1378289 101.8-16 九、發明說明: 【發明所屬之技術領域】 、 本發明是有關於一種液晶面板、對向基板及其製作方 法’且特別是有關於一種聚合物穩定配向液晶面板、對向 電極陣列基板及其製作方法。 【先前技術】 隨著電腦性能的大幅進步以及網際網路、多媒體技術 的向度發展,視訊或影像裝置之體積日漸趨於輕薄。在顯 不器的發展上’隨著光電技術與半導體製造技術的進步, 具有咼晝質、空間利用效率佳、低消耗功率、無輻射等優 越特性的液晶顯示器已逐漸成為市場之主流。 市場對於液晶顯示器的性能要求是朝向高對比(high contrast ratio)、無灰階反轉(n〇 gray scaie inversi〇n)、色偏 小(little color shift)、允度高(high luminance)、高色彩豐富 度、高色彩飽和度、快速反應與廣視角等特性。目前,能 夠達成廣視角要求的技術有扭轉向列型(twist nematic,TN) 液晶加上廣視角膜(wide viewing film)、共平面切換型 (in-plane switching, IPS)液晶顯示器、邊際場切換型(fringe field switching)液晶顯示器、多域垂直配向型(multi_d〇main vertically alignment,MVA)液晶顯示器等方式。 習知之多域垂直配向式液晶顯示面板是利用配向結構 (alignment structure)的配置以令不同區域内的液晶分子以 不同角度傾倒’而達到廣視角的功效。配向結構包括配向 5 1378289 101-8-16 凸塊(alignment protrusion)以及位於電極上的配向狹縫 (alignment slit)。然而,位在配向凸塊與配向狹縫周邊液晶 为子的傾倒方向往往不明破(disclination),而造成漏光的情 形’進一步使得液晶顯示器的顯示對比降低。若為了遮蔽 漏光的情形而配置對應於配向凸塊或配向狹縫的遮光層, 又會使顯示開口率受到限制。因此,一種聚合物穩定配向 (Polymer-stablized alignment, PSA)以形成多配向領域的配 向方式被提出,以改善多域垂直配向式液晶顯示面板顯示 對比不佳的問題。 聚合物穩定配向的方式須先將反應性單體摻雜於液晶 層中’並施與液晶層特定的電壓。在此電壓下以一光線照 射液晶層,則反應性單體會聚合並固化,以於液晶層兩側 的基板上同時形成聚合物層。 傳統上,上述施予電壓的方式可利用晝素内的儲存電 谷麵合至畫素電極,但此一方法須要提供較高電壓至電容 電極。此外,在耦合作用下,聚合物層的配向錨定能不易 控制而使實際液晶夾差較難掌握。因此,液晶分子的響應 速率較難評估且不易掌控於最佳狀態。 【發明内容】 本發明是提供一種聚合物穩定配向液晶面板,以解決 聚合物穩定配向液晶面板之顯不開口率無法提升的問題。 本發明之另提供一種對向電極陣列基板,以解決以電 容耦合方式進行聚合物穩定配向時液晶分子不易掌控的問 6 101-8-16 題。 ,發明的又提供—種聚合物穩定配向液晶面 知之聚合物穩定配向製程中液晶失差不 本發明提出—種聚合物穩定配向液晶面板,其且 區以個畫素區。各畫素區包括相鄰的—第—子畫素 二二及一第二子晝素區。聚合物穩定配向液晶面板包括一 個書ft禮:t二基板、一液晶層、-對向電極陣列、多 素…構以及至少一聚合物層。第二基板平行第一基 1液曰曰層配置於第一基板與第二基板之間。對向電 歹配置於第—基板與液晶層之間。畫素結構配置於第二基 液BB層之間,並位於畫素區中。聚合物層配置於晝素 結構與對向電轉列之間。對向電極陣列包括多個第二透 月電極夕個第一透明電極、多條第一連接導線、多條第 二連接導線、一第一訊號線以及一第二訊號線。第一透明 電極與第二透明電極分別位於第一子晝素區以及第二子晝 素區中。第一連接導線與第二連接導線平行地配置於第二 基板上,且分別電性連接至第一透明電極與第二透明電 極。第一ifl號線與第二訊號線則分別電性連接第一連接導 線與第二連接導線。進行聚合物配向製程以形成聚合物層 時,第一訊號線被輸入一第一電壓’第二訊號線被輸入一 第二電壓,且第一電壓大於第二電壓。 在本發明之一實施例中,上述之聚合物穩定配向液晶 面板更包括至少一配向層’其配置於晝素結構與對向電極 7 101-8-16 陣列之間’且聚合物層位於液晶層與配向層之間。 在本發明之一實施例中,上述之聚合物穩定配向液晶 面板更包括相交的多條掃描線與多條資料線,其配置於第 二基板上並電性連接至晝素結構’其中第一連接導線與第 二連接導線的延伸方向平行掃描線的延伸方向或是資料線 的延伸方向。實務上’各晝素結構包括一第一主動元件、 一第二主動元件、一第一畫素電極以及一第二畫素電極。 第一主動元件電性連接至對應的其中一條掃描線與其中一 條資料線。第二主動元件例如也是電性連接至對應的其中 一條掃描線與其中一條資料線。第一畫素電極電性連接至 第一主動元件,且第一畫素電極位於第一子晝素區中。第 一晝素電極則電性連接至第二主動元件,且第二晝素電極 位於第二子晝素區中。此外,第一晝素電極與第二畫素電 極分別具有多個狹縫,狹縫的延伸方向與掃描線的延伸方 向及資料線的延伸方向相交。 在本發明之一實施例中,上述之第一訊號線與第二訊 號線於完成聚合物配向製程以形成聚合物層後更彼此電性 連接。具體而§,聚合物穩定配向液晶面板更包括一溶接 線,其位於第一訊號線與第二訊號線之間,且第一訊號線 藉由熔接線與第二訊號線電性連接。 在本發明之一實施例中,上述之對向電極陣列更包括 多個第一連接線段以及多個第二連接線段。第一連接線段 配置於第一連接導線與第一透明電極之間以使第一連接導 線電性連接至第一透明電極。第二連接線段則配置於第二 101-8-16 連,導線與第二透明電極之間以使第二連接導線電性連接 至第二透明電極。第-連接線段與第二連接線段例如是彼 此交錯排列。 在本發明之一實施例令,上述之聚合物穩定配向液晶 面板更包括一彩色濾光層,其配置於對向電極陣列與第一 基板之間。詳言之,彩色濾光層包括一黑矩陣圖案以及多 個彩色濾光圖案。黑矩陣圖案例如具有多個開口且彩色濾 光圖案位於開口中。此外,第一連接導線以及第二連接導 線實質上位於黑矩陣圖案所在區域中。 在本發明之一實施例中,上述之各畫素結構具有一彩 色慮光圖案,配置於第二基板與配向層之間。此外,聚合 物穩定配向液晶面板更包括一黑矩陣圖案,配置於第一基 板與對向電極陣列之間。黑矩陣圖案例如具有多個開口以 暴露出第一子畫素區以及第二子畫素區,且第一連接導線 以及第二連接導線位於黑矩陣圖案所在區域中。 在本發明之一實施例中,上述之各第一連接導線以及 各第一連接導線位於兩相鄰的第一透明電極之間。 在本發明之一實施例中,上述之第一透明電極位於第 連接導線以及苐一連接導線的一側,而第二透明雷搞办 於第一連接導線以及第二連接導線的另一侧。 本發明另提出一種對向電極陣列基板,其具有陣列排 列的多個晝素區。各晝素區包括相鄰的一第一子晝素區以 及一第二子畫素區。對向電極陣列基板包括一基板以及一 對向電極陣列。對向電極陣列配置於基板上。對向電極陣 1〇1-8~16 個ί 一透明電極:多個第二透明電極、多條第-w後J條第—連接導線、"'第—訊號線以及一第― 透明電極位於第二子晝素區中。第 個弟二 基板上,並電性連接至第一透明電極。; =基板上’並電性連接至第二透明電 =連接第-連接導線,而第二訊號線電性連接第二^接 $本伽之—實關巾,±述讀向電極陣列更包括 夕個第-連接線段以及多個第二連接線段。第—連接線段 配置於第—連接導線與第—透明電極之間以使第—連接導 '^電^連接至第-透明電極。此外,第二連接線段配置於 第-連接導線與第二透明電極之間以使第二連接導線電性 連接至第二透㈣極1務上,第—連接線段與第二連接 線段可以是彼此交錯排列。 在本發明之-實_中’上述之各第—連接導線以及 各第二連接導線位於兩相鄰的第一透明電極之間。 在本發明之一實施例中,上述之第一透明電極位於第 一連接導線以及第二連接導線的一側,而第二透明電極位 於第一連接導線以及第二連接導線的另一側。 在本發明之一實施例中,上述之第一訊號線與第二訊 號線更彼此電性連接。舉例而言’對向電極陣列基板更包 括一熔接線,其位於第一訊號線與第二訊號線之間,以使 第一訊號線與第二訊號線藉由溶接線電性連接。 10 1378289 101-8-16 在本發明之-實施例中,上述之對向電極陣列基板更 包括一彩色濾光層,其配置於對向電極陣列與第一基板之 間。貝際上’彩色濾光層例如是包括―黑矩陣圖案以及多 個彩色滤光圖案。黑矩陣圖案具有多個.以暴露出第一 子畫素區以及第二子晝素區,且彩色滤光圖案位於開口 中此外,第-連接導線以及第二連接導線位於黑矩陣圖 案所在區域中。 在本發明之一實施例中,上述之對向電極陣列基板更 包括-黑矩陣圖案’其ge*置於第_基板與對向電極陣列之 間。黑矩陣圖案例如是具有多個開口以暴露出第一子晝素 區以及第二子晝素區H連接導線以及第二連接導線 位於黑矩陣圖案所在區域中。 本發明又提出一種穩定聚合物配向液晶面板的製作 方法,包括提供一液晶面板以及進行一聚合物配向製程。 液晶面板具有陣列排列的多個晝素區,各晝素區包括相鄰 的一第一子畫素區以及一第二子晝素區。此外,液晶面板 包括一苐一基板、一第二基板、一液晶層、多個可聚合分 子、一對向電極陣列以及多個晝素結構。第二基板平行第 一基板。液晶層配置於第一基板與第二基板之間。可聚合 分子分布於液晶層中。對向電極陣列配置於第一基板與液 晶層之間。畫素結構配置於第二基板與液晶層之間,並位 於畫素區中。實務上,對向電極陣列包括多個第一透明電 極、多個第二透明電極、多條第一連接導線、多條第二連 接導線、一第一訊號線以及一第二訊號線。第一透明電極 1378289 101-8-16 與第二透明電極分別位於第一子畫素區與第二子晝素區 中。第一連接導線平行配置於第二基板上,並電性連接至 第一透明電極。第二連接導線平行配置於第二基板上,並 電性連接至第二透明電極。第一訊號線電性連接第一連接 導線,而第二訊號線電性連接第二連接導線。此外,進行 聚合物配向製程時’分別輸入一第一電壓與一第二電壓於 第一訊號線與第二訊號線,以使可聚合分子聚合成至少一 聚合物層。聚合物層實質上位於畫素結構以及對向電極陣 列之間,其中第一電壓大於第二電壓。 在本發明之一實施例中,上述之進行聚合物配向製程 的方法更包括使畫素結構具有一第三電壓,以使第一電壓 與第三電壓的電壓差大於第二電壓與第三電壓的電壓差。 另外,進行聚合物配向製程的方法更包括提供一紫外光, 照射於液晶層中以使可聚合分子聚合。 在本發明之一實施例中,上述之進行聚合物配向製程 以形成聚合物層之後,更包括使第一訊號線與第二訊號線 電性連接。舉例而言,使第一訊號線與第二訊號線電性連 接的方法包括進行一熔接製程以形成位於第一訊號線與第 二訊號線之間的一熔接線,並使第一訊號線藉由熔接線電 性連接第二訊號線。 在本發明之一實施例中,上述之液晶面板更包括至少 一配向層,其配置於晝素結構以及對向電極陣列之間,且 進行t合物配向製程後,聚合物層位於液晶層與配向層之 間〇 12 101-8*16 本發明因採用陣列分布的對向電極陣列之結 仃聚合物配向製料可以輸人不同t 中。如此-來,聚合物配向製程不需:;= 、輕。作肋達成配向之功效。換言之,本發明之 極陣列基板應胁聚合物穩粒向液晶面板 二 所造成的問題。因此,本發明=: 疋配向液晶面板具有較為優越的顯示效果。 ^為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細 明如下。 ' β 【實施方式】 I合物穩疋配向液晶面板利用聚合物層所提供的配 向錯定能以使液晶層之液晶分子排列呈特定的預傾角。如 此一來,畫素結構與對向電極陣列之間形成有一電場時, 液晶層之液晶分子可以快速地隨著電場的作用而傾倒以進 行顯示。 聚合物層在相同晝素區中若可提供不同的配向錨定 能以使液晶層之液晶分子以不同的預傾角排列,則聚合物 穩定配向液晶面板之色偏情形可以更進一步獲得改善。一 般而言,聚合物穩定配向液晶面板需藉由一聚合物配向製 程以形成聚合物層。在進行聚合物配向製程時若在不同區 域中形成不同大小的電場就可以使聚合物層提供不同的配 向錫定能。因此,習知的作法是利用輸入不同的電壓於電 13 1378289 101-8-16 谷電極中並儲存電容仙合作跋供晝素電極適當的 電壓來進行聚合物_製程。細,這樣的製作方式會有 液晶夾差較難掌握及顯示開口率較低等問題。因此,本發 明提出-種聚合物敎g&向液晶面板的製作方法,其描述 如下。 圖1A與圖1B繪示為本發明之一實施例的穩定聚合物 配向液晶面板的製作方法。請先參照圖1A,首先,提供一 液晶面板100’。液晶面板100’包括一第一基板11〇、一第 一基板120、一液晶層13〇、一對向電極陣列14〇,、多個 晝素結構150以及多個可聚合分子16〇,。第二基板12〇平 4亍苐一基板11〇。液晶層130配置於第一基板ho與第二 基板120之間。對向電極陣列14〇,配置於第一基板11〇與 液晶層130之間。晝素結構150配置於第二基板12〇與液 晶層130之間。此外,可聚合分子160,分布於液晶層ι3〇 中。 接者’清參照圖1B ’進行聚合物配向製程以形成聚 合物層160。在此步騾中,對向電極陣列14〇’與畫素結構 150之間例如形成有非均勻的電場,例如可施加交流(AC) 電壓。同時’在本實施例中,例如是提供一紫外光UV照 射於液晶層130中以使圖1A所繪示的可聚合分子16〇’聚 合。本實施例中’非均勻的電場形成在對向電極陣列14〇’ 與畫素結構150之間,因此聚合物層160在不同區域中可 以具有不同之配向錫定能,而形成不同之傾角。也就是說, 液晶層130中的液晶因為聚合物層160的作用可以同時有 14 101-8-16 ,個不同的預傾肖,使液晶面板刚’在顯示時所產生的 色偏情形可以獲得改善。 本實施例之可聚合分子16〇,例如是具有光可聚合性 八’所以本實_可彻料光⑽照射的料使可聚合 ^子160 & e自,然,可聚合分子16〇,也可以是熱可聚合 /刀子或是在其他機制下可產生聚合作用的分子本發明不 限於此。若選用其他性質的分子時,應對應其性質而採用 不同方式使可聚合分子16〇,聚合。 ±具體而5 ’圖2繪示為製作穩定聚合物配向液晶面板 =本發月之實細例的對向電極陣列之上視示意圖。由 圖2可知’對向電極陣列14〇,包括多個第一透明電極 楚多個/二透明電極142B、多條第—連接導線144A、 夕條第-連接導線144B、—第—訊號線U6A以及一第二 =號土14犯。第—連接導線144A與第二連接導線剛 、’仃-己置於第二基板120上,且分別電性連接至第一透 =電極與第二透明電極购。第一訊號線論與1378289 101.8-16 IX. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal panel, a counter substrate, and a method of fabricating the same, and particularly relates to a polymer stabilized alignment liquid crystal panel and a counter electrode Array substrate and method of fabricating the same. [Prior Art] With the dramatic advancement of computer performance and the development of the Internet and multimedia technologies, the size of video or video devices has become increasingly thin. With the development of optoelectronic technology and semiconductor manufacturing technology, liquid crystal displays with superior properties such as enamel, space utilization efficiency, low power consumption, and no radiation have gradually become the mainstream of the market. The market's performance requirements for liquid crystal displays are toward high contrast ratio, no grayscale inversion, low color shift, high luminance, and high. Features such as rich color, high color saturation, fast response and wide viewing angle. At present, technologies capable of achieving wide viewing angles include twist nematic (TN) liquid crystals, wide viewing film, in-plane switching (IPS) liquid crystal displays, and marginal field switching. A fringe field switching liquid crystal display, a multi-domain vertical alignment alignment (MVA) liquid crystal display, or the like. The conventional multi-domain vertical alignment type liquid crystal display panel is configured to utilize an alignment structure to allow liquid crystal molecules in different regions to be tilted at different angles to achieve a wide viewing angle. The alignment structure includes alignment 5 1378289 101-8-16 alignment protrusions and an alignment slit on the electrodes. However, the tilting direction of the liquid crystal at the periphery of the alignment bump and the alignment slit is often discrination, and the situation of light leakage has further lowered the display contrast of the liquid crystal display. If the light shielding layer corresponding to the alignment bump or the alignment slit is disposed in order to shield the light leakage, the display aperture ratio is limited. Therefore, a polymer-stablized alignment (PSA) is proposed to form a multi-alignment domain alignment mode to improve the poor display of multi-domain vertical alignment liquid crystal display panels. The manner in which the polymer is stably aligned must first dope the reactive monomer into the liquid crystal layer and apply a specific voltage to the liquid crystal layer. When the liquid crystal layer is irradiated with light at this voltage, the reactive monomer is polymerized and solidified to simultaneously form a polymer layer on the substrates on both sides of the liquid crystal layer. Traditionally, the above-described method of applying a voltage can be performed by using a storage grid in a halogen to a pixel electrode, but this method requires a higher voltage to the capacitor electrode. In addition, under the coupling action, the alignment anchoring of the polymer layer can be difficult to control and the actual liquid crystal clamping is difficult to grasp. Therefore, the response rate of liquid crystal molecules is difficult to evaluate and is not easy to control in an optimum state. SUMMARY OF THE INVENTION The present invention provides a polymer stabilized alignment liquid crystal panel to solve the problem that the apparent aperture ratio of the polymer stabilized alignment liquid crystal panel cannot be improved. The present invention further provides a counter electrode array substrate to solve the problem that the liquid crystal molecules are not easily controlled when the polymer is stably aligned in a capacitive coupling manner. Further, the invention provides a polymer-stabilized alignment liquid crystal surface. The liquid crystal loss in the polymer stable alignment process is not disclosed. The present invention proposes a polymer-stabilized alignment liquid crystal panel having a pixel region. Each pixel area includes adjacent - the first sub-pixel 22 and the second sub-divin region. The polymer stabilized alignment liquid crystal panel comprises a book: a two substrate, a liquid crystal layer, a counter electrode array, a multi-layer structure, and at least one polymer layer. The second substrate is parallel to the first substrate 1 and the liquid layer is disposed between the first substrate and the second substrate. The counter electrode is disposed between the first substrate and the liquid crystal layer. The pixel structure is disposed between the second base liquid BB layers and is located in the pixel area. The polymer layer is disposed between the halogen structure and the opposite electrical transfer. The opposite electrode array includes a plurality of second moon electrodes, a first transparent electrode, a plurality of first connecting wires, a plurality of second connecting wires, a first signal line, and a second signal line. The first transparent electrode and the second transparent electrode are respectively located in the first sub-tenox region and the second sub-quartz region. The first connecting wire is disposed on the second substrate in parallel with the second connecting wire, and is electrically connected to the first transparent electrode and the second transparent electrode, respectively. The first ifl line and the second signal line are electrically connected to the first connecting wire and the second connecting wire, respectively. When the polymer alignment process is performed to form the polymer layer, the first signal line is input to a first voltage. The second signal line is input to a second voltage, and the first voltage is greater than the second voltage. In an embodiment of the invention, the polymer stabilized alignment liquid crystal panel further comprises at least one alignment layer disposed between the pixel structure and the opposite electrode 7 101-8-16 array and the polymer layer is located in the liquid crystal. Between the layer and the alignment layer. In one embodiment of the present invention, the polymer stabilized alignment liquid crystal panel further includes a plurality of intersecting scan lines and a plurality of data lines disposed on the second substrate and electrically connected to the halogen structure. The extending direction of the connecting wire and the second connecting wire is parallel to the extending direction of the scanning line or the extending direction of the data line. In practice, each of the pixel structures includes a first active component, a second active component, a first pixel electrode, and a second pixel electrode. The first active component is electrically connected to one of the corresponding scan lines and one of the data lines. The second active component is, for example, also electrically connected to a corresponding one of the scan lines and one of the data lines. The first pixel electrode is electrically connected to the first active element, and the first pixel electrode is located in the first sub-tenox region. The first halogen electrode is electrically connected to the second active element, and the second halogen electrode is located in the second sub-tenox region. Further, the first pixel electrode and the second pixel electrode respectively have a plurality of slits, and the extending direction of the slit intersects with the extending direction of the scanning line and the extending direction of the data line. In an embodiment of the invention, the first signal line and the second signal line are electrically connected to each other after completing the polymer alignment process to form a polymer layer. Specifically, the polymer-stabilized alignment liquid crystal panel further includes a soldering wire disposed between the first signal line and the second signal line, and the first signal line is electrically connected to the second signal line by the soldering wire. In an embodiment of the invention, the opposite electrode array further includes a plurality of first connecting line segments and a plurality of second connecting line segments. The first connecting line segment is disposed between the first connecting wire and the first transparent electrode to electrically connect the first connecting wire to the first transparent electrode. The second connecting line segment is disposed between the second 101-8-16 connector and the second transparent electrode to electrically connect the second connecting wire to the second transparent electrode. The first connecting line segment and the second connecting line segment are, for example, staggered with each other. In one embodiment of the invention, the polymer stabilized alignment liquid crystal panel further includes a color filter layer disposed between the opposite electrode array and the first substrate. In particular, the color filter layer includes a black matrix pattern and a plurality of color filter patterns. The black matrix pattern has, for example, a plurality of openings and a color filter pattern is located in the opening. Further, the first connecting wires and the second connecting wires are substantially located in a region where the black matrix pattern is located. In an embodiment of the invention, each of the pixel structures has a color-coloring light pattern disposed between the second substrate and the alignment layer. In addition, the polymer stabilized alignment liquid crystal panel further includes a black matrix pattern disposed between the first substrate and the counter electrode array. The black matrix pattern has, for example, a plurality of openings to expose the first sub-pixel area and the second sub-pixel area, and the first connecting wires and the second connecting wires are located in a region where the black matrix pattern is located. In an embodiment of the invention, each of the first connecting wires and each of the first connecting wires are located between two adjacent first transparent electrodes. In an embodiment of the invention, the first transparent electrode is located on a side of the first connecting wire and the first connecting wire, and the second transparent beam is disposed on the other side of the first connecting wire and the second connecting wire. The present invention further provides a counter electrode array substrate having a plurality of halogen regions arranged in an array. Each of the pixel regions includes an adjacent first sub-tenk region and a second sub-pixel region. The opposite electrode array substrate includes a substrate and a counter electrode array. The counter electrode array is disposed on the substrate. Opposite electrode array 1〇1-8~16 一 a transparent electrode: a plurality of second transparent electrodes, a plurality of -w and then J-segment-connecting wires, a "'-th signal line and a first transparent electrode Located in the second sub-district area. The first second substrate is electrically connected to the first transparent electrode. = on the substrate 'and electrically connected to the second transparent electricity = connected to the - connection wire, and the second signal line is electrically connected to the second ^ $ gamma - the real off towel, ± the read-to-electrode array further includes a first-connected line segment and a plurality of second connecting line segments. The first connecting line segment is disposed between the first connecting wire and the first transparent electrode to connect the first connecting electrode to the first transparent electrode. In addition, the second connecting line segment is disposed between the first connecting wire and the second transparent electrode to electrically connect the second connecting wire to the second through electrode, and the first connecting line segment and the second connecting line segment may be each other Staggered. In the present invention, each of the first connecting wires and each of the second connecting wires are located between two adjacent first transparent electrodes. In an embodiment of the invention, the first transparent electrode is located on one side of the first connecting wire and the second connecting wire, and the second transparent electrode is located on the other side of the first connecting wire and the second connecting wire. In an embodiment of the invention, the first signal line and the second signal line are electrically connected to each other. For example, the counter electrode array substrate further includes a fuse line between the first signal line and the second signal line, so that the first signal line and the second signal line are electrically connected by the dissolved wiring. 10 1378289 101-8-16 In an embodiment of the invention, the counter electrode array substrate further includes a color filter layer disposed between the counter electrode array and the first substrate. The "on-beat" color filter layer includes, for example, a "black matrix pattern" and a plurality of color filter patterns. The black matrix pattern has a plurality of layers to expose the first sub-pixel region and the second sub-tenox region, and the color filter pattern is located in the opening. Further, the first connecting wire and the second connecting wire are located in the region of the black matrix pattern. . In an embodiment of the invention, the opposite electrode array substrate further includes a -black matrix pattern ', ge* is disposed between the _ substrate and the counter electrode array. The black matrix pattern has, for example, a plurality of openings to expose the first sub-tenon region and the second sub-tenon region H connecting wires, and the second connecting wires are located in a region where the black matrix pattern is located. The present invention further provides a method of fabricating a stable polymer alignment liquid crystal panel comprising providing a liquid crystal panel and performing a polymer alignment process. The liquid crystal panel has a plurality of pixel regions arranged in an array, and each of the pixel regions includes an adjacent first sub-pixel region and a second sub-pixel region. Further, the liquid crystal panel includes a substrate, a second substrate, a liquid crystal layer, a plurality of polymerizable molecules, a pair of electrode arrays, and a plurality of halogen structures. The second substrate is parallel to the first substrate. The liquid crystal layer is disposed between the first substrate and the second substrate. The polymerizable molecules are distributed in the liquid crystal layer. The counter electrode array is disposed between the first substrate and the liquid crystal layer. The pixel structure is disposed between the second substrate and the liquid crystal layer and is located in the pixel region. In practice, the opposite electrode array includes a plurality of first transparent electrodes, a plurality of second transparent electrodes, a plurality of first connecting wires, a plurality of second connecting wires, a first signal line, and a second signal line. The first transparent electrode 1378289 101-8-16 and the second transparent electrode are respectively located in the first sub-pixel area and the second sub-tenk area. The first connecting wires are disposed on the second substrate in parallel and electrically connected to the first transparent electrode. The second connecting wires are disposed on the second substrate in parallel and electrically connected to the second transparent electrode. The first signal line is electrically connected to the first connecting wire, and the second signal line is electrically connected to the second connecting wire. In addition, a first voltage and a second voltage are respectively input to the first signal line and the second signal line during the polymer alignment process to polymerize the polymerizable molecules into at least one polymer layer. The polymer layer is substantially between the pixel structure and the array of counter electrodes, wherein the first voltage is greater than the second voltage. In an embodiment of the invention, the method for performing a polymer alignment process further includes: causing the pixel structure to have a third voltage such that a voltage difference between the first voltage and the third voltage is greater than the second voltage and the third voltage The voltage difference. In addition, the method of performing the polymer alignment process further comprises providing an ultraviolet light to illuminate the liquid crystal layer to polymerize the polymerizable molecules. In an embodiment of the invention, after performing the polymer alignment process to form the polymer layer, the method further comprises electrically connecting the first signal line to the second signal line. For example, the method for electrically connecting the first signal line and the second signal line includes performing a soldering process to form a fuse line between the first signal line and the second signal line, and lending the first signal line The second signal line is electrically connected by the weld line. In an embodiment of the present invention, the liquid crystal panel further includes at least one alignment layer disposed between the pixel structure and the counter electrode array, and after the t-alignment process, the polymer layer is located in the liquid crystal layer Between the alignment layers 〇12 101-8*16 The present invention can be input into different t-types due to the use of the tantalum polymer alignment of the array of opposed-array electrodes. As such, the polymer alignment process does not require:; =, light. The effect of aligning to achieve alignment. In other words, the polar array substrate of the present invention should pose a problem caused by the stabilization of the polymer to the liquid crystal panel. Therefore, the present invention =: The 疋 alignment liquid crystal panel has a superior display effect. The above and other objects, features, and advantages of the present invention will become more apparent from the aspects of the appended claims. 'β 【Embodiment】 The I-stabilized alignment liquid crystal panel utilizes the alignment misalignment provided by the polymer layer to align the liquid crystal molecules of the liquid crystal layer to a specific pretilt angle. As a result, when an electric field is formed between the pixel structure and the counter electrode array, the liquid crystal molecules of the liquid crystal layer can be quickly dumped with the action of the electric field for display. If the polymer layer can provide different alignment anchoring energy in the same halogen region to align the liquid crystal molecules of the liquid crystal layer at different pretilt angles, the color shift of the polymer stabilized alignment liquid crystal panel can be further improved. In general, a polymer stabilized alignment liquid crystal panel is formed by a polymer alignment process to form a polymer layer. The formation of different sized electric fields in different regions during the polymer alignment process allows the polymer layers to provide different alignment tinning energies. Therefore, it is a conventional practice to perform a polymer process by inputting a different voltage into the electrode of the electrode 13 13378289 101-8-16 and storing the capacitor with a suitable voltage for the electrode. Fine, such a production method may have problems such as difficulty in grasping the liquid crystal clip and lower display aperture ratio. Accordingly, the present invention proposes a method of fabricating a polymer 敎g& to a liquid crystal panel, which is described below. 1A and 1B illustrate a method of fabricating a stabilized polymer alignment liquid crystal panel according to an embodiment of the present invention. Referring first to Figure 1A, first, a liquid crystal panel 100' is provided. The liquid crystal panel 100' includes a first substrate 11A, a first substrate 120, a liquid crystal layer 13A, a pair of electrode arrays 14A, a plurality of halogen structures 150, and a plurality of polymerizable molecules 16A. The second substrate 12 is flattened by a substrate 11 〇. The liquid crystal layer 130 is disposed between the first substrate ho and the second substrate 120. The counter electrode array 14 is disposed between the first substrate 11A and the liquid crystal layer 130. The halogen structure 150 is disposed between the second substrate 12A and the liquid crystal layer 130. Further, the polymerizable molecules 160 are distributed in the liquid crystal layer ι3〇. The polymer is subjected to a polymer alignment process to form a polymer layer 160 with reference to Fig. 1B'. In this step, for example, a non-uniform electric field is formed between the counter electrode array 14' and the pixel structure 150, for example, an alternating current (AC) voltage can be applied. Meanwhile, in the present embodiment, for example, an ultraviolet light UV is supplied to the liquid crystal layer 130 to polymerize the polymerizable molecules 16〇' illustrated in Fig. 1A. In the present embodiment, a non-uniform electric field is formed between the counter electrode array 14' and the pixel structure 150, so that the polymer layer 160 may have different alignment tinting energies in different regions to form different tilt angles. That is to say, the liquid crystal in the liquid crystal layer 130 can have 14 101-8-16 at the same time due to the action of the polymer layer 160, and a different pre-dip, so that the color shift of the liquid crystal panel just after display can be obtained. improve. The polymerizable molecule 16〇 of the present embodiment is, for example, a photopolymerizable octagonal material, so that the polymerizable material (10) is irradiated, and the polymerizable molecule is 16 Å, It may also be a thermopolymerizable/knife or a molecule which can cause polymerization under other mechanisms. The invention is not limited thereto. When molecules of other nature are used, the polymerizable molecules should be polymerized in different ways depending on their properties. ± Specifically, 5' is a top view of a counter electrode array for making a stable polymer alignment liquid crystal panel = the actual example of this month. 2, the 'opposite electrode array 14' includes a plurality of first transparent electrodes, a plurality of second transparent electrodes 142B, a plurality of first connecting wires 144A, a plurality of first connecting wires 144B, and a first signal line U6A. And a second = no. The first connecting wire 144A and the second connecting wire are disposed on the second substrate 120, and are electrically connected to the first transparent electrode and the second transparent electrode, respectively. The first signal line theory and
ΓΐίΪ146Β則分別電性連接第—連接導線M4A與第 -連接導線144Β。其中,第一透明電極U2A ^142B可由透明導電材料所構成,例如是銦錫氧化物 νΛΓ極陣列14G,更包括多個第—連接線段 m自接線段刚。第—連接線段祖 第==接導線i44A與第一透明電極⑷人之間以使 第一連接導線H4A電性連接至第—透明電極i42A。第二 15 1378289 101-8-16 連接線段148B則配置於第二連接導線144B與第二透明電 極142B之間以使第二連接導線144B電性連接至第二透明 電極142B。在本實施例中,第一連接線段148A與第二連 接線段148B例如是彼此交錯排列。同時,各第一連接導 線144A以及各第二連接導線144B位於兩相鄰的第一透明 電極142A之間。其中,第一連接線段148A、第二連接線 段148B、第一連接導線144A以及第二連接導線144B可 使用尚導電性材料所構成’例如是金屬。 對向電極陣列140’中,第一透明電極142A與第二透 明電極142B分別電性連接至不同的訊號線i46A與 146B。因此,進行聚合物配向製程時僅需對第一訊號線 146A與第二訊號線146B輸入不同的電壓就可以在不同區 域中形成不同的電場。另外,第一連接導線144A與第二 連接導線144B直接地電性連接至第一透明電極〗42A與第 二透明電極142B。所以,液晶層130中的電場並非藉由導 電元件間的電谷搞合作用而形成的。如此一來,液晶層13〇 中的電場可以獲得良好的掌控而使聚合物層16〇的配S向錨 定能呈現理想的狀態。其中,第一訊號線146A與第二气 號線146B可使用高導電性材料所構成,例如是金屬。° 為了更明確地描述本實施例之製作方法,以下將提出 ,向電極陣列離與畫素結構15()之間形成有非均勾電 昜的方式。圖3A繪示為製作穩聚合物配向液晶面板時, ^發明之一實施例的穩定聚合物配向液晶面板等效電路示 意圖。由圖3A可知’上述之非均勻電場的形成方式例= 1378289 101-8-16 是使第-訊號線146A被輸人—第—雜ν(^,第二訊號 線146B被輸入-第二電壓Vcur2,而晝素結構15〇則被^ 入-第三縣Veur3。本實施例中,第一電壓Veurl例如 是大於第二電壓VCUr2。由於,第一訊號線腸與第二訊 號線146B#、各自獨立而可以分別被輸人不同的電壓 Vcurl與_2’畫素結構15〇的第三電壓ν(^3則可以接 地’或是輸人固定電壓。所以,不同的電場大小可以直接 由第-電壓Veurl與第二電壓Veui_2調整4即,本實施 例的聚合物配向製程的製程條件可以獲得良好的控制。 進一步而言,請同時參照圖2與圖3A,第一電壓Vcurl 與第三電壓Vcur3的電壓差大於第二電壓Vcur2與第三電 壓Vcur3的電壓差。換言之,第一透明電極142A與晝素 結構150之間的電壓差大於第二透明電極142B與畫素結 構150之間的電壓差。因此,圖i的液晶面板1〇〇,中,聚 合物層160在第一透明電極142八所在區域及第二透明電 極142B所在區域中可具有不同的配向錨定能以使液晶層 130之液晶分子呈現不同之預傾角。當然,本發明之第一 電壓Vcurl與第二電壓Vcur2不限於上述關係。圖3B繪 示為本發明之一實施例的第一電壓與第二電壓之時序變 化。由圖3B可知,第一電壓vcurl與第二電壓Vcur2為 交流電壓時’第一電壓Vcurl的壓差絕對值大於第二電壓 Vcur2的壓差絕對值。不過,本發明並不限於此,亦可使 用直流電壓替代。 圖4繪示為本發明之一實施例的穩定聚合物配向液晶 17 101-8-16 面板的剖面示意圖。請參照圖4,聚合物穩定配向液晶面 板100例如是經由上述之製程步驟所製作而成。因此,聚 合物穩定配向液晶面板100與上述之液晶面板100’大致相 同。其差異在於,可聚合分子160’已經聚合作用而形成聚 合物層160,其中聚合物層160配置於晝素結構150與對 向電極陣列140之間。此外,對向電極陣列140之各透明 電極例如是電性連接至一共同電壓源。 實務上,聚合物穩定配向液晶面板100更包括至少一 配向層170,其配置於畫素結構150與對向電極陣列ho 之間,且聚合物層160位於配向層170與液晶層130之間。 在本實施例中,配向層Π0與聚合物層160都以兩層為例。 在其他的實施例中,配向層170與聚合物層160可以僅配 置於第一基板110與液晶層130之間或是僅配置於第二基 板120與液晶層130之間。此外,聚合物穩定配向液晶面 板100實質上具有陣列排列的多個晝素區102,且各個畫 素結構150位於其中一個晝素區102中。 為了使聚合物穩定配向液晶面板100具有多彩化的顯 示效果,聚合物穩定配向液晶面板100更可包括一彩色濾、 光層180,其配置於對向電極陣列140與第一基板11〇之 間。詳言之,彩色濾光層180包括一黑矩陣圖案182以及 多個彩色濾光圖案184。黑矩陣圖案182例如具有多個開 口 182A且彩色濾光圖案184位於開口 182A中。在其他實 施例中’彩色濾光圖案184還可以整合於畫素結構15〇中, 也就是配置於第二基板120與配向層170之間。換言之, 101-8-16 聚合物穩定配向液晶面板100可以是彩色濾光圖案184位 於晝素結構 150 上(color filter on pixel array, COA)或是晝 素結構150位於彩色濾光圖案184上(pixel array on color filter, AOC)的設計。 另外’圖5繪示為圖4之聚合物穩定配向液晶面板之 第二基板及對向電極陣列的上視示意圖。請同時參照圖4 與圖5 ’由上視圖來看,聚合物穩定配向液晶面板10〇中, 各晝素區102實質上包括相鄰的一第一子晝素區1〇4以及 一第二子畫素區106。此外,第一透明電極142A與第二透 明電極142B分別位於第一子畫素區1〇4以及第二子晝素 區106中。 在此,第一連接導線144A以及第二連接導線144B 並非透明構件而無法使光線穿透。所以,第一連接導線 144A以及第二連接導線144B實質上位於黑矩陣圖案ι82 所在區域中。換言之,黑矩陣圖案182所在區域可將第一 連接導線144A以及第二連接導線144B遮蔽以避免漏光或 疋其他不良的現象發生0 值得一提的是,聚合物穩定配向液晶面板1〇〇進行顯 示時,第一透明電極142A與第二透明電極142B應具有相 同的電壓。因此,在本實施例中,對向電極陣列14〇更包 括一熔接線w,其連接於第一訊號線146A與第二訊號線 146B之間。換言之,進行聚合物配向製程以形成聚合物層 160之後,更可以進行一熔接製程以使第一訊號線146A與 第二訊號線146B電性連接。另外,第一訊號線146A與第 1378289 101-8-16 二訊號線146B也可以分別被連接至相同的電壓源以使第 一透明電極142A與第二透明電極142B具有相同的電壓。 換言之’本發明並不限定第一訊號線146A與第二訊號線 146B電性連接的方式。 當然,對向電極陣列140的配置方式不限於此。在其 他實施例中,第一透明電極142A可以位於第一連接導線 144A以及第二連接導線144B的一側,而第二透明電極 142B位於第一連接導線144A以及第二連接導線144B的 另一侧。換言之,本實施例是以第一連接導線144A以及 第二連接導線144B呈現縱向排列為例,而在其他實施例 中,第一連接導線144A以及第二連接導線144B也可以呈 現橫向排列。 圖6繪示為圖4之聚合物穩定配向液晶面板之第二基 板及畫素結構的上視示意圖。請同時參照圖4與圖6,聚 合物穩疋配向液晶面板1〇〇更包括相交的多條掃描線122 與多條資料線124,其配置於第二基板120上並電性連接 至晝素結構150。實務上,各晝素結構15〇包括一第一主 動元件152A、-第二主動元件152B、一第一晝素電極i54A 以及一第二晝素電極154B。第一主動元件152A電性連接 至對應的其中-條掃描線122與其中一條資料線124。第ΓΐίΪ146Β electrically connects the first connecting wire M4A and the first connecting wire 144Β, respectively. The first transparent electrode U2A^142B may be formed of a transparent conductive material, such as an indium tin oxide ν ΛΓ array 14G, and further includes a plurality of first connecting line segments m from the wiring segment. The first connecting line segment is connected to the first transparent electrode (4) to electrically connect the first connecting wire H4A to the first transparent electrode i42A. The second 15 1378289 101-8-16 connecting line segment 148B is disposed between the second connecting wire 144B and the second transparent electrode 142B to electrically connect the second connecting wire 144B to the second transparent electrode 142B. In the present embodiment, the first connecting line segment 148A and the second connecting wiring portion 148B are, for example, staggered with each other. At the same time, each of the first connection wires 144A and each of the second connection wires 144B are located between the two adjacent first transparent electrodes 142A. The first connecting line segment 148A, the second connecting line segment 148B, the first connecting wire 144A, and the second connecting wire 144B may be formed of a conductive material, such as a metal. In the opposite electrode array 140', the first transparent electrode 142A and the second transparent electrode 142B are electrically connected to different signal lines i46A and 146B, respectively. Therefore, when the polymer alignment process is performed, only different voltages are input to the first signal line 146A and the second signal line 146B to form different electric fields in different regions. In addition, the first connecting wire 144A and the second connecting wire 144B are directly electrically connected to the first transparent electrode 42A and the second transparent electrode 142B. Therefore, the electric field in the liquid crystal layer 130 is not formed by the cooperation of the electric cells between the conductive elements. As a result, the electric field in the liquid crystal layer 13〇 can be well controlled, and the S-direction anchoring energy of the polymer layer 16〇 can be ideal. The first signal line 146A and the second air line 146B may be formed of a highly conductive material, such as a metal. ° In order to more clearly describe the manufacturing method of the present embodiment, a method of forming a non-uniform hook between the electrode array and the pixel structure 15 () will be proposed below. 3A is a schematic diagram showing an equivalent circuit of a stabilized polymer alignment liquid crystal panel according to an embodiment of the invention when a stable polymer alignment liquid crystal panel is fabricated. As can be seen from Fig. 3A, the above-mentioned non-uniform electric field formation method = 1378289 101-8-16 is such that the first signal line 146A is input - the first impurity ν (^, the second signal line 146B is input - the second voltage Vcur2, and the pixel structure 15〇 is incorporated into the third county Veur3. In this embodiment, the first voltage Veurl is, for example, greater than the second voltage VCUr2. Because the first signal line and the second signal line 146B#, They are independent and can be input with different voltages Vcurl and _2' pixel structure 15〇 of the third voltage ν (^3 can be grounded or input a fixed voltage. Therefore, different electric field sizes can be directly - The voltage Veurl and the second voltage Veui_2 are adjusted 4, that is, the process conditions of the polymer alignment process of the present embodiment can be well controlled. Further, please refer to FIG. 2 and FIG. 3A simultaneously, the first voltage Vcurl and the third voltage. The voltage difference of Vcur3 is greater than the voltage difference between the second voltage Vcur2 and the third voltage Vcur3. In other words, the voltage difference between the first transparent electrode 142A and the halogen structure 150 is greater than the voltage between the second transparent electrode 142B and the pixel structure 150. Poor. Therefore, the liquid crystal surface of Figure i In the plate, the polymer layer 160 may have different alignment anchoring energy in the region where the first transparent electrode 142 is located and the region where the second transparent electrode 142B is located, so that the liquid crystal molecules of the liquid crystal layer 130 exhibit different pretilt angles. Of course, the first voltage Vcur1 and the second voltage Vcur2 of the present invention are not limited to the above relationship. Figure 3B illustrates the timing variation of the first voltage and the second voltage according to an embodiment of the present invention. When the voltage vcurl and the second voltage Vcur2 are AC voltages, the absolute value of the voltage difference of the first voltage Vcur1 is greater than the absolute value of the voltage difference of the second voltage Vcur2. However, the present invention is not limited thereto, and a DC voltage may be used instead. A schematic cross-sectional view of a stabilized polymer alignment liquid crystal 17 101-8-16 panel according to an embodiment of the present invention. Referring to FIG. 4, the polymer stabilized alignment liquid crystal panel 100 is fabricated, for example, through the above-described process steps. Therefore, the polymer-stabilized alignment liquid crystal panel 100 is substantially the same as the above-described liquid crystal panel 100'. The difference is that the polymerizable molecule 160' has been polymerized to form the polymer layer 160, The medium polymer layer 160 is disposed between the halogen structure 150 and the counter electrode array 140. In addition, the transparent electrodes of the counter electrode array 140 are electrically connected to a common voltage source, for example. In practice, the polymer stabilizes the alignment liquid crystal. The panel 100 further includes at least one alignment layer 170 disposed between the pixel structure 150 and the opposite electrode array ho, and the polymer layer 160 is located between the alignment layer 170 and the liquid crystal layer 130. In this embodiment, the alignment layer The Π0 and the polymer layer 160 are both exemplified by two layers. In other embodiments, the alignment layer 170 and the polymer layer 160 may be disposed only between the first substrate 110 and the liquid crystal layer 130 or only on the second substrate. 120 is between the liquid crystal layer 130. In addition, the polymer stabilized alignment liquid crystal panel 100 has substantially a plurality of halogen regions 102 arranged in an array, and each of the pixel structures 150 is located in one of the halogen regions 102. The polymer-stabilized alignment liquid crystal panel 100 further includes a color filter and light layer 180 disposed between the opposite electrode array 140 and the first substrate 11〇. . In detail, the color filter layer 180 includes a black matrix pattern 182 and a plurality of color filter patterns 184. The black matrix pattern 182 has, for example, a plurality of openings 182A and a color filter pattern 184 is located in the opening 182A. In other embodiments, the color filter pattern 184 can also be integrated into the pixel structure 15A, that is, disposed between the second substrate 120 and the alignment layer 170. In other words, the 101-8-16 polymer-stabilized alignment liquid crystal panel 100 may be a color filter on pixel array (100A) or a halogen structure 150 on the color filter pattern 184 ( Pixel array on color filter, AOC) design. Further, Fig. 5 is a top view showing the second substrate and the counter electrode array of the polymer-stabilized alignment liquid crystal panel of Fig. 4. Referring to FIG. 4 and FIG. 5 simultaneously, from the top view, the polymer stabilizes the alignment of the liquid crystal panel 10, and each of the pixel regions 102 substantially includes an adjacent first sub-dielectric region 1〇4 and a second. Subpixel area 106. Further, the first transparent electrode 142A and the second transparent electrode 142B are located in the first sub-pixel area 1〇4 and the second sub-tenon area 106, respectively. Here, the first connecting wire 144A and the second connecting wire 144B are not transparent members and cannot penetrate light. Therefore, the first connecting wire 144A and the second connecting wire 144B are substantially located in the area where the black matrix pattern ι82 is located. In other words, the region where the black matrix pattern 182 is located can shield the first connecting wire 144A and the second connecting wire 144B from light leakage or other undesirable phenomena. 0 It is worth mentioning that the polymer is stably aligned to the liquid crystal panel for display. The first transparent electrode 142A and the second transparent electrode 142B should have the same voltage. Therefore, in the embodiment, the counter electrode array 14 further includes a weld line w connected between the first signal line 146A and the second signal line 146B. In other words, after the polymer alignment process is performed to form the polymer layer 160, a soldering process can be further performed to electrically connect the first signal line 146A and the second signal line 146B. In addition, the first signal line 146A and the 1378289 101-8-16 second signal line 146B may also be respectively connected to the same voltage source such that the first transparent electrode 142A and the second transparent electrode 142B have the same voltage. In other words, the present invention does not limit the manner in which the first signal line 146A and the second signal line 146B are electrically connected. Of course, the configuration of the counter electrode array 140 is not limited thereto. In other embodiments, the first transparent electrode 142A may be located on one side of the first connection wire 144A and the second connection wire 144B, and the second transparent electrode 142B is located on the other side of the first connection wire 144A and the second connection wire 144B. . In other words, the present embodiment is exemplified by the longitudinal arrangement of the first connecting wires 144A and the second connecting wires 144B. In other embodiments, the first connecting wires 144A and the second connecting wires 144B may also be arranged in a lateral direction. 6 is a top plan view showing the second substrate and the pixel structure of the polymer-stabilized alignment liquid crystal panel of FIG. 4. Referring to FIG. 4 and FIG. 6 simultaneously, the polymer stabilized alignment liquid crystal panel 1 further includes a plurality of intersecting scan lines 122 and a plurality of data lines 124 disposed on the second substrate 120 and electrically connected to the pixel. Structure 150. In practice, each of the pixel structures 15A includes a first active element 152A, a second active element 152B, a first halogen electrode i54A, and a second halogen electrode 154B. The first active component 152A is electrically coupled to the corresponding one of the scan lines 122 and one of the data lines 124. First
Stir :如也是電性連接至對應的其中-條掃 描線122與其中一條資料線124。 且第一畫 連接至第-主動元件, 154A位於第一子畫素區1〇4中。第二畫 20 1378289 101-8-16 素電極154B則電性連接至第二主動元件152B,且第二畫 素電極154B位於第二子畫素區1〇6中。此外,第一畫素 電極154A與第二晝素電極154B分別具有多個狹缝S,狹 缝S的延伸方向與掃描線122的延伸方向及資料線124的 延伸方向相交。當聚合物穩定配向液晶面板1〇〇進行顯示 時,液晶層130之液晶分子實質上會沿著狹縫s的延伸方 向傾倒以呈現多領域配向的效果。亦即,聚合物穩定配向 液晶面板100具有廣視角的顯示效果。 值得一提的是,在本實施例中,第一晝素電極154A 與第二畫素電極154B分別位於第一子晝素區1〇4與第二 子晝素區106中。因此,第一畫素電極154八與第二晝素 電極154B例如是分別與圖5之第一透明電極M2a與第二 透明電極142B相對n圖5之第—連接導線腸與 第二連接導線144B的延伸方向例如是平行於資料線124 的延伸方向。在其他實施射,第—連接導線1輪斑第 =連接導線144B若呈現橫向排_會平行於掃描線^22 21 1378289 101-8-16 以避免顯示開口率受到影響。 詳細而言,圖7為圖4之聚合物穩定配向液晶面板中 進行顯示時單一晝素區中的等效電路圖。請參照圖7,聚 合物穩定配向液晶面板100進行顯示時,第一訊號線146A 與弟二訊號線146B例如是被連接在一起或是連接至相同 的電壓源。因此,聚合物穩定配向液晶面板1〇〇進行顯示 時,第一訊號線146A與第二訊號線146B例如具有相同的 電壓Vcom,其與聚合物配向製程時不同。本實施例的第 —透明電極142A與第二透明電極142B分別連接至第一訊 號線146A與第二訊號線146B。因此,在不同的條件下, 第一透明電極142A與第二透明電極142B可以分別地具有 不同的電壓或是同時地具有相同的電壓,以滿足製程及顯 示時的不同需求。 綜上所述,本發明之聚合物穩定配向液晶面板、對向 電極陣列基板及其製作方法中,陣列排列的對向電極可以 在顯示時及製程步驟中分別以不同的方式輸入電壓。因 此,進行聚合物配向製程時,可以輸入不同的電壓於陣列 排列的對向電極中以形成所需的電場而非藉由電容電極的 電容麵合侧來形成所㈣電場。如此—來,聚合物配向 製程的製程條件可以獲得較佳的掌控而使聚合物層具有理 想的配向錢能。此外,液晶詹之液晶分子在聚合物層的 影響下可以具有理㈣反應速率以及理想的㈣方式而有 助於提高聚合物穩定配向液晶面板的顯示開口率。 雖然本發明已以較佳實施例揭露如上,然其並非用以 22 1378289 101-8*16 為準 限定本發明,任何所屬麟職中財财知識者 脫離本發明之精神和範_ ’當可作些許之更動與了 因此本發狀賴翻當視後附之_請專利範騎界定者 【圖式簡單說明】 圖1八與® 1B繪示為本發明之—實施_穩絲合物 配向液晶面板的製作方法。 圖2繪示為製作穩定聚合物配向液晶面板時,本發明 之一實施例的對向電極陣列之上視示意圖。 圖3A繪示為製作穩定聚合物配向液晶面板時,本發 明之一實施例的穩定聚合物配向液晶面板等效電路示意 圖。 圖3B繪示為本發明之一實施例的第一電壓與第二電 壓之時序變化。 圖4繪示為本發明之一實施例的穩定聚合物配向液晶 面板的剖面示意圖。 圖5繪不為圖4之聚合物穩定配向液晶面板之第二基 板及對向電極陣列的上視示意圖。 圖6繪示為圖4之聚合物穩定配向液晶面板之第二基 板及晝素結構的上視示意圖。 圖7為圖4之聚合物穩定配向液晶面板中進行顯示時 單一畫素區中的等效電路圖。 23 1378289 101-8-16 【主要元件符號說明】 100 :穩定聚合物配向液晶面板 100’ .液晶面板 102 晝素區 104 第一子晝素區 106 第二子畫素區 110 第一基板 120 第二基板 122 掃描線 124 資料線 130 液晶層 140、140’ :對向電極陣列 142A :第一透明電極 142B :第二透明電極 144A :第一連接導線 144B :第二連接導線 146A :第一訊號線 146B :第二訊號線 148A :第一連接線段 148B ··第二連接線段 150 :畫素結構 152A :第一主動元件 152B :第二主動元件 154A :第一晝素電極 24 1378289 101-8-16 154B :第二晝素電極 160 :聚合物層 160’ :可聚合分子 170 :配向層 180 :衫色濾光層 182 :黑矩陣圖案 182A :開口 184 :彩色濾光圖案 S :狹缝Stir: if it is also electrically connected to the corresponding one of the scanning lines 122 and one of the data lines 124. And the first picture is connected to the first-active element, and 154A is located in the first sub-pixel area 1〇4. The second picture 20 1378289 101-8-16 is connected to the second active element 152B, and the second picture electrode 154B is located in the second sub-pixel area 1〇6. Further, the first pixel electrode 154A and the second pixel electrode 154B each have a plurality of slits S, and the extending direction of the slit S intersects with the extending direction of the scanning line 122 and the extending direction of the data line 124. When the polymer is stably aligned to the liquid crystal panel for display, the liquid crystal molecules of the liquid crystal layer 130 are substantially tilted along the extending direction of the slit s to exhibit a multi-domain alignment effect. That is, the polymer stabilized alignment liquid crystal panel 100 has a display effect of a wide viewing angle. It is worth mentioning that, in this embodiment, the first halogen electrode 154A and the second pixel electrode 154B are located in the first sub-cell region 1〇4 and the second sub-tenox region 106, respectively. Therefore, the first pixel electrode 154 and the second pixel electrode 154B are, for example, opposite to the first transparent electrode M2a and the second transparent electrode 142B of FIG. 5, respectively, n the first connecting wire intestine and the second connecting wire 144B The direction of extension is, for example, parallel to the direction in which the data lines 124 extend. In other implementations, the first connecting wire 1 wheel spot = the connecting wire 144B if it is in the lateral row _ will be parallel to the scanning line ^ 22 21 1378289 101-8-16 to avoid the display aperture ratio being affected. In detail, Fig. 7 is an equivalent circuit diagram in a single halogen region in the display of the polymer stabilized alignment liquid crystal panel of Fig. 4. Referring to FIG. 7, when the polymer is stably aligned to the liquid crystal panel 100 for display, the first signal line 146A and the second signal line 146B are connected, for example, or connected to the same voltage source. Therefore, when the polymer is stably aligned to the liquid crystal panel for display, the first signal line 146A and the second signal line 146B have, for example, the same voltage Vcom, which is different from that in the polymer alignment process. The first transparent electrode 142A and the second transparent electrode 142B of the embodiment are respectively connected to the first signal line 146A and the second signal line 146B. Therefore, under different conditions, the first transparent electrode 142A and the second transparent electrode 142B may have different voltages or have the same voltage at the same time to meet different requirements in the process and display. In summary, in the polymer stabilized alignment liquid crystal panel, the counter electrode array substrate and the manufacturing method thereof, the array of opposite electrodes can input voltages in different manners during display and in the process steps. Therefore, when performing the polymer alignment process, different voltages can be input into the array of opposite electrodes to form a desired electric field instead of forming a (four) electric field by the capacitive face of the capacitor electrode. As such, the process conditions of the polymer alignment process provide better control and the polymer layer has an ideal alignment energy. In addition, the liquid crystal molecules of the liquid crystal can have a rational (four) reaction rate and an ideal (four) mode under the influence of the polymer layer to help improve the display aperture ratio of the polymer stable alignment liquid crystal panel. Although the present invention has been disclosed in the preferred embodiments as above, it is not intended to limit the invention to 22 1378289 101-8*16, and any person skilled in the field of financial affairs may deviate from the spirit and scope of the present invention. A little change and therefore the hair of the hair is attached to the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ How to make the panel. 2 is a top plan view of a counter electrode array according to an embodiment of the present invention when a stable polymer alignment liquid crystal panel is fabricated. 3A is a schematic diagram showing an equivalent circuit of a stabilized polymer alignment liquid crystal panel according to an embodiment of the present invention for producing a stable polymer alignment liquid crystal panel. Figure 3B illustrates timing variations of a first voltage and a second voltage in accordance with an embodiment of the present invention. 4 is a cross-sectional view showing a stabilized polymer alignment liquid crystal panel according to an embodiment of the present invention. Figure 5 is a top plan view of the second substrate and the counter electrode array of the polymer stabilized alignment liquid crystal panel of Figure 4. Figure 6 is a top plan view showing the second substrate of the polymer stabilized alignment liquid crystal panel of Figure 4 and the structure of the halogen. Fig. 7 is an equivalent circuit diagram in a single pixel region when the polymer stabilized alignment liquid crystal panel of Fig. 4 is displayed. 23 1378289 101-8-16 [Description of main component symbols] 100: Stabilized polymer alignment liquid crystal panel 100'. Liquid crystal panel 102 halogen region 104 First sub-decene region 106 Second sub-pixel region 110 First substrate 120 Two substrates 122 scan lines 124 data lines 130 liquid crystal layers 140, 140': opposite electrode array 142A: first transparent electrode 142B: second transparent electrode 144A: first connection wire 144B: second connection wire 146A: first signal line 146B: second signal line 148A: first connection line segment 148B · second connection line segment 150: pixel structure 152A: first active element 152B: second active element 154A: first halogen element 24 1378289 101-8-16 154B: second halogen electrode 160: polymer layer 160': polymerizable molecule 170: alignment layer 180: shirt color filter layer 182: black matrix pattern 182A: opening 184: color filter pattern S: slit
Vcurl :第一電壓 Vcur2 :第二電壓 Vcur3 :第三電壓 Vcom :電壓 W :熔接線 25Vcurl: first voltage Vcur2: second voltage Vcur3: third voltage Vcom: voltage W: weld line 25