TWI398013B - Method and system for forming non-vacuum copper indium gallium sulphide selenium absorption layer and cadmium sulfide buffer layer - Google Patents
Method and system for forming non-vacuum copper indium gallium sulphide selenium absorption layer and cadmium sulfide buffer layer Download PDFInfo
- Publication number
- TWI398013B TWI398013B TW098143637A TW98143637A TWI398013B TW I398013 B TWI398013 B TW I398013B TW 098143637 A TW098143637 A TW 098143637A TW 98143637 A TW98143637 A TW 98143637A TW I398013 B TWI398013 B TW I398013B
- Authority
- TW
- Taiwan
- Prior art keywords
- copper indium
- indium gallium
- treatment
- sulfide
- layer
- Prior art date
Links
- HVMJUDPAXRRVQO-UHFFFAOYSA-N copper indium Chemical compound [Cu].[In] HVMJUDPAXRRVQO-UHFFFAOYSA-N 0.000 title claims description 75
- 239000011669 selenium Substances 0.000 title claims description 57
- 229910052711 selenium Inorganic materials 0.000 title claims description 57
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 title claims description 55
- 238000010521 absorption reaction Methods 0.000 title claims description 41
- 238000000034 method Methods 0.000 title claims description 40
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 title claims description 37
- 229910052980 cadmium sulfide Inorganic materials 0.000 title claims description 37
- BVSHTEBQPBBCFT-UHFFFAOYSA-N gallium(iii) sulfide Chemical compound [S-2].[S-2].[S-2].[Ga+3].[Ga+3] BVSHTEBQPBBCFT-UHFFFAOYSA-N 0.000 title claims description 24
- 239000010410 layer Substances 0.000 claims description 133
- 238000006243 chemical reaction Methods 0.000 claims description 61
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 52
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 49
- 229910052733 gallium Inorganic materials 0.000 claims description 49
- 239000011247 coating layer Substances 0.000 claims description 36
- ZQRRBZZVXPVWRB-UHFFFAOYSA-N [S].[Se] Chemical compound [S].[Se] ZQRRBZZVXPVWRB-UHFFFAOYSA-N 0.000 claims description 32
- -1 copper indium gallium sulphide selenide Chemical class 0.000 claims description 29
- 238000001035 drying Methods 0.000 claims description 25
- 239000002904 solvent Substances 0.000 claims description 22
- 239000002002 slurry Substances 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 21
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 20
- 239000000843 powder Substances 0.000 claims description 19
- 238000007581 slurry coating method Methods 0.000 claims description 19
- 238000002156 mixing Methods 0.000 claims description 18
- 238000002425 crystallisation Methods 0.000 claims description 17
- 230000008025 crystallization Effects 0.000 claims description 17
- 238000004140 cleaning Methods 0.000 claims description 14
- 239000007921 spray Substances 0.000 claims description 14
- 238000005987 sulfurization reaction Methods 0.000 claims description 12
- 238000005507 spraying Methods 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 9
- 230000000996 additive effect Effects 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 238000002791 soaking Methods 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 239000011593 sulfur Substances 0.000 claims description 9
- OKIIEJOIXGHUKX-UHFFFAOYSA-L cadmium iodide Chemical compound [Cd+2].[I-].[I-] OKIIEJOIXGHUKX-UHFFFAOYSA-L 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 238000004151 rapid thermal annealing Methods 0.000 claims description 8
- 238000005096 rolling process Methods 0.000 claims description 8
- 238000007711 solidification Methods 0.000 claims description 8
- 230000008023 solidification Effects 0.000 claims description 8
- KTLOQXXVQYUCJU-UHFFFAOYSA-N [Cu].[Cu].[Se] Chemical compound [Cu].[Cu].[Se] KTLOQXXVQYUCJU-UHFFFAOYSA-N 0.000 claims description 7
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 claims description 7
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 7
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 claims description 7
- 238000007790 scraping Methods 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000006096 absorbing agent Substances 0.000 claims description 6
- 150000003841 chloride salts Chemical class 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 claims description 4
- 230000001070 adhesive effect Effects 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- LHQLJMJLROMYRN-UHFFFAOYSA-L cadmium acetate Chemical compound [Cd+2].CC([O-])=O.CC([O-])=O LHQLJMJLROMYRN-UHFFFAOYSA-L 0.000 claims description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 4
- 229940075417 cadmium iodide Drugs 0.000 claims description 4
- QCUOBSQYDGUHHT-UHFFFAOYSA-L cadmium sulfate Chemical compound [Cd+2].[O-]S([O-])(=O)=O QCUOBSQYDGUHHT-UHFFFAOYSA-L 0.000 claims description 4
- 229910000331 cadmium sulfate Inorganic materials 0.000 claims description 4
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 239000002270 dispersing agent Substances 0.000 claims description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 4
- 239000002516 radical scavenger Substances 0.000 claims description 4
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 claims description 4
- 229910000058 selane Inorganic materials 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 229910000846 In alloy Inorganic materials 0.000 claims description 3
- LCUOIYYHNRBAFS-UHFFFAOYSA-N copper;sulfanylideneindium Chemical compound [Cu].[In]=S LCUOIYYHNRBAFS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- 238000005486 sulfidation Methods 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 238000001802 infusion Methods 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 150000003346 selenoethers Chemical class 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 210000002700 urine Anatomy 0.000 claims 2
- 239000003570 air Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000224 chemical solution deposition Methods 0.000 description 2
- BWFPGXWASODCHM-UHFFFAOYSA-N copper monosulfide Chemical compound [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- MNWBNISUBARLIT-UHFFFAOYSA-N sodium cyanide Chemical compound [Na+].N#[C-] MNWBNISUBARLIT-UHFFFAOYSA-N 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 150000002259 gallium compounds Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明係有關一種形成銅銦鎵硫硒吸收層及硫化鎘緩衝層的方法及系統,尤其是在非真空環境下進行二階段硫硒反應以形成品質優良的吸收層。The invention relates to a method and a system for forming a copper indium gallium sulfide selenium absorption layer and a cadmium sulfide buffer layer, in particular to perform a two-stage sulfur selenium reaction in a non-vacuum environment to form an excellent quality absorption layer.
在綠色能源的國際風潮下,薄膜太陽電池中具四元化合物的銅銦鎵硒(CIGS)太陽電池由於不受原料限制、可在大面積軟性基板上製作以及具有高轉換效率的優點,尤其是單元電池(Cell)的轉換效率可達20%而模組的轉換效率亦可達14%,因此,目前已逐漸受到各國新能源產業界的重視而致力開發。In the international wave of green energy, copper-indium-gallium-selenide (CIGS) solar cells with quaternary compounds in thin-film solar cells are not limited by raw materials, can be fabricated on large-area flexible substrates, and have high conversion efficiency, especially The conversion efficiency of the cell can reach 20% and the conversion efficiency of the module can reach 14%. Therefore, it has been gradually developed by the new energy industry in various countries.
參閱第一圖,習用技術銅銦鎵硒太陽電池的示意圖。如第一圖所示,銅銦鎵硒太陽電池包括由下而上依序堆疊的基板10、背面電極層20、吸收層30、緩衝層40、透明導電層50及正面電極層60,其中入射光L由上往下射入銅銦鎵硒太陽電池。Referring to the first figure, a schematic diagram of a conventional technology copper indium gallium selenide solar cell. As shown in the first figure, the copper indium gallium selenide solar cell comprises a substrate 10, a back electrode layer 20, an absorbing layer 30, a buffer layer 40, a transparent conductive layer 50 and a front electrode layer 60 which are sequentially stacked from bottom to top, wherein incident Light L is injected into the copper indium gallium selenide solar cell from top to bottom.
基板10一般為玻璃,背面電極層20使用金屬鉬,而吸收層30係包含銅、銦、鎵及硒的四元化合物,形成N型半導體層,緩衝層40包含硫化鋅,形成P型半導體層,透明導電層(TCO)50包括氧化銦錫(ITO)或氧化鋅(ZnO),正面電極層60可使用鎳及鋁,一般為網格狀,先在透明導電層50上形成金屬鎳層,以避免形成高電阻金屬氧化物,接著再形成金屬鋁層。The substrate 10 is generally glass, the back electrode layer 20 is made of metal molybdenum, and the absorption layer 30 is a quaternary compound containing copper, indium, gallium, and selenium to form an N-type semiconductor layer, and the buffer layer 40 contains zinc sulfide to form a P-type semiconductor layer. The transparent conductive layer (TCO) 50 includes indium tin oxide (ITO) or zinc oxide (ZnO), and the front electrode layer 60 may be made of nickel or aluminum, generally in the form of a grid, and a metal nickel layer is first formed on the transparent conductive layer 50. To avoid the formation of a high resistance metal oxide, followed by the formation of a metal aluminum layer.
N型的吸收層30與P型的緩衝層40之間形成p-n接面35,用以吸收入射光而產生自由電子電洞對,進一步使背面電極層20為正電壓而正面電極層60為負電壓,並藉正極接點22及負極接點62連接外部負載,用以輸出電力。A pn junction 35 is formed between the N-type absorber layer 30 and the P-type buffer layer 40 for absorbing incident light to generate a free electron hole pair, further causing the back electrode layer 20 to be a positive voltage and the front electrode layer 60 to be negative. The voltage is connected to the external load through the positive contact 22 and the negative contact 62 for outputting electric power.
上述銅銦鎵硒太陽電池的製作方法可採用真空製程或非真空製程,其中真空製程主要是使用濺鍍法或蒸鍍法,雖然產品品質較佳,但材料利用率較低,設備昂貴且製造成本高,而非真空製程係使用油墨製程(Ink Process),可大幅降低製造成本,非常具有發展潛力,但是銅銦鎵硒吸收層的緻密性較為不足,常導致銅銦鎵硒的四元化合物不易形成較大顆粒,使得吸收層中的晶界(Grain boundary)相對較多,無法成功將落在晶界中的光線轉換成可利用的電能,造成轉換效率不易提升。The above-mentioned method for manufacturing the copper indium gallium selenide solar cell can adopt a vacuum process or a non-vacuum process, wherein the vacuum process mainly uses a sputtering method or an evaporation method, and although the product quality is good, the material utilization rate is low, the equipment is expensive, and the manufacturing is expensive. The high cost, non-vacuum process uses the Ink Process, which can greatly reduce the manufacturing cost, and has great potential for development. However, the compactness of the copper indium gallium selenide absorber layer is insufficient, often leading to the quaternary compound of copper indium gallium selenide. It is difficult to form larger particles, so that the grain boundary in the absorption layer is relatively large, and the light falling in the grain boundary cannot be successfully converted into usable electric energy, so that the conversion efficiency is not easily improved.
因此,需要一種能在非真空下改善銅銦鎵硒吸收層之吸光效率及光電轉換效率並提供匹配性佳之硫化鎘緩衝層以形成較佳p-n接面的方法及系統,進而解決上述習用技術的問題。Therefore, there is a need for a method and system for improving the light absorption efficiency and photoelectric conversion efficiency of a copper indium gallium selenide absorber layer under non-vacuum and providing a well-matched cadmium sulfide buffer layer to form a preferred pn junction, thereby solving the above-mentioned conventional techniques. problem.
本發明之主要目的在提供一種非真空形成銅銦鎵硫硒吸收層及硫化鎘緩衝層的方法,係在非真空下針對具有背面電極層的基板,在背面電極層上以混合漿料形成塗佈層,經初步烘乾後,藉實密化裝置進行實密化,接著進行初級硫化反應處理及初級硒化反應處理,用以形成初級的銅銦鎵硫硒層,再進行熱處理,以改善初級銅銦鎵硫硒層的晶格匹配,接著利用氰化鉀或溴化物進行雜相清除處理,用以去除雜相的硒化亞銅及硫化銅,再進行後級硫化反應處理及後級硒化反應處理,產生所需的銅銦鎵硫硒吸收層,最後利用化學槽水浴法,進而在銅銦鎵硫硒吸收層上形成硫化鎘緩衝層,且該銅銦鎵硫硒吸收層及硫化鎘緩衝層可應用於銅銦鎵硒太陽電池,能改善吸收層的吸光效率及光電轉換效率,並提高緩衝層對吸收層的匹配性,進而在吸收層與緩衝層之間形成高效率的p-n接面,藉以降低製造成本並提升整體銅銦鎵硒太陽電池的性能。The main object of the present invention is to provide a non-vacuum method for forming a copper indium gallium sulphide selenide absorbing layer and a cadmium sulfide buffer layer, which is formed by coating a mixed slurry on a back electrode layer for a substrate having a back electrode layer under non-vacuum. The cloth layer, after preliminary drying, is solidified by a solid densification device, followed by a primary sulfurization reaction treatment and a primary selenization reaction treatment to form a primary copper indium gallium sulfide selenium layer, and then heat treatment to improve Lattice matching of the primary copper indium gallium sulphide selenide layer, followed by heterogeneous phase removal treatment using potassium cyanide or bromide to remove the heterogeneous cuprous selenide and copper sulphide, followed by post-stage sulfidation treatment and subsequent stages Selenization reaction to produce the desired copper indium gallium sulphide selenide absorption layer, and finally using a chemical bath water bath method to form a cadmium sulfide buffer layer on the copper indium gallium sulphide selenium absorption layer, and the copper indium gallium sulphide selenium absorption layer and The cadmium sulfide buffer layer can be applied to a copper indium gallium selenide solar cell, which can improve the light absorption efficiency and photoelectric conversion efficiency of the absorption layer, and improve the matching of the buffer layer to the absorption layer, thereby forming a shape between the absorption layer and the buffer layer. High-efficiency p-n junction, thereby reducing manufacturing costs and improve overall performance of CIGS solar cells.
本發明之另一目的在提供一種非真空形成銅銦鎵硫硒吸收層及硫化鎘緩衝層的系統,包括混合裝置、塗佈層形成裝置、烘乾裝置、實密化裝置、初級硫硒反應裝置、熱處理裝置、雜相清除裝置、後級硫硒反應裝置及硫化鎘緩衝層生長裝置,藉以分別進行混合處理、塗佈層形成處理、烘乾處理、實密化處理、初級硫硒反應處理、熱處理、雜相清除處理、後級硫硒反應處理及硫化鎘緩衝層生長處理,進而在金屬鉬層上依序形成銅銦鎵硫硒吸收層及硫化鎘緩衝層,用以製造高效能的銅銦鎵硒太陽電池。Another object of the present invention is to provide a system for forming a copper indium gallium sulphide selenide absorbing layer and a cadmium sulfide buffer layer without vacuum, comprising a mixing device, a coating layer forming device, a drying device, a densification device, and a primary sulfur selenium reaction. The device, the heat treatment device, the impurity phase cleaning device, the post-stage sulfur selenium reaction device and the cadmium sulfide buffer layer growth device are respectively subjected to mixing treatment, coating layer formation treatment, drying treatment, solidification treatment, primary sulfur selenium reaction treatment , heat treatment, impurity phase removal treatment, post-stage sulfur selenium reaction treatment and cadmium sulfide buffer layer growth treatment, and then sequentially form a copper indium gallium sulphide selenium absorption layer and a cadmium sulfide buffer layer on the metal molybdenum layer for high-performance Copper indium gallium selenide solar cell.
以下配合圖式及元件符號對本發明之實施方式做更詳細的說明,俾使熟習該項技藝者在研讀本說明書後能據以實施。The embodiments of the present invention will be described in more detail below with reference to the drawings and the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;
參閱第二圖,本發明方法的流程圖。如第二圖所示,本發明的方法係由步驟S10開始,在非真空下進行混合處理,包括混合銅銦鎵硫硒粉體、溶劑與添加劑以形成銅銦鎵硫硒漿料,該銅銦鎵硫硒粉體可包含銅銦合金(CuIn)、銅銦鎵化合物(CuInGa)、硒化銅銦(CuInSe)、硒化銅銦鎵(CuInGaSe)、硫化銅銦(CuInS)及硫化銅銦鎵(CuInGaS)粉體的至少其中之一,該溶劑可包含醇類及胺類的至少其中之一,該添加劑可包含分散劑、黏著劑及流平劑的至少其中之一。Referring to the second figure, a flow chart of the method of the present invention. As shown in the second figure, the method of the present invention begins with step S10, and performs a mixing process under non-vacuum, including mixing copper indium gallium sulphide powder, a solvent and an additive to form a copper indium gallium sulphide slurry. The indium gallium sulphide powder may include CuIn, CuInGa, CuInSe, CuInGaSe, CuInS and CuS sulfide. At least one of gallium (CuInGaS) powder, the solvent may include at least one of an alcohol and an amine, and the additive may include at least one of a dispersant, an adhesive, and a leveling agent.
接著進入步驟S20,進行塗佈層形成處理,利用銅銦鎵硫硒漿料以在背面電極層20上形成銅銦鎵硫硒漿料塗佈層,該塗佈層形成處理包括噴塗處理、塗佈處理及浸泡處理的其中之一,而該背面電極層20係位於基板10的上表面,並在步驟S30中進行烘乾處理,利用加熱升溫以預乾並去除銅銦鎵硫硒漿料塗佈層中的溶劑。Next, proceeding to step S20, a coating layer forming process is performed to form a copper indium gallium sulfide selenium slurry coating layer on the back electrode layer 20 by using a copper indium gallium sulfide selenium slurry, the coating layer forming process including spray coating treatment, coating One of the cloth treatment and the immersion treatment, and the back electrode layer 20 is located on the upper surface of the substrate 10, and is subjected to a drying treatment in step S30, and is heated and heated to pre-dry and remove the copper indium gallium sulfide selenium slurry coating. The solvent in the layer.
接著在步驟S40中,再對去除溶劑後的銅銦鎵硫硒漿料塗佈層進行實密化處理,可包括滾壓處理、高壓噴液壓合處理及高壓噴氣壓合處理的其中之一,藉以施加壓力在該銅銦鎵硫硒漿料塗佈層上,使銅銦鎵硫硒漿料塗佈層實密化,再進入步驟S50進行初級硫硒反應處理,包括硫化反應及硒化反應,可分別通入硫化氫及硒化氫且可在升溫下使銅銦鎵硫硒漿料塗佈層產生硫化物及硒化物,藉以形成初級的銅銦鎵硫硒吸收層。Next, in step S40, the copper indium gallium sulfide selenium slurry coating layer after solvent removal is further densified, and may include one of a rolling treatment, a high pressure spray hydraulic treatment, and a high pressure jet compression treatment. Applying pressure to the copper indium gallium sulphide sulphide slurry coating layer to solidify the copper indium gallium sulphide sulphide slurry coating layer, and then proceeding to step S50 for primary sulfur selenium reaction, including sulfidation reaction and selenization reaction. The hydrogen sulfide and the hydrogen selenide may be respectively introduced, and the copper indium gallium sulfide selenium slurry coating layer may be used to generate sulfide and selenide at a temperature rise, thereby forming a primary copper indium gallium sulfide selenium absorption layer.
接著在步驟S60中進行熱處理,用以對初級的銅銦鎵硫硒吸收層進行結晶處理,該熱處理可為快速熱退火處理(Rapid Thermal Process,RTP),可包括依序的快速升溫結晶處理、多段恆溫結晶處理及多段降溫處理,用以改善初級的銅銦鎵硫硒吸收層的晶體結構,然後進入步驟S70,以進行雜相清除處理,包括利用雜相清除劑以去除初級的銅銦鎵硫硒吸收層中雜相的化合物,包括硒化亞銅(Cu2 Se)及硫化銅(CuS)的至少其中之一,而該雜相清除劑包含氰化鈉(NaCN)、氰化鉀(KCN)及溴化物的至少其中之一,並進行清洗及烘乾。接著進入步驟S80,進行後級硫硒反應處理,係類似於步驟S50的初級硫硒反應處理,包括硫化反應及硒化反應,使初級的銅銦鎵硫硒吸收層進一步經硫化反應及硒化反應而形成後級的銅銦鎵硫硒吸收層,亦即所需的銅銦鎵硫硒吸收層。Next, a heat treatment is performed in step S60 for crystallization treatment of the primary copper indium gallium sulphide selenide absorption layer, which may be a rapid thermal process (RTP), which may include sequential rapid temperature crystallization treatment, Multi-stage constant temperature crystallization treatment and multi-stage cooling treatment to improve the crystal structure of the primary copper indium gallium sulphide selenide absorbing layer, and then proceed to step S70 for heterogeneous removal treatment, including the use of a heterogeneous scavenger to remove the primary copper indium gallium a compound of a hetero phase in the sulfur selenium absorption layer, comprising at least one of copper selenide (Cu 2 Se) and copper sulfide (CuS), and the heterogeneous scavenger comprises sodium cyanide (NaCN) and potassium cyanide ( At least one of KCN) and bromide is washed and dried. Next, proceeding to step S80, a subsequent sulfur-selenium reaction treatment is performed, which is similar to the primary sulfur selenium reaction treatment in step S50, including a sulfurization reaction and a selenization reaction, so that the primary copper indium gallium sulfide selenium absorption layer is further subjected to sulfurization reaction and selenization. The reaction forms a copper indium gallium sulphide selenide absorbing layer of the latter stage, that is, a desired copper indium gallium sulphide selenide absorbing layer.
最後在步驟S90中,進行硫化鎘緩衝層生長處理、基板刮除處理及清洗烘乾處理,其中硫化鎘緩衝層生長處理係藉化學槽水浴法(Chemical Bath Deposition,CBD),將步驟S80中所產生的銅銦鎵硫硒吸收層浸泡於包含有硫及鎘的水溶液中,藉以在銅銦鎵硫硒吸收層上形成硫化鎘緩衝層,其中該水溶液包括氯化鹽、氨水(NH3 )及硫尿(SC(NH2 )2 )),且該氯化鹽可包括氯化鎘(CdCl2 )、硫酸鎘(CdSO4 )、碘化鎘(CdI2 )及二乙酸鎘(Cd(CH3 COO)2 )的至少其中之一。基板刮除處理係對基板的邊緣及背面進行刮除,以去除多餘的材料。Finally, in step S90, a cadmium sulfide buffer layer growth treatment, a substrate scraping treatment, and a cleaning and drying treatment are performed, wherein the cadmium sulfide buffer layer growth treatment is performed by a chemical bath deposition (CBD) in step S80. The generated copper indium gallium sulphide selenium absorption layer is immersed in an aqueous solution containing sulfur and cadmium to form a cadmium sulfide buffer layer on the copper indium gallium sulphide selenium absorption layer, wherein the aqueous solution comprises chlorinated salt, ammonia water (NH 3 ) and Sulfur (SC(NH 2 ) 2 )), and the chloride may include cadmium chloride (CdCl 2 ), cadmium sulfate (CdSO 4 ), cadmium iodide (CdI 2 ), and cadmium diacetate (Cd (CH 3 ) At least one of COO) 2 ). The substrate scraping process scrapes off the edges and back of the substrate to remove excess material.
本發明方法的特點為,在非真空環境下進行二階段的硫硒反應以改善銅銦鎵硫硒吸收層的品質,其中硫硒反應包括依序的硫化反應及硒化反應,而且在第一階段的初級硫硒反應之前,先對烘乾後的銅銦鎵硫硒漿料塗佈層進行實密化處理,進而減少晶界的數量,以提高光電轉換效率。The method of the invention is characterized in that the two-stage sulfur selenium reaction is carried out in a non-vacuum environment to improve the quality of the copper indium gallium sulfide selenium absorption layer, wherein the sulfur selenium reaction comprises sequential sulfurization reaction and selenization reaction, and is first Before the primary sulfur selenium reaction in the stage, the dried copper indium gallium sulfide selenium slurry coating layer is subjected to a densification treatment, thereby reducing the number of grain boundaries to improve the photoelectric conversion efficiency.
本發明方法的另一特點為,在第一階段的初級硫硒反應以及第二階段的後級硫硒反應之間,依序進行快速熱退火處理及雜相清除處理,其中該快速熱退火處理係用以改善初級硫硒反應所產生的初級銅銦鎵硫硒吸收層的晶體結構,藉以減輕或消除可能的內應力,提高晶格匹配,而雜相清除處理係用以去除掉會妨礙銅銦鎵硫硒吸收層進行光電轉換的雜相硒化亞銅及硫化銅,使光電轉換獲得進一步改善。Another feature of the method of the present invention is that, during the first stage of the primary sulfur selenium reaction and the second stage of the subsequent stage sulfur selenium reaction, rapid thermal annealing treatment and impurity phase removal treatment are sequentially performed, wherein the rapid thermal annealing treatment It is used to improve the crystal structure of the primary copper indium gallium sulfide selenium absorption layer produced by the primary sulfur selenium reaction, thereby reducing or eliminating possible internal stress and improving lattice matching, while the impurity phase removal treatment is used to remove copper which will hinder copper. The indium gallium sulphide selenide absorber layer is subjected to photoelectric conversion of heterogeneous cuprous selenide and copper sulfide to further improve photoelectric conversion.
參閱第三圖,本發明系統的示意圖。如第三圖所示,本發明的系統係包括混合裝置110、塗佈層形成裝置120、烘乾裝置130、實密化裝置140、初級硫硒反應裝置150、熱處理裝置160、雜相清除裝置170、後級硫硒反應裝置180及硫化鎘緩衝層生長裝置190,藉以分別進行混合處理、塗佈層形成處理、烘乾處理、實密化處理、初級硫硒反應處理、熱處理、雜相清除處理、後級硫硒反應處理及硫化鎘緩衝層生長處理,進而在金屬鉬層上依序形成銅銦鎵硫硒吸收層及硫化鎘緩衝層。Referring to the third figure, a schematic diagram of the system of the present invention. As shown in the third figure, the system of the present invention includes a mixing device 110, a coating layer forming device 120, a drying device 130, a solidifying device 140, a primary sulfur selenium reaction device 150, a heat treatment device 160, and a phase cleaning device. 170. The post-stage sulfur-selenium reaction device 180 and the cadmium sulfide buffer layer growth device 190 are respectively subjected to mixing treatment, coating layer formation treatment, drying treatment, solidification treatment, primary sulfur selenium reaction treatment, heat treatment, and impurity phase removal. The treatment, the post-stage sulfur selenium reaction treatment and the cadmium sulfide buffer layer growth treatment further form a copper indium gallium sulfide selenium absorption layer and a cadmium sulfide buffer layer on the metal molybdenum layer.
混合裝置110可包括至少一粉體槽112、至少一溶劑槽114及混合槽116,其中該至少一粉體槽112係用以容置複數個粉體,包含銅銦合金(CuIn)、銅銦鎵化合物(CuInGa)、硒化銅銦(CuInSe)、硒化銅銦鎵(CuInGaSe)、硫化銅銦(CuInS)及硫化銅銦鎵(CuInGaS)粉體的至少其中之一,該至少一溶劑槽114係用以容置溶劑與添加劑,該溶劑包含醇類及胺類的至少其中之一,該添加劑可包含分散劑、黏著劑及流平劑的至少其中之一,而該混合槽116係利用攪拌裝置(圖中未顯示)將該至少一粉體槽112中的粉體以及該至少一溶劑槽114的溶劑與添加劑進行均勻混合,進而產生銅銦鎵硫硒漿料。The mixing device 110 can include at least one powder tank 112, at least one solvent tank 114, and a mixing tank 116, wherein the at least one powder tank 112 is used for accommodating a plurality of powders, including copper indium alloy (CuIn), copper indium. At least one of a gallium compound (CuInGa), copper indium selenide (CuInSe), copper indium gallium selenide (CuInGaSe), copper indium sulfide (CuInS), and copper indium gallium sulfide (CuInGaS) powder, the at least one solvent tank The 114 system is for accommodating a solvent and an additive, the solvent comprising at least one of an alcohol and an amine, the additive may include at least one of a dispersing agent, an adhesive, and a leveling agent, and the mixing tank 116 is utilized. A stirring device (not shown) uniformly mixes the powder in the at least one powder tank 112 and the solvent of the at least one solvent tank 114 with an additive to produce a copper indium gallium sulfide selenium slurry.
塗佈層形成裝置120可為用以進行噴塗處理的噴塗裝置、用以進行塗佈處理的塗佈裝置及用以進行浸泡處理的浸泡裝置的其中之一。噴塗裝置可包括超音波噴頭、超音波控制器及氣壓流量控制器(圖中未顯示),用以將混合槽116的銅銦鎵硫硒漿料均勻噴塗至基板10之上表面上的背面電極層,以形成銅銦鎵硫硒漿料塗佈層,且基板10的下表面係由複數個滾輪12支撐並帶動而前進。The coating layer forming device 120 may be one of a spraying device for performing a spray coating process, a coating device for performing a coating process, and an infusion device for performing a soaking process. The spraying device may include an ultrasonic nozzle, an ultrasonic controller and a pneumatic flow controller (not shown) for uniformly spraying the copper indium gallium sulfide selenium slurry of the mixing tank 116 to the back electrode on the upper surface of the substrate 10. The layer is formed to form a copper indium gallium sulfide selenium slurry coating layer, and the lower surface of the substrate 10 is supported and driven by a plurality of rollers 12 to advance.
此外,塗佈裝置可包括漿料擠出機及刮刀,其中漿料擠出機將銅銦鎵硫硒漿料擠出至背面電極層上,而刮刀係用以除去多餘的銅銦鎵硫硒漿料,以達到所需厚度。浸泡裝置包括浸泡槽及刮刀,浸泡槽容置有銅銦鎵硫硒漿料,在背面電極層浸泡過銅銦鎵硫硒漿料後,再以刮刀除去多餘的銅銦鎵硫硒漿料,以達到所需厚度。Further, the coating apparatus may include a slurry extruder and a doctor blade, wherein the slurry extruder extrudes the copper indium gallium sulfide selenium slurry onto the back electrode layer, and the doctor blade is used to remove excess copper indium gallium sulfide Slurry to achieve the desired thickness. The immersion device comprises a immersion tank and a scraper, and the immersion tank is provided with a copper indium gallium sulphide selenide slurry, and after the copper indium gallium sulphide selenide slurry is immersed in the back electrode layer, the excess copper indium gallium sulphide selenide slurry is removed by a scraper. To achieve the desired thickness.
烘乾裝置130可包括加熱絲、高週波輻射源及紅外線源(圖中未顯示)的至少其中之一,用以預乾及去除銅銦鎵硫硒漿料塗佈層中的溶劑。The drying device 130 may include at least one of a heating wire, a high-frequency radiation source, and an infrared source (not shown) for pre-drying and removing the solvent in the copper indium gallium sulfide selenium slurry coating layer.
實密化裝置140可包括用以進行滾壓處理的滾壓裝置、用以進行高壓噴液壓合處理的高壓噴液壓合裝置及用以進行高壓噴氣壓合處理的高壓噴氣壓合裝置的其中之一。第三圖係以滾壓裝置為例,顯示實密化裝置140可包括至少一滾輪142,用以實密化該銅銦鎵硫硒漿料塗佈層。The solidification device 140 may include a rolling device for performing a rolling process, a high pressure spray hydraulic device for performing a high pressure spray hydraulic pressure process, and a high pressure jet press device for performing a high pressure jet press treatment. One. The third figure is an example of a rolling device. The display device 140 can include at least one roller 142 for densifying the copper indium gallium sulfide selenium slurry coating layer.
此外,高壓噴液壓合裝置可包括液體壓縮機及噴嘴,液體壓縮機係用以提高噴液的壓力,再經噴嘴噴射至銅銦鎵硫硒漿料塗佈層上,藉以施加壓力,該噴液可為水。高壓噴氣壓合裝置可包括氣體壓縮機及噴嘴,氣體壓縮機係用以提高噴氣的壓力,再經噴嘴噴射至銅銦鎵硫硒漿料塗佈層上,藉以施加壓力,該噴氣可為空氣、氮氣及氬氣的其中之一。In addition, the high-pressure spray hydraulic device may include a liquid compressor and a nozzle, and the liquid compressor is used to increase the pressure of the spray liquid, and then sprayed onto the coating layer of the copper indium gallium sulfide selenium slurry through the nozzle, thereby applying pressure, the spray The liquid can be water. The high pressure jet compression device may include a gas compressor for increasing the pressure of the jet, and then spraying the nozzle onto the coating layer of the copper indium gallium sulphide slurry to apply pressure, the jet may be air One of nitrogen, nitrogen and argon.
初級硫硒反應裝置150可包括初級硫化反應裝置及初級硒化反應裝置(圖中未顯示),分別通入硫化氫及硒化氫且在升溫下對銅銦鎵硫硒漿料塗佈層進行初級硫化反應處理及初級硒化反應處理,藉以形成初級的銅銦鎵硫硒吸收層。The primary sulfur selenium reaction device 150 may include a primary sulfurization reaction device and a primary selenization reaction device (not shown), respectively introducing hydrogen sulfide and hydrogen selenide and heating the copper indium gallium sulfide selenium slurry coating layer at elevated temperature. The primary sulfurization reaction treatment and the primary selenization reaction treatment form a primary copper indium gallium sulfide selenium absorption layer.
熱處理裝置160可為快速熱退火處理裝置,可包括快速升溫結晶區段、多段恆溫結晶區段及多段降溫區段(圖中未顯示),用以依序分別對初級的銅銦鎵硫硒吸收層進行快速升溫結晶處理、多段恆溫結晶處理及多段降溫處理,以減輕或消除可能的內應力,改善初級的銅銦鎵硫硒吸收層的晶體結構。The heat treatment device 160 may be a rapid thermal annealing treatment device, which may include a rapid temperature rising crystallization section, a multi-stage constant temperature crystallization section, and a multi-stage cooling section (not shown) for sequentially absorbing the primary copper indium gallium sulfide selenium. The layer is subjected to rapid temperature crystallization treatment, multi-stage constant temperature crystallization treatment and multi-stage cooling treatment to reduce or eliminate possible internal stress and improve the crystal structure of the primary copper indium gallium sulfide selenium absorption layer.
雜相清除裝置170可包括蝕刻槽及清洗烘乾裝置(圖中未顯示),其中蝕刻槽容置蝕刻液,係包含氰化鈉(NaCN)、氰化鉀(KCN)及溴化物的至少其中之一,以去除初級的銅銦鎵硫硒吸收層中雜相的化合物,包括硒化亞銅及硫化銅的至少其中之一,並藉清洗烘乾裝置進行清洗及烘乾,進而進一步改善銅銦鎵硫硒吸收層的晶體品質。The impurity phase removing device 170 may include an etching tank and a cleaning and drying device (not shown), wherein the etching tank accommodates an etching solution containing at least one of sodium cyanide (NaCN), potassium cyanide (KCN) and bromide. One of the compounds for removing impurities in the primary copper indium gallium sulphide selenide absorbing layer, including at least one of cuprous selenide and copper sulphide, and cleaning and drying by a cleaning and drying device to further improve copper Crystal quality of indium gallium sulphide selenide absorber layer.
後級硫硒反應裝置180係類似於初級硫硒反應裝置150,可包括後級硫化反應裝置及後級硒化反應裝置(圖中未顯示),分別對初級的銅銦鎵硫硒吸收層進行後級硫化反應處理及後級硒化反應處理,以形成後級的銅銦鎵硫硒吸收層,亦即所需的銅銦鎵硫硒吸收層。The post-sulfur-selenium reaction device 180 is similar to the primary sulfur-selenium reaction device 150, and may include a post-stage vulcanization reaction device and a post-stage selenization reaction device (not shown) for respectively performing the primary copper indium gallium sulfide selenium absorption layer. The post-stage vulcanization reaction treatment and the post-stage selenization reaction treatment form a copper indium gallium sulphide selenide absorbing layer of the latter stage, that is, a desired copper indium gallium sulphide selenide absorbing layer.
硫化鎘緩衝層生長裝置190可包括硫化鎘生長浸泡裝置、基板刮除裝置及清洗烘乾裝置(圖中未顯示),其中硫化鎘生長浸泡裝置容置包含有硫及鎘的水溶液,使後級的銅銦鎵硫硒吸收層浸泡於該水溶液中時,會在後級的銅銦鎵硫硒吸收層上生長出硫化鎘緩衝層,並由基板刮除裝置刮除掉基板的邊緣及背面上多餘的材料,而清洗烘乾裝置係用以清洗及烘乾該硫化鎘緩衝層。該水溶液包括氯化鹽、氨水及硫尿,且該氯化鹽可包括氯化鎘、硫酸鎘、碘化鎘、及二乙酸鎘的至少其中之一。The cadmium sulfide buffer layer growth device 190 may include a cadmium sulfide growth soaking device, a substrate scraping device, and a cleaning and drying device (not shown), wherein the cadmium sulfide growth soaking device houses an aqueous solution containing sulfur and cadmium to make the latter stage When the copper indium gallium sulphide selenide absorption layer is immersed in the aqueous solution, a cadmium sulfide buffer layer is grown on the copper indium gallium sulphide selenide absorption layer of the subsequent stage, and the substrate scraping device scrapes off the edge and the back surface of the substrate. Excess material, and the cleaning and drying device is used to clean and dry the cadmium sulfide buffer layer. The aqueous solution includes a chloride salt, ammonia water, and thiourea, and the chloride salt may include at least one of cadmium chloride, cadmium sulfate, cadmium iodide, and cadmium diacetate.
本發明系統的特點在於,可在非真空的常壓環境下操作,以形成高品質的銅銦鎵硫硒吸收層以及硫化鎘緩衝層,供銅銦鎵硒太陽電池用。The system of the present invention is characterized in that it can be operated in a non-vacuum atmospheric environment to form a high-quality copper indium gallium sulphide selenium absorbing layer and a cadmium sulfide buffer layer for use in a copper indium gallium selenide solar cell.
以上所述者僅為用以解釋本發明之較佳實施例,並非企圖據以對本發明做任何形式上之限制,是以,凡有在相同之發明精神下所作有關本發明之任何修飾或變更,皆仍應包括在本發明意圖保護之範疇。The above is only a preferred embodiment for explaining the present invention, and is not intended to limit the present invention in any way, and any modifications or alterations to the present invention made in the spirit of the same invention. All should still be included in the scope of the intention of the present invention.
10...基板10. . . Substrate
12...滾輪12. . . Wheel
20...背面電極層20. . . Back electrode layer
22...正極接點twenty two. . . Positive contact
30...吸收層30. . . Absorbing layer
35...p-n接面35. . . P-n junction
40...緩衝層40. . . The buffer layer
50...透明導電層50. . . Transparent conductive layer
60...正面電極層60. . . Front electrode layer
62...負極接點62. . . Negative contact
110...混合裝置110. . . Mixing device
112...粉體槽112. . . Powder slot
114...溶劑槽114. . . Solvent tank
116...混合槽116. . . Mixing tank
120...塗佈層形成裝置120. . . Coating layer forming device
130...烘乾裝置130. . . Drying device
140...實密化裝置(滾輪裝置)140. . . Solidification device (roller device)
142...滾輪142. . . Wheel
150...初級硫硒反應裝置150. . . Primary sulfur selenium reaction unit
160...熱處理裝置(快速熱退火處理裝置)160. . . Heat treatment device (rapid thermal annealing treatment device)
170...雜相清除裝置170. . . Miscellaneous phase cleaning device
180...後級硫硒反應裝置180. . . Subsequent sulfur-selenium reaction device
190...硫化鎘緩衝層生長裝置190. . . Cadmium sulfide buffer layer growth device
L...入射光L. . . Incident light
S10...混合處理S10. . . Mixed processing
S20...塗佈層形成處理S20. . . Coating layer formation treatment
S30...烘乾處理S30. . . Drying treatment
S40...實密化處理S40. . . Solidification
S50...初級硫硒反應處理S50. . . Primary sulfur selenium reaction treatment
S60...熱處理(快速熱退火處理)S60. . . Heat treatment (rapid thermal annealing treatment)
S70...雜相清除處理S70. . . Miscellaneous phase removal
S80...後級硫硒反應處理S80. . . Subsequent sulfur and selenium reaction treatment
S90...硫化鎘緩衝層生長處理S90. . . Cadmium sulfide buffer layer growth treatment
第一圖為習用技術銅銦鎵硒太陽電池的示意圖。The first picture is a schematic diagram of a conventional technology copper indium gallium selenide solar cell.
第二圖為本發明方法的流程圖。The second figure is a flow chart of the method of the invention.
第三圖為本發明系統的示意圖。The third figure is a schematic diagram of the system of the present invention.
S10...混合處理S10. . . Mixed processing
S20...塗佈層形成處理S20. . . Coating layer formation treatment
S30...烘乾處理S30. . . Drying treatment
S40...實密化處理S40. . . Solidification
S50...初級硫硒反應處理S50. . . Primary sulfur selenium reaction treatment
S60...熱處理(快速熱退火處理)S60. . . Heat treatment (rapid thermal annealing treatment)
S70...雜相清除處理S70. . . Miscellaneous phase removal
S80...後級硫硒反應處理S80. . . Subsequent sulfur and selenium reaction treatment
S90...硫化鎘緩衝層生長處理S90. . . Cadmium sulfide buffer layer growth treatment
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098143637A TWI398013B (en) | 2009-12-18 | 2009-12-18 | Method and system for forming non-vacuum copper indium gallium sulphide selenium absorption layer and cadmium sulfide buffer layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098143637A TWI398013B (en) | 2009-12-18 | 2009-12-18 | Method and system for forming non-vacuum copper indium gallium sulphide selenium absorption layer and cadmium sulfide buffer layer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201123507A TW201123507A (en) | 2011-07-01 |
TWI398013B true TWI398013B (en) | 2013-06-01 |
Family
ID=45046706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098143637A TWI398013B (en) | 2009-12-18 | 2009-12-18 | Method and system for forming non-vacuum copper indium gallium sulphide selenium absorption layer and cadmium sulfide buffer layer |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI398013B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201407802A (en) * | 2012-08-07 | 2014-02-16 | Long Energy Internat Ltd | Stack structure and manufacturing method of solar cell with dual N-type semiconductor thin film layer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070163644A1 (en) * | 2004-02-19 | 2007-07-19 | Nanosolar, Inc. | High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor and inter-metallic material |
TW200832726A (en) * | 2006-11-10 | 2008-08-01 | Solopower Inc | Reel-to-reel reaction of precursor film to form solar cell absorber |
US20080274577A1 (en) * | 2004-08-18 | 2008-11-06 | Ahmed Ennaoui | Method of the Application of a Zinc Sulfide Buffer Layer on a Semiconductor Substrate |
-
2009
- 2009-12-18 TW TW098143637A patent/TWI398013B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070163644A1 (en) * | 2004-02-19 | 2007-07-19 | Nanosolar, Inc. | High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor and inter-metallic material |
US20080274577A1 (en) * | 2004-08-18 | 2008-11-06 | Ahmed Ennaoui | Method of the Application of a Zinc Sulfide Buffer Layer on a Semiconductor Substrate |
TW200832726A (en) * | 2006-11-10 | 2008-08-01 | Solopower Inc | Reel-to-reel reaction of precursor film to form solar cell absorber |
Also Published As
Publication number | Publication date |
---|---|
TW201123507A (en) | 2011-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7998789B1 (en) | Method and system for forming copper indium gallium sulfur selenide absorption layer and cadmium sulfide buffer layer under non-vacuum condition | |
CN105826425B (en) | A kind of preparation method of copper-zinc-tin-sulfur thin film solar cell | |
CN1114957C (en) | Photovoltaic device and method for manufacturing it | |
CN109148625A (en) | Copper zinc tin sulfur selenium thin-film solar cells and preparation method thereof | |
CN102130202A (en) | Method and system for non-vacuum formation of copper indium gallium sulfide selenide absorption layer and cadmium sulfide buffer layer | |
US8026124B2 (en) | Method for fabricating copper/indium/gallium/selenium solar cell by wet process under non-vacuum condition | |
CN102130201B (en) | Method for manufacturing non-vacuum wet type copper indium gallium selenide solar cell | |
CN104241447A (en) | Method for preparing copper, zinc, tin and sulfur film material | |
CN112736150B (en) | Copper indium gallium selenide thin-film solar cell and preparation method thereof | |
CN114203848A (en) | A kind of flexible antimony selenide solar cell and preparation method thereof | |
CN107910390A (en) | A kind of preparation method and application of the CZTSSe films of silver simple substance doping | |
Chu et al. | Semi-transparent thin film solar cells by a solution process | |
CN105355699B (en) | A kind of many many lamination cadmium telluride diaphragm solar batteries of knot and preparation method thereof | |
CN101235475A (en) | A kind of preparation method of copper indium sulfur compound film | |
CN105118883B (en) | Low-cadmium CIGS-based thin-film solar cell and manufacturing method thereof | |
JP6143737B2 (en) | Compound solar cell and method for forming a thin film having sulfide single crystal nanoparticles | |
TWI398013B (en) | Method and system for forming non-vacuum copper indium gallium sulphide selenium absorption layer and cadmium sulfide buffer layer | |
CN107093639A (en) | A kind of selenizing method of copper-zinc-tin-sulfur film | |
CN105070788A (en) | Preparation method for flexible substrate monocrystalline particle film solar cell | |
Hsiao et al. | Bifacial CIGS (11% efficiency)/Si solar cells by Cd-free and sodium-free green process integrated with CIGS TFTs | |
TWI396295B (en) | Preparation method of non - vacuum wet copper indium gallium selenium solar cells | |
WO2011052616A1 (en) | Process for producing chalcogen compound semiconductor layer and process for producing photoelectric converter | |
JP5318281B2 (en) | Photoelectric conversion device | |
CN112510157A (en) | Method for preparing perovskite solar cell in large area through all air | |
CN102074614B (en) | Manufacturing method of sol-gel solution of copper indium gallium selenide solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |