TWI399740B - Acoustic device - Google Patents
Acoustic device Download PDFInfo
- Publication number
- TWI399740B TWI399740B TW98131555A TW98131555A TWI399740B TW I399740 B TWI399740 B TW I399740B TW 98131555 A TW98131555 A TW 98131555A TW 98131555 A TW98131555 A TW 98131555A TW I399740 B TWI399740 B TW I399740B
- Authority
- TW
- Taiwan
- Prior art keywords
- film
- sounding
- infrared
- sounding device
- carbon nanotube
- Prior art date
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Description
本發明涉及一種發聲裝置,尤其涉及一種基於熱聲原理的發聲裝置。 The invention relates to a sounding device, in particular to a sounding device based on the thermoacoustic principle.
早在二十世紀初,H.D.Arnold等人提出了一種基於熱聲效應的熱致發聲器,請參見文獻“The thermophone as a precision source of sound”,H.D.Arnold,I.B.Crandall,Phys.Rev.10,22-38(1917)及“On Some Thermal Effects of Electric Currents”,William Henry Preece,Proceedings of the Royal Society of London,Vol.30,pp408-411(1879-1881)。該熱致發聲器通過向一導體中通入交流電來實現發聲。該導體須具有較小的熱容,較薄的厚度,且可將其內部產生的熱量迅速傳導給周圍氣體介質的特點。當交流電通過導體時,隨交流電電流強度的變化,導體可迅速升降溫,並和周圍氣體介質迅速發生熱交換,周圍氣體介質分子運動,氣體介質密度亦隨之發生變化,進而發出聲波。先前技術中,最有效的導體為金屬。 As early as the beginning of the twentieth century, HDArnold et al. proposed a thermoacoustic sound generator based on the thermoacoustic effect, see the paper "The thermophone as a precision source of sound", HDArnold, IBCrandall, Phys. Rev. 22-38 (1917) and "On Some Thermal Effects of Electric Currents", William Henry Preece, Proceedings of the Royal Society of London, Vol. 30, pp 408-411 (1879-1881). The thermal sound generator realizes sound generation by introducing an alternating current into a conductor. The conductor must have a small heat capacity, a relatively thin thickness, and can rapidly transfer heat generated inside it to the surrounding gaseous medium. When the alternating current passes through the conductor, the conductor can rapidly rise and fall with the change of the alternating current intensity, and rapidly exchange heat with the surrounding gas medium, and the surrounding gas medium molecules move, and the density of the gas medium also changes, thereby generating sound waves. In the prior art, the most effective conductor was a metal.
H.D.Arnold和I.B.Crandall在文獻“The thermophone as a prec ision source of sound”,Phys.Rev.10,pp22-38(1917)中介紹了一種簡單的熱致發聲器,其採用一鉑片作發聲元件,該鉑片的厚度為0.7微米。請參見圖1,該發聲元件102通過一夾具104固定。所述發聲元件102及夾具104設置在一基體108表面。一電流引線106與所述發聲元件102電連接,用於向所述發聲元件102輸入電訊號。由於發聲元件102的發 聲頻率與其單位面積熱容密切相關。單位面積熱容大,則發聲頻率範圍窄,強度低;單位面積熱容小,則發聲頻率範圍寬,強度高。欲獲得具有較寬發聲頻率範圍及較高強度的聲波,則要求發聲元件102的單位面積熱容愈小愈好。而具有較小熱容的金屬鉑片,受材料本身的限制,其厚度最小只能達0.7微米,而0.7微米厚的鉑片的單位面積熱容為2×10-4焦耳每平方厘米開爾文。受材料單位面積熱容的限制,採用該鉑片作發聲元件102的發聲器的發聲頻率最高僅可達4千赫茲且發聲強度較低。因此,利用熱聲效應的上述熱發聲器無法滿足日常應用。 HDArnold and IBCrandall describe a simple thermoacoustic burner in the document "The thermophone as a prec ision source of sound", Phys. Rev. 10, pp 22-38 (1917), which uses a platinum sheet as the sounding element. The thickness of the platinum sheet was 0.7 microns. Referring to FIG. 1, the sound emitting element 102 is fixed by a clamp 104. The sounding element 102 and the jig 104 are disposed on a surface of the substrate 108. A current lead 106 is electrically coupled to the sound emitting element 102 for inputting an electrical signal to the sound emitting element 102. Since the sounding frequency of the sounding element 102 is closely related to its heat capacity per unit area. The heat capacity per unit area is large, the sound frequency range is narrow, and the intensity is low; the heat capacity per unit area is small, and the sound frequency range is wide and the intensity is high. In order to obtain sound waves having a wider sounding frequency range and higher intensity, it is required that the heat capacity per unit area of the sounding element 102 is as small as possible. The metal platinum sheet with a smaller heat capacity is limited by the material itself to a thickness of at least 0.7 μm, and the 0.7 μm thick platinum sheet has a heat capacity per unit area of 2 × 10 -4 Joules per square centimeter Kelvin. Due to the limitation of the heat capacity per unit area of the material, the sounding frequency of the sounding device using the platinum sheet as the sounding element 102 can be up to 4 kHz and the sound intensity is low. Therefore, the above-mentioned thermal sound generator using the thermoacoustic effect cannot satisfy the daily application.
有鑒於此,提供一種發聲頻率範圍較寬,發聲強度較高且發聲效果較好的發聲裝置實為必要。 In view of this, it is necessary to provide a sounding device having a wide range of sounding frequencies, a high sounding intensity, and a good sounding effect.
一種發聲裝置,其包括:一發聲模組,該發聲模組包括至少一第一電極,至少一第二電極以及一熱發聲膜,該第一電極和第二電極相互間隔地與該熱發聲膜電連接,其中,所述熱發聲膜包括一奈米碳管結構,所述發聲裝置進一步包括一第一保護結構、一第二保護結構及一紅外反射膜,所述熱發聲膜設置在該第一保護結構和第二保護結構之間,所述紅外反射膜設置在第一保護結構表面。 A sounding device comprising: a sounding module comprising at least one first electrode, at least one second electrode and a thermal sounding film, the first electrode and the second electrode being spaced apart from each other with the thermoacoustic film An electrical connection, wherein the thermoacoustic film comprises a carbon nanotube structure, the sounding device further comprising a first protection structure, a second protection structure and an infrared reflection film, wherein the thermal acoustic film is disposed in the first Between a protective structure and a second protective structure, the infrared reflective film is disposed on a surface of the first protective structure.
一種發聲裝置,其包括:至少一第一電極,至少一第二電極以及一熱發聲膜,該第一電極和第二電極相互間隔地與該熱發聲膜電連接,其中,所述熱發聲膜包括一奈米碳管結構,所述發聲裝置進一步包括一紅外反射膜及一紅外透射膜,所述熱發聲膜設置在該紅外反射膜及紅外透射膜之間。 A sounding device comprising: at least one first electrode, at least one second electrode, and a thermal sounding film, the first electrode and the second electrode being electrically connected to the thermosonic film at intervals, wherein the thermoacoustic film Including a carbon nanotube structure, the sounding device further includes an infrared reflective film and an infrared transmissive film disposed between the infrared reflective film and the infrared transmissive film.
相較於先前技術,本發明提供的發聲裝置採用奈米碳管結構作熱發聲膜,該奈米碳管結構具有較小的單位面積熱容,所述發聲裝置的發聲頻率範圍較寬,發聲強度較高且發聲效果較好。 Compared with the prior art, the sounding device provided by the present invention adopts a carbon nanotube structure as a thermal sounding film, and the carbon nanotube structure has a small heat capacity per unit area, and the sounding device has a wide range of sounding frequencies and sounds. High intensity and good sounding effect.
10,20,30‧‧‧發聲裝置 10,20,30‧‧‧ sounding device
102‧‧‧發聲元件 102‧‧‧ Sounding components
104‧‧‧夾具 104‧‧‧Clamp
106‧‧‧電流引線 106‧‧‧current lead
108‧‧‧基體 108‧‧‧ base
110,210,310‧‧‧發聲模組 110,210,310‧‧‧Sound Module
112,212,312‧‧‧熱發聲膜 112,212,312‧‧‧Hot sound film
114,214,314‧‧‧第一電極 114,214,314‧‧‧first electrode
116,216,316‧‧‧第二電極 116,216,316‧‧‧second electrode
120,220‧‧‧第一保護結構 120,220‧‧‧First protection structure
130,230‧‧‧第二保護結構 130,230‧‧‧Second protective structure
140,240,340‧‧‧紅外反射膜 140,240,340‧‧‧Infrared reflective film
250,350‧‧‧紅外透射膜 250,350‧‧‧Infrared transmissive film
318‧‧‧支撐結構 318‧‧‧Support structure
圖1係先前技術中採用奈米碳管膜作熱發聲膜的發聲裝置的結構示意圖。 1 is a schematic view showing the structure of a sounding device using a carbon nanotube film as a thermal sounding film in the prior art.
圖2係本發明第一實施例提供的發聲裝置的立體分解結構示意圖。 FIG. 2 is a schematic exploded perspective view of a sound emitting device according to a first embodiment of the present invention.
圖3係本發明第一實施例用作熱發聲膜的奈米碳管拉膜的掃描電鏡照片。 Fig. 3 is a scanning electron micrograph of a carbon nanotube film used as a thermoacoustic film in the first embodiment of the present invention.
圖4係本發明第一實施例採用多個電極的發聲模組的結構示意圖。 4 is a schematic structural view of a sound emitting module using a plurality of electrodes according to a first embodiment of the present invention.
圖5係本發明第二實施例提供的發聲裝置的立體分解結構示意圖。 FIG. 5 is a schematic exploded perspective view of a sound emitting device according to a second embodiment of the present invention.
圖6係本發明第三實施例提供的發聲裝置的立體分解結構示意圖。 FIG. 6 is a schematic exploded perspective view of a sound emitting device according to a third embodiment of the present invention.
以下將結合附圖詳細說明本發明實施例的發聲裝置。 Hereinafter, a sound emitting device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
請參閱圖2,本發明第一實施例提供一種發聲裝置10,該發聲裝置10包括一發聲模組110,一第一保護結構120、一第二保護結構130及一紅外反射膜140。所述第一保護結構120和第二保護結構130分別設置在所述發聲模組110的兩側。所述紅外反射膜140設置在所述第一保護結構120表面。 Referring to FIG. 2, a first embodiment of the present invention provides a sound emitting device 10, which includes a sound emitting module 110, a first protection structure 120, a second protection structure 130, and an infrared reflection film 140. The first protection structure 120 and the second protection structure 130 are respectively disposed on two sides of the sound emitting module 110. The infrared reflective film 140 is disposed on a surface of the first protective structure 120.
所述發聲模組110包括一熱發聲膜112、至少一第一電極114及至少一第二電極116。所述第一電極114和第二電極116相互間隔地與該熱發聲膜112電連接。具體地,所述第一電極114和第二電極116間隔設置,所述熱發聲膜112可設置在所述第一電極114和第二電極116之間。所述熱發聲膜112可接受所述第一電極114和第二電極116輸入的訊號發出聲波。 The sound emitting module 110 includes a thermal sounding film 112, at least one first electrode 114, and at least one second electrode 116. The first electrode 114 and the second electrode 116 are electrically connected to the thermal sounding film 112 at intervals from each other. Specifically, the first electrode 114 and the second electrode 116 are spaced apart, and the thermal acoustic film 112 may be disposed between the first electrode 114 and the second electrode 116. The thermoacoustic film 112 can receive sound waves from the signals input by the first electrode 114 and the second electrode 116.
所述熱發聲膜112設置在該第一保護結構120和第二保護結構130之間。所述熱發聲膜112可包括一奈米碳管結構。該奈米碳管結構包括多個奈米碳管。所述奈米碳管結構為一自支撐結構。所謂自支撐結構即奈米碳管結構中的多個奈米碳管間通過凡德瓦爾力相互吸引,從而使奈米碳管結構具有特 定的形狀,可懸空設置,仍然維持其特定的形狀。本實施例中,所述熱發聲膜112至少部分懸空設置在所述第一保護結構120與所述第二保護結構130之間。具體地,所述熱發聲膜112可通過所述第一電極114和第二電極116部分懸空設置在所述第一保護結構120與所述第二保護結構130之間。所述奈米碳管結構為層狀且具有較大的比表面積。所述奈米碳管結構的厚度為0.5奈米~1毫米。優選地,該奈米碳管結構的厚度為50奈米。所述奈米碳管結構的單位面積熱容可小於2×10-4焦耳每平方厘米開爾文。優選地,所述奈米碳管結構的單位面積熱容可大於等於1.7×10-6焦耳每平方厘米開爾文且小於等於1.7×10-5焦耳每平方厘米開爾文。本實施例中,所述奈米碳管結構的單位面積熱容為1.7×10-6焦耳每平方厘米開爾文。所述奈米碳管結構中的奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多種。所述單壁奈米碳管的直徑為0.5奈米~50奈米,所述雙壁奈米碳管的直徑為1.0奈米~50奈米,所述多壁奈米碳管的直徑為1.5奈米~50奈米。 The thermal sounding film 112 is disposed between the first protection structure 120 and the second protection structure 130. The thermal sounding film 112 may include a carbon nanotube structure. The carbon nanotube structure includes a plurality of carbon nanotubes. The carbon nanotube structure is a self-supporting structure. The so-called self-supporting structure, that is, the plurality of carbon nanotubes in the carbon nanotube structure, is attracted to each other by the van der Waals force, so that the carbon nanotube structure has a specific shape, can be suspended, and still maintains its specific shape. In this embodiment, the thermal sounding film 112 is at least partially suspended between the first protection structure 120 and the second protection structure 130. Specifically, the thermal ac acoustic film 112 may be partially suspended between the first protection structure 120 and the second protection structure 130 by the first electrode 114 and the second electrode 116. The carbon nanotube structure is layered and has a large specific surface area. The carbon nanotube structure has a thickness of 0.5 nm to 1 mm. Preferably, the carbon nanotube structure has a thickness of 50 nm. The carbon nanotube structure may have a heat capacity per unit area of less than 2 x 10 -4 joules per square centimeter Kelvin. Preferably, the carbon nanotube structure has a heat capacity per unit area of greater than or equal to 1.7 x 10 -6 joules per square centimeter Kelvin and less than or equal to 1.7 x 10 -5 joules per square centimeter Kelvin. In this embodiment, the carbon nanotube structure has a heat capacity per unit area of 1.7×10 -6 joules per square centimeter Kelvin. The carbon nanotubes in the carbon nanotube structure include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm, and the multi-walled carbon nanotube has a diameter of 1.5. Nano ~ 50 nm.
所述奈米碳管結構可包括至少一奈米碳管膜。具體地,所述奈米碳管結構可包括多個平行且無間隙鋪設或/和層疊鋪設的奈米碳管膜。所述奈米碳管膜包括多個均勻分佈的奈米碳管,奈米碳管之間通過凡德瓦爾力緊密結合。該奈米碳管膜中的奈米碳管可為有序排列或無序排列。所謂有序排列係指奈米碳管的排列方向有規則。所謂無序排列係指奈米碳管的排列方向無規則。具體地,當奈米碳管結構包括無序排列的奈米碳管時,奈米碳管相互纏繞或者該奈米碳管結構為各向同性;當奈米碳管結構包括有序排列的奈米碳管時,奈米碳管沿一個方向擇優取向排列,或者奈米碳管結構包括多個部分,奈米碳管在每個部分中沿一個方向擇優取向排列,相鄰兩個部分中的奈米碳管可沿不同方向排列。具體地,所述奈米碳管膜包括奈米碳管拉膜、奈米碳管碾壓膜、奈米碳管絮化膜中的一種或多種。 The carbon nanotube structure may include at least one carbon nanotube film. Specifically, the carbon nanotube structure may include a plurality of carbon nanotube films laid in parallel and without gaps or/and laminated. The carbon nanotube membrane comprises a plurality of uniformly distributed carbon nanotubes, and the carbon nanotubes are tightly bonded by van der Waals force. The carbon nanotubes in the carbon nanotube film may be ordered or disorderly arranged. The so-called ordered arrangement means that the arrangement direction of the carbon nanotubes is regular. The so-called disordered arrangement means that the arrangement direction of the carbon nanotubes is irregular. Specifically, when the carbon nanotube structure includes a disordered arrangement of carbon nanotubes, the carbon nanotubes are intertwined or the carbon nanotube structure is isotropic; when the carbon nanotube structure includes an ordered arrangement of nai In the case of a carbon nanotube, the carbon nanotubes are arranged in a preferred orientation in one direction, or the carbon nanotube structure comprises a plurality of sections, and the carbon nanotubes are arranged in a preferred orientation in one direction in each section, in the adjacent two sections The carbon nanotubes can be arranged in different directions. Specifically, the carbon nanotube film comprises one or more of a carbon nanotube film, a carbon nanotube film, and a carbon nanotube film.
所述奈米碳管拉膜包括多個基本相互平行且基本平行於奈米碳管拉膜表面排列的奈米碳管。具體地,所述奈米碳管拉膜包括多個奈米碳管通過凡德瓦爾力首尾相連且基本沿同一方向擇優取向排列。所述奈米碳管拉膜可通過從奈米碳管陣列中直接拉取獲得,為一自支撐結構。所述奈米碳管拉膜的厚度可為0.5奈米~100微米,寬度與拉取該奈米碳管拉膜的奈米碳管陣列的尺寸有關,長度不限。所述奈米碳管拉膜的掃描電鏡照片請參見圖3。具體地,每一奈米碳管拉膜包括多個連續且定向排列的奈米碳管片段。該多個奈米碳管片段通過凡德瓦爾力首尾相連。每一奈米碳管片段包括多個相互平行的奈米碳管,該多個相互平行的奈米碳管通過凡德瓦爾力緊密結合。可以理解,通過將多個奈米碳管拉膜平行且無間隙鋪設或/和層疊鋪設,可以製備不同面積與厚度的奈米碳管結構。當所述奈米碳管結構包括多個層疊設置的奈米碳管拉膜時,相鄰的奈米碳管拉膜中的奈米碳管的排列方向形成一夾角α,α大於等於0度且小於等於90度(0°≦α≦90°)。多層層疊設置的奈米碳管拉膜,尤其係多層交叉設置的奈米碳管拉膜相對單層奈米碳管拉膜具有更高的強度,從而有利於提高所述熱發聲膜112的強度。所述奈米碳管拉膜的結構及其製備方法請參見范守善等人於2007年2月12日申請,於2008年8月16日公開的第200833862號中華民國公開專利申請。 The carbon nanotube film comprises a plurality of carbon nanotubes arranged substantially parallel to each other and substantially parallel to the surface of the carbon nanotube film. Specifically, the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end by van der Waals force and arranged in a preferred orientation along substantially the same direction. The carbon nanotube film can be obtained by directly pulling from the carbon nanotube array, and is a self-supporting structure. The carbon nanotube film may have a thickness of 0.5 nm to 100 μm, and the width is related to the size of the carbon nanotube array for pulling the carbon nanotube film, and the length is not limited. See Figure 3 for a scanning electron micrograph of the carbon nanotube film. Specifically, each carbon nanotube film comprises a plurality of continuous and aligned carbon nanotube segments. The plurality of carbon nanotube segments are connected end to end by Van der Waals force. Each of the carbon nanotube segments includes a plurality of carbon nanotubes that are parallel to each other, and the plurality of mutually parallel carbon nanotubes are tightly coupled by a van der Waals force. It can be understood that the carbon nanotube structures of different areas and thicknesses can be prepared by laying a plurality of carbon nanotube films in parallel and without gaps laying and/or laminating. When the carbon nanotube structure comprises a plurality of stacked carbon nanotube film, the arrangement direction of the carbon nanotubes in the adjacent carbon nanotube film forms an angle α, and α is greater than or equal to 0 degrees. And less than or equal to 90 degrees (0 ° ≦ α ≦ 90 °). The carbon nanotube film which is laminated in a plurality of layers, in particular, the carbon nanotube film which is disposed in a plurality of layers, has a higher strength than the single layer carbon nanotube film, thereby facilitating the improvement of the strength of the heat generating film 112. . For the structure of the carbon nanotube film and the preparation method thereof, please refer to the application filed by the Chinese Patent Publication No. 200833862, published on Feb. 12, 2008 by Fan Shoushan et al.
所述奈米碳管碾壓膜包括均勻分佈的奈米碳管。所述奈米碳管碾壓膜可為各向同性或包括多個部分,奈米碳管在每個部分中沿一個方向擇優取向排列,相鄰兩個部分中的奈米碳管可沿不同方向排列或沿相同方向排列。所述奈米碳管碾壓膜中的奈米碳管相互交疊。所述奈米碳管碾壓膜可通過碾壓一奈米碳管陣列獲得。該奈米碳管陣列形成在一基底表面,所製備的奈米碳管碾壓膜中的奈米碳管與該奈米碳管陣列的基底的表面成一夾角β,其中,β大於等於0度且小於等於15度(0≦β≦15°)。所述奈米碳管碾壓 膜為一自支撐的結構,可無需基底支撐,自支撐存在。所述奈米碳管碾壓膜及其製備方法具體請參見范守善等人於2007年6月29日申請的,於2009年1月1日公開的第200900348號中華民國專利申請“奈米碳管薄膜的製備方法”。所述奈米碳管絮化膜包括相互纏繞且均勻分佈的的奈米碳管,奈米碳管長度可大於10厘米。所述奈米碳管之間通過凡德瓦爾力相互吸引、纏繞,形成網路狀結構。所述奈米碳管絮化膜各向同性。所述奈米碳管絮化膜中的奈米碳管為均勻分佈,無規則排列,形成大量的微孔結構,微孔.孔徑為1奈米~10微米。所述奈米碳管絮化膜及其製備方法具體請參見范守善等人於2007年5月11日申請的,於2008年11月16日公開的第200844041號中華民國專利申請“奈米碳管薄膜的製備方法”。 The carbon nanotube rolled film includes a uniformly distributed carbon nanotube. The carbon nanotube rolled film may be isotropic or comprise a plurality of parts, and the carbon nanotubes are arranged in a preferred orientation in one direction in each part, and the carbon nanotubes in the adjacent two parts may be different Oriented or aligned in the same direction. The carbon nanotubes in the carbon nanotube rolled film overlap each other. The carbon nanotube rolled film can be obtained by rolling an array of carbon nanotubes. The carbon nanotube array is formed on a surface of the substrate, and the carbon nanotubes in the prepared carbon nanotube rolled film form an angle β with the surface of the substrate of the carbon nanotube array, wherein β is greater than or equal to 0 degrees. And less than or equal to 15 degrees (0 ≦ β ≦ 15 °). The carbon nanotube crushing The membrane is a self-supporting structure that can be self-supporting without the need for substrate support. The carbon nanotube rolling film and the preparation method thereof are specifically referred to the patent application "Nano Carbon Tube" of the Republic of China Patent No. 200900348, which was filed on January 29, 2009 by Fan Shoushan et al. Method for preparing a film". The carbon nanotube flocculation membrane comprises carbon nanotubes which are intertwined and uniformly distributed, and the carbon nanotubes may have a length of more than 10 cm. The carbon nanotubes are attracted and entangled by van der Waals forces to form a network structure. The carbon nanotube flocculation membrane is isotropic. The carbon nanotubes in the carbon nanotube flocculation membrane are uniformly distributed and randomly arranged to form a large number of microporous structures, and the pore diameter is from 1 nm to 10 μm. For the specific description of the carbon nanotube film and the preparation method thereof, please refer to the patent application "Nano Carbon Tube" of the Chinese Patent Application No. 200844041, which was filed on May 16, 2007 by Fan Shoushan et al. Method for preparing a film".
所述第一電極114和第二電極116由導電材料形成,其形狀可為棒狀或條狀。具體地,所述第一電極114和第二電極116的材料可選擇為金屬、金屬性奈米碳管等。其中,所述金屬包括不銹鋼、鎢、銅、鉬或銀等。本發明實施例中,所述第一電極114和第二電極116為條帶狀金屬電極,該條帶狀金屬電極可具有自支撐結構。所述第一電極114和第二電極116可用於支撐所述熱發聲膜112並輸入訊號至所述熱發聲膜112。所輸入的訊號包括交流電訊號或音頻電訊號等。由於所述第一電極114和第二電極116間隔設置,所述熱發聲膜112應用於發聲裝置10時能接入一定的阻值避免短路現象產生。 The first electrode 114 and the second electrode 116 are formed of a conductive material and may have a shape of a rod or a strip. Specifically, the material of the first electrode 114 and the second electrode 116 may be selected from a metal, a metallic carbon nanotube, or the like. Wherein, the metal comprises stainless steel, tungsten, copper, molybdenum or silver. In the embodiment of the present invention, the first electrode 114 and the second electrode 116 are strip-shaped metal electrodes, and the strip-shaped metal electrodes may have a self-supporting structure. The first electrode 114 and the second electrode 116 can be used to support the thermal acoustic film 112 and input signals to the thermal acoustic film 112. The input signal includes an AC signal or an audio signal. Since the first electrode 114 and the second electrode 116 are spaced apart, the thermoacoustic film 112 can be applied to the sounding device 10 to access a certain resistance value to avoid short circuit phenomenon.
可以理解,所述發聲裝置10可進一步包括多個第一電極114及多個第二電極116。請參閱圖4,所述多個第一電極114和多個第二電極116交替間隔設置,即任意兩個相鄰的第一電極114之間有一個第二電極116,且任意兩個相鄰的第二電極116之間有一個第一電極114。優選地,所述多個第一電極114和多個第二電極116之間的距離相等。進一步地,所述多個第一電極114可電連接,所述多個第二電極116可電連接。具體地,所述多個第一電 極114可通過導線電連接後作為一訊號輸入端,所述多個第二電極116可通過導線電連接後作為另一訊號輸入端。使用時,可通過上述兩個訊號輸入端輸入電訊號至所述熱發聲膜112。上述連接方式可實現相鄰電極之間的熱發聲膜112的並聯。並聯後的熱發聲膜112的電阻小於並聯前熱發聲膜112的電阻,可降低工作電壓。 It can be understood that the sounding device 10 can further include a plurality of first electrodes 114 and a plurality of second electrodes 116. Referring to FIG. 4, the plurality of first electrodes 114 and the plurality of second electrodes 116 are alternately spaced apart, that is, there is a second electrode 116 between any two adjacent first electrodes 114, and any two adjacent There is a first electrode 114 between the second electrodes 116. Preferably, the distance between the plurality of first electrodes 114 and the plurality of second electrodes 116 is equal. Further, the plurality of first electrodes 114 may be electrically connected, and the plurality of second electrodes 116 may be electrically connected. Specifically, the plurality of first electrics The pole 114 can be electrically connected through a wire as a signal input terminal, and the plurality of second electrodes 116 can be electrically connected through a wire as another signal input terminal. In use, an electrical signal can be input to the thermal acoustic film 112 through the two signal input terminals. The above connection method can realize the parallel connection of the thermal acoustic film 112 between adjacent electrodes. The electric resistance of the thermal acoustic film 112 after the parallel connection is smaller than the electric resistance of the thermal acoustic film 112 before the parallel connection, and the operating voltage can be lowered.
本實施例中,所述作為熱發聲膜112的奈米碳管結構包括一層奈米碳管拉膜。奈米碳管在該奈米碳管結構中沿同一方向擇優取向排列。所述發聲裝置10包括一第一電極114和一第二電極116。所述奈米碳管沿所述第一電極114至第二電極116的方向擇優取向排列。所述奈米碳管結構的厚度為50奈米。由於奈米碳管具有極大的比表面積,在凡德瓦爾力的作用下,該奈米碳管結構本身有很好的黏附性,故採用該奈米碳管結構作熱發聲膜112時,所述第一電極114和第二電極116與所述熱發聲膜112之間可以直接黏附固定,並形成很好的電接觸。 In this embodiment, the carbon nanotube structure as the thermal sounding film 112 comprises a layer of carbon nanotube film. The carbon nanotubes are arranged in a preferred orientation in the same direction in the carbon nanotube structure. The sounding device 10 includes a first electrode 114 and a second electrode 116. The carbon nanotubes are arranged in a preferred orientation along the direction of the first electrode 114 to the second electrode 116. The carbon nanotube structure has a thickness of 50 nm. Since the carbon nanotube has a very large specific surface area, the carbon nanotube structure itself has good adhesion under the action of the van der Waals force, so when the carbon nanotube structure is used as the thermal sounding film 112, The first electrode 114 and the second electrode 116 and the thermoacoustic film 112 can be directly adhered and fixed, and form a good electrical contact.
所述第一保護結構120和第二保護結構130可用於保護所述發聲模組110。所述第一保護結構120和第二保護結構130可為層狀或板狀。分別設置於所述發聲模組110的兩側,其中,所述第一保護結構120設置在所述發聲裝置10面對使用者的一側。所述第一保護結構120和第二保護結構130的材料不限,只需滿足其具有較好的耐熱性能即可。優選地,所述第一保護結構120和第二保護結構130具有較高的聲音透過率。所述第一保護結構120和第二保護結構130的形狀不限,可為一平面也可為一曲面。所述第一保護結構120和第二保護結構130的材料可選擇為導電材料,如金屬,也可為絕緣材料,如塑膠、塑膠等。所述金屬包括不銹鋼、碳鋼、銅、鎳、鈦、鋅及鋁等中的一種或多種。所述第一保護結構120和第二保護結構130可為一多孔結構,如柵網,也可為一無孔結構,如玻璃板、石英板等。當該玻璃板或 石英板用作第二保護結構130時,該玻璃板或石英板應具有較好的紅外透過性能。此外,當該玻璃板或石英板用作第二保護結構130時,所述第一電極114和第二電極116可直接形成在所述第二保護結構130表面,此時,所述熱發聲膜112可懸空設置在所述第一電極114和第二電極116之間。 The first protection structure 120 and the second protection structure 130 can be used to protect the sounding module 110. The first protection structure 120 and the second protection structure 130 may be in a layer shape or a plate shape. They are respectively disposed on two sides of the sound emitting module 110, wherein the first protection structure 120 is disposed on a side of the sounding device 10 facing the user. The materials of the first protection structure 120 and the second protection structure 130 are not limited, and only need to satisfy the better heat resistance. Preferably, the first protection structure 120 and the second protection structure 130 have a high sound transmittance. The shapes of the first protection structure 120 and the second protection structure 130 are not limited, and may be a plane or a curved surface. The materials of the first protection structure 120 and the second protection structure 130 may be selected from a conductive material such as a metal or an insulating material such as plastic or plastic. The metal includes one or more of stainless steel, carbon steel, copper, nickel, titanium, zinc, and aluminum. The first protection structure 120 and the second protection structure 130 may be a porous structure, such as a grid, or a non-porous structure, such as a glass plate, a quartz plate, or the like. When the glass plate or When the quartz plate is used as the second protective structure 130, the glass plate or the quartz plate should have good infrared transmission properties. In addition, when the glass plate or the quartz plate is used as the second protection structure 130, the first electrode 114 and the second electrode 116 may be directly formed on the surface of the second protection structure 130, at this time, the thermal acoustic film 112 may be suspended between the first electrode 114 and the second electrode 116.
本發明實施例中,所述第一保護結構120和第二保護結構130均為一多孔結構。具體地,所述第一保護結構120和第二保護結構130均為一塑膠柵網,所述塑膠柵網具有多個通孔。所述第一保護結構120和第二保護結構130的通孔總面積分別分別占該第一保護結構120和第二保護結構130的面積的百分比可大於0%小於100%,優選地,所述第一保護結構120和第二保護結構130中的通孔的總面積分別占該所述第一保護結構120和第二保護結構130的面積的百分比在20%至99%之間。該多個通孔的分佈和形狀不限。 In the embodiment of the present invention, the first protection structure 120 and the second protection structure 130 are both a porous structure. Specifically, the first protection structure 120 and the second protection structure 130 are both a plastic grid, and the plastic grid has a plurality of through holes. The total area of the through holes of the first protection structure 120 and the second protection structure 130 respectively may be greater than 0% and less than 100% of the area of the first protection structure 120 and the second protection structure 130, respectively. The total area of the through holes in the first protection structure 120 and the second protection structure 130 is between 20% and 99% of the area of the first protection structure 120 and the second protection structure 130, respectively. The distribution and shape of the plurality of through holes are not limited.
所述紅外反射膜140與所述熱發聲膜112間隔設置。所述紅外反射膜140可設置在所述第一保護結構120的外表面或內表面。所述紅外反射膜140具有較好的紅外線反射性能,可改變從熱發聲膜112輻射出的紅外線的傳播方向。所述紅外反射膜140可用於將熱發聲膜112向使用者一側輻射的紅外線(包括近紅外線及遠紅外線)反射到熱發聲膜140的另一側(即背離使用者的一側)。優選地,所述紅外反射膜140還具有較好的隔熱效果。所述紅外反射膜140的材料不限,只需滿足其具有較高的紅外線反射率即可。所述紅外反射膜140的紅外線反射率可大於等於20%且小於等於100%。優選地,所述紅外反射膜140的紅外線反射率大於等於70%且小於等於99%。本實施例中,所述紅外反射膜140的紅外線反射率為95%。所述紅外反射膜140可包括一基體及設置在該基體表面的一反射膜。該反射膜為金屬反射膜。該金屬包括金、銀或銅等具有較好紅外反射性能的材料。所述基體包括聚合物或織物。所述聚合物包括聚酯膜等。所述金屬反射膜可通過在基體表面濺鍍 一層具有較高紅外線反射率的金屬材料來製備。此外,所述金屬反射膜的遠離基體的表面可進一步設置至少一電介質膜,該電介質膜的材料可包括氧化矽、氟化鎂、二氧化矽或三氧化二鋁等。該電介質膜可用於保護所述金屬反射膜。所述紅外反射膜140可由透明材料組成,或由不透明材料組成。優選地,所述紅外反射膜140由透明材料組成。本實施例中,所述紅外反射膜140為透明聚酯膜表面設置一銀膜,該紅外反射膜140設置在所述第一保護結構120的外表面。當所述第一保護結構120為一無孔結構時,所述紅外反射膜140可僅包括一金屬反射膜,所述金屬反射膜也可直接形成在所述第一保護結構120表面。 The infrared reflective film 140 is spaced apart from the thermal sounding film 112. The infrared reflective film 140 may be disposed on an outer surface or an inner surface of the first protective structure 120. The infrared reflective film 140 has better infrared reflection performance and can change the direction of propagation of infrared rays radiated from the thermal sounding film 112. The infrared reflective film 140 can be used to reflect infrared rays (including near infrared rays and far infrared rays) radiated from the thermal sounding film 112 to the user side to the other side of the thermal sounding film 140 (ie, the side facing away from the user). Preferably, the infrared reflective film 140 also has a better heat insulating effect. The material of the infrared reflective film 140 is not limited, and only needs to satisfy a high infrared reflectance. The infrared reflectance of the infrared reflective film 140 may be 20% or more and 100% or less. Preferably, the infrared reflective film 140 has an infrared reflectance of 70% or more and 99% or less. In this embodiment, the infrared reflection film 140 has an infrared reflectance of 95%. The infrared reflective film 140 may include a substrate and a reflective film disposed on the surface of the substrate. The reflective film is a metal reflective film. The metal includes materials such as gold, silver or copper which have better infrared reflection properties. The substrate comprises a polymer or a fabric. The polymer includes a polyester film or the like. The metal reflective film can be sputtered on the surface of the substrate A metal material with a high infrared reflectance is prepared. In addition, at least one dielectric film may be further disposed on the surface of the metal reflective film away from the substrate, and the material of the dielectric film may include ruthenium oxide, magnesium fluoride, ruthenium dioxide or aluminum oxide. The dielectric film can be used to protect the metal reflective film. The infrared reflective film 140 may be composed of a transparent material or an opaque material. Preferably, the infrared reflective film 140 is composed of a transparent material. In this embodiment, the infrared reflective film 140 is provided with a silver film on the surface of the transparent polyester film, and the infrared reflective film 140 is disposed on the outer surface of the first protective structure 120. When the first protective structure 120 is a non-porous structure, the infrared reflective film 140 may include only one metal reflective film, and the metal reflective film may also be directly formed on the surface of the first protective structure 120.
所述紅外反射膜140與熱發聲膜112的距離不限。優選地,所述紅外反射膜140以不影響所述熱發聲膜112與周圍介質之間的熱交換,且可有效地將紅外線反射到發聲裝置10後側為宜。本實施例中,所述紅外反射膜140與熱發聲膜112的距離約為10毫米。 The distance between the infrared reflective film 140 and the thermal sounding film 112 is not limited. Preferably, the infrared reflective film 140 preferably does not affect the heat exchange between the thermal acoustic film 112 and the surrounding medium, and can effectively reflect infrared rays to the rear side of the sounding device 10. In this embodiment, the distance between the infrared reflective film 140 and the thermal sounding film 112 is about 10 mm.
上述發聲裝置10在使用時,由於奈米碳管結構由均勻分佈的奈米碳管組成,且該奈米碳管結構為層狀、具有較大的比表面積,故該奈米碳管結構具有較小的單位面積熱容和較大的散熱表面,在輸入訊號後,奈米碳管結構可迅速升降溫,產生週期性的溫度變化,並和周圍介質快速進行熱交換,使周圍介質的密度週期性地發生改變,進而發出聲音。所述熱發聲膜112的發聲原理為“電-熱-聲”的轉換。所述發聲裝置10在使用時,熱發聲膜112以電磁波的方式向周圍進行熱輻射並與周圍介質快速進行熱交換。本發明通過在所述發聲裝置10面向使用者一側的第一保護結構120表面設置一紅外反射膜140來控制從熱發聲膜112輻射出的紅外線的傳播方向,將所述熱發聲膜112向使用者一側輻射的紅外線反射至熱發聲膜112的另一側,進而使位於紅外反射膜140一側的使用者不會感覺到熱。 When the sound generating device 10 is in use, since the carbon nanotube structure is composed of a uniformly distributed carbon nanotube, and the carbon nanotube structure is layered and has a large specific surface area, the carbon nanotube structure has The smaller unit area heat capacity and larger heat dissipation surface, after inputting the signal, the carbon nanotube structure can rapidly rise and fall, generate periodic temperature changes, and quickly exchange heat with the surrounding medium to make the density of the surrounding medium. Changes occur periodically, which in turn makes a sound. The principle of sound emission of the thermal sounding film 112 is "electric-thermal-acoustic" conversion. When the sounding device 10 is in use, the thermal sounding film 112 thermally radiates to the surroundings in an electromagnetic wave and rapidly exchanges heat with the surrounding medium. The present invention controls the propagation direction of the infrared rays radiated from the thermal sounding film 112 by providing an infrared reflecting film 140 on the surface of the first protective structure 120 facing the user side of the sound emitting device 10, and the thermal sounding film 112 is directed to The infrared rays radiated from the user side are reflected to the other side of the thermal sounding film 112, so that the user on the side of the infrared reflecting film 140 does not feel the heat.
本發明實施例提供的發聲裝置10的聲壓級大於50分貝每瓦聲壓級,發聲頻率範圍為1赫茲至10萬赫茲(即1Hz~100kHz)。所述發聲裝置在500赫茲~4萬赫茲頻率範圍內的失真度可小於3%。當採用A4紙大小的單層奈米碳管膜用作所述熱發聲膜112時,將一麥克風設置在距離熱發聲膜5厘米的位置,輸入電壓為50伏時,所測得的發聲裝置10的發聲頻率大於等於100赫茲且小於等於10萬赫茲,發聲強度大於50分貝每瓦聲壓級。所述發聲裝置10的發聲頻率範圍較寬,強度較大,發聲效果較好。 The sound pressure level of the sounding device 10 provided by the embodiment of the present invention is greater than 50 decibels per watt sound pressure level, and the sounding frequency ranges from 1 Hz to 100,000 Hz (ie, 1 Hz to 100 kHz). The sounding device may have a distortion of less than 3% in a frequency range of 500 Hz to 40,000 Hz. When a single-layer carbon nanotube film of A4 paper size is used as the thermal sounding film 112, a microphone is set at a position 5 cm away from the thermal sounding film, and the input sound voltage is 50 volts, and the sound generating device is measured. The sounding frequency of 10 is greater than or equal to 100 Hz and less than or equal to 100,000 Hz, and the vocal intensity is greater than 50 dB per watt sound pressure level. The sounding device 10 has a wide range of sounding frequencies, a large intensity, and a good sounding effect.
請參閱圖5,本發明第二實施例提供一種發聲裝置20,該發聲裝置20包括一發聲模組210,一第一保護結構220、一第二保護結構230、一紅外反射膜240及一紅外透射膜250。所述發聲模組210包括一熱發聲膜212、至少一第一電極214及至少一第二電極216。所述第一保護結構220和第二保護結構230分別設置在所述發聲模組210的兩側。所述紅外反射膜240設置在第一保護結構220表面。所述紅外透射膜250設置在第二保護結構230表面。 Referring to FIG. 5, a second embodiment of the present invention provides a sound emitting device 20, which includes a sound emitting module 210, a first protection structure 220, a second protection structure 230, an infrared reflection film 240, and an infrared Transmissive film 250. The sound emitting module 210 includes a thermal sounding film 212, at least one first electrode 214, and at least one second electrode 216. The first protection structure 220 and the second protection structure 230 are respectively disposed on two sides of the sound emitting module 210. The infrared reflective film 240 is disposed on a surface of the first protective structure 220. The infrared transmitting film 250 is disposed on the surface of the second protective structure 230.
本發明第二實施例提供的發聲裝置20與第一實施例的發聲裝置10的結構基本相同。區別在於,本發明第二實施例提供的發聲裝置20進一步包括一紅外透射膜250,該紅外透射膜250設置在所述第二保護結構230的表面。該紅外透射膜250有利於提高所述發聲裝置20在第二保護結構230一側的紅外線透過率。另外,當所述第二保護結構230採用一多孔結構,如柵網時,所述紅外透射膜250可進一步起到保護所述熱發聲膜212的作用。所述紅外透射膜250的材料可為先前的具有較高的紅外線透過率的材料。所述紅外透射膜250的紅外線透過率可大於等於10%且小於等於99%。優選地,所述紅外透射膜250的紅外線透過率可大於等於60%且小於等於99%。本實施例中,所述紅外透射膜250的紅外線透過率為90%。所述紅外透射膜250的材料包括硫化鋅、硒化鋅、金剛石、類金剛石碳等在紅外線波段具有較高紅外透 過率的材料。 The sounding device 20 provided by the second embodiment of the present invention has substantially the same structure as the sounding device 10 of the first embodiment. The difference is that the sound emitting device 20 provided by the second embodiment of the present invention further includes an infrared transmitting film 250 disposed on the surface of the second protective structure 230. The infrared transmitting film 250 is advantageous for increasing the infrared transmittance of the sound emitting device 20 on the side of the second protective structure 230. In addition, when the second protection structure 230 adopts a porous structure such as a grid, the infrared transmission film 250 can further function to protect the thermal acoustic film 212. The material of the infrared transmissive film 250 may be a material having a high infrared transmittance. The infrared transmission film 250 may have an infrared transmittance of 10% or more and 99% or less. Preferably, the infrared transmission film 250 may have an infrared transmittance of 60% or more and 99% or less. In the embodiment, the infrared transmission film 250 has an infrared transmittance of 90%. The material of the infrared transmission film 250 includes zinc sulfide, zinc selenide, diamond, diamond-like carbon, etc., which has high infrared absorption in the infrared band. Over-rate material.
請參閱圖6,本發明第三實施例提供一種發聲裝置30,該發聲裝置30包括一發聲模組310,一紅外反射膜340及一紅外透射膜350。所述紅外反射膜340和紅外透射膜350分別設置在所述發聲模組210的兩側,並固定於所述發聲模組310。所述發聲模組310包括一熱發聲膜312、一第一電極314、一第二電極316及一支撐結構318。該熱發聲膜312設置在所述紅外反射膜340和紅外透射膜350之間。 Referring to FIG. 6 , a third embodiment of the present invention provides a sound emitting device 30 . The sound emitting device 30 includes a sound emitting module 310 , an infrared reflecting film 340 , and an infrared transmitting film 350 . The infrared reflecting film 340 and the infrared transmitting film 350 are respectively disposed on two sides of the sound emitting module 210 and are fixed to the sound emitting module 310. The sound emitting module 310 includes a thermal sounding film 312, a first electrode 314, a second electrode 316, and a supporting structure 318. The thermal ac acoustic film 312 is disposed between the infrared reflective film 340 and the infrared transmissive film 350.
第三實施例提供的發聲裝置30與第一實施例的發聲裝置10的結構基本相同。區別在於,本發明第三實施例提供的發聲裝置30僅包括一發聲模組310,一紅外反射膜340及一紅外透射膜350,且所述發聲模組310進一步包括一支撐結構318。所述發聲裝置30不包括所述第一保護結構和第二保護結構。所述紅外反射膜340及紅外透射膜350可進一步起到保護所述熱發聲膜312的作用。該支撐結構318由絕緣材料製作,該絕緣材料可為玻璃、陶瓷、樹脂、木質材料、石英或塑膠等。該支撐結構318可包括首尾相連的四個側板(圖未標),即第一側板、第二側板、第三側板以及第四側板。所述第一側板、第二側板、第三側板以及第四側板可一體成型。第一側板與第三側板相對且平行間隔設置,且第二側板與第四側板相對且平行間隔設置。所述第一側板,第二側板,第三側板及第四側板共同形成一個空間,所述熱發聲膜312通過所述第一電極314和第二電極316設置於該空間內。所述第一電極314和第二電極316的兩端通過所述支撐結構318的兩相互平行設置的側板支撐。所述紅外反射膜340和紅外透射膜350優選具有自支撐結構。所述紅外反射膜340和紅外透射膜350的尺寸可與所述支撐結構318的尺寸一致。所述紅外反射膜340和紅外透射膜350可分別通過黏結劑等方式固定設置於所述支撐結構318的側板。本實施例中,所述紅外反射膜340和紅外 透射膜350分別通過黏結劑固定設置於所述支撐結構318的四個側板。可以理解,本實施例中的紅外透射膜350為可選擇的結構。 The sounding device 30 provided in the third embodiment is basically the same in structure as the sounding device 10 of the first embodiment. The difference is that the sounding device 30 provided by the third embodiment of the present invention includes only one sound emitting module 310, an infrared reflecting film 340 and an infrared transmitting film 350, and the sounding module 310 further includes a supporting structure 318. The sounding device 30 does not include the first protection structure and the second protection structure. The infrared reflective film 340 and the infrared transmissive film 350 may further function to protect the thermal acoustic film 312. The support structure 318 is made of an insulating material, which may be glass, ceramic, resin, wood material, quartz or plastic. The support structure 318 can include four side panels (not labeled) connected end to end, that is, a first side panel, a second side panel, a third side panel, and a fourth side panel. The first side panel, the second side panel, the third side panel, and the fourth side panel may be integrally formed. The first side plates are opposite to and spaced apart from the third side plates, and the second side plates are disposed opposite to and parallel to the fourth side plates. The first side panel, the second side panel, the third side panel and the fourth side panel together form a space, and the thermal sounding film 312 is disposed in the space through the first electrode 314 and the second electrode 316. Both ends of the first electrode 314 and the second electrode 316 are supported by two side plates of the support structure 318 which are arranged in parallel with each other. The infrared reflective film 340 and the infrared transmissive film 350 preferably have a self-supporting structure. The size of the infrared reflective film 340 and the infrared transmissive film 350 may be the same as the size of the support structure 318. The infrared reflecting film 340 and the infrared transmitting film 350 may be fixedly disposed on the side plates of the supporting structure 318 by means of a bonding agent or the like. In this embodiment, the infrared reflective film 340 and infrared The transmissive film 350 is fixedly disposed on the four side plates of the support structure 318 by an adhesive. It can be understood that the infrared transmission film 350 in this embodiment is an optional structure.
本發明提供的發聲裝置具有以下優點:其一,採用奈米碳管結構作熱發聲膜,該奈米碳管結構具有較小的單位面積熱容,所述發聲裝置的發聲頻率範圍較寬,發聲強度較高且發聲效果較好。其二,本發明提供的發聲裝置進一步通過在發聲模組一側設置一紅外反射膜將所述熱發聲膜向紅外反射膜一側發出的紅外線反射至熱發聲膜的另一側,進而使位於紅外反射膜一側的使用者不會感覺到熱。其二,所述發聲裝置可由層狀保護結構和熱發聲膜組成,熱發聲膜設置在所述兩個層狀保護結構之間,層狀保護結構可對熱發聲膜起保護作用,使熱發聲膜不易遭受外力破壞。其三,所述發聲裝置可僅包括發聲模組、紅外反射膜及紅外透射膜,此時所述紅外反射膜及紅外透射膜可進一步起到保護所述熱發聲膜的作用,從而使所述發聲裝置的結構較為簡單。 The sounding device provided by the invention has the following advantages: First, the carbon nanotube structure is used as a thermal sounding film, the carbon nanotube structure has a small heat capacity per unit area, and the sounding frequency of the sounding device is wide. The vocal intensity is high and the vocalization effect is good. Secondly, the sounding device provided by the present invention further reflects infrared rays emitted from the side of the infrared ray-sounding film to the other side of the heat-sounding film by providing an infrared reflecting film on the side of the sound-emitting module, thereby further positioning The user on one side of the infrared reflective film does not feel the heat. Secondly, the sounding device may be composed of a layered protective structure and a thermal sounding film, and a thermal sounding film is disposed between the two layered protective structures, and the layered protective structure can protect the thermal sounding film to make the heat sounding The film is not easily damaged by external force. Thirdly, the sounding device may only include a sounding module, an infrared reflecting film and an infrared transmitting film, and the infrared reflecting film and the infrared transmitting film may further protect the hot sounding film, thereby enabling the The structure of the sounding device is relatively simple.
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.
10‧‧‧發聲裝置 10‧‧‧ Sounding device
110‧‧‧發聲模組 110‧‧‧ Sound Module
112‧‧‧熱發聲膜 112‧‧‧Hot sound film
114‧‧‧第一電極 114‧‧‧First electrode
116‧‧‧第二電極 116‧‧‧Second electrode
120‧‧‧第一保護結構 120‧‧‧First protection structure
130‧‧‧第二保護結構 130‧‧‧Second protective structure
140‧‧‧紅外反射膜 140‧‧‧Infrared reflective film
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98131555A TWI399740B (en) | 2009-09-18 | 2009-09-18 | Acoustic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98131555A TWI399740B (en) | 2009-09-18 | 2009-09-18 | Acoustic device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201112227A TW201112227A (en) | 2011-04-01 |
TWI399740B true TWI399740B (en) | 2013-06-21 |
Family
ID=44909208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98131555A TWI399740B (en) | 2009-09-18 | 2009-09-18 | Acoustic device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI399740B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200744399A (en) * | 2006-05-25 | 2007-12-01 | Tai-Yan Kam | Sound-generation vibration plate of speaker |
JP2008101910A (en) * | 2008-01-16 | 2008-05-01 | Doshisha | Thermoacoustic device |
-
2009
- 2009-09-18 TW TW98131555A patent/TWI399740B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200744399A (en) * | 2006-05-25 | 2007-12-01 | Tai-Yan Kam | Sound-generation vibration plate of speaker |
JP2008101910A (en) * | 2008-01-16 | 2008-05-01 | Doshisha | Thermoacoustic device |
Non-Patent Citations (2)
Title |
---|
F. Kontomichos et al., "A thermoacoustic device for sound reproduction", acoustics’08 Paris, June 29-July 4, 2008. * |
Lin Xiao, et al., "Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers", Nano Lett., Vol. 8, No. 12, p4539-4545, 10/29/2008. * |
Also Published As
Publication number | Publication date |
---|---|
TW201112227A (en) | 2011-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8831252B2 (en) | Thermoacoustic device | |
CN102006542B (en) | Sound generating device | |
CN101715160B (en) | Flexible sound producing device and sound producing flag | |
TWI500331B (en) | Thermoacoustic device | |
TW201043763A (en) | Heating wall | |
CN102572667A (en) | Flexible and transparent thermotropic sounding apparatus | |
US8270639B2 (en) | Thermoacoustic device | |
CN101771922B (en) | Sounding device | |
CN101713531B (en) | Sounding type lighting device | |
CN101820572B (en) | Thermoacoustic device | |
CN101636001B (en) | Cubic heat source | |
CN101783996B (en) | Thermoacoustic device | |
CN103841481B (en) | Earphone | |
TWI399740B (en) | Acoustic device | |
CN102019039A (en) | Infrared physiotherapy apparatus | |
CN102769814B (en) | Sounding device | |
CN101751916A (en) | ultrasonic acoustic generator | |
TWI380283B (en) | Acoustic generator for ultrasound | |
TWI411314B (en) | Thermal acoustic device | |
CN102026079B (en) | Sound-producing device | |
TWI379286B (en) | Acoustic device | |
CN101754080B (en) | Sound-generating device | |
TWI375946B (en) | Acoustic device | |
TWI382399B (en) | Acoustic device | |
TW201026091A (en) | Acoustic device |