Output
圖1顯示本發明之具有多模光纖放大器及單模光纖之光 纖系統之示意圖;圖2顯示本發明中第一纖核直徑為8微米(μm)之第一單模光纖與具有不同第三纖核直徑之多模光纖放大器在三種不同光波長之情況下之耦光效率圖;圖3a至圖3c顯示本發明中不同尺寸之多模光纖放大器之第三纖核直徑之情況下,光纖系統內部之光場分佈示意圖;及圖4顯示本發明中第一纖核直徑為8微米(μm)之第一單模光纖與具有不同第三纖核直徑之多模光纖放大器在不同光波長之情況下之耦光效率模擬與實際量測圖。1 shows the light of the present invention having a multimode fiber amplifier and a single mode fiber Schematic diagram of a fiber system; FIG. 2 shows a first single mode fiber having a first core diameter of 8 micrometers (μm) and a multimode fiber amplifier having a different third core diameter at three different optical wavelengths in the present invention. FIG. 3a to FIG. 3c are schematic diagrams showing the light field distribution inside the optical fiber system in the case of the third core diameter of the multimode fiber amplifier of different sizes in the present invention; and FIG. 4 shows the first fiber in the present invention. The coupling efficiency simulation and actual measurement of the first single mode fiber with a core diameter of 8 micrometers (μm) and the multimode fiber amplifier with different third core diameters at different optical wavelengths.
1‧‧‧光纖系統1‧‧‧Fiber optic system
11‧‧‧第一單模光纖11‧‧‧First single mode fiber
12‧‧‧第二單模光纖12‧‧‧Second single mode fiber
13‧‧‧多模光纖放大器13‧‧‧Multimode fiber amplifier
14‧‧‧泵浦光輸入元件14‧‧‧Pump light input components
111‧‧‧第一纖核111‧‧‧First core
121‧‧‧第二纖核121‧‧‧Second core
131‧‧‧第三纖核131‧‧‧ Third core
132‧‧‧輸入端132‧‧‧ input
133‧‧‧輸出端133‧‧‧output
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97132394A TWI402548B (en) | 2008-08-25 | 2008-08-25 | Fiber system having multi mode fiber amplifier and single mode fiber and the wide band coupling method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97132394A TWI402548B (en) | 2008-08-25 | 2008-08-25 | Fiber system having multi mode fiber amplifier and single mode fiber and the wide band coupling method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201009409A TW201009409A (en) | 2010-03-01 |
TWI402548B true TWI402548B (en) | 2013-07-21 |
Family
ID=44827805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97132394A TWI402548B (en) | 2008-08-25 | 2008-08-25 | Fiber system having multi mode fiber amplifier and single mode fiber and the wide band coupling method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI402548B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2482113Y (en) * | 2001-07-06 | 2002-03-13 | 南京华盾网络技术有限公司 | Multi-mode erbium-doped optical fibre amplifier |
TW548439B (en) * | 2002-01-15 | 2003-08-21 | Delta Electronics Inc | Manufacturing method of fiber collimator |
TW200510808A (en) * | 2003-08-29 | 2005-03-16 | Showa Electric Wire & Cable Co | Optical fiber transmission line |
TWI248243B (en) * | 2003-11-10 | 2006-01-21 | Corning Inc | Cladding-pumped quasi 3-level fiber laser/amplifier |
TW200811494A (en) * | 2006-08-25 | 2008-03-01 | Univ Nat Sun Yat Sen | Method for fabricating indirect-heated double-clad crystal fiber |
-
2008
- 2008-08-25 TW TW97132394A patent/TWI402548B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2482113Y (en) * | 2001-07-06 | 2002-03-13 | 南京华盾网络技术有限公司 | Multi-mode erbium-doped optical fibre amplifier |
TW548439B (en) * | 2002-01-15 | 2003-08-21 | Delta Electronics Inc | Manufacturing method of fiber collimator |
TW200510808A (en) * | 2003-08-29 | 2005-03-16 | Showa Electric Wire & Cable Co | Optical fiber transmission line |
TWI248243B (en) * | 2003-11-10 | 2006-01-21 | Corning Inc | Cladding-pumped quasi 3-level fiber laser/amplifier |
TW200811494A (en) * | 2006-08-25 | 2008-03-01 | Univ Nat Sun Yat Sen | Method for fabricating indirect-heated double-clad crystal fiber |
Also Published As
Publication number | Publication date |
---|---|
TW201009409A (en) | 2010-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hansen et al. | Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling | |
US8861910B2 (en) | Fused fiber optic coupler arrangement and method for use thereof | |
CN105043718B (en) | A kind of Noise Suppression Device and suppressing method of the measurement of optical polarization device distributed polarization interference | |
JP2017518482A (en) | System and method for non-contact optical power measurement | |
US20160161674A1 (en) | Optical combiner, laser device using same, and method for manufacturing optical combiner | |
CN106802190B (en) | A highly sensitive optical fiber torsion sensor without temperature cross-interference | |
CN105928469A (en) | High-sensitivity fiber curvature sensor capable of discriminating bending direction and free of cross temperature sensitivity | |
CN103278185A (en) | Cavity ring-down fiber grating sensing demodulating device based on calibrated fiber grating | |
CN101458363B (en) | Coaxial fiber-based Michelson interferometer | |
US10782206B2 (en) | Encircled flux compliant test apparatus | |
JP2009031459A (en) | Single mode optical fiber for visible light transmission | |
Mizuno et al. | Core alignment of butt coupling between single-mode and multimode optical fibers by monitoring Brillouin scattering signal | |
CN101325453A (en) | All Fiber Optic Power Monitor | |
US9270080B1 (en) | Methods and apparatus pertaining to the use and generation of broadband light | |
CN102073104A (en) | Tunable F-P (Fabry-Perot) filter based on hollow photonic band-gap fiber and micro fiber | |
TWI402548B (en) | Fiber system having multi mode fiber amplifier and single mode fiber and the wide band coupling method thereof | |
US20190384006A1 (en) | Systems and methods for reduced end-face reflection back-coupling in fiber-optics | |
WO2012141092A1 (en) | Optical transmission line connection system and optical transmission line connection method | |
CN201252545Y (en) | Optical fiber power monitor based on evanescent field | |
US9360628B2 (en) | Fiber stretcher module for use in the 1550 nm wavelength range | |
CN105203135A (en) | Straight waveguide, feedback waveguide and circle-straight waveguide high-sensitivity resonance system | |
CN206945023U (en) | A kind of fibre optical sensor for bending vector | |
Liu et al. | Efficient silicon nitride grating coupler with silicon reflector at near-infrared wavelengths | |
US20160033720A1 (en) | Polarization-maintaining (pm) double-clad (dc) optical fiber | |
Jaroszewicz et al. | Broadband photonic crystal fiber coupler with polarization selection of coupling ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |