TWI357608B - Gapped core structure for magnetic components - Google Patents
Gapped core structure for magnetic components Download PDFInfo
- Publication number
- TWI357608B TWI357608B TW096105754A TW96105754A TWI357608B TW I357608 B TWI357608 B TW I357608B TW 096105754 A TW096105754 A TW 096105754A TW 96105754 A TW96105754 A TW 96105754A TW I357608 B TWI357608 B TW I357608B
- Authority
- TW
- Taiwan
- Prior art keywords
- conductor
- magnetic
- gap
- core
- opening
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims description 156
- 239000000463 material Substances 0.000 claims description 36
- 239000000696 magnetic material Substances 0.000 claims description 20
- 125000006850 spacer group Chemical group 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 239000011162 core material Substances 0.000 description 177
- 238000000034 method Methods 0.000 description 12
- 230000008901 benefit Effects 0.000 description 11
- 229910000859 α-Fe Inorganic materials 0.000 description 11
- 230000004907 flux Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 229910010293 ceramic material Inorganic materials 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 5
- 239000011324 bead Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001289 Manganese-zinc ferrite Inorganic materials 0.000 description 1
- 229910001053 Nickel-zinc ferrite Inorganic materials 0.000 description 1
- 229910001347 Stellite Inorganic materials 0.000 description 1
- 229910001308 Zinc ferrite Inorganic materials 0.000 description 1
- JIYIUPFAJUGHNL-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Zn++].[Zn++] JIYIUPFAJUGHNL-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 1
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- KUJOABUXCGVGIY-UHFFFAOYSA-N lithium zinc Chemical compound [Li].[Zn] KUJOABUXCGVGIY-UHFFFAOYSA-N 0.000 description 1
- JMXCGRZQBOMCBD-UHFFFAOYSA-N magnesium;iron(3+);manganese(2+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Mg+2].[Mn+2].[Fe+3].[Fe+3] JMXCGRZQBOMCBD-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
- H01F17/06—Fixed inductances of the signal type with magnetic core with core substantially closed in itself, e.g. toroid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/29—Terminals; Tapping arrangements for signal inductances
- H01F27/292—Surface mounted devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
- H01F3/14—Constrictions; Gaps, e.g. air-gaps
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Coils Or Transformers For Communication (AREA)
Description
1357608 九、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於電子元件之製造,且更具體言之 係關於諸如電感器之磁性元件的製造。 【先前技術】 , 包括(但不限於)電感器及變壓器之多種磁性元件包括圍 ’ ,繞-磁性芯而安置之至少-繞組。在-些元件中,芯總成 • 係由具有間隙及結合在-起之鐵氧體芯而製成。在使用 中,需要該等芯之間的間隙在芯中儲存能量,且該間隙影 響包括(但不限於)開路電感及DC偏壓特性之磁性特性。= • f在小型元件中,在該等芯之間產生均勻間隙對於可靠、 尚品質磁性元件之一致性製造而言較為重要。 . 在—些實例中,已使用環氧樹脂來結合用於製造用於磁 性元件之經結合芯總成的鐵氧體芯。在試圖一致地使芯具 有間隙B寺,有時將非磁性珠粒(通常為玻璃球)與黏接劑絕 • ’緣體材料相混合且將該等非磁性珠粒安置於芯之間以形成 間隙。,當被熱固化時,環氧樹脂結合該等芯且珠粒將怒分 開场成間隙。然而,該結合主要取決於環氧樹脂之黏度 ^施配於該等芯之間的黏接劑混合物之環氧樹脂與珠粒的 、 闡述在些應用中,經結合之芯係不充分地結合 以供其子§ m 亦頂期用途,且已證明出極其難以控制黏接劑混合物 中裱氧樹脂與玻璃球之比。 類型之磁性元件中,將非磁性間隔物材料置放於 兩半磁柯杆+ Β日 心之間,且接著將該兩半芯緊固在一起以將該間 118769.doc ^08 隔物材料固持在適當位置。間隔物材料通常由紙或聚醋薄 膜,.邑緣體#料製成。通常,兩半怒及間隔物係使用纏繞該 兩半怎外部之帶而彼此緊固,其中使用黏接劑使該兩半芯 緊固在-起’或使用央钳緊固該兩半芯並保持間隙位於該 兩半怎之間。很少使用多件(兩件以上)間隔物材料,因為 將該結構緊ϋ在-起的問題變得極為複雜、困難及昂責。 、再-類型之磁性元件包括—研磨成—半芯之—區的間 隙,且該半芯之剩餘區係使用上述技術中任一者而緊固至 另一半怎。 在芯結構中產生間隙之又一方法以單件芯開始,且自該 芯(通常為環形線狀芯)切割—片材料。通常以黏接劑或環 氧樹脂填充間隙以恢復芯之強度及形狀。 、 近來’已開發出複合磁性陶瓷環形線,其包括由一非磁 性層分開以形成間隙之多層磁性構造。見(例如)美國專利 第6,162,311號。0此可消除用於磁性芯結構之結合材料 (例如,黏接劑)及外部間隙材料(例如,間隔物)。 在上述裝置之任一者中,通常將導體置放成通過芯從而 以磁通量之形式將能量輕合入芯中,且磁通量線通過並環 繞間隙交又以完成芯中之磁路經。若導體與通量線相交, 則在該導體中感應出循谖蛩、、ώ . ^ ^ 可肚τ a愿^僱銥電流。當電流循環時,導體之電 阻產生熱’此減小磁性元件之效率。移動導體使其距磁通 量線較遠可減少輕合至導體之能量的數量且因此增加元件 效率’但此通常需要增加元件尺寸(自製造觀點而言,此 為不良的)。 118769.doc 1357608 而且’已知磁性元件通常係裝配於單—芯結構上。 用多個電感器時’(例如)必須將芯實體分離以防止操:中 的彼此干擾。70件分離佔據印刷電路板上有價值之空間。 因此希望為電路板應用提供—具有增加之效率及經改良 可製造性而不會增力jj开杜P » 曰S加兀件尺寸且不佔據印刷電路板上不當 數量之空間的磁性元件。 田 【實施方式】1357608 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to the manufacture of electronic components, and more particularly to the fabrication of magnetic components such as inductors. [Prior Art] A plurality of magnetic components including, but not limited to, an inductor and a transformer include at least a winding disposed around a magnetic core. In some of these components, the core assembly is made of a ferrite core having a gap and bonding. In use, the gap between the cores is required to store energy in the core, and the gap effects include, but are not limited to, magnetic properties of the open circuit inductance and DC bias characteristics. = • f In small components, creating a uniform gap between the cores is important for consistent manufacturing of reliable, quality magnetic components. In some examples, epoxy resins have been used in conjunction with ferrite cores for making bonded core assemblies for magnetic components. In an attempt to consistently impart a gap B temple to the core, sometimes non-magnetic beads (usually glass spheres) are mixed with the binder material and the non-magnetic beads are placed between the cores. A gap is formed. When cured by heat, the epoxy combines the cores and the beads open up into gaps. However, the combination is primarily dependent on the viscosity of the epoxy resin, the epoxy resin and the beads of the adhesive mixture applied between the cores, and in some applications, the bonded cores are not sufficiently bonded. For its § m is also used for the top stage, and it has been proved that it is extremely difficult to control the ratio of the epoxy resin to the glass sphere in the adhesive mixture. In a magnetic element of the type, a non-magnetic spacer material is placed between the two halves of the magnetic core + the heliocentric, and then the two halves are fastened together to separate the material of the partition between 118769.doc ^08 Hold in place. The spacer material is usually made of paper or a polyester film. Usually, the two halves of the anger and the spacer are fastened to each other using a belt wound around the two halves, wherein the two halves are fastened at the same time using an adhesive or the two halves are fastened using a central pliers and Keep the gap between the two halves. Multiple pieces (two or more) of spacer material are rarely used, because the problem of keeping the structure close to it becomes extremely complicated, difficult, and blameless. The re-type magnetic element includes a gap that is ground into a half core, and the remaining area of the half core is fastened to the other half using any of the techniques described above. Yet another method of creating a gap in the core structure begins with a single piece core and cuts the sheet material from the core (typically an annular wire core). The gap is usually filled with an adhesive or epoxy to restore the strength and shape of the core. Recently, a composite magnetic ceramic ring wire has been developed which includes a multilayer magnetic structure separated by a non-magnetic layer to form a gap. See, for example, U.S. Patent No. 6,162,311. This eliminates bonding materials (e.g., adhesives) and external gap materials (e.g., spacers) for the magnetic core structure. In either of the above devices, the conductor is typically placed through the core to lightly couple energy into the core in the form of magnetic flux, and the flux lines pass through and around the gap to complete the magnetic path in the core. If the conductor intersects the flux line, then the loop, ώ, ώ is induced in the conductor. ^ ^ When the current circulates, the resistance of the conductor generates heat, which reduces the efficiency of the magnetic element. Moving the conductor away from the magnetic flux line reduces the amount of energy that is lightly coupled to the conductor and thus increases component efficiency' but this typically requires an increase in component size (which is undesirable from a manufacturing point of view). 118769.doc 1357608 and 'The known magnetic elements are typically assembled on a single-core structure. When using multiple inductors, for example, the core entities must be separated to prevent interference in each other. 70 pieces of separation occupy valuable space on the printed circuit board. It is therefore desirable to provide for board applications - magnetic components that have increased efficiency and improved manufacturability without increasing the amount of space that does not occupy an undue amount of space on the printed circuit board. Field [Embodiment]
圖1為用於磁性元件之例示性間隙磁性芯結構1〇之透視 圖,該等域性元件諸如包括間隙怒結構之電感器、變㈣ 及其他磁性元件。芯結構10包括以堆疊組態之許多磁性層 12,其中一非磁性層14在該等磁性層12之間延伸且分離該 等磁性層12中之兩者以在其中形成—整合間隙從而中斷一 通過芯結構1 0之磁路徑。 如圖1中所說明,芯結構10適合於形成單一磁性元件, 如電感器。芯結構1 0係藉由將形成磁性層12之生(未燒製) 磁性陶瓷材料層與形成非磁性層14之生非磁性陶瓷芯材料 層相組合而建構。磁性陶瓷材料提供磁性芯,同時非磁性 陶瓷材料充當間隙。 移除芯結構10之多層陶瓷材料之一區以產生一用於導體 零件(圖1中未展示)的通過該芯結構之區域或開口丨6。在所 說明之實施例中’開口 16大體上為矩形且係由磁性層12之 周邊邊緣1 5及非磁性層14之周邊邊緣1 8而界定。側表面1 7 自磁性層1 2之邊緣1 5延伸且頂部表面19自非磁性層14之邊 緣1 8延伸以形成一通過芯結構1 〇之内部孔。在另一實施例 118769.doc 中可將開口 16及/或該孔製造成另一形狀,以代替圖3中 所說明之矩形形狀。 旦磁性層及非磁性層12、14經堆疊至適當厚度且結合 在—起(諸如,使肖已知疊層過程而進行),便根據已知技 、丁(諸如,已知穿孔過程)而形成開口丨6。接著燒製芯結構 1,|)以產生芯結構之最終形狀及性質。因此將間隙磁性芯 製k為單體結構。在提供經緊密控制之電感值的情況下, 可於大星生產批量尺寸方面緊密控制間隙尺寸。 山磁性芯結構10之單體結構提供許多製造優點。舉例而 σ,肩除了黏接劑結合及外部間隙材料以及相關聯費用及 困難且因此單體結構較少經受分離。整合間隙結構亦允許 :為緊密控制之電感值’且可採用多個小間隙(代替習知 心釔構中之一至兩個較大間隙)以減少置放入使用中之芯 中的導體材料中之通量損失及熱損失。此外,Μ隙之引入 吊要任何機械加工操作。因此,包括芯結構i 0之所得磁 性π件為穩固的且可維持對間隙寬度之緊密控制。 可將各種各樣之鐵氧體材料用作為形成芯結構丨0中之磁 陡層12的磁性介質。例示性鐵氧體材料包括已在市場上使 用且可相當廣泛地獲得之錳鋅鐵氧體(且尤其為粉末鐵氧 體)、鎳鋅鐵氧體、鋰鋅鐵氧體、鎂錳鐵氧體及其類似鐵 氧體。對於非磁性層〗4,可使用各種各樣之陶瓷材料,該 等陶瓷材料包括(例如)氧化鋁、氧化鋁玻璃混合物、堇青 石堇月石玻璃混合物、富鋁紅柱石、富鋁紅柱石玻璃混 口物氧化錯、氧化銼玻璃混合物 '鈦酸鋇及其他鈦酸 HS769.doc 1357608 ^塊滑石、鐵氧體與非磁性陶瓷之混合物,及可與鐵氧 —材科共同燒製之類似非磁性或弱磁性陶瓷材料。將玻璃 相添加至非磁性陶瓷允許修改非磁性陶瓷之燒結溫度及燒 製收縮。此較為重要,因為非磁性陶瓷必須精密匹配磁相 (亦即,鐵氧體)之熱性質。若該兩個材料之燒製收縮並非 極良好地匹配,則元件可能會不令人滿意地操作。 雖然圖1中所說明之實施例包括三個磁性層12及一非磁 、層14但應瞭解,在不偏離本發明之範疇的情況下於替 代實施例中可採用更多或更少磁性層12及更多或更少非磁 性層14。另外,雖然在圖i中將芯結構⑺說明為大體上矩 形之結構,但應瞭解,在替代實施例中可採用供芯結構⑺ 使用之其他形狀,該等形狀包括(但不限於)此項技術中已 知之環形線狀。 用於磁性層12中之鐵氧體的類型及非磁性層14之厚度實 見。、、·σ構1 〇之磁性性質,且最終實現使用磁性層1 2之所得 磁性兀件的性質。(例如)可藉由改變起始鐵氧體組合物而 义粕末損失畨度,此在切換電壓調節器元件之狀況下對 減 > 粉末損失特別有利。有效磁導率(另一重要性質)大部 分係藉由非磁性層14之厚度加以控制。 圖2為配備有導體零件2〇之芯結構1〇的側面正視圖。在 一例示性實施例中,導體零件2〇係由已知導電材料製成且 在通過導體開口 1 6(圖1中所展示)之後於其各別末端上形成 或彎曲。在圖2之說明性實施例中,芯結構1〇及導體零件 2 0極為適合於形成電感器。可視需要容易地使芯結構1 〇及 118769.doc 1357608 導體零件20之裝配自動化。可將多個導體零件20插入芯結 構1 〇中作為單一引線框架,接著將該單一引線框架形成及 修整為成品。因此,可以與(例如)已知電感器相比低得多 的成本有效地製造高容暈磁性元件。 圖3為芯結構1〇及導體零件20之橫截面示意圖,其說明 與非磁性層1 4接觸並由非磁性層丨4支撐且另外大體上相對 於導體開口 1 6而定中心的導體零件2〇。亦即,導體零件2〇 鄰接非磁性材料14之頂部表面1 9但以開口 16内之大致相等 的距離與磁性材料12之側邊緣1 5間隔開。因此,非磁性間 隙直接在導體零件20下方延伸且導體零件2〇與開口 16之内 表面1 7間隔開。 如圖3中之一例示性實施例中所說明的,導體零件2〇之 形狀與導體開口 16互補, 20及導體開口 16中每一省 ,且因此在一實施例中,導體零件 者之橫截面大體上為矩形。然而, 應瞭解,在本發明之替代實施例中可採用導體零件2〇及導BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view of an exemplary gap magnetic core structure for a magnetic component such as an inductor including a gap anger structure, a variable (four), and other magnetic components. The core structure 10 includes a plurality of magnetic layers 12 configured in a stack, wherein a non-magnetic layer 14 extends between the magnetic layers 12 and separates two of the magnetic layers 12 to form therein - an integrated gap to interrupt one The magnetic path through the core structure 10 . As illustrated in Figure 1, the core structure 10 is adapted to form a single magnetic element, such as an inductor. The core structure 10 is constructed by combining a raw (unfired) magnetic ceramic material layer forming the magnetic layer 12 with a raw non-magnetic ceramic core material layer forming the non-magnetic layer 14. The magnetic ceramic material provides a magnetic core while the non-magnetic ceramic material acts as a gap. A region of the multilayer ceramic material of the core structure 10 is removed to create a region or opening 通过 6 through the core structure for the conductor component (not shown in Figure 1). In the illustrated embodiment, the opening 16 is generally rectangular and is defined by the peripheral edge 15 of the magnetic layer 12 and the peripheral edge 18 of the non-magnetic layer 14. The side surface 17 extends from the edge 15 of the magnetic layer 12 and the top surface 19 extends from the edge 18 of the non-magnetic layer 14 to form an internal aperture through the core structure 1 . In another embodiment 118769.doc, the opening 16 and/or the aperture can be made in another shape instead of the rectangular shape illustrated in FIG. Once the magnetic and non-magnetic layers 12, 14 are stacked to a suitable thickness and bonded together (such as by Schott's known lamination process), according to known techniques, such as known perforation processes An opening 丨 6 is formed. The core structure 1,|) is then fired to produce the final shape and properties of the core structure. Therefore, the gap magnetic core k is a single structure. In the case of tightly controlled inductance values, the gap size can be tightly controlled in terms of mass production size. The monolithic structure of the mountain magnetic core structure 10 provides a number of manufacturing advantages. By way of example, σ, in addition to adhesive bonding and external gap materials, as well as associated costs and difficulties, and thus the monomer structure is less subject to separation. The integrated gap structure also allows for tightly controlled inductance values' and multiple small gaps (instead of one of the conventional core structures to two larger gaps) to reduce the placement of conductor material in the core in use. Flux loss and heat loss. In addition, the introduction of the crevice is required for any machining operations. Therefore, the resulting magnetic π member including the core structure i 0 is stable and can maintain tight control of the gap width. A wide variety of ferrite materials can be used as the magnetic medium for forming the magnetic steep layer 12 in the core structure 丨0. Exemplary ferrite materials include manganese zinc ferrite (and especially powder ferrite), nickel zinc ferrite, lithium zinc ferrite, magnesium manganese ferrite, which are commercially available and can be obtained quite widely. Body and its similar ferrite. For the non-magnetic layer 4, a variety of ceramic materials can be used, including, for example, alumina, alumina glass mixture, cordierite stellite glass mixture, mullite, mullite glass Mixture oxidation oxidization, yttria glass mixture 'barium titanate and other titanic acid HS769.doc 1357608 ^block talc, a mixture of ferrite and non-magnetic ceramics, and similar to non-co-fired materials Magnetic or weakly magnetic ceramic material. Adding the glass phase to the non-magnetic ceramic allows modification of the sintering temperature and firing shrinkage of the non-magnetic ceramic. This is important because non-magnetic ceramics must closely match the thermal properties of the magnetic phase (i.e., ferrite). If the firing shrinkage of the two materials does not match very well, the component may operate unsatisfactorily. Although the embodiment illustrated in FIG. 1 includes three magnetic layers 12 and a non-magnetic layer 14, it should be understood that more or less magnetic layers may be employed in alternative embodiments without departing from the scope of the present invention. 12 and more or less non-magnetic layers 14. In addition, although the core structure (7) is illustrated as a generally rectangular structure in Figure i, it should be understood that other shapes for use with the core structure (7) may be employed in alternative embodiments including, but not limited to, this Ring-shaped lines are known in the art. The type of ferrite used in the magnetic layer 12 and the thickness of the non-magnetic layer 14 are practical. The magnetic properties of σ, 1 〇, and finally the properties of the resulting magnetic element using the magnetic layer 12. For example, the end loss loss can be varied by changing the starting ferrite composition, which is particularly advantageous for reducing > powder loss in the case of switching voltage regulator elements. The effective magnetic permeability (another important property) is largely controlled by the thickness of the non-magnetic layer 14. Figure 2 is a side elevational view of the core structure 1〇 equipped with a conductor part 2〇. In an exemplary embodiment, the conductor members 2 are made of a known electrically conductive material and are formed or bent at their respective ends after passing through the conductor openings 16 (shown in Figure 1). In the illustrative embodiment of FIG. 2, core structure 1 and conductor component 20 are highly suitable for forming an inductor. The assembly of the core structure 1 and the 118769.doc 1357608 conductor part 20 can be easily automated as needed. A plurality of conductor members 20 can be inserted into the core structure 1 as a single lead frame, which is then formed and trimmed into a finished product. Therefore, the high-capacity halo magnetic element can be efficiently manufactured at a much lower cost than, for example, a known inductor. 3 is a schematic cross-sectional view of a core structure 1 and a conductor component 20 illustrating a conductor component 2 that is in contact with the non-magnetic layer 14 and supported by the non-magnetic layer 且4 and that is otherwise substantially centered relative to the conductor opening 16. Hey. That is, the conductor members 2 邻接 are adjacent to the top surface 19 of the non-magnetic material 14 but spaced apart from the side edges 15 of the magnetic material 12 by substantially equal distances within the openings 16. Therefore, the non-magnetic gap extends directly below the conductor part 20 and the conductor part 2 is spaced apart from the inner surface 17 of the opening 16. As illustrated in one exemplary embodiment of FIG. 3, the shape of the conductor member 2 is complementary to the conductor opening 16, 20 and each of the conductor openings 16, and thus, in one embodiment, the conductor component is transverse. The cross section is generally rectangular. However, it should be understood that conductor parts 2 and guides may be employed in alternative embodiments of the invention.
導體零件20與導體開口 1 6無需具有互補形狀來達成本發明之實例益處。The conductor part 20 and the conductor opening 16 need not have complementary shapes to achieve the example benefits of the present invention.
於芯結構10上。 結構10的磁通量線,且詳言 圖4示意性說明使用中之芯結 nS769.doc 1357608 之應/主,¾ ’導體零件2 〇不與該等通量線相交。因此,導體 零件20中之感應電流減少,相關聯之熱損失得以避免,且 磁性元件之效率增加。因此在緊密元件尺寸的情況下獲得 増加之元件效率。On the core structure 10. The magnetic flux lines of structure 10, and in particular Figure 4, schematically illustrate the application/mains of the core knot nS769.doc 1357608 in use, the 3⁄4 'conductor part 2 〇 does not intersect the flux lines. Therefore, the induced current in the conductor part 20 is reduced, the associated heat loss is avoided, and the efficiency of the magnetic element is increased. Therefore, the component efficiency is increased in the case of a compact component size.
如熟習此項技術者可瞭解的,元件效率在較高切換頻率 時最為重要。因此具有單匝導體零件20之上述結構特別適 合於較高頻率應用。然而,應瞭解,在本發明之替代實施 例中,可同樣採用具有多匝之導電零件。 圖5為說明多間隙芯結構之間隙芯結構3〇的第二實施 例。將如上所述磁性材料層及非磁性材料之層12、Μ堆疊 成單一結構可如上所述在單個或整體芯結構3〇上產生多個 磁性元件。因此,當諸如導體零件2〇(展示於圖2及圖3中) 之導電零件係置放成通過開口16時’或當該等導電零件另 外形成於g結構3G之表面上時,可將諸如電感器之兩個、As will be appreciated by those skilled in the art, component efficiency is most important at higher switching frequencies. The above structure with single turn conductor component 20 is therefore particularly suitable for higher frequency applications. However, it should be understood that in alternative embodiments of the present invention, conductive members having multiple turns may equally be employed. Fig. 5 is a view showing a second embodiment of the gap core structure 3A of the multi-gap core structure. Stacking the layers 12, 12 of the magnetic material layer and the non-magnetic material as described above into a single structure can produce a plurality of magnetic elements on the single or unitary core structure 3 as described above. Therefore, when conductive parts such as conductor parts 2 (shown in FIGS. 2 and 3) are placed through the opening 16 or when the conductive parts are additionally formed on the surface of the g structure 3G, Two of the inductors,
二個或三個以上磁性元件(例如)建置成諸如圖5中所說明之 彼芯結構的芯結構30。 將整體積體芯結構3G用於多個磁性元件導致較低成本, 因為單-部件之封裝及處理比處理許多部件之成本低。因 為較少部件之置放應導致成本節約,所以整個系統成本亦 可減少。又一益處在於:與相組合之個別磁性元件(諸 如,展示於圖2及圖3中之單_電感器)減,芯結構则 用電路板上之減少之區域。整合成單—芯結㈣之多個電 感器比相當數目之個別元件及芯佔據較少空間,此主要係 由於個別7L件所需之實體空隙並非積體芯結構之情況下 "8769.doc 1357608 的問題。Two or more magnetic elements, for example, are constructed into a core structure 30 such as the core structure illustrated in FIG. The use of a full volume core structure 3G for multiple magnetic components results in lower cost because the packaging and handling of single-parts is less expensive than processing many components. Since the placement of fewer components should result in cost savings, the overall system cost can also be reduced. A further benefit is that the individual magnetic components (e.g., the single-inductors shown in Figures 2 and 3) are combined with a reduced core area for the reduced area on the board. Integrating a single-core (4) multiple inductors takes up less space than a significant number of individual components and cores, primarily because the physical voids required for individual 7L components are not integrated core structures."8769.doc 1357608 problem.
如圖5中所說明的,芯結構3〇係由至少一非磁性層丨斗所 劃分之—連串堆疊磁性層12製成。磁性層^水平地延伸且 垂直地堆疊,且許多導體開口 16形成於堆疊之磁性層及非 磁性層丨2、14中。該等導體開σ16係由垂直延伸之非磁性 層或絕緣層32分開,且垂直延伸之絕緣層32結合垂直堆疊 之磁性層與非磁性層12、14,其中每—導體開口 16駐留: 該磁性層與非磁性層12、14中。因此,可將芯結構3〇辨識 為以並列組態彼此附著在一起以形成較大芯結構3 〇的複數 個芯結構10(展示於圖!至圖4中)。可在形成開口 16之前或 之後將垂直延伸之絕緣層32結合於堆疊層12、14之間,且 將芯結構30作為單體結構而燒製成其最終形式。As illustrated in Fig. 5, the core structure 3 is made of a series of stacked magnetic layers 12 which are divided by at least one non-magnetic layer bucket. The magnetic layers are horizontally extended and vertically stacked, and a plurality of conductor openings 16 are formed in the stacked magnetic layers and non-magnetic layers 2, 14. The conductor openings σ16 are separated by a vertically extending non-magnetic layer or insulating layer 32, and the vertically extending insulating layer 32 is combined with the vertically stacked magnetic and non-magnetic layers 12, 14, wherein each of the conductor openings 16 resides: the magnetic The layers are in the non-magnetic layers 12, 14. Thus, the core structure 3〇 can be identified as a plurality of core structures 10 (shown in Figures! through Figure 4) that are attached to each other in a side-by-side configuration to form a larger core structure 3 〇. The vertically extending insulating layer 32 may be bonded between the stacked layers 12, 14 before or after the opening 16 is formed, and the core structure 30 is fired as a unitary structure into its final form.
一旦完成,導體開口 16便配備有導電零件(諸如,上述 導體零件20)以形成可自相同單體芯結構操作之複數個磁 性元件。與使用獨立元件(諸如,電感器)相比,尤其在使 用自動元件置放設備時,此導致總體較不昂貴之解決方 法。與多個個別電感器相比,芯3〇上之組合電感器結構將 使用電路板上之較少空間,因為不再需要實體干擾或”預 留(keep-om)”區域。此外,將單一磁性芯結構別用於多個 導體零件使用允許電感值追蹤彼此,因為個別電感器之加 熱同樣影響同一結構上之其他電感器。 芯結構30特別適合於通常用於高效能、較高電流應用中 之多個電壓調節器模組(VRM)。遞送至VRM中之負載的總 電流為每一 VRM區之總和。因為許多電感器可用於電壓調 118769.doc 12 1357608 節器電路中,所以可如由芯結構30促進的有利地將一個以 上電感器組合成單一封裝。 雖然芯結構30之堆疊層12、14包括四個磁性層12及一非 磁性層14,但應瞭解,在不偏離本發明之範疇的情況下可 採用一個以上非磁性層14及較多或較少磁性層12。另外, 如上文關於芯10所述的,芯結構3〇無需具有矩形形狀且無 需具有矩形導體開口來達成本發明之實例益處,且因此在 不同貫施例中,可對總芯結構3 〇及/或導體開口 1 6採用多 種形狀。 圖6為例示性芯結構5〇之第三實施例,其中許多芯結構 係堆疊於彼此之上且由非磁性絕緣層52加以分開。在所說 明之實施例中’每一芯結構包括夾於磁性層12之間的兩個 非磁性層U,且、絕緣層52在每一芯結構之間延伸並大體上 平打於每—怒結構之層12、14。非磁性層Μ界定導體開口 16之相對侧。可在形成開口16之前或之後將絕緣層52結合 於堆疊層12、14之間,且將芯結構5〇作為單體結構而燒製 成其最終形式。 雖然芯結構5G之堆疊層12、14包括三個磁性層12及兩個 非磁性層14 ’但應瞭解,在不偏離本發明之料的情況下 可採用較多或較少數目之非磁性層14及較多或較少數目之 磁I·生層12。另外,如上文關於芯結構%所描述的,怒結構 5〇無需具有整體矩形形狀且無需具有矩形導體開口來達成 本發明之實例益處’且因此在不同實施例中,可對整個芯 結構3 0及/或導體開口 1 6採用多種形狀。 118769.doc 1357608 雖然所說明之實施例經建構為在整體芯結構中包括三個 磁性元件’但應瞭解’在其他實施例及/或替代實施例中 可將三個以上或三個以下磁性元件或電路組合成單一結 構。 除結構差異之外’芯結構5〇提供與芯結構3〇(展示於圖5 中)大致相同之優點。 因此提供用於產生諸如電感器、變壓器或其他元件之磁 性元件的間隙芯結構。藉由多個小間隙(代替一至兩個較 大間隙)以減少導體材料中之邊緣通量損失而避免習知芯 結構中之結合及外部間隙材料並改良了電效率,且該結構 允許經極緊密控制之電感值。間隙經置放以致邊緣通量可 置放地遠離導體,從而導致最大效率,且可將多個電感器 裝配至單一芯結構上,從而減少總成本及尺寸。 圖7至圖9說明用於磁性元件之間隙芯結構.i 〇〇的另一實 施例,該等磁性元件諸如包括間隙芯結構同時提供與上述 結構30及50類似之益處的電感器、變壓器及其他磁性元 件。類似於結構30及50,間隙芯結構100完全避免了通常 用於電路板應用中表面安裝型元件之習知間隙芯結構中的 外部間隙材料及相關聯結合材料及黏接劑。因此避免了習 知結合芯結構易經受之與結合在一起之多個芯件的分離相 關聯之可靠性問題。此外,與習知芯結構相比,芯結構 100之製造得以簡化,且當將間隙芯結構1〇〇安裝至電路板 時可實現空間節約。 圖7為間隙芯結構100之側視圖,且圖8及圖9分別為間隙 118769.doc ]4 1357608 芯結構1 00之仰視圖及橫截面圖。現參看圖7至圖9,芯結 構100可包括大體上矩形本體102,該矩形本體1〇2具有相 對端面1 04及1 06、在該等端面1 〇4與1 〇6之間延伸的相對側 邊緣107及108,及在端面104與106之間及側邊緣1〇7與1〇8 之間延伸且互連端面104與1 〇6之間及侧邊緣1 〇7與1 〇8的頂 部表面及底部表面110及112 »本體1〇2可為狹長的且可由 縱軸114及橫軸116而界定》如圖中所說明的,側邊緣i 〇7 及108以及頂部表面及底部表面110及112平行於縱轴114而 延伸,且端面104及106通常平行於橫軸116而延伸。雖然 說明了本體1 02之例示性矩形形狀,但應瞭解,在其他實 施例中,視需要可利用本體! 02之其他替代形狀。 本體102可形成於單件結構中且由已知磁性介質或材料 製成,該已知磁性介質或材料包括上文在一例示性實施例 中所提及之鐵氧體材料中的任一者。可將已知過程或技術 用於製造本體102。應注意且不同於上述芯結構3〇及5〇, 在芯結構100之構造中,芯結構1〇〇不包括諸如上文所述之 非磁性層14及32的非磁性材料。亦即,芯結構之本體1〇2 係在無介入件或非磁性或絕緣材料之片斷的情況下由均勻 磁I·生材料製成為在整個本體i 02中具有相對恆定磁性性質 的單單體件,而非以上文關於芯結構30及50所述的方式 由不同材料單體形成。此外’且在一例示性實施例中,本 體凡全係由與複合材料(諸如具有如在粒子級彼此混合 之粕末狀鐵與樹脂黏合劑之所謂分佈式氣隙芯材料)相反 的磁性材料製m在未形成結構中之離散間隙的情況 118769.doc 15 1357608 下產生間隙效果。然而,在其他實施例中,可視需要使用 複合材料。Once completed, the conductor opening 16 is provided with conductive features, such as the conductor component 20 described above, to form a plurality of magnetic components that are operable from the same single core structure. This results in an overall less expensive solution than when using separate components such as inductors, especially when using automated component placement equipment. The combined inductor structure on the core 3 will use less space on the board than multiple individual inductors because no physical interference or "keep-om" regions are required. In addition, the use of a single magnetic core structure for multiple conductor parts allows the inductance values to be tracked to each other because the heating of individual inductors also affects other inductors on the same structure. The core structure 30 is particularly well suited for use in multiple voltage regulator modules (VRMs) typically used in high performance, higher current applications. The total current delivered to the load in the VRM is the sum of each VRM zone. Since many inductors can be used in the voltage regulation circuit, one or more inductors can be advantageously combined into a single package as facilitated by the core structure 30. Although the stacked layers 12, 14 of the core structure 30 include four magnetic layers 12 and a non-magnetic layer 14, it will be appreciated that more than one non-magnetic layer 14 and more or more may be employed without departing from the scope of the present invention. Less magnetic layer 12. Additionally, as described above with respect to the core 10, the core structure 3 does not need to have a rectangular shape and does not need to have a rectangular conductor opening to achieve the example benefits of the present invention, and thus, in different embodiments, the total core structure 3 can be / or the conductor opening 16 takes a variety of shapes. Figure 6 is a third embodiment of an exemplary core structure 5A in which a plurality of core structures are stacked on top of each other and separated by a non-magnetic insulating layer 52. In the illustrated embodiment, 'each core structure includes two non-magnetic layers U sandwiched between magnetic layers 12, and an insulating layer 52 extends between each core structure and is substantially flattened per anger structure Layers 12, 14. The non-magnetic layer Μ defines the opposite side of the conductor opening 16. The insulating layer 52 may be bonded between the stacked layers 12, 14 before or after the opening 16 is formed, and the core structure 5 is fired into its final form as a unitary structure. Although the stacked layers 12, 14 of the core structure 5G comprise three magnetic layers 12 and two non-magnetic layers 14', it will be appreciated that a greater or lesser number of non-magnetic layers may be employed without departing from the material of the present invention. 14 and a greater or lesser number of magnetic I. green layers 12. Additionally, as described above with respect to core structure %, the anger structure 5 〇 need not have an overall rectangular shape and does not need to have a rectangular conductor opening to achieve the example benefits of the present invention' and thus in different embodiments, the entire core structure 3 0 And/or the conductor opening 16 is of a variety of shapes. 118769.doc 1357608 Although the illustrated embodiment is constructed to include three magnetic elements in a unitary core structure, it should be understood that three or more or fewer magnetic elements may be used in other embodiments and/or alternative embodiments. Or circuits are combined into a single structure. In addition to the structural differences, the core structure 5 provides substantially the same advantages as the core structure 3 (shown in Figure 5). A gap core structure for producing a magnetic element such as an inductor, a transformer or other component is thus provided. Avoiding bonding and external gap materials in conventional core structures and improving electrical efficiency by reducing a small amount of gaps (instead of one to two larger gaps) to reduce edge flux losses in the conductor material, and the structure allows for transposition Tightly controlled inductance value. The gap is placed such that the edge flux can be placed away from the conductor, resulting in maximum efficiency, and multiple inductors can be assembled onto a single core structure, reducing overall cost and size. 7 through 9 illustrate another embodiment of a gap core structure.i 〇〇 for a magnetic component, such as an inductor, transformer, and the like that includes a gap core structure while providing benefits similar to those of structures 30 and 50 described above. Other magnetic components. Similar to structures 30 and 50, the gap core structure 100 completely obviates the external gap material and associated bonding materials and adhesives in conventional gap core structures commonly used in surface mount components in circuit board applications. Therefore, the reliability problem associated with the separation of a plurality of core members that are combined with the conventional core structure is avoided. Moreover, the manufacture of the core structure 100 is simplified compared to conventional core structures, and space savings can be realized when the gap core structure 1 is mounted to a circuit board. Figure 7 is a side elevational view of the gap core structure 100, and Figures 8 and 9 are bottom and cross-sectional views, respectively, of the gap 118769.doc] 4 1357608 core structure 100. Referring now to Figures 7-9, the core structure 100 can include a generally rectangular body 102 having opposing ends 104 and 106, relative to each other extending between the end faces 1 〇 4 and 1 〇 6 Side edges 107 and 108, and between end faces 104 and 106 and between side edges 1〇7 and 1〇8 and between interconnecting end faces 104 and 1〇6 and at the top of side edges 1〇7 and 1〇8 Surface and bottom surfaces 110 and 112 » body 1 2 may be elongated and may be defined by longitudinal axis 114 and transverse axis 116, as illustrated in the figures, side edges i 〇 7 and 108 and top and bottom surfaces 110 and 112 extends parallel to the longitudinal axis 114 and the end faces 104 and 106 extend generally parallel to the transverse axis 116. Although an exemplary rectangular shape of the body 102 is illustrated, it should be understood that in other embodiments, the body may be utilized as needed! 02 alternative shapes. The body 102 can be formed in a single piece construction and made of a known magnetic medium or material, including any of the ferrite materials mentioned above in an exemplary embodiment. . Known processes or techniques can be used to fabricate the body 102. It should be noted that and unlike the core structures 3 and 5 described above, in the configuration of the core structure 100, the core structure 1 does not include a non-magnetic material such as the non-magnetic layers 14 and 32 described above. That is, the body 1〇2 of the core structure is made of a uniform magnetic I·green material without a spacer or a piece of non-magnetic or insulating material as a single monomer having relatively constant magnetic properties throughout the body i 02 Pieces, rather than the manner described above with respect to core structures 30 and 50, are formed from different material monomers. Further, and in an exemplary embodiment, the body is entirely composed of a magnetic material opposite to a composite material such as a so-called distributed air gap core material having a powdery iron and a resin binder mixed with each other at a particle level. The gap effect is produced under the condition that the discrete gaps in the structure are not formed 118769.doc 15 1357608. However, in other embodiments, composite materials may be used as desired.
導體開口 118、120(麗jy可形成於本體102中,且如最佳 見於圖9中的,開口 118、12〇可在側邊緣1〇7與1〇8之間完 全延伸通過本體102。開口 118、120中每一者係與側邊緣 1〇7、1〇8及每一側邊緣1〇7及1〇8上的頂部表面與底部表面 11〇、112間隔開且位於側邊緣1〇7、ι〇8之間及每一側邊緣 107及108上的頂部表面與底部表面110、112之間》導體開 口 118、120各自通常正交或垂直於側面1〇7及ι〇8而延伸, 且各自以與側邊緣107、1〇8之外部周邊呈間隔關係而定 位,在所說明之實施例中其係由頂部表面及底部表面11〇 及112及側邊緣107及108而界定。亦即’導體開口 ιΐ8、 120各自位於相對於側邊緣1〇7及1〇8之外部周邊的内部位 置處。Conductor openings 118, 120 (which may be formed in body 102, and as best seen in Figure 9, openings 118, 12'' may extend completely through body 102 between side edges 1〇7 and 1〇8. Each of the 118, 120 and the side edges 1〇7, 1〇8 and the top surface of each of the side edges 1〇7 and 1〇8 are spaced apart from the bottom surface 11〇, 112 and located at the side edge 1〇7 Between the top and bottom surfaces 110, 112 between the ι〇8 and each of the side edges 107 and 108, the conductor openings 118, 120 each extend generally orthogonally or perpendicular to the sides 1〇7 and ι8, And each is positioned in spaced relation to the outer periphery of the side edges 107, 1 , 8 which are defined by the top and bottom surfaces 11 and 112 and the side edges 107 and 108 in the illustrated embodiment. The conductor openings ι 8 , 120 are each located at an internal position with respect to the outer periphery of the side edges 1〇7 and 1〇8.
雖然在其他實施例中可利用其他形狀之開口,但導體開 口 118及120可為(例如)矩形開口,其在平行於縱轴114之方 向為狹長的。根據已知方法,開口 118、12〇可整體形成於 本體1 02中,該等已知方法包括(但不限於)熟習此項技術者 所熟悉的模製及/或機械加工技術。雖然圖7至圖9中說明 兩個開口 118、120 ’但應瞭解’在替代實施例中可提供較 多或較少數目之開口 11 8及12 〇。 離散非磁性間隙122、124亦可整體形成於本體1〇2中, 且間隙122、124中每一者可與導體開口 118、12〇中之—者 相關聯。間隙m' 124係經由已知模製及/或機械加工技 Π 8769.doc 丄^7608 術而實體地形成於(例如)本體1〇2中。應注意,無論如何皆 不以任何方式將外部間隙材料及相關聯之結合材料及黏接 剑用於形成間隙122、124,且間隙122、124缺少任何填充 別材料(唯空氣除外)。亦即,在不使用於例示性實施例中 塗覆於本體之絕緣體材料(有時被稱作外部間隙材料)的情 況下形成間隙122、124。然而,應瞭解,在一替代實施例 中,視情況可以非磁性材料填充間隙122、124同時仍達成 本發明之一些益處。 在一例示性實施例中’且如最佳展示於圖7中的,間隙 122、I24可橫斷各別導體開口 118、120而延伸。舉例而 言,間隙122、124中每一者可具有相對末端126及128。一 末端126終止於各別導體開口 118、12〇處且對各別導體開 口 118、120敞開,藉此置放間隙122、124之末端126使其 與各別導體開口 118及120流體連通。每一間隙122、124之 相對末端I28延伸至側邊緣107、1〇8之周邊且更特定言之 延伸至底部表面112。每一間隙〗22、124通常將導體開口 122、124 一等分且正交或垂直於導體開口 i22、而延 伸,藉此當自側面觀察時給予間隙122、124及導體開口 118、120 — T狀組態。 如圖8中所展示,在一平行於橫軸116之方向,間隙 122、124完全自一側邊緣1〇7延伸至另一側邊緣〗〇卜亦 即,間隙122、124在水平方向完全越過及通過本體1〇2而 延伸,其在側邊緣107與1〇8之間延伸。然而,間隙122、 124可在垂直方向延伸,在頂部表面與底部表面ιι〇、ιι2 118769.doc -17. 1357608 之間於導體開口 118、120之僅一側上延伸,且更具體言 之,在圖7之說明性實施例中,間隙122 ' 124可在導體開 口 118、120與底部表面112之間延伸。應注意,間隙122、 124不在導體開口 ι18、12〇與本體1〇2之頂部表面11〇之間 延伸。因此,間隙122、124在本體102之頂部表面與底部 表面110、112之間不完全地延伸。具體言之,間隙122、 124之不完全延伸與具有兩半芯之芯結構特定地形成對 比,該等兩半芯係使用一在該兩半芯之整體上於該兩半芯 之間延伸的間隙材料而彼此結合。在單體本體1〇2的情況 下藉由將間隙122、124整合於單一芯結構100中,可消除 多個芯件,以及消除元件在使用時的裝配困難及芯分離可 靠性問題。因此,與習知芯結構相比,在單一芯結構1〇〇 的情況下’材料成本及裝配成本得以減少。 可使用界定用於裝配至芯結構1〇〇之導體(下文進行描 述)之焊盤(land)的壓痕或凹入表面13〇而形成本體1〇2之底 部表面112。 圖10至圖12為圖7至圖9之類似視圖,唯以下除外:導電 零件140插入通過芯結構1〇〇,且更具體言之,導電零件 140插入通過本體ι〇2之導體開口 118、12〇以形成磁性元件 138。導電零件140之形狀與導體開口 118、ι2〇互補且可為 (例如)由已知導電材料(諸如,作為一實例,銅或銅合金) 製成的大致矩形及大致平帶導體。如最佳見於圖12中的, 對於本體102之側邊緣107、1〇8之間的整個距離而言,導 電零件140通常線性地延伸通過各別導體開口丨丨8、〗2〇, 118769.doc •18- /0U8 且每零件140之相對末端142纏繞侧邊緣107、1〇8且鄰接 形成於本體102之底部表面丨12中的凹座13〇。導電零件mo 之末端142藉此界定本體1〇2之底部表面112上的矩形表面 安裝型端子焊墊144。當連接至電路板上之導電跡線(未圖 示)時’端子焊墊144完成通過元件之電連接。 根據已知穿孔、衝壓或成形技術,可使用引線框架(未 圖不)由一平片導電材料製造導電零件140,且該引線框架 可用於將導電零件140同時插入通過芯100之本體1〇2。可 接著自導電零件140修剪去該引線框架且可使零件丨4〇之末 端142彎曲或者形成為圖12中所展示之c狀組態。因此,可 使用自動化過程及機械加工在最小量時間中完成導電零件 140之裝配。 旦導電零件140裝配至芯1〇〇 ,每一導電零件14〇及相 關聯之間隙122、124便可充當在單一芯結構1〇〇上操作之 獨立電感器。此外,每一導電零件14〇可操作地連接至電 流之不同相位,藉此提供單一芯結構1〇〇内所含之兩相磁 |·生元件與具有獨立芯結構之獨立電感器元件袓比,單件 芯結構1 00提供電路板上之空間節約。 因此提供具有單件間隙芯結構100之表面安裝型磁性元 件,其達成類似於上述芯結構3 0及5 〇之益處。因為使用單 件芯1 00消除了芯分離問題,所以可以減少之製造成本提 供芯結構1 00且可以增加之可靠性製造芯結構丨〇〇。 圖13至圖18說明間隙芯結構2〇〇及磁性元件2〇】之第五實 施例,其中芯結構100之類似特徵係以類似參考號加以指 US769.doc 1357608 示。While other shapes of openings may be utilized in other embodiments, the conductor openings 118 and 120 may be, for example, rectangular openings that are elongated in a direction parallel to the longitudinal axis 114. The openings 118, 12A may be integrally formed in the body 102 according to known methods, including, but not limited to, molding and/or machining techniques familiar to those skilled in the art. Although two openings 118, 120' are illustrated in Figures 7 through 9, it should be understood that a greater or lesser number of openings 11 8 and 12 可 may be provided in alternative embodiments. Discrete non-magnetic gaps 122, 124 may also be integrally formed in body 1"2, and each of gaps 122, 124 may be associated with one of conductor openings 118, 12A. The gap m' 124 is physically formed in, for example, the body 1〇2 via a known molding and/or machining technique 8769.doc 760^7608. It should be noted that the outer gap material and associated bonding material and bonding sword are not used in any way to form the gaps 122, 124, and the gaps 122, 124 lack any filler material (except for air). That is, the gaps 122, 124 are formed without the use of an insulator material (sometimes referred to as an outer gap material) applied to the body in the exemplary embodiment. However, it should be understood that in an alternate embodiment, the gaps 122, 124 may be filled with non-magnetic material as appropriate while still achieving some of the benefits of the present invention. In an exemplary embodiment' and as best shown in Figure 7, the gaps 122, I24 may extend across the respective conductor openings 118, 120. For example, each of the gaps 122, 124 can have opposite ends 126 and 128. An end 126 terminates at each of the conductor openings 118, 12 and opens to the respective conductor openings 118, 120, thereby placing the ends 126 of the gaps 122, 124 in fluid communication with the respective conductor openings 118 and 120. The opposite ends I28 of each of the gaps 122, 124 extend to the periphery of the side edges 107, 1 〇 8 and more specifically to the bottom surface 112. Each gap 22, 124 generally bisects the conductor openings 122, 124 and extends orthogonally or perpendicular to the conductor opening i22, thereby imparting gaps 122, 124 and conductor openings 118, 120 - T when viewed from the side Configuration. As shown in Figure 8, in a direction parallel to the transverse axis 116, the gaps 122, 124 extend completely from one edge 1 〇 7 to the other side edge, i.e., the gaps 122, 124 completely cross in the horizontal direction. And extending through the body 1〇2, which extends between the side edges 107 and 1〇8. However, the gaps 122, 124 may extend in a vertical direction, extending between the top surface and the bottom surface ιι, ιι 2 118769.doc -17. 1357608 on only one side of the conductor openings 118, 120, and more specifically, In the illustrative embodiment of FIG. 7, gap 122' 124 may extend between conductor openings 118, 120 and bottom surface 112. It should be noted that the gaps 122, 124 do not extend between the conductor openings ι 18, 12 〇 and the top surface 11 本体 of the body 1 〇 2 . Thus, the gaps 122, 124 do not extend completely between the top and bottom surfaces 110, 112 of the body 102. In particular, the incomplete extension of the gaps 122, 124 is specifically contrasted with a core structure having two core halves that extend between the two core halves as a whole on the two core halves. The gap materials are combined with each other. By integrating the gaps 122, 124 into the single core structure 100 in the case of the unit body 1 2, the plurality of core members can be eliminated, and assembly difficulties and core separation reliability problems of the components in use can be eliminated. Therefore, the material cost and assembly cost are reduced in the case of a single core structure of 1 相比 compared to the conventional core structure. The bottom surface 112 of the body 1〇2 can be formed using an indentation or recessed surface 13〇 defining a land for mounting to a conductor of the core structure 1 (described below). 10 through 12 are similar views of Figs. 7 through 9, except that the conductive member 140 is inserted through the core structure 1 and, more specifically, the conductive member 140 is inserted through the conductor opening 118 of the body ι 2, 12 turns to form the magnetic element 138. The conductive member 140 is shaped to be complementary to the conductor openings 118, ι2 and can be, for example, a generally rectangular and substantially flat strip conductor made of a known conductive material such as, for example, copper or a copper alloy. As best seen in Figure 12, for the entire distance between the side edges 107, 1 〇 8 of the body 102, the conductive features 140 generally extend linearly through the respective conductor openings 、 8, 〇 2 〇, 118769. Doc • 18- /0U8 and the opposite ends 142 of each part 140 are wrapped around the side edges 107, 1 〇 8 and adjacent to the recess 13 形成 formed in the bottom surface 丨 12 of the body 102. The end 142 of the conductive part mo thereby defines a rectangular surface mount type terminal pad 144 on the bottom surface 112 of the body 1〇2. The terminal pads 144 complete the electrical connection through the components when connected to conductive traces (not shown) on the board. The conductive member 140 can be fabricated from a flat sheet of electrically conductive material using a lead frame (not shown) according to known perforation, stamping or forming techniques, and the lead frame can be used to simultaneously insert the electrically conductive member 140 through the body 1〇2 of the core 100. The lead frame can then be trimmed from the conductive part 140 and the end 142 of the part 弯曲4 can be bent or formed into a c-like configuration as shown in FIG. Therefore, the assembly of the conductive parts 140 can be completed in a minimum amount of time using automated processes and machining. Once the conductive features 140 are assembled to the core 1 , each of the conductive features 14 and associated gaps 122, 124 can act as a separate inductor operating on a single core structure. In addition, each of the conductive members 14 is operatively coupled to a different phase of the current, thereby providing a two-phase magnetic structure contained in a single core structure, and a separate inductor element having a separate core structure. The one-piece core structure 100 provides space savings on the board. A surface mount type magnetic component having a one-piece gap core structure 100 is thus provided which achieves benefits similar to the core structures 30 and 5 above. Since the core separation problem is eliminated by using the single core 100, the manufacturing cost can be reduced to provide the core structure 100 and the core structure can be manufactured with increased reliability. Figures 13 through 18 illustrate a fifth embodiment of a gap core structure 2 and a magnetic element 2, wherein similar features of the core structure 100 are indicated by like reference numerals US 769.doc 1357608.
咸信間隙芯結構200類似於間隙芯結構1〇〇,但間隙芯結 構200具有增加之數目的導體開σ、相關聯間隙及導電零 件。亦即,芯結構200之本體2〇2除包括導體開口 ιΐ8及12〇 之外亦包括四個額外導體開口 2〇4、2〇6、2〇8及21〇。同 樣,除間隙122、124之外,本體2〇2包括以與上述間隙122 及124大體上類似之方式及定向而形成的離散間隙212、 214、216及218。當導電零件Μ〇插入通過本體2〇2中之導 體開口且形成為在圖18中所見之〇狀組態時,導電零件14〇The gap gap core structure 200 is similar to the gap core structure 1〇〇, but the gap core structure 200 has an increased number of conductor turns σ, associated gaps, and conductive parts. That is, the body 2〇2 of the core structure 200 includes four additional conductor openings 2〇4, 2〇6, 2〇8, and 21〇 in addition to the conductor openings ιΐ8 and 12〇. Similarly, in addition to the gaps 122, 124, the body 2"2 includes discrete gaps 212, 214, 216, and 218 formed in a manner and orientation generally similar to the gaps 122 and 124 described above. When the conductive member is inserted through the conductor opening in the body 2〇2 and formed into a braided configuration as seen in Fig. 18, the conductive member 14〇
^各別間㈣2、124、212、214、216及218充當整合入單 一芯結構200中之六個不同表面安裝型電感器元件。可經 由表面安裝型端子而將每一導電零件14〇連接至電路板上 的導電跡線’以料電零件刚操作地連接至電流之六個 不同相位同Β夺提供該電路板上之實質空間節肖。芯結構 200另外提供與芯結構100相同之益處。 咸信芯結構100及200特別良好地適合於通常用於高效 旎、較尚電流應用中之多個電壓調節器模組(vrm)中之應 用。然而,應瞭解,其他應用將得益於芯結構1〇〇及2〇〇, 且並不將本發明視為限於任何特定最終用途或應用。 本文描述磁性元件之一實施例,該磁性元件包含由磁性 材料製成為大體上矩形本體之單體芯結構。該本體係由相 對端面、在該等端面之間延伸的相對側邊緣,及互連該等 側邊緣及該等端面之頂部表面及底部表面加以界定.。第一 導體開口與該等端面及頂部表面及底部表面中之每一者間 118769.doc 1357608 =’且該第一導體開口完全延伸通過該本 Γ形一中且橫斷導體開口而延伸。該間!: 體而不元全延伸,且第— 。本 口之導電路徑。該第一導電 導體開 端接^_ in㈣於表面安裝型終 視情況,導電零件可包含— ^3矩形導體。第二導體開口可 形成於本體令且與第—導 -T肢间口間隔開,第二間 於本體中且橫斷該第二導體 ’、戍 可建立-通過該第:導體 等·?零件 1之電路徑°第一間隙延伸至 第一導體開口且第一間隙及 X印 乐等體開口可以τ狀組態而 &可由縱軸及橫軸而界定該本體,其中第-導體開口 及第-間隙大致平行於該橫轴而延伸,且第一導體開口盘 第一間隙大致垂直於彼此而延伸。底部表面包含相對之凹 入表面’且第一導電零件可纏繞相對面及凹入表面。在不 利用由非磁性材料製成之間隔零件的情況下形成該間隙。 本文亦描述用於表面電子元件之芯總成的一實施例。該 怒總成包含:一包含;4 ω u ,, 匕3 9勺磁性材料之單體本體的芯;形成 於該芯中之複數個導體卩』„ #丄 等體開口,其中該複數個導體開口中每 一者彼此間隔開;及在不利用絕緣間隔物材料的情況下整 Μ構中的複數個間隙。該等間隙中每—者與 該等導體開口中之-各別導體開口相關聯,且該等間隙中 每一者越過本體而不完全地延伸。 本文描述表面安裝型電子元件之一實施例。該元件包含 -單個芯’該單個芯包含—由磁性材料均勻製成之本體, 118769.doc •21 · :本體具有—縱軸及-橫軸。複數個導體開口形成於該芯 ,且平行於該橫轴而延伸’纟中該複數個導體開口沿著該 縱輛而彼此間隔開。複數個非磁性間隙鄰近各別導體開口 而實體地形成於芯結構中’且非磁性間隙係在不利用塗覆 至本體之絕緣材料的情況下而形成。一導電零件位於該等 導體開口之每一者中’且該等間隙位於鄰近該等導電灾件 處,藉此形成單個芯中之多相位電子元件。 視情況,芯結構包含兩個導體開π。或者,芯結構包含 六個導體開口。間隙可僅在該等導體開口中—者與該等侧 邊緣中一者之間延伸。該元件可為電感器。 亦描述磁性元件之一實施例。該元件包含由磁性村料均 勻製成為具有非環形線狀之本體的單件芯結構,該本體具 有相對側表面導體開σ完全在相對側表面之間延伸 且在内部位於距該等側表面中每一者之周邊一間隔位置 處。在不利用塗覆至本體之外部間隙材料的情況下將_間 Ρ承整體形成於本體m該間隙具有第一末端及第二末 端’該第-末端終止於第-導體開口處且對第一導體開口 敞開’且該第二末端延伸至周邊。視需要,元件進—步包 含第二導體開口及第二間隙。 本文亦描述磁性元件。該元件包含一由均句磁性材料單 體製成為具有相對側表面之本體的單個芯結冑。第_導體 開口完全在該等相對側表面之間延伸且在内部位於距該等 側表面中每一者之周邊一間隔位置處。第一間隙係在:利 用塗覆至本體之外部間隙材料的情況下整體形成於本體 118769.doc •22· 中’其中該間隙具有第—古^山Β β ^ ,弟末知及第二末端,該第一末端終 t於第—導體開口處且對第-導體開口敞開,且該第二末 二_至周邊。- c狀導電零件線性地延伸通過該開口, 广導電零件具有相對末端,㉟等相對末端纏繞該等側表面 以界疋用於該元件之表面安裝型端子。視情況,該元件進 一步包含第二導體開口及第二間隙,且該元件為電感器。 ”、、:已根據夕種特殊貫施例描述了本發明,但熟習此項 技術者將認識到,可在中請專利範圍之精神及範_内以修 改來實踐本發明。 【圖式簡單說明】 圖1為用於製造磁性元件之例示性間隙芯之透視圖。 圖2為圖1所示配備有導體之芯結構的侧面正視圖。 圖3為圖2所示芯結構及導體之橫截面示意圖。 圖4為圖3之一部分的橫截面示意圖,其說明芯結構之磁 通量線。 圖5為間隙芯結構之第二例示性實施例。 圖6為例示性芯結構之第三實施例。 圖7為間隙芯結構之第四實施例之側視圖。 圖8為圖7所示之芯之仰視圖。 圖9為圖8所示之芯之橫截面圖。 圖10為圖7所示其中置放有導體之芯結構的側視圖。 圖Π為圖1 〇所示中之結構之仰視圖。 圖12為圖11所示芯結構之側面正視圖。 圖1 3為間隙芯結構之第五實施例之侧視圖。 118769.doc ► 23 - 1357608 圖14為圖13所示之芯之仰視圖。 圖15為圖14所示之芯之橫截面圖。 圖16為圖13所示其中置放有導體之芯結構的側視圖。 圖17為圖16所示結構之仰視圖。 圖1 8為圖1 7所示芯結構之側面正視圖。 【主要元件符號說明】^ Each of the four (4), 124, 212, 214, 216, and 218 acts as six different surface mount inductor elements integrated into the single core structure 200. Each conductive component 14 can be connected to a conductive trace on the circuit board via a surface mount terminal. The electrical component is operatively connected to six different phases of current and provides substantial space on the circuit board. Xiao Xiao. Core structure 200 additionally provides the same benefits as core structure 100. The salt core structures 100 and 200 are particularly well suited for use in a variety of voltage regulator modules (vrm) that are commonly used in high efficiency, more current applications. However, it should be understood that other applications will benefit from the core structure 1 and 2, and the invention is not considered to be limited to any particular end use or application. One embodiment of a magnetic element is described herein, the magnetic element comprising a unitary core structure made of a magnetic material that is a generally rectangular body. The system is defined by opposing end faces, opposite side edges extending between the end faces, and interconnecting the side edges and the top and bottom surfaces of the end faces. The first conductor opening and each of the end faces and the top and bottom surfaces are 118769.doc 1357608 = and the first conductor opening extends completely through the body and extends across the conductor opening. The room!: The body is not extended, and the first. The conductive path of this port. The first conductive conductor is terminated with ^_in (d) for surface mount type termination, and the conductive member may comprise - ^3 rectangular conductor. The second conductor opening may be formed in the body of the body and spaced apart from the port of the first -T limb, the second in the body and transverse to the second conductor ', 戍 can be established - through the first conductor, etc. Electrical path of the part 1 The first gap extends to the first conductor opening and the first gap and the X-ray body opening can be configured in a τ shape and can be defined by the vertical axis and the horizontal axis, wherein the first conductor is open And the first gap extends substantially parallel to the horizontal axis, and the first gap of the first conductor open disk extends substantially perpendicular to each other. The bottom surface includes opposing recessed surfaces' and the first conductive features can wrap around the opposing and recessed surfaces. The gap is formed without using a spacer member made of a non-magnetic material. An embodiment of a core assembly for surface electronic components is also described herein. The anger assembly comprises: a core comprising a single body of 4 ω u , 匕 3 9 scoops of magnetic material; a plurality of conductors formed in the core, wherein the plurality of conductors Each of the openings is spaced apart from each other; and a plurality of gaps in the entire structure without the use of an insulating spacer material. Each of the gaps is associated with a respective conductor opening in the conductor openings And each of the gaps extends over the body and does not extend completely. One embodiment of a surface mount electronic component is described herein. The component comprises - a single core - the single core comprises - a body uniformly made of magnetic material, 118769.doc • 21 · The body has a longitudinal axis and a horizontal axis. A plurality of conductor openings are formed in the core and extend parallel to the transverse axis. The plurality of conductor openings are spaced apart from each other along the longitudinal axis. a plurality of non-magnetic gaps are physically formed in the core structure adjacent to the respective conductor openings' and the non-magnetic gap is formed without using the insulating material applied to the body. A conductive part is located at the conductor openings Each of the gaps is located adjacent to the conductive fault members, thereby forming a multi-phase electronic component in a single core. Optionally, the core structure comprises two conductors open π. Alternatively, the core structure comprises six conductors An opening may extend only between the conductor openings and one of the side edges. The element may be an inductor. An embodiment of the magnetic element is also described. The element comprises a uniform mass of magnetic material. a single piece core structure having a body having a non-annular line shape having opposite side surface conductor openings σ extending completely between opposite side surfaces and internally located at a spaced apart position from each of the side surfaces Forming the entirety of the interstices into the body m without utilizing the outer gap material applied to the body, the gap having a first end and a second end 'the end end terminating at the first conductor opening and facing A conductor opening is open and the second end extends to the periphery. The component further includes a second conductor opening and a second gap, as desired. The magnetic component is also described herein. The magnetic material monomer is formed as a single core crucible having a body having opposite side surfaces. The first conductor opening extends completely between the opposite side surfaces and is internally located at a spaced apart position from each of the side surfaces. The first gap is formed by using the outer gap material applied to the body to be integrally formed in the body 118769.doc • 22· where the gap has the first - ancient ^ mountain Β β ^, the disciple knows a second end end, the first end end is at the first conductor opening and open to the first conductor opening, and the second end to the periphery. The -c-shaped conductive part extends linearly through the opening, and the wide conductive part has a relative The ends, 35, etc., are wound around the opposite ends to define a surface mount terminal for the component. Optionally, the component further includes a second conductor opening and a second gap, and the component is an inductor. The present invention has been described in terms of a particular embodiment of the invention, but those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claimed invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of an exemplary gap core for fabricating a magnetic component. Fig. 2 is a side elevational view of the core structure of the conductor shown in Fig. 1. Fig. 3 is a cross section of the core structure and conductor shown in Fig. 2. Fig. 4 is a cross-sectional view of a portion of Fig. 3 illustrating a magnetic flux line of a core structure. Fig. 5 is a second exemplary embodiment of a gap core structure. Fig. 6 is a third embodiment of an exemplary core structure. Figure 7 is a side elevational view of the fourth embodiment of the gap core structure. Figure 8 is a bottom view of the core of Figure 7. Figure 9 is a cross-sectional view of the core of Figure 8. A side view of the core structure of the conductor is placed. Fig. 12 is a bottom view of the structure shown in Fig. 1. Fig. 12 is a side elevational view of the core structure shown in Fig. 11. Fig. 1 is the fifth of the gap core structure Side view of the embodiment 118769.doc ► 23 - 1357608 Figure 14 is the core of Figure 13 Fig. 15 is a cross-sectional view of the core shown in Fig. 14. Fig. 16 is a side view of the core structure in which the conductor is placed as shown in Fig. 13. Fig. 17 is a bottom view of the structure shown in Fig. 16. 8 is a side elevational view of the core structure shown in Fig. 17. [Main component symbol description]
10 間隙磁性芯結構 12 磁性層 14 非磁性層 15 磁性層之周邊邊緣/側邊緣 16 區域或開口/導體開口 17 側表面/内表面 18 非磁性層之周邊邊緣 19 頂部表面 20 導體零件 30 間隙芯結構/磁性芯結構 32 非磁性層或絕緣層 50 芯結構 52 非磁性絕緣層 100 間隙芯結構 102 矩形本體 104 端面 106 端面 107 側邊緣 118769.doc -24 - 1357608 108 側邊緣 110 頂部表面 112 底部表面 114 縱軸 116 橫軸 118 導體開口 120 導體開口 122 非磁性間隙 124 非磁性間隙 126 末端 128 末端 130 壓痕或凹入表面/凹座 138 磁性元件 140 導電零件 142 末端 144 矩形表面安裝型端子焊墊 200 間隙怒結構 201 磁性元件 202 本體 204 導體開口 206 導體開口 208 導體開口 210 導體開口 212 間隙 ·25· 118769.doc 1357608 214 間 隙 216 間 隙 218 間 隙10 gap magnetic core structure 12 magnetic layer 14 non-magnetic layer 15 magnetic layer peripheral edge / side edge 16 area or opening / conductor opening 17 side surface / inner surface 18 non-magnetic layer peripheral edge 19 top surface 20 conductor part 30 gap core Structure/magnetic core structure 32 Non-magnetic layer or insulating layer 50 Core structure 52 Non-magnetic insulating layer 100 Clearance core structure 102 Rectangular body 104 End face 106 End face 107 Side edge 118769.doc -24 - 1357608 108 Side edge 110 Top surface 112 Bottom surface 114 Vertical axis 116 Horizontal axis 118 Conductor opening 120 Conductor opening 122 Non-magnetic gap 124 Non-magnetic gap 126 End 128 End 130 Indentation or recessed surface/recess 138 Magnetic element 140 Conductive part 142 End 144 Rectangular surface mount terminal pad 200 gap anger structure 201 magnetic element 202 body 204 conductor opening 206 conductor opening 208 conductor opening 210 conductor opening 212 gap · 25 · 118769.doc 1357608 214 gap 216 gap 218 clearance
118769.doc •26118769.doc •26
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/354,746 US7292128B2 (en) | 2002-12-19 | 2006-02-15 | Gapped core structure for magnetic components |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200741765A TW200741765A (en) | 2007-11-01 |
TWI357608B true TWI357608B (en) | 2012-02-01 |
Family
ID=38549353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096105754A TWI357608B (en) | 2006-02-15 | 2007-02-15 | Gapped core structure for magnetic components |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2007227914A (en) |
KR (1) | KR20070082539A (en) |
CN (1) | CN101071673B (en) |
TW (1) | TWI357608B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI646561B (en) * | 2016-01-08 | 2019-01-01 | 乾坤科技股份有限公司 | Electronic module and circuit board |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8466764B2 (en) | 2006-09-12 | 2013-06-18 | Cooper Technologies Company | Low profile layered coil and cores for magnetic components |
US8378777B2 (en) | 2008-07-29 | 2013-02-19 | Cooper Technologies Company | Magnetic electrical device |
US8941457B2 (en) | 2006-09-12 | 2015-01-27 | Cooper Technologies Company | Miniature power inductor and methods of manufacture |
US8310332B2 (en) * | 2008-10-08 | 2012-11-13 | Cooper Technologies Company | High current amorphous powder core inductor |
US8279037B2 (en) | 2008-07-11 | 2012-10-02 | Cooper Technologies Company | Magnetic components and methods of manufacturing the same |
US9859043B2 (en) | 2008-07-11 | 2018-01-02 | Cooper Technologies Company | Magnetic components and methods of manufacturing the same |
US8659379B2 (en) | 2008-07-11 | 2014-02-25 | Cooper Technologies Company | Magnetic components and methods of manufacturing the same |
US20100277267A1 (en) | 2009-05-04 | 2010-11-04 | Robert James Bogert | Magnetic components and methods of manufacturing the same |
TWI659438B (en) * | 2014-06-23 | 2019-05-11 | 乾坤科技股份有限公司 | Magnetic component with distributed gap and method for forming the same |
CN107437456B (en) * | 2016-05-25 | 2021-03-23 | 台达电子企业管理(上海)有限公司 | Magnetic core structure and magnetic element |
US20180218828A1 (en) * | 2017-01-27 | 2018-08-02 | Toyota Motor Engineering & Manufacturing North America, Inc. | Inductor with variable permeability core |
US11404203B2 (en) * | 2018-06-13 | 2022-08-02 | General Electric Company | Magnetic unit and an associated method thereof |
US11735352B2 (en) * | 2020-07-10 | 2023-08-22 | Infineon Technologies Austria Ag | Inductor devices and stacked power supply topologies |
US11972897B2 (en) * | 2021-05-12 | 2024-04-30 | Infineon Technologies Austria Ag | Magnetic structures and arrangement of inductive paths |
CN114005665B (en) * | 2021-11-04 | 2023-04-07 | 无锡普天铁心股份有限公司 | Process and packaging structure capable of rapidly packaging multiple iron cores |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6025873Y2 (en) * | 1980-11-28 | 1985-08-03 | ティーディーケイ株式会社 | Multiple inductance element |
JPH02127010U (en) * | 1989-03-29 | 1990-10-19 | ||
JPH0497316U (en) * | 1991-01-18 | 1992-08-24 | ||
JPH0696956A (en) * | 1992-09-17 | 1994-04-08 | Mitsubishi Electric Corp | Magnetic ceramic electronic component |
US6162311A (en) * | 1998-10-29 | 2000-12-19 | Mmg Of North America, Inc. | Composite magnetic ceramic toroids |
JP3366916B2 (en) * | 1999-06-03 | 2003-01-14 | スミダコーポレーション株式会社 | Inductance element |
US7295092B2 (en) * | 2002-12-19 | 2007-11-13 | Cooper Technologies Company | Gapped core structure for magnetic components |
US7489219B2 (en) * | 2003-07-16 | 2009-02-10 | Marvell World Trade Ltd. | Power inductor with reduced DC current saturation |
-
2007
- 2007-02-14 CN CN2007100923577A patent/CN101071673B/en not_active Expired - Fee Related
- 2007-02-14 KR KR1020070015365A patent/KR20070082539A/en not_active Application Discontinuation
- 2007-02-15 TW TW096105754A patent/TWI357608B/en not_active IP Right Cessation
- 2007-02-15 JP JP2007035116A patent/JP2007227914A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI646561B (en) * | 2016-01-08 | 2019-01-01 | 乾坤科技股份有限公司 | Electronic module and circuit board |
Also Published As
Publication number | Publication date |
---|---|
TW200741765A (en) | 2007-11-01 |
CN101071673B (en) | 2012-04-18 |
KR20070082539A (en) | 2007-08-21 |
CN101071673A (en) | 2007-11-14 |
JP2007227914A (en) | 2007-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI357608B (en) | Gapped core structure for magnetic components | |
US7292128B2 (en) | Gapped core structure for magnetic components | |
TWI588849B (en) | Laminated magnetic component assembly | |
US8378777B2 (en) | Magnetic electrical device | |
US7295092B2 (en) | Gapped core structure for magnetic components | |
JP5763747B2 (en) | Compact power inductor and manufacturing method | |
EP2561524B1 (en) | Laminated magnetic component and manufacture with soft magnetic powder polymer composite sheets | |
US8159322B2 (en) | Laminated coil | |
JP2011071537A (en) | Chip-type coil component | |
KR102052770B1 (en) | Power inductor and method for manufacturing the same | |
JP2004006760A (en) | Electronic component | |
TW201106391A (en) | Surface mount magnetic components and methods of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |