TWI356164B - Injector pump and device comprising the same - Google Patents
Injector pump and device comprising the same Download PDFInfo
- Publication number
- TWI356164B TWI356164B TW093125746A TW93125746A TWI356164B TW I356164 B TWI356164 B TW I356164B TW 093125746 A TW093125746 A TW 093125746A TW 93125746 A TW93125746 A TW 93125746A TW I356164 B TWI356164 B TW I356164B
- Authority
- TW
- Taiwan
- Prior art keywords
- fluid
- path
- syringe
- syringe pump
- receiving
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims description 826
- 238000002347 injection Methods 0.000 claims description 79
- 239000007924 injection Substances 0.000 claims description 79
- 239000000523 sample Substances 0.000 claims description 68
- 239000003153 chemical reaction reagent Substances 0.000 claims description 66
- 239000012491 analyte Substances 0.000 claims description 50
- 239000000758 substrate Substances 0.000 claims description 49
- 238000006243 chemical reaction Methods 0.000 claims description 46
- 239000007789 gas Substances 0.000 claims description 45
- 238000012360 testing method Methods 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 29
- 238000007789 sealing Methods 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 25
- 238000005086 pumping Methods 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 19
- 238000003860 storage Methods 0.000 claims description 18
- 230000009969 flowable effect Effects 0.000 claims description 15
- 239000001307 helium Substances 0.000 claims description 15
- 229910052734 helium Inorganic materials 0.000 claims description 15
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 15
- 238000000926 separation method Methods 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 5
- 239000012229 microporous material Substances 0.000 claims description 4
- 230000003204 osmotic effect Effects 0.000 claims description 4
- 239000011888 foil Substances 0.000 claims description 3
- 230000000153 supplemental effect Effects 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 2
- 238000004020 luminiscence type Methods 0.000 claims description 2
- 239000012488 sample solution Substances 0.000 claims description 2
- 239000012212 insulator Substances 0.000 claims 2
- 230000009918 complex formation Effects 0.000 claims 1
- 239000011532 electronic conductor Substances 0.000 claims 1
- 239000003570 air Substances 0.000 description 53
- 102000004190 Enzymes Human genes 0.000 description 40
- 108090000790 Enzymes Proteins 0.000 description 39
- 239000011148 porous material Substances 0.000 description 29
- 238000010586 diagram Methods 0.000 description 21
- 230000035945 sensitivity Effects 0.000 description 20
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 17
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 17
- 238000002955 isolation Methods 0.000 description 16
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 14
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 14
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 14
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 14
- 238000001514 detection method Methods 0.000 description 13
- 238000005406 washing Methods 0.000 description 13
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 11
- 108060001084 Luciferase Proteins 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 238000011068 loading method Methods 0.000 description 11
- 239000005089 Luciferase Substances 0.000 description 10
- 239000000020 Nitrocellulose Substances 0.000 description 10
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 10
- 229920002301 cellulose acetate Polymers 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 229920001220 nitrocellulos Polymers 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- VICLBIYQLBCEJV-UHFFFAOYSA-N 2-(ethylamino)ethane-1,1-diol Chemical compound CCNCC(O)O VICLBIYQLBCEJV-UHFFFAOYSA-N 0.000 description 9
- 238000007792 addition Methods 0.000 description 8
- 230000003321 amplification Effects 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 238000005370 electroosmosis Methods 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 238000003199 nucleic acid amplification method Methods 0.000 description 8
- 238000000670 ligand binding assay Methods 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 229960002685 biotin Drugs 0.000 description 6
- 235000020958 biotin Nutrition 0.000 description 6
- 239000011616 biotin Substances 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000013022 venting Methods 0.000 description 6
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 5
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 5
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 5
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 5
- -1 adamantyl methoxybenzene Chemical compound 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000002372 labelling Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000004677 Nylon Substances 0.000 description 4
- 108010090804 Streptavidin Proteins 0.000 description 4
- 238000002405 diagnostic procedure Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 238000004445 quantitative analysis Methods 0.000 description 4
- BVTJGGGYKAMDBN-UHFFFAOYSA-N Dioxetane Chemical compound C1COO1 BVTJGGGYKAMDBN-UHFFFAOYSA-N 0.000 description 3
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- UKWLRLAKGMZXJC-QIECWBMSSA-L disodium;[4-chloro-3-[(3r,5s)-1-chloro-3'-methoxyspiro[adamantane-4,4'-dioxetane]-3'-yl]phenyl] phosphate Chemical compound [Na+].[Na+].O1OC2([C@@H]3CC4C[C@H]2CC(Cl)(C4)C3)C1(OC)C1=CC(OP([O-])([O-])=O)=CC=C1Cl UKWLRLAKGMZXJC-QIECWBMSSA-L 0.000 description 3
- 230000035622 drinking Effects 0.000 description 3
- 238000000835 electrochemical detection Methods 0.000 description 3
- 125000004494 ethyl ester group Chemical group 0.000 description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000003018 immunoassay Methods 0.000 description 3
- 229910001425 magnesium ion Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000011896 sensitive detection Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 2
- LLIANSAISVOLHR-GBCQHVBFSA-N 5-[(3as,4s,6ar)-2-oxidanylidene-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoic acid Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21.N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 LLIANSAISVOLHR-GBCQHVBFSA-N 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 206010036790 Productive cough Diseases 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000012062 aqueous buffer Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000005842 biochemical reaction Methods 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000004941 influx Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 238000005459 micromachining Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 210000003802 sputum Anatomy 0.000 description 2
- 208000024794 sputum Diseases 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101000725916 Homo sapiens Putative tumor antigen NA88-A Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 102100027596 Putative tumor antigen NA88-A Human genes 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- XYIPYISRNJUPBA-UHFFFAOYSA-N [3-(3'-methoxyspiro[adamantane-2,4'-dioxetane]-3'-yl)phenyl] dihydrogen phosphate Chemical compound O1OC2(C3CC4CC(C3)CC2C4)C1(OC)C1=CC=CC(OP(O)(O)=O)=C1 XYIPYISRNJUPBA-UHFFFAOYSA-N 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical class C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- ZNGVWNZWQKDSTR-UHFFFAOYSA-N amino phenyl hydrogen phosphate Chemical compound NOP(O)(=O)OC1=CC=CC=C1 ZNGVWNZWQKDSTR-UHFFFAOYSA-N 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- AERRGWRSYANDQB-UHFFFAOYSA-N azanium;dodecane-1-sulfonate Chemical compound [NH4+].CCCCCCCCCCCCS([O-])(=O)=O AERRGWRSYANDQB-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012631 diagnostic technique Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- UDKXASPNXWAGII-UHFFFAOYSA-N ethanimidamide phosphoric acid Chemical compound P(=O)(O)(O)O.C(C)(=N)N UDKXASPNXWAGII-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000003352 fibrogenic effect Effects 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 1
- 108010067216 glycyl-glycyl-glycine Proteins 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002032 lab-on-a-chip Methods 0.000 description 1
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- RDOXTESZEPMUJZ-UHFFFAOYSA-N methyl phenyl ether Natural products COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 238000007826 nucleic acid assay Methods 0.000 description 1
- 238000011330 nucleic acid test Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- LJEUFNYVXWRPPW-UHFFFAOYSA-N phosphoric acid;triethyl phosphate Chemical compound OP(O)(O)=O.CCOP(=O)(OCC)OCC LJEUFNYVXWRPPW-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/50273—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B19/00—Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
- F04B19/006—Micropumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0673—Handling of plugs of fluid surrounded by immiscible fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0415—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
- B01L2400/0418—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electro-osmotic flow [EOF]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/2575—Volumetric liquid transfer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Dispersion Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Sampling And Sample Adjustment (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
民國100年06月08曰 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種具有整合流體入口及出口的分析裝 置及微陣列’該裝置用於樣本應用以及洗滌步驟。更特殊 的是本發明是由含乾燥化學試劑的平面固相親水性基質環 道所構成的整合流體入口及出口的分析裝置及微陣列,該 裝置可用來做醫療診斷(care diagnostics)以及其他微量分 析。 【先前技術】 習知技術中’側流分析裝置包含一微孔元件,使樣本 可沿著侧流,及一捕捉區域,用於捕捉樣本中之欲分析 物。一具有簡單構造之側流診斷裝置,其包含一長方形多 孔條,可在其長度範圍内支持毛細液流。一般來說,使用 該裝置做定量或敏感度檢測有其限制性。近期已揭露結合 允許定量分析樣本中欲分析物之儀器之裝置。 側流分析條已經被普遍使用在分析技術中。在最簡單 形式中的習知側流裝置由一長方形多孔條,可在其長度範 圍内支持毛細液流。該分析條一端可被應用在偵測樣本中 欲分析物,該分析條含有第一區域可移動報告型鍵結物(通 常為視覺可觀察之報告物例如膠體金結合一直接偶合分析 物之第一抗體)以及第二區域含有捕捉試劑(典型為直接偶 合分析物之第二抗體)以及出流端。當樣本由分析條一端提 供後,欲分析物會與報告子於第一區域結合成一複合物; 此時樣本包含可流動的欲分析物與報告子之複合物會流向 第二區域並被捕捉,而未與欲分析物結合之報告子則會流 民國100年06月08曰 向分析條末端並流出。捕捉區之可目測訊號可定量該區之 欲刀析物。上述習知側流裝置已被使用於三明治免疫試驗 以及抑制或競爭結合實驗。 因為習知側流裝置便宜且可迅速得到結果因此常被使 用在該領域之非實驗室應用、現場測試(〇n_sitetesting), 或是醫療診斷之應用。習知裝置亦已被應用在非裝置性或 非疋量醫療診斷,而欲分析物之濃度則可由捕捉區域之可 見性訊號來預測。然而習知裝置有兩個原因無法被普遍使 用在定量分析上。首先,是可見性訊號較適用在有或無的 为析上而不適合被使用在定量分析;其次是欲分析物有報 告基因之複合物之濃度和捕捉區之結合數量皆與流速有 關。裝置操作的多樣性,尤其是樣本流速以及樣本蒸發, 皆會對欲偵測訊號產生影響。 目前此領域已經揭露出定量側流裝置,其係結合當使 用發光團報導子(chromophore reporter )時,測量捕捉區訊 號之儀器或是使用螢光報導子時,以雷射測量捕捉區的激 發光之儀器。(美國專利公告第5,753,517號與第6,497,842 號)美國專利公告第5,753,517號與第6,194,222號揭露儀器 疋量側流方法’使用整合於流徑中以内部校正不同因子之 内部控制,尤其是校正各種不同流速。然而即使是習知定 量側流裝置仍無法符合實驗室中需要靈敏度較高或是較複 雜的試驗。此裝置存有三種主要原因導致低靈敏度:第一 個原因是缺乏嚴密的洗滌步驟,該步驟可以將捕捉區域未 結合欲分析物之報告子完全移除;第二個原因是缺乏放大 的步驟’第二個原因為缺乏高靈敏度的偵測方式例如化學 發光測定。由於缺乏靈敏度,側流裝置僅被使用在具有較 民國100年06月08日 多量分析物的一般分析。而少量分析物仍必須使用具有嚴 密洗滌步驟、放大步驟以及化學發光測定技術的實驗室設 備來分析。 習知側流裝置有以上所述之缺點。美國專利公告第 6,306,642號揭露一種裝置,其具有一主要側流元件可形成 及捕捉酵素-結合/欲分析物之複合物 (enzyme-conjugate/analyte complex)以及含有發色體基質 之一補充性側流元件與延後該基質於捕捉區之移動的裝 置。美國專利公告號第6,316,205號揭露一種兩階段側流裝 置,藉由使用一種側流元件,當樣本倒入時由一具有補充 式手動第二階段清洗流體應用之可移除式屏蔽物所分隔之 吸收墊,以改善洗出未結合物。 使用多步驟之高靈敏度試驗偵測欲分析物的方法在傳 統實驗室已為習知技術》2002年由eds. K. Van Dyke, C. Van Dyke and K. Woodfork在CRC期刊上發表一種”化學 發光生物技術”含有多種高敏感度冷光試驗方法。以流通膜 捕捉結構(與側流方式相反)為主之酵素免疫套組亦已見於 習知技術。這一類多步驟套組裝置需要加入許多反應試劑 並經過洗滌過程,因此並不適用於需要簡單單一步驟程序 的重點醫療檢測應用(point-of care application )。 單一步驟之流通膜免疫酵素裝置目前正在發展當 中。美國專利公告第5,783,401號揭露一種多步驟酵素免疫 試驗裝置藉由控制傳輸膜以產生具時間序列之反應步驟。 含有電滲透式抽取與壓縮以驅動微路徑(毛細管、毛細 槽或毛細路徑)中流體之裝置已為習知技術所熟知。這些裝 置為一般所說的實驗室晶片(例如美國專利公告第4,908,112 民國100年06月08日 與5,180,480號)。化學反應、混合物分離或分析皆可透過 電動力或導管中之壓縮式運輸於此一流體中的微裝置而發 生。然而,通常在這一類習知技術中的反應試劑皆儲存於 晶片外’使用時才導入’而且這一類裝置由於難以建構閥 門,因此一般係以連續性流體型形式使用。 使用電滲透方式抽取固態親水性基質的運輸方式已經 於美國專利公開第20020179448號揭露。由電滲透方式驅 數衅流年4微亙麂器#电動ϋ裝-骂則色美臀專利公開第 20030127333號被揭露。美國專利公開第2〇〇2〇123〇59號則 揭露利用化學冷光偵測微路徑中壓力驅動之側流的自動填 充試驗裝置。使用電極的電化學偵測之側流免疫層析裝置 則於美國專利公告第6,478,938號中被揭露。 綜合上述,習知單一步驟之側流診斷裝置缺乏定量所 區之放大、洗務以及高靈敏度彳貞測步驟。習知微路徑裝置 尚未於微路徑中整合化學物質以及反應試劑儲存裝置。這 一類習知技術並無法如單一步驟試驗容易使用且製造便 宜’但具有較先進的高敏感度定量之實驗室基礎試驗,且 這類分析方法操作時不受流體成分及反應容器影響。本發 明解決使用標準側流元件的需求並加上較先進的流體元件 用以標記結合物、洗務、放大與加強偵測的靈敏度而無須 犧牲速度、使用的簡易性以及成本較低的標準流技術。 【發明内容】 本發明之目的係解決前述習知單一步驟診斷技術中關 於敏感度與易變性的問題,並提供較普遍的單一步驟檢測 平台。 本發明之另一目的係提供先前發明一種儀器控制之整 民國100年06月08日 合性診斷試驗裝置,可用來做單一步驟定量診斷測試與分 析檢測。 本發明之文一目的亦提供一種注射器幫浦可控制流體 的吸取以到達一流體接收元件之接收區,更佳的是一診斷 試驗裝置的側流路徑元件。在最佳實施例當中,注射器幫 浦包含一最初為乾燥,較佳為微孔之流體路徑,該流體路 徑具有一流體使用端(application end )以用於接收流體以 及一流出端(effluent end )至使用端。較佳地,此注射器幫 浦進一步包含有一驅動裝置,以電滲透方式將流體由流體 路徑之流出端排出並越過該分離器。該驅動裝置較佳係為 一對相互隔開之第一與第二電極,用於產生電場驅使流體 在經過濕潤之分離元件以後通過流體路徑。在另一較佳實 施例中,注射器幫浦更包含一整合之分離元件以隔離流體 路徑之流出端與流體接收區;較佳之分離元件或分離器為 一空氣間隔(air gap )防止毛細管流經流出端。 在具有空氣間隔的注射器幫浦中,當微孔流體路徑具 有表面電荷與界面(zeta)電位時,電位差可以電滲透方式 迫使流體流經空氣間隔。 第一個電極較佳位於流體路徑中的第一區域與流體接 觸,而第二個電極則位於第二個分開之區域,用於與流體 在使用端時電氣接觸。 在使用具有注射器幫浦的整合性診斷裝置時,流體會 被提供至幫浦的流體路徑之流體使用端(樣本流體或是較佳 欲儲存在整合型儲存槽中的流體,在裝置使用時可由此運 送至使用端)。流體藉由側流毛細管從第一流體使用端至第 二流出端而充滿整個流體路徑。一電壓會傳送至兩分開之 带 民國100年06月08日 电而產生電滲透流通過流體路徑中。 學物質2明之另—目的係關於—種注人幫浦,其具有化 =列如可流動的試劑沿著微孔流體路徑長度結合至其 側^化學物f可以是報告複合物,例如在樣本注入 其二巾可與欲分析物反應或是可以作為洗職或酵素 ^。流體路徑中的化學物質可被移至路徑使用端並且在 機:控制側流裝置狀況下將流體吸取至側流裝置。較佳的 i电—試^的-、冷立m的丄發電的、化學發 光的基質。 一一一— 一 本發明之又一目的在提供一種微試驗裝置,其係整合 攻本發明所述之注射器幫浦。該注射器幫浦可以用來控制 流體進入其他流體路徑並於該裝置中提供化學反應中至少 種試劑的添加、洗滌與放大步驟。 本發明之另一目的係提供一種整合流體元件之微分析 裝置,藉此提供較先進的流體操作。該流體元件包含支撐 破動毛細流體之側流元件以及以電滲透側流驅動之元件。 本發明可具有任何數量之上述兩種流體元件,只要有一個 元件用於樣本使用且至少一個元件做為注射器幫浦之一部 分即可。 本發明之另一目的係提供具有整合化學物質的流體元 件之為分析裝置(例如報告複合物或酵素基質)。整合化學 物質可應用流體使之移動至該元件,若該應用的流體為樣 本且該移動之化學物質為報告複合體,則該化學物質則該 化學物質會與欲分析物結合,或運送至該元件之其他微反 應區域。當與流體元件整合之化學物質為酵素基質時,該 基質可以是冷光的、螢光的、發光的、發電的基質。也有 11 1356164 民國100年06月08日 可能使用非酵素標記整合於流體元件中。 本發明之又一目的係提供具有部份或全部反應化學物 之單一整合的診斷性分析裝置,以及實施以溶液為主之化 學反應’例如欲分析物標定、捕捉、捕捉後洗滌步驟、放 大以及高敏感度偵測所需之流體。 本發明之在一目的係揭示如何以微製程製造該裝置。 谓測方式端視化學物質選擇使用於注射器幫浦或是與流體 元件整合而定。 本發明另外揭示整合性診斷裝置可被用來產生訊號, 並由外接裝置偵測並定量之。該裝置亦可以含有電極的診 斷卡形式產生,可插入外接裝置。外接裝置亦可提供控制 流體由一個或多個流體元件移動至裝置中的微反應器之動 力需求。外接裝置亦可連接至診斷卡並偵測發生於微反應 器上的反應。 在較佳實施例當中,注玢器幫浦是微試驗裝置的一部 伤,可被用來控制流體進入裝置中其他微路徑並提供裝置 中之化學反應中的試劑加入、洗滌與放大步驟。該幫浦亦 被用於第二流體路徑。 另一較佳實施例則為一診斷裝置由一注射器幫浦與一 具有結合樣本t欲分析物分子之捕捉區的側流元件。此注 射器幫浦提供絲、結合標記應用、放大與_被捕捉之 複合物所需之動力。㈣元件㈣具有樣本施加端以及微 反應區域。 本發明之單-步驟操作裝置,使用者將樣本導入該診 斷裝置中’並連接該診斷裝置到外部連接控制裝置。樣本 流體為任何包含有欲分析物之化學物或生物流^樣本流 12 1356164 民國100年06月08曰 體藉由流體元件之毛細側流至微反應區域,之後其他反應 液與洗滌液會於儀器控制下被導入微反應器區域,並在時 - 間序列下流經其他含有試劑之整合性流體元件。最終裝置 仍保有習知側流裝置之簡易性,因該裝置只需要單一步驟 (其他步驟由機器自動操作),而且成本低廉,但能夠進行 定量分析低含量的欲分析物。 本發明之裝置可以許多不同流體安排而配置,並根據 」—+m實施-二在本nf斷裝^較佳實施例 中,使用兩種三明治配體結合試驗。第一種試驗係一標示 結合體先與樣本流體中之欲分析物鍵結成為複合物,之後 · 欲分析物與結合物之複合物被捕捉使其被偵測器所偵測, 被捕捉之複合物數量正比於樣本中欲分析物之濃度。第二 種試驗當中,欲分析物先被捕捉,而後被捕捉之欲分析物 會與k s己結合物產生反應並被债測。 在一#斷試驗裝置之較佳實施例中,本發明直接適 用於三明治形式之配體結合試驗,該標記過的結合體於被 捕捉前與欲分析物先結合。而該裝置之整合性儀器控制流 體裝置包含一第一微孔侧流元件供流體經過以及至少—個 其他微孔流途徑供提供其他流體在儀器控制下進入第一側 鲁 流元件之流體儲存槽。第一側流儲存槽具有第一端供樣本 使用,以及第二流出端。有一選擇性樣本應用墊以及選擇 性試劑應用塾與第一側流元件之樣本應用端接觸,而選擇 性流體策集势則與流出端接觸。第一側流元件會與可流動 式乾燥試劑接觸。例如:當實施三明治式配體結合試驗 時’第一側元件之可流動試劑(或流體中與之接觸的試劑 塾)可以是由第-試劑結合欲反應物(免疫試驗令的抗體或 13 1356164 民國100年06月08日 疋核酸試驗中的核酸)之結合物並帶有一標記或報告分子 (例如酵素報告子第一多孔元件上有一反應區域,該區 域位於微反應器。第一微孔元件之反應區域可能由例如含 有不可移動之第二結合劑的捕捉區(免疫試驗中與欲分析物 結合之第二抗體或是核酸試驗中的第二核酸)^第一微孔流 體路徑元件可以於流體接受區連接一第二流體路徑以注入 第一淚體,第二流體路徑會由儀器控制而主動吸取且多為 主射器幫满的一部伤。第一流體路控為一具有用於流體應 用之第一端及第二流出端之微孔元件。一開始為乾燥並有 可流動之乾燥試劑(例如配體結合試驗中用於酵素標記之受 質)。有一空氣間隔將第二途徑之流出端與第一側流元件之 流體接受區域分隔,其建構一分離之裝置。 使用本裝置時,樣本流體會被加入初始為乾燥之第一 側流70件之使用端。另一低導電率電解液流體,通常較佳 儲存於整合於裝置中之雄、封儲存槽,由流體使用端被導入 最初乾燥的第二流體元件。 控制從第二流體路徑注射至第一側流元件之儀器裝 置,以具有表面電荷與界面電位之微孔第二流體路徑之表 面孔洞產生的電滲透驅動。於第二流體路#提供動力驅使 電參透之較佳方式為使用整合電極。整合電極與第二流體 路控較佳的電氣接觸為於路徑流出端具有—自由場域⑽d —。當儀器控制幫浦之動力提供給第二流體路 徑、流體包含可流通試劑、第—流體讀之微反應器,使 流體與流體反應且試劑包含於其卜在酵素標記之三明治 的例子當t,第二流體路徑所提供之酵素基質會鱼第一流 體元件的微反應器包含之酵素標記反應產生可#測之訊 14 1356164 民國100年06月08曰 號。接近微反應器之偵測器會測量微反應器中之反應所產 生之樣本流體中的欲分析物濃度。 習知技術中有一些高敏感度的偵測方式可以使用在本 發明當中。由儀器控制注射至微反應器之酵素基質可為具 有發光、螢光或發色性質。一發光基質與酵素反應後會發 射出一光線訊號,一螢光基質也會發射出輻射光,一發色 基質反應則會產生入射光之吸收光譜或反射光譜改變。在 聋些例干嘗七,延债辦H ( proximal detector ) ϋ H生 為光4貞測器。若使用與酵素作用會產生電子的基質時之近 側偵測器則最好使用與微反應器區域接觸的整合電化學偵 測電極。也可能使用非酵素標記例如習知之化學發光的吖 啶翁酯(acridinium ester)。在本例中,由儀器控制注射至微 反應器區域的試劑為已知的化學發光觸發試劑 (chemiluminescence trigger reagent)以及使用光偵測器來 偵測反應產物係為較佳之方式。 本發明較佳偵測模式係使用的冷光以及光痛測器。當 酵素標記使用冷光為偵測方法時酵素最好使用鹼性磷酸酶 (alkaline phosphatase),於此例中’可使用高敏感度冷光受 質如二氧炫酮基(例如金剛烧甲氧基苯基鱗酸鹽二氧燒 (adamantyl methoxy phenyl phosphate dioxetanes ) > AMPPD)。另外一種較為所知的高敏感度驗性碟酸酶 (alkaline phosphatase)基質為螢光素正麟酸鹽 (luciferin-ortho-phosphate ),其可與螢光素、腺三磷(ATP) 以及錢離子一起提供至捕捉區域。本例中螢光素攝酸鹽會 被驗性填酸酶分解出螢光素,其經螢光酵素作用會轉變為 生物螢光。也可以使用乳糖分解酵素標記與其金剛氨二氧 15 1356164 民國100年06月08日 燒營光受質(adamantine-dioxetane luminogenic substance ) ° 另外一種較為熟知的高敏感度試驗則使用乙酯激酶(acetate kinase)標定,本例中其受質會提供乙醯磷酸、二填酸腺甘 (ADP)、螢光酵素、鎂離子至捕捉區。本例中乙酯激酶會 催化生成腺三磷(ATP),其可由生物螢光反應偵測。在另外 一個例子當中,酵素標記可使用習知的辣根過氧化物酶 (horseradish peroxidase )以加強顯光劑作用。 當酵素標記被使用在螢光偵測時,酵素最好使用鹼性 填酸酶與高敏感度螢光基質 methyl umbiferyl phosphate(MUBP)。當酵素標記使用在電化學偵測方式時, 最好使用驗性填酸酶與對苯氨填酸鹽(para amino phenyl phosphate)為產電子的受質(electrogenic substance)。 一診斷裝置之較佳實施例為配體結合微試驗裝置,其 標記過的結合體會與樣本中的欲分析物產生複合物。欲分 析物與結合體產生的複合物會被捕捉並‘測,被捕捉之複 合物數量與樣本中的欲分析物濃度成正比。第一側流元件 以酵素標記之結合物為可流動試劑。當樣本流體流經第一 側流元件時,酵素標記結合物會與樣本中之欲分析物結 合。一捕捉之複合物包含一於第一流體元件中之微反應區 形成之酵素標記欲分析物,其係由包含酵素標記分析物之 複合物之樣本流體橫越微反應區且與捕捉位置之固定結合 試劑結合時所產生。可流動試劑包含第二流通路徑之酵素 受質會被運輸至流出端,當其被毛細流充滿時。隔離方法 可確保第二流體路徑之流體與可流動試劑在被注入第一側 流元件之前是與第一侧流元件分開,並由儀器控制打入第 一側流元件之反應器區域。在三明治形式配體結合試驗裝 16 1356164 民國100年06月08日 置中,儀器控制流體注入第二流體路徑是由電滲透方式驅 動的。苐一流體路控之微孔表面具有表面電荷與界面電 位。當儀器控制幫浦之動力提供到第二流體路徑、流體, 其包含可流動試劑時,會被注入第一側流元件之儲存區。 流體被運輸至第一微反應器會與其中之流體和試劑作用。 接下來,儀器控制的幫浦動力會再度提供第二流體路徑且 第一微反應器中之流體會被送到第二微反應器與其中的試 —剩作—苎」J二豕ϋ跑的值Jgij—琴會測量第二反應器十所 產生的樣本流中欲分析物之濃度。 一使用酵素基質例如螢光素正磷酸鹽的兩階段反應可 被適用在上述之裝置。螢光素正磷酸鹽會被加入含有鹼性 磷酸酶(alkaline phosphatase)標記的捕捉複合物之第一側流 微反應器區域。在反應期(incubati〇n step)之後,該反應 之產物-螢光素會於儀器控制之流體中被運送至具有螢光分 解酶、三腺甘或其他試劑之第二微反應區並產生生物螢光 訊號。另外兩種可能的兩階段反應使用乙酯激酶標定與乙 醯磷酸受質、二磷酸腺甘、鎂離子於第一次反應期產生三 腺甘。三腺甘會流動至具有螢光素分解酶及螢光素之第二 微反應區而產生生物螢光訊號。 本發明的另一實施例中於標記後直接捕捉欲分析物, 該裝置較佳係包含具樣本流體使用端與流出端、捕捉區的 第一微孔側流元件。該元件之體積等於流體容積。該裝置 進一步包含辅助流體路徑元件可於儀器控制下主動獨立吸 取。輔助流體路徑皆包含由—含樣本使用端與流出端之微 孔元件。每-微孔元件皆有表面電荷與—界面電位,並與 提供儀器控制電力以驅動電滲透之整合電極接觸。與每一 17 民國100年〇6月〇8曰 輔助性流體路徑較佳之電子技 ^ %千接觸位置為流出端的零場區 ㈤dfreereglQn)。每一辅助性流體路徑1始為乾燥且 可選擇性包含可流通之乾燥試劑。每—辅助性流體路徑呈 有一空氣隔絕使流出端和第-側流元件中每三個流體接收 區分離。 姐妖队 在使用本裝置時,樣本流體被施加於最初為乾燥的低 :!流元件。第二流體為低導電度流體溶液,較佳係儲存於 密封之“體儲存;ff ’該流體會被導人每個最初為乾燥的辅 助性流體路徑元件。樣本流體由毛細流體推動經過第-側 流凡件,第二流體會充滿每個輔助性流體路徑元件,藉此 將試劑運送至流出端。該空氣隔絕乃在確保輔助性流體路 棱中的流體與第-側流元件中之流體及試劑分開直至儀器 控制其被注人到第-側流元件卜接著儀器藉滲透壓控制 流體推進流體至第—流體元件。當機器控制幫浦的電力提 供至各辅助性流體路徑、流體,包含其中之可流通試劑會 被注入第一流體元件。 於本裝置另一實施例中,具有三個主動辅助之吸取流 體路控.第-個提供酵素標記之結合體,帛二個提供洗務 液,第二個提供第一流體元件捕捉區域所需之酵素受質。 使用該實施例時,樣本流體注入第一側流元件原本乾 燥的施加端,接著藉由管中的毛細現象流動至流出端。溶 解於流體中之欲分析物沿著側流元件之捕捉區域被分析。 流過捕捉區域的流體體積已經知道因為充滿該元件之流體 體積為已知,且由捕捉區域之下游元件的體積所控制。 下一步驟’含有酵素標記之結合物的第一注射流體由 第一輔助流體路徑流向第一注射區域之第一側流元件。第 18 民國100年06月08日 一注射流體由第一側流元件流至流出端如同流至使用端一 般。此-步驟中,第-側流元件中的樣本流體被沖出由第 -注射流體取代。第-注射液流經捕捉區域,當已標記結 合體與捕捉區之欲分析物結合時形成三明治式的複合物。 接下來,第二洗滌液會注入第二輔助流體路徑至第二 注射區之第一側流元件中。第二流體流經第一側流途徑至 流出端。此步驟中,第一側流元件之第一注射流體會被沖 羞移一除—捕—據—I域_其—他—未I会立爲免體―」並一由簋芏表蓋—液一 取代。重要的疋,第一注射流體含有其他多餘的未鍵结结 合體必須盡量沖洗出來藉此以移除未鍵結之標記。下一步 驟,在儀器控制下含有酵素受質的第三注射液由第三輔助 兀件注入第三注射區之第一側流元件。第三流體由第一側 "丨L途徑/)丨L至流出端如同流入注入端。含有酵素受質之第三 注射液流動至捕捉區域時,儀器控制注射即會停止。此時 酵素受質會與酵素標記捕捉的複合物作用。 5玄反應產生可偵測的訊號會與被捕捉的複合物濃度成 正比,該複合物之濃度則與樣本中欲分析物之濃度成正 比。該訊號會被捕捉區裝置附近的偵測器所偵測出來。另 外-種選擇性袭置是注人結合物之前的洗務步驟(從反應區 將樣本流體洗出),由儀器控制如同注人結合體以後的洗條 動作。任何上述高敏感度的偵測方式皆可使用在本裝置 上。這裡有S午多其他流體裝置與試驗方法可以被考慮使用 在前述裝置中。 一般來說本發明之整合性診斷裝置由至少一種具有訊 號產生微反應器之基材(或多重試驗之微反應陣列)、整合 型試劑及流體所組成。一微反應器包含一可容納水性化學 1356164 民國100年06月08日 反應之容器。該化學反應會產生可偵測訊號可決定樣本流 體中之欲分析物濃度。微反應器可進一步包含一選擇性捕 捉區域。每一微反應器有整合性流體包含N流體流入途徑 元件與Μ流體流出途徑元件之網絡。流體路徑為一由毛細 現象驅使流動之元件。一流體路徑具有一流體進入端與流 體流出端,可使流體流入及流出元件中。Ν流體流入途徑 與Μ流體流出途徑起初為乾燥元件,在使用該裝置以後, 當流體加入時會充滿侧毛細流。在微反應器陣列中,每一 微反應器會連接至流體網絡,而每一微反應器之Ν流體進 入元件與Μ流體流出元件數量也許會不同。 使用本診斷裝置苐一步驟,一些或是全部最初為乾燥 的Ν與Μ流體路徑藉由側毛細流充滿流體。至少一 Ν和Μ 途徑為注射器。一注射器被定義為流體路徑元件能夠由儀 器控制主動抽吸,由流體使用端至流出端充滿毛細流之 後,流出端會與其他流體元件(如其他流體路徑與微反應器) 由空氣間隔分離。流體不會超過流出端,而該路徑之試劑 不會”其他路徑或微反應器之化學物反應,直到於注射器 之流體路徑中之流體被主動送出流出端至另—流體元件。 f些Ν肖Μ流體路徑本身也許會是主動幫航件,也就 是’可主動由機器控制但非注射器元件,因其無流體隔 離主動吸取時,非注射器元件,填滿流體之元件之流出 端之流體會在使用儀器控制幫浦動力前因無隔離裝置即與 其他流體路徑元件接觸。其他W Μ流體路徑也可以是被 動幫浦元件’不會由儀器控制幫浦裝置主動吸取流體,但 可藉由流出端之燈芯效應裝置(wickmg知―的非儀器 控制方式被動吸取。仍有其他途徑並非幫浦元件·這些元 20 1356164 民國100年06月08曰 件充滿流體時並不會移動,直到施予二外來壓力使驅動流 體移動。有些1^與M流體路徑亦可包含微孔側流材料,或 是為空管道或管路的傳統流體組成物。 主動吸取的幫浦路徑元件是使用電滲透方式,該幫浦 路杈7C件至少有一帶電毛細表面區域與界面電位。主動吸 取的動力由儀器控制,較佳通常由一對分隔之整合性電極 提供,其中至少一個會與幫浦之流體路徑接觸,而另一個 一一n另——區域n控接觸爽於兔體n碑以電f方式接觸 該路徑之流體。 任何或所有最初為乾燥的流體路徑元件也許含有乾燥 的試劑,其可被以毛細流方式導入之水性流體移動。如果 路徑70件為一主動吸取元件,可移動試劑可在儀器控制下 被運送至另一位置,尤其是到微反應器。任何或所有路徑 可含有捕捉試劑,該捕捉試劑可捕捉並固定流體中的化學 物質。 於上述一般實施例中,至少有一最初乾燥N流體注入 路徑藉由毛細流充滿樣本液。一些或全部的其他最初乾燥 路徑也許會被毛細流驅動之樣本液或其他水性流體所充 滿在裝置使用時’當流體非樣本液時’該路徑最好為一 開始至少一密封儲存槽中之整合流體從路徑輸入端提供並 填滿。 八 本發明各種實施例中之微反應器係為反應槽結構。一 反應槽結構破保反應槽中之内容物在反應時處於固定位 置。一微反應器可以是一微孔流路徑元件或是一連接於流 體路徑元件之腔室或管道。該腔室或管道可以是閉鎖的或 是與大氣壓力相通的。一訊號產生微反應器區域令反應產 21 1356164 民國100年06月08日 生的訊號正比於被偵測到之欲分析物之濃度。該產生訊號 之微反應器之位置靠近於反應過程中監測反應的偵測器。 於本發明之較佳實施例中,使用配體結合試驗應用於 含有具捕捉世紀之微反應器區域之側流元件。其中一較佳 實施例’ 一微反應器係為一具有一開頂反應室之微孔流體 路徑元件區域。其包含一平板元件,其微孔流體路徑表面 滿佈孔洞’該平板之孔洞位於流體路徑反應區域。該平板 孔洞之側壁形成微反應凹槽,而第一流體路徑元件的反應 區域之平面基材形成微反應器之基底。至少一注射器之流 出端位於該凹槽之邊緣,流體會主動被吸入該凹槽並直接 流至第一流體路徑元件。當流體充滿微反應器之容器凹槽 時,空氣會經由頂蓋逸出。另一實施例中的腔室排氣反應 中’至少一注射器之流出端位於該凹槽之外側邊緣。再一 實施例中,微反應器為閉頂腔室或管道穿插於微孔流體路 徑之反應區中。該交叉腔室或管道係可閉鎖或是排出大氣. 壓力。又一實施例中,微反應器為一微孔流體路徑元件之 區域,流體會完全密封於邊緣。 這裡有命多電子可能接觸之區域。一案例中接觸位置 為兩個該路徑中分開的空間。第一個零場區位於第一流體 使用端與第一接觸區之間,第二零場區則位於第二接觸區 與路徑流出端之間。另一案例令第一電子接觸區位於路徑 的第一使用端(或是於第一使用端的路徑外做電子接觸), 而第二電子接觸則位於路徑上,位於使用端與第二接觸區 之間有一電子場域,以及位於第二接觸端及流出端之間有 一零場區。在一些較非理想的案例中,電子接觸位於 元件底端。本案件中電子場域中有充滿整個^件之流體。 22 泣 民國100年〇6月08日 的流出端最好具有零場區空間。本宰中’ :取初乾相之路徑含有可流通之乾燥試劑時,該乾焊:劑 敢初可位於乾燥路徑的任 t λ乾燥摘 於裝置之流出端期間,當产體加。二在零場區使用注射器 用端時,最初乾燥之路徑二路徑之第一流體使 被運送至路經之流出端並= = 通之試劑會 其接館W —丄 離裝置停止。當電麗施加於 端。在i出、尚程Γ包含可流通試劑之流體會被送出流出 —類一1"欧,㈣通蘭往往零場區。在這- 不會力的負面影響(通電不會產生電 氺也不會在電極處產生電化學反應)。 且之電渗透幫浦必須能以有用的速度推進流體 、雨^壯干擾’如果打人之⑽f經過有阻力之因子, 抗相當之背壓(本發明之典型迴流之流體阻力,該 幫叙流出端壓力約為—大氣壓或更高)。為達成此要求, f取15之幫浦部位(位於電子接觸部位間)必須為微孔且須 1面電位4固微孔流體路徑其孔徑需小於一微米,最 好小於G.2微米。騎作效率與可再現性,微孔電滲透幫浦 區域需周圍密封。-周圍未密封之幫浦元件,由於微孔平 板含有周圍空氣(習知技術之側流元件之-般安排),因此 無法抵抗背壓產生有效率的抽吸,因為與路徑以及流出端 相反之流體方向會由平板之孔洞被排除。 抑此處有兩種方法於流體接收元件之流出#配裝注射 益。兩種方式其注射器之流出端皆與另一流體元件之流體 接收元件以空氣間隔分開。在第一種配置中,注射器之流 出端、氣體間隔與另一流體元件之流體接收區會被密封在 含有空氣的氣室中。該氣室不會逸入外來的大氣。注射器 23 1356164 民國100年06月08日 與流體接收元件兩者一開始會充滿流體。當注射器充電 時’其中之流體會從流出端流出取代密閉腔室中隔離區域 之空氣’使得流體可接觸流體接收元件之接收區。密封氣 室中的空氣會被加壓並推動注射器中之流體進入流體接收 元件。當幫浦關掉時,被壓縮之空氣會將流體推入流體接 收元件’並將空氣退回原本位於注射器之流出端與流體接 收元件間的空氣間隔的位置。此一過程會因操作注射器幫 浦之反極性電源(reverse polarity )而加速,使得氣室中的 流體抽取更快速。此過程之後,該注射器屬於停止狀態, 與流體接收元件再次被分開(電力地或流體地)。這種方法 可以沿著樣本流體元件使用多個注射器,關閉時便會隔 離,打開時便會連接流體。此方法可以依序使用多個獨立 的幫浦驅動注射器而不會因使用幫浦而相互干擾(若其永久 地以電力與流體連接)。再者,一注射器可於儀器控制之下 抽取流體,而於其他流體裝置實施相同動作時則停機,之 後再度啟動。 第二種配置中,密封之氣室由一路徑氣閥控制外來大 氣之逸出。當注射器具動力時,其流體會被打出流出端取 代密閉腔室外之空氣隔離區域之空氣,使得注入流體可以 接觸流體接收元件之接收區。氣室仍維持一般大氣壓力, 且被注入之流體並非壓縮空氣推動至流體接收元件。被注 射流體的中的試劑與流體接收元件接觸可擴散至接收元件 並反應。於本配置令操作注射步驟時,當施以逆極電力時 被打出之流體可被拉回藉此將幫浦與流體接收元件分開。 一注射器之流體路徑之流出端的空氣間隔為一流體隔 絕方法一氣體間隔區域為__空間位於注射器流體路徑之 24 比 6164 民國100年06月08曰 流=端與另-流體接收元件之間。當流體被加入注射器最 初^燥之流體路徑之流體使用端時,流體藉由毛細流充滿 路輕至流出端,並停止於空氣間隔裝置。該隔離方式可有 效阻止毛細流超過流體路徑之流出端。當注射器流體路徑 ^流體阻力(當孔徑小流體路徑長時最大)夠大時,會阻止 停止的注射器流體滲漏至注射器路徑之流出端,即使於使 用診斷裝置時在注射器路徑之輸入端及流出端交會處可能 …會4—生不J壓:力,献裝置免毛細―吸色之力量會 因其他流體元件於路徑之輸人及流出端之表面而產生。空 氣間隔的大小最好能讀保於停止狀態時任何流體偶然地ς 漏出注射器時不會穿越空氣間隔而造成移除流體隔絕。♦ 注射器啟動運作時,電壓會施加於充滿流體的注射器 ,具有-含表面電荷與界面電位的區域;流體會向流出 端移動至氣體隔絕區域並超過流體接收元件。注射器必須 能夠以有用的速度吸取(根據試驗所需)以克服流體接收ς 件流體阻力所造成的背壓,而空氣隔絕裝置需有適當大小 使注射流體可在有效時間通過。 流體接收元件為一連接注射器流出端之元件。也許是 微孔途徑或氣室元件或傳統開放的管道、導管、腔室°。= 體接收元件係可一開始是乾燥的,或是由注射器接收涂: =為之所充滿。當接收注射器之流體時’若流體接收元件 是微孔且乾燥的,被接收流體會因毛細燈芯作用而流動。 若流體接收元件由注射器接收流體時已經充滿流體,當接 收元件的流體接收區域連接至閉鎖空氣室的注射器時,被 接收流體會取代已存在流體。流體接收元件係可具有界面 電位並連接至整合電極可接收流體並進一步以電滲透方式 25 1356164 民國100年06月08日 推動或注入另一相連之接收元件。 一微孔流體路徑係可含有各種不同習知材料。這一類 材料具有親水性表面可產生水性溶液之毛細燈芯作用。例 如,微孔纖維二醋酸酯(cellulate acetate)、纖維石肖酸鹽 (cellulate nitrate)、聚醚石風(polyethersulfone)、尼龍 (nylon)、聚乙烯(polyethylene)及其類似物可被使用。注射 器幫浦之微孔流體路徑係可為單一元件或一個以上元件之 組合,經由其使流體以毛細作用流動。微孔電滲透注射元 件係可進一步包含有表面電荷與界面電位的材料,纖維硝 酸鹽(cellulate nitrate)為較佳的材料。 本發明所使用的密封元件為電力絕緣材質,能夠於流 體路徑元件邊緣產生密封效果。本發明注射器所使用之密 封元件可由目前所知的任何對壓力敏感的膠體成分,例如 石夕膠(siloxane)、壓克力膠(acrylic glues)。這一類材料當於 注射器周圍形成薄片時藉由施加壓力形成密封。許多其他 絕緣密封材料可被使用在本發明裝置中作為絕緣保護膜。 具整合性器材控制流體之診斷裝置可以有兩種製造方 式。第一種方式中,微孔流體路徑元件由膜片形成,例如 經由膜切(die cut)的方式然後組合、密封在平面基材上。 第二種方法中,流體路徑元件由薄片微加工製程所產生。 此一技術中,每一片微孔材料由沉澱技術如旋鍍法於平面 基材上產生,在旋鍍法之薄片乾燥過程中由溶解於溶液中 的膜材料形成相轉換。該相轉換材料是微孔的。最終的微 孔乾燥薄片可利用照相印刷法形成於流體路徑,該過程包 含光阻塗佈、曝光、光阻劑構圖(patterning of the photoresist)、使用反應氣態電漿施以金屬#刻法將圖案移 26 1356164 民國100年06月08日 至微孔膜。微加工材料、形成微孔流體路徑元件以及邊緣 密封之方法於美國專利公開第2〇〇3〇127333號中有更詳細 記載。包含於微孔流體路徑元件之特殊位置之乾燥試劑可 使用先前技術所知的噴嘴微液滴噴印(n〇zzle micro-dispensing)步驟來沉澱,並常被使用在側流元件裝置 的製造與其他以膜為主的乾燥試劑裝置。 本發明之其他實施例包含有一偵測裝置陣列,包括由 -------含-m-r m捏—制制i霞冬微反應器組成a 陣列。在該陣列裝置之一較佳實施例中係由微加工技術製 造。 本發明其他方面與特徵將可使熟習該項技術者根據以 下敘述之本發明特殊實施例與附圖參考可更進一步了解本 發明之技術。 【實施方式】BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analytical device and a microarray having an integrated fluid inlet and outlet. The device is used for sample application and washing steps. More specifically, the present invention is an analytical device and microarray for integrating fluid inlet and outlet formed by a planar solid phase hydrophilic matrix loop containing dry chemical reagents, which can be used for medical diagnostics and other traces. analysis. [Prior Art] The prior art 'sidestream analysis device includes a microporous element that allows the sample to flow along the side, and a capture area for capturing the analyte in the sample. A lateral flow diagnostic device having a simple configuration comprising a rectangular porous strip that supports capillary flow over its length. In general, the use of the device for quantitative or sensitive detection is limited. Devices incorporating instruments that allow quantitative analysis of analytes in a sample have recently been disclosed. Lateral flow analysis strips have been commonly used in analytical techniques. The conventional lateral flow device in the simplest form consists of a rectangular porous strip that supports capillary flow over its length. One end of the analytical strip can be applied to detect an analyte in the sample, the analytical strip containing a first region of mobile reporter linkage (usually a visually observable reporter such as colloidal gold combined with a direct coupled analyte) An antibody) and a second region comprising a capture reagent (typically a second antibody that directly couples the analyte) and an outflow end. When the sample is provided by one end of the analysis strip, the analyte is combined with the reporter in the first region to form a complex; at this time, the sample contains a flowable analyte and the complex of the reporter flows to the second region and is captured. Reporters that are not combined with the analytes will flow to the end of the analysis bar and flow out on June 08, 100. The visually detectable signal in the capture zone quantifies the desired analyte in the zone. The above conventional lateral flow devices have been used in sandwich immunoassays as well as inhibition or competition binding assays. Because conventional lateral flow devices are inexpensive and quickly available, they are often used in non-laboratory applications, field testing (〇n_sitetesting), or medical diagnostic applications in the field. Conventional devices have also been used for non-device or non-quantitative medical diagnostics, and the concentration of the analyte can be predicted by the visibility signal of the capture region. However, conventional devices cannot be commonly used in quantitative analysis for two reasons. First, the visibility signal is more suitable for use in the analysis of the presence or absence of the quantitative analysis; secondly, the concentration of the complex with the reported gene and the combined amount of the capture zone are related to the flow rate. The diversity of device operation, especially the sample flow rate and sample evaporation, will have an effect on the signal to be detected. At present, quantitative side-flow devices have been disclosed in this field, which are used to measure the excitation light of the capture region with a laser when measuring the signal of the capture region or using the fluorescent reporter when using a chromophore reporter. Instrument. (U.S. Patent Nos. 5,753,517 and 6,497,842) U.S. Patent Nos. 5,753,517 and 6,194,222 disclose the method of measuring the amount of lateral flow of an instrument using internal control integrated into the flow path to internally correct different factors, especially corrections. Various different flow rates. However, even conventional quantitative flow devices do not meet the sensitivity or complexity of the laboratory. There are three main reasons for this device to cause low sensitivity: the first reason is the lack of a rigorous washing step, which can completely remove the reporter from the capture area without the analyte; the second reason is the lack of amplification step' The second reason is the lack of highly sensitive detection methods such as chemiluminescence measurements. Due to the lack of sensitivity, the lateral flow device was only used for general analysis with a large amount of analytes from June 8, 100 in the Republic of China. A small amount of analyte must still be analyzed using laboratory equipment with a rigorous washing step, amplification step, and chemiluminescence measurement technique. Conventional lateral flow devices have the disadvantages described above. U.S. Patent No. 6,306,642 discloses a device having a primary lateral flow element for forming and capturing an enzyme-conjugate/analyte complex and a complementary side comprising a chromophore matrix A flow element and means for delaying movement of the substrate in the capture zone. U.S. Patent No. 6,316,205 discloses a two-stage lateral flow device that is separated by a removable shield having a supplemental manual second stage cleaning fluid application when the sample is poured by using a lateral flow element. Absorb the pad to improve the washout of the unbound. The method of detecting analytes using a multi-step, high-sensitivity test in traditional laboratories has been known to the technique in 2002 by eds. K. Van Dyke, C. Van Dyke and K. Woodfork published a "Chemiluminescence Biotechnology" in the CRC journal containing a variety of high sensitivity luminescence test methods. An enzyme immunological kit based on a flow-through membrane capture structure (as opposed to a lateral flow pattern) has also been found in conventional techniques. This type of multi-step kit requires the addition of many reagents and a washing process, and is therefore not suitable for point-of care applications that require a simple single-step procedure. A single-step flow-through membrane immunoenzyme device is currently under development. U.S. Patent No. 5,783,401 discloses a multi-step enzyme immunoassay device for controlling a transport membrane to produce a time series reaction step. Devices containing electroosmotic extraction and compression to drive fluids in micropaths (capillaries, capillary channels or capillary paths) are well known in the art. These devices are commonly referred to as laboratory wafers (e.g., U.S. Patent Publication No. 4,908,112, issued on Jun. 08, 2005 and No. 5,180,480). Chemical reactions, mixture separation or analysis can occur by electrokinetic or compression of the microdevices in a fluid. However, in the prior art, the reagents are generally stored outside the wafer and are introduced when used. Moreover, such devices are generally used in the form of a continuous fluid type because it is difficult to construct a valve. A method of transporting a solid hydrophilic matrix using an electroosmotic method is disclosed in U.S. Patent Publication No. 20020179448. It is revealed by the electro-osmosis method that the number of turbulent years is 4 micro-twisting device #电ϋ装-骂则色美臀 patent disclosure No. 20030127333. U.S. Patent Publication No. 2, pp. A lateral flow immunochromatographic device using an electrochemical detection of an electrode is disclosed in U.S. Patent No. 6,478,938. In summary, the conventional single-step lateral flow diagnostic device lacks the quantitative amplification, washing, and high sensitivity detection steps. Conventional micropath devices have not integrated chemical substances and reagent storage devices in the micropath. This type of conventional technique is not as easy to use as a single step test and is inexpensive to manufacture' but has a more advanced laboratory basis test for high sensitivity quantification, and such analytical methods are not affected by fluid composition and reaction vessels during operation. The present invention addresses the need to use standard lateral flow components and incorporates more advanced fluid components to mark conjugate, wash, amplify and enhance detection sensitivity without sacrificing speed, ease of use, and lower cost standard flow. technology. SUMMARY OF THE INVENTION The object of the present invention is to solve the problems of sensitivity and variability in the conventional single-step diagnostic technique described above, and to provide a more general single-step detection platform. Another object of the present invention is to provide a qualitative diagnostic test apparatus for a single-step quantitative diagnostic test and analysis test of the prior art of the present invention. It is also an object of the present invention to provide a syringe pump that controls the suction of fluid to reach a receiving area of a fluid receiving element, more preferably a lateral flow path component of a diagnostic test device. In a preferred embodiment, the syringe pump includes a fluid path that is initially dry, preferably microporous, having a fluid application end for receiving fluid and an effluent end. To the use side. Preferably, the syringe pump further includes a drive means for electrically venting the fluid from the outflow end of the fluid path and past the separator. Preferably, the drive means is a pair of spaced apart first and second electrodes for generating an electric field to drive the fluid through the fluid path after passing through the wet separation element. In another preferred embodiment, the syringe pump further includes an integrated separation element to isolate the outflow end of the fluid path from the fluid receiving area; preferably the separating element or separator is an air gap to prevent capillary flow through Outflow end. In a syringe pump with air spacing, when the microporous fluid path has a surface charge and a zeta potential, the potential difference can electrically permeate the fluid through the air space. Preferably, the first electrode is in contact with the fluid in a first region of the fluid path and the second electrode is in a second, separate region for electrical contact with the fluid at the use end. When using an integrated diagnostic device with a syringe pump, fluid is supplied to the fluid use end of the fluid path of the pump (sample fluid or fluid preferably stored in the integrated reservoir, when used by the device This is shipped to the use side). The fluid fills the entire fluid path by the sidestream capillary from the first fluid use end to the second outflow end. A voltage is transmitted to the two separate zones. The electricity is permeated through the fluid path. The substance of the matter is related to the injection of a reagent such as a flowable reagent bound to the side along the length of the microporous fluid path. The chemical f can be a reporter complex, for example in a sample. Injecting two of them can react with the analyte or can be used as a wash or enzyme. The chemical in the fluid path can be moved to the use end of the path and the fluid can be drawn to the lateral flow device under the condition of controlling the flow device. Preferably, the electro-optic, chemically-emitting substrate is a cold-powered m. A further object of the present invention is to provide a microtesting device that incorporates a syringe pump of the present invention. The syringe pump can be used to control fluid flow into other fluid paths and provide for the addition, washing and amplification steps of at least one of the chemical reactions in the device. Another object of the present invention is to provide a microanalytical device that incorporates fluid components, thereby providing more advanced fluid handling. The fluid element includes a lateral flow element that supports the disrupted capillary fluid and an element that is driven by the electroosmotic side flow. The invention may have any number of the above two fluid elements, as long as one element is used for the sample and at least one element is part of the syringe pump. Another object of the present invention is to provide an analytical device (e.g., a reporter complex or an enzyme substrate) having a fluid element with an integrated chemical. The integrated chemical can be applied to move the fluid to the component. If the applied fluid is a sample and the moving chemical is a reporter complex, the chemical can be combined with the analyte or shipped to the chemical. Other microreaction zones of the component. When the chemical substance integrated with the fluid element is an enzyme substrate, the substrate can be a luminescent, fluorescent, luminescent, power generating substrate. There are also 11 1356164 Republic of China on June 08, 100. It is possible to integrate non-enzymatic markers into fluid components. A further object of the present invention is to provide a single integrated diagnostic assay device with some or all of the reaction chemistry, as well as to perform a solution-based chemical reaction, such as analyte calibration, capture, post-capture wash steps, amplification, and High sensitivity to detect the required fluid. One object of the present invention is to disclose how to fabricate the device in a microfabrication process. The pre-measurement method depends on whether the chemical is selected for use in a syringe pump or integrated with fluid components. The present invention further discloses that an integrated diagnostic device can be used to generate signals and be detected and quantified by an external device. The device can also be produced in the form of a diagnostic card containing electrodes that can be inserted into an external device. The external device can also provide the power requirement to control the movement of the fluid from one or more fluid components to the microreactor in the device. An external device can also be connected to the diagnostic card and detect the reaction that occurs on the microreactor. In the preferred embodiment, the injector pump is an injury to the microtest device that can be used to control fluid entry into other micropaths in the device and to provide reagent addition, washing and amplification steps in the chemical reaction in the device. The pump is also used for the second fluid path. Another preferred embodiment is a diagnostic device comprising a syringe pump and a lateral flow element having a capture zone for binding sample molecules to the analyte molecules. This syringe pump provides the power needed to wire, bond the marking application, and amplify and capture the composite. (4) The component (4) has a sample application end and a micro reaction area. In the single-step operating device of the present invention, a user introduces a sample into the diagnostic device' and connects the diagnostic device to an external connection control device. The sample fluid is any chemical or biological stream containing the analyte. Sample flow 12 1356164 The body of the Republic of China flows through the capillary side of the fluid element to the micro-reaction area, after which the other reaction liquid and washing liquid will Under the control of the instrument, it is introduced into the microreactor area and flows through other integrated fluid elements containing reagents under the time-interval sequence. The final device still retains the simplicity of the conventional lateral flow device because it requires only a single step (other steps are automatically operated by the machine) and is inexpensive, but enables quantitative analysis of low levels of analyte. The apparatus of the present invention can be configured in a number of different fluid arrangements and is tested in accordance with the "-+m"-two in the preferred embodiment of the present nf. In the first test, a combination is first bound to the analyte in the sample fluid to form a complex, and then the complex of the analyte and the conjugate is captured and detected by the detector, captured. The amount of complex is proportional to the concentration of the analyte in the sample. In the second experiment, the analyte is captured first, and then the captured analyte is reacted with the k s conjugate and tested. In a preferred embodiment of a test device, the invention is directly applicable to a ligand binding assay in a sandwich format that binds to the analyte prior to being captured. The integrated instrument control fluid device of the device comprises a first microporous flow element for fluid passage and at least one other microporous flow path for providing other fluids to enter the fluid storage tank of the first side flow element under instrument control. . The first side flow storage tank has a first end for sample use and a second outflow end. A selective sample application pad and a selective reagent application are contacted with the sample application end of the first lateral flow element, and the selective fluid collection potential is in contact with the outflow end. The first side flow element will be in contact with the flowable dry reagent. For example, when performing a sandwich-type ligand binding test, the flowable reagent of the first side element (or the reagent 与 in contact with the fluid) may be a reagent-binding reagent (immunoassay-imposed antibody or 13 1356164). The conjugate of the nucleic acid in the nucleic acid test on June 08, 100, with a label or reporter molecule (eg, the first porous element of the enzyme reporter has a reaction zone in the microreactor. The first microwell The reaction region of the element may be, for example, a capture region containing an immobile second binding agent (a second antibody in the immunoassay that binds to the analyte or a second nucleic acid in the nucleic acid assay). The first microporous fluid path element may A second fluid path is connected to the fluid receiving area to inject the first tear body, and the second fluid path is actively controlled by the instrument and is mostly injured by the main lens. The first fluid path is used for one purpose. Microporous elements for the first end and the second outflow of fluid applications. Initially dry and flowable dry reagents (eg, for enzyme labeling in ligand binding assays) An air gap separates the outflow end of the second path from the fluid receiving area of the first side flow element, which constructs a separate device. When the apparatus is used, the sample fluid is added to the first first side stream 70 that is initially dry. Another low conductivity electrolyte fluid, typically preferably stored in a male, sealed storage tank integrated into the device, is introduced into the initially dried second fluid element from the fluid use end. Controlling injection from the second fluid path The instrument device to the first lateral flow element is driven by electroosmosis generated by the surface pores of the second fluid path of the micropores having surface charge and interface potential. The preferred way to provide electrical drive to the second fluid path is to use Integrated electrode. The preferred electrical contact between the integrated electrode and the second fluid path is to have a free field (10)d at the outflow end of the path. When the instrument controls the power of the pump to provide a second fluid path, the fluid contains a flowable reagent, - a fluid-reading microreactor that reacts a fluid with a fluid and a reagent contained in an example of a sandwich labeled with an enzyme as t, a second fluid The enzyme substrate provided by the path will contain the enzyme labeling reaction of the first fluid element of the fish. The reaction can be detected. 14 1356164 The Republic of China 100 years, June 08. The detector close to the microreactor will measure the microreaction The concentration of the analyte in the sample fluid produced by the reaction in the device. Some highly sensitive detection methods in the prior art can be used in the present invention. The enzyme substrate controlled by the instrument to be injected into the microreactor can have Luminescent, fluorescent or chromogenic properties. A luminescent substrate reacts with an enzyme to emit a light signal, a fluorescent substrate also emits radiant light, and a chromonic substrate reacts to produce an absorption or reflection spectrum of the incident light. Change. In these cases, try to use the H (proximal detector) ϋ H to be a light detector. If you use a substrate that produces an electron with the enzyme, the near-side detector is best used. An integrated electrochemical detection electrode in contact with the microreactor region. It is also possible to use non-enzymatic labels such as the well-known chemiluminescent acridinium esters. In this example, the reagents controlled by the instrument for injection into the microreactor region are known chemiluminescence trigger reagents and the use of photodetectors to detect reaction products is preferred. The preferred detection mode of the present invention is a luminescent light and photodamper. When the enzyme label uses cold light as the detection method, it is best to use alkaline phosphatase. In this case, 'high sensitivity cold light acceptor such as dioxin (such as adamantyl methoxybenzene) can be used. Adamantyl methoxy phenyl phosphate dioxetanes > AMPPD). Another well-known high-sensitivity alkaline phosphatase matrix is luciferin-ortho-phosphate, which is compatible with luciferin, adenosine triphosphate (ATP), and money. The ions are supplied together to the capture area. In this case, the luciferin acid salt is decomposed by luciferase by a test enzyme, and it is converted into bioluminescence by the action of luciferase. It is also possible to use lactose-degrading enzyme labeling with its amantadine 15 1356164. The amanatine-dioxetane luminogenic substance was developed on June 08, 1995. Another well-known high-sensitivity test uses ethyl ester kinase (acetate). In the case of the calibration, in this case, the substrate will provide acetamidine phosphate, diammonium (ADP), luciferase, and magnesium ions to the capture zone. In this case, ethyl ester kinase catalyzes the production of adenosine triphosphate (ATP), which can be detected by bioluminescent reactions. In another example, the enzyme label can use a conventional horseradish peroxidase to enhance the action of the sensitizer. When the enzyme label is used for fluorescence detection, the enzyme is preferably alkaline ligase and high sensitivity fluorescent matrix methyl umbiferyl phosphate (MUBP). When the enzyme label is used in the electrochemical detection mode, it is preferable to use an experimental acidase and para amino phenyl phosphate as an electronogenic substance. A preferred embodiment of a diagnostic device is a ligand-binding microtest device in which the labeled binding complex will produce a complex with the analyte in the sample. The complexes produced by the analyte and the complex are captured and measured, and the amount of the captured complex is proportional to the concentration of the analyte in the sample. The first side flow element is a flowable reagent with a combination of enzyme labels. As the sample fluid flows through the first lateral flow element, the enzyme labeled binder will bind to the analyte in the sample. A captured complex comprises an enzyme-labeled analyte formed in a microreaction zone in a first fluid element, the sample fluid comprising a complex comprising an enzyme-labeled analyte traversing the microreaction zone and immobilized to the capture site Produced when the binding reagent is combined. The flowable reagent contains the enzyme in the second flow path and is transported to the outflow end when it is filled with capillary flow. The isolation method ensures that the fluid and flowable agent of the second fluid path are separated from the first lateral flow element prior to being injected into the first flow element and are controlled by the instrument to enter the reactor zone of the first flow element. In the sandwich-type ligand binding test set 16 1356164 in the Republic of China on June 08, the instrument control fluid injection into the second fluid path was driven by electro-osmosis. The surface of the micropores in a fluid path has surface charge and interface potential. When the instrument controls the power of the pump to the second fluid path, the fluid, which contains the flowable reagent, is injected into the storage region of the first lateral flow element. The fluid is transported to the first microreactor to interact with the fluids and reagents therein. Next, the instrument-controlled pump power will again provide the second fluid path and the fluid in the first micro-reactor will be sent to the second micro-reactor and the test-remaining--" The value Jgij-qin measures the concentration of the analyte in the sample stream produced by the second reactor ten. A two-stage reaction using an enzyme substrate such as luciferin orthophosphate can be applied to the above apparatus. Luciferin orthophosphate is added to the first lateral flow microreactor zone containing the alkaline phosphatase labeled capture complex. After the reaction period (incubati〇n step), the product of the reaction, luciferin, is transported in an instrument-controlled fluid to a second microreaction zone with luciferase, triadexin or other reagents and produces organisms. Fluorescent signal. The other two possible two-stage reactions use ethyl ester kinase calibration with triethylphosphoric acid phosphate, glyphosate diphosphate, and magnesium ions to produce triadenin in the first reaction phase. The triglycine will flow to the second microreaction zone with luciferase and luciferin to produce a bioluminescent signal. In another embodiment of the invention, the analyte is directly captured after labeling, and the apparatus preferably comprises a first microporous lateral flow element having a sample fluid use end and an outflow end, a capture zone. The volume of this element is equal to the volume of the fluid. The device further includes an auxiliary fluid path component that can be actively and independently extracted under instrument control. The auxiliary fluid path includes microporous elements including the use end and the outflow end of the sample. Each microporous element has a surface charge and an interface potential and is in contact with an integrated electrode that provides instrument control power to drive electroosmosis. With each of the 17 Republics, 100 years, June 〇 8 曰 auxiliary fluid path better electronic technology ^% thousand contact position is the zero field of the outflow end (five) dfreereglQn). Each of the auxiliary fluid paths 1 is initially dry and optionally contains a flowable dry reagent. Each of the auxiliary fluid paths has an air barrier that separates the outflow end from each of the three fluid receiving regions in the first-side flow element. Sister Demon Team When using the device, the sample fluid is applied to the initially low:! flow element. The second fluid is a low conductivity fluid solution, preferably stored in a sealed "body storage; ff' the fluid will be introduced into each of the initially auxiliary fluid path elements. The sample fluid is pushed by the capillary fluid through the first - In the lateral flow, the second fluid will fill each of the auxiliary fluid path elements, thereby transporting the reagent to the outflow end. The air isolation is to ensure fluid in the auxiliary fluid path and fluid in the first-side flow element And the reagent is separated until the instrument controls it to be injected into the first-side flow element, and then the instrument uses the osmotic pressure to control the fluid to propel the fluid to the first fluid element. When the machine controls the power of the pump to provide the auxiliary fluid path, the fluid, including The flowable reagent is injected into the first fluid element. In another embodiment of the apparatus, there are three active auxiliary suction fluid paths. The first one provides a combination of enzyme markers, the second provides a wash solution, and the second provides the enzyme substrate required for the capture area of the first fluid element. In this embodiment, the sample fluid is injected into the originally dried application end of the first lateral flow element and then flows to the outflow end by capillary action in the tube. The analyte to be dissolved in the fluid is analyzed along the capture zone of the lateral flow element. The volume of fluid flowing through the capture zone is known because the volume of fluid filled with the component is known and is controlled by the volume of the downstream component of the capture zone. The next step ' first injection fluid containing the enzyme labeled combination flows from the first auxiliary fluid path to the first lateral flow element of the first injection zone. 18th June, 100, 100. An injection fluid flows from the first lateral flow element to the outflow end as it flows to the service end. In this step, the sample fluid in the first-side flow element is flushed out and replaced by the first injection fluid. The first injection enters the capture zone and forms a sandwich complex when the labeled complex binds to the analyte of the capture zone. Next, the second wash liquid is injected into the second auxiliary fluid path into the first side stream element of the second injection zone. The second fluid flows through the first lateral flow path to the outflow end. In this step, the first injection fluid of the first lateral flow element is shrunk and removed - the capture - the data - the I domain - the - he - not I will be established as a body - and the cover is covered by the watch - The liquid is replaced by one. Importantly, the first injection fluid containing other excess unbonded junctions must be flushed out as much as possible to remove unbonded markings. Next, a third injection containing an enzyme substrate under the control of the instrument is injected into the first lateral flow element of the third injection zone by a third auxiliary element. The third fluid is from the first side "丨L pathway/)丨L to the outflow end as flowing into the injection end. When the third injection containing the enzyme is flowing to the capture area, the instrument controls the injection to stop. At this point, the enzyme is bound to interact with the enzyme-labeled complex. 5 The reaction detected by the Xuan reaction is proportional to the concentration of the captured complex, and the concentration of the complex is proportional to the concentration of the analyte in the sample. This signal will be detected by the detector near the capture area device. Alternatively, the selective attack is a washing step prior to injection of the conjugate (washing the sample fluid from the reaction zone), and the instrument controls the stripping action after the injection of the human body. Any of the above high sensitivity detection methods can be used on the device. There are many other fluid devices and test methods that can be considered for use in the aforementioned devices. In general, the integrated diagnostic device of the present invention comprises at least one substrate (or a multiplexed microreactor array) having a signal generating microreactor, an integrated reagent, and a fluid. A microreactor contains a container that can hold aqueous chemistry 1356164 Republic of China on June 08, 100. The chemical reaction produces a detectable signal that determines the concentration of the analyte in the sample fluid. The microreactor can further comprise a selective capture zone. Each microreactor has an integrated fluid comprising a network of N fluid influx pathway elements and helium fluid outflow pathway elements. The fluid path is an element that is driven by capillary phenomena. A fluid path has a fluid inlet end and a fluid outlet end that allow fluid to flow into and out of the element. The helium fluid influx pathway and the helium fluid outflow pathway are initially dry components, which, when used, are filled with side capillary flow when the fluid is added. In a microreactor array, each microreactor will be connected to a fluid network, and the number of helium fluid inlet elements and helium fluid outflow elements may vary from one microreactor to each microreactor. Using this diagnostic device, some or all of the initially dry helium and helium fluid paths are filled with fluid by side capillary flow. At least one of the sputum and sputum routes is a syringe. A syringe is defined as a fluid path element that can be actively pumped by the instrument. After the fluid use end to the outflow end is filled with capillary flow, the outflow end is separated from the other fluid elements (such as other fluid paths and microreactors) by air separation. The fluid does not exceed the outflow end, and the reagents in the path do not react with other pathways or chemicals in the microreactor until the fluid in the fluid path of the syringe is actively sent out of the outflow to the other fluid element. The helium fluid path itself may be the active snorkeling member, that is, 'actively controlled by the machine but not the syringe element. Because it is actively absorbed without fluid isolation, the non-injector element, the fluid flowing out of the fluid-filled component will The instrument is used to control the power of the pump. It is in contact with other fluid path components because there is no isolation device. Other W Μ fluid paths can also be passive pump components. 'The pump is not controlled by the instrument to actively draw fluid, but can be taken from the outflow end. The wick effect device (wickmg knows - non-instrument control method passively draws. There are still other ways not to pump components. These elements 20 1356164 Republic of China 100 years June 08 when the pieces are full of fluids will not move until the second is given The pressure causes the drive fluid to move. Some 1 and M fluid paths can also contain microporous sidestream materials, or a traditional flow of empty pipes or pipes. Body composition. The active pumping path element is an electro-osmotic method, and the pump path 7C has at least one charged capillary surface area and an interface potential. The active suction power is controlled by the instrument, preferably separated by a pair. The integrated electrode is provided, at least one of which will be in contact with the fluid path of the pump, and the other one of the other areas - the n-contact is in contact with the fluid of the rabbit body. The dry fluid path element may contain a dry reagent that can be moved by the aqueous fluid introduced by capillary flow. If the path 70 is an active suction element, the movable reagent can be transported to another location under the control of the instrument. In particular to the microreactor. Any or all of the paths may contain a capture reagent that captures and immobilizes the chemical in the fluid. In the above general embodiment, at least one of the initially dried N fluid injection paths is filled with the sample by capillary flow. Some or all of the other initial drying paths may be driven by capillary flow or other aqueous fluids. When the device is in use, 'when the fluid is not a sample liquid', the path is preferably initially provided and filled with at least one integrated fluid in the sealed storage tank. The microreactor system of the various embodiments of the invention. It is a reaction tank structure. A reaction tank structure breaks the contents of the reaction tank in a fixed position during the reaction. A microreactor may be a microporous flow path element or a chamber or pipe connected to the fluid path element. The chamber or pipe may be locked or in communication with atmospheric pressure. A signal generates a microreactor region to produce a reaction. 21 1356164 The signal of the birth of the Republic of China on June 08 is proportional to the concentration of the analyte to be detected. The signal-generating microreactor is positioned adjacent to the detector that monitors the reaction during the reaction. In a preferred embodiment of the invention, the ligand binding assay is applied to the side of the microreactor region containing the capture century. Flow component. One of the preferred embodiments' microreactor is a microporous fluid path component region having an open top reaction chamber. It comprises a plate member having a microporous fluid path surface filled with holes. The plate holes are located in the fluid path reaction region. The sidewalls of the plate aperture form microreactive grooves, and the planar substrate of the reaction zone of the first fluid path component forms the base of the microreactor. At least one of the syringes is located at the edge of the recess and fluid is actively drawn into the recess and flows directly to the first fluid path component. When the fluid fills the container recess of the microreactor, air escapes through the top cover. In another embodiment of the chamber exhaust reaction, the outflow end of at least one of the injectors is located at an outer side edge of the recess. In still another embodiment, the microreactor is a closed chamber or conduit interposed in the reaction zone of the microporous fluid path. The cross chamber or pipe system can be blocked or discharged. pressure. In yet another embodiment, the microreactor is a region of a microporous fluid path component and the fluid is completely sealed to the edge. There are areas where many electrons may come into contact. In one case, the contact location is two separate spaces in the path. The first zero field region is located between the first fluid use end and the first contact region, and the second zero field region is located between the second contact region and the path outflow end. In another case, the first electronic contact area is located at the first use end of the path (or electronic contact outside the path of the first use end), and the second electronic contact is located on the path, at the use end and the second contact area. There is an electronic field between them, and there is a zero field between the second contact end and the outflow end. In some less desirable cases, the electronic contact is at the bottom of the component. In this case, there is a fluid filled with the entire piece in the electronic field. 22 Weeping The 100-year-old 〇November 08 outflow end preferably has zero field space. In the middle of the slaughter: When the path of the initial dry phase contains a dry reagent that can be circulated, the dry soldering agent can be placed in the dry path of any t λ dry during the outflow end of the device, when the product is added. 2. When the syringe is used in the zero field, the first fluid in the path of the first drying path is transported to the outflow end of the path and == the reagent will pass through the device. When electric is applied to the end. In i, the flow of fluid containing flowable reagents will be sent out and out - class one 1 " Europe, (four) Tonglan often zero field area. Here - there is no negative effect (power does not generate electricity and does not produce an electrochemical reaction at the electrode). And the electro-osmotic pump must be able to propel the fluid at a useful speed, and the rain is strong. If the hitting person (10)f passes the resistance factor, it resists the equivalent back pressure (the typical reflow fluid resistance of the present invention, the help flow out The end pressure is about - atmospheric pressure or higher. In order to achieve this requirement, the pumping part of f (between the electronic contact parts) must be microporous and must have a potential of 4 solid microporous fluid paths with a pore size of less than one micron, preferably less than G. 2 microns. For riding efficiency and reproducibility, the microporous electroosmotic pump area needs to be sealed around. - surrounding unsealed pump components, since the microporous plate contains ambient air (as is conventionally arranged for lateral flow components), it is not resistant to back pressure to produce efficient suction because it is opposite to the path and the outflow end The direction of the fluid is removed by the holes in the plate. There are two ways to distribute the injection to the fluid receiving element. In both ways, the outflow end of the syringe is separated from the fluid receiving element of the other fluid element by air spacing. In the first configuration, the outflow end of the syringe, the gas gap and the fluid receiving area of the other fluid element are sealed in a chamber containing air. The air chamber does not escape into the outside atmosphere. Syringe 23 1356164 June 08, 100 The fluid receiving element is initially filled with fluid. When the syringe is charged, the fluid therein will flow from the outflow end to replace the air in the isolated region of the closed chamber so that the fluid can contact the receiving region of the fluid receiving member. The air in the sealed chamber is pressurized and pushes the fluid in the syringe into the fluid receiving element. When the pump is turned off, the compressed air pushes the fluid into the fluid-receiving element' and returns the air to the position of the air that was originally located between the outflow end of the syringe and the fluid-receiving element. This process is accelerated by operating the reverse polarity of the syringe pump, allowing fluid extraction in the chamber to be faster. After this process, the syringe is in a stopped state and is again separated (electrically or fluidly) from the fluid receiving element. This method allows multiple syringes to be used along the sample fluid element, which is isolated when closed and fluidly connected when opened. This method can use multiple independent pump-driven syringes in sequence without interfering with the use of the pump (if it is permanently connected to the fluid with power). Furthermore, a syringe can draw fluid under the control of the instrument, and when the other fluid device performs the same action, it stops and then restarts. In the second configuration, the sealed air chamber is controlled by a path air valve to escape the outside air. When the injector is powered, its fluid is forced out of the outlet to replace the air in the air isolation region outside the enclosed chamber so that the injection fluid can contact the receiving region of the fluid receiving member. The gas chamber still maintains a general atmospheric pressure, and the injected fluid is not pushed by the compressed air to the fluid receiving element. The reagent in the injected fluid contacts the fluid receiving member to diffuse to the receiving member and react. In the present configuration, when the injection step is operated, the fluid that is ejected when the reverse pole power is applied can be pulled back thereby separating the pump from the fluid receiving element. The air separation at the outflow end of the fluid path of a syringe is a fluid barrier method. The gas spacing region is __ the space is located between the syringe fluid path and the flow rate between the end and the other fluid receiving element. When the fluid is added to the fluid use end of the fluid path of the initial drying of the syringe, the fluid is filled by the capillary flow to the outflow end and stops at the air gap. This isolation effectively prevents the capillary flow from exceeding the outflow end of the fluid path. When the syringe fluid path fluid resistance (maximum when the aperture small fluid path is long) is large enough, the stopped syringe fluid is prevented from leaking to the outflow end of the syringe path, even at the input and outflow of the syringe path when using the diagnostic device The end of the meeting may be ... will be 4 - raw J pressure: force, offering equipment to avoid capillary - the power of color absorption will be caused by the other fluid components on the surface of the path of the input and outflow end. The air gap is preferably sized to prevent any fluid from accidentally leaking out of the syringe without escaping the air gap to cause fluid isolation. ♦ When the syringe is activated, the voltage is applied to a fluid-filled syringe with an area containing surface charge and interface potential; the fluid moves to the gas-insulated area and out of the fluid-receiving element. The syringe must be able to draw at a useful rate (as required by the test) to overcome the back pressure caused by the fluid resistance of the fluid receiving element, while the air isolation device needs to be sized to allow the injection fluid to pass at an effective time. The fluid receiving element is an element that connects the outflow end of the syringe. Perhaps it is a microporous pathway or a gas chamber component or a conventional open conduit, conduit, chamber°. = The body receiving element can be dry initially or received by a syringe: = filled for it. When the fluid of the syringe is received ‘If the fluid receiving element is microporous and dry, the received fluid will flow due to the action of the capillary wick. If the fluid receiving element is already filled with fluid when it is received by the syringe, the received fluid replaces the existing fluid when the fluid receiving area of the receiving element is connected to the syringe that locks the air chamber. The fluid-receiving element can have an interface potential and is connected to the integrated electrode to receive the fluid and further electro-permeate. 25 1356164 The Republic of China, June 8, 100 pushes or injects another connected receiving element. A microporous fluid path system can contain a variety of different materials. This type of material has a hydrophilic surface that produces a capillary wick for the aqueous solution. For example, cellulosic cellulose, cellulate nitrate, polyethersulfone, nylon, polyethylene, and the like can be used. The microporous fluid path of the syringe pump can be a single element or a combination of more than one element through which fluid flows by capillary action. The microporous electroosmotic injection element may further comprise a material having surface charge and interface potential, and cellulate nitrate is a preferred material. The sealing member used in the present invention is an electrically insulating material capable of producing a sealing effect at the edge of the fluid path member. The sealing element used in the syringe of the present invention can be any pressure sensitive colloidal component known to date, such as siloxane, acrylic glues. This type of material forms a seal by applying pressure when a sheet is formed around the syringe. Many other insulating sealing materials can be used as the insulating protective film in the device of the present invention. Diagnostic devices with integrated device control fluids are available in two manufacturing styles. In the first mode, the microporous fluid path elements are formed from a membrane, such as by die cutting, and then combined and sealed onto a planar substrate. In the second method, the fluid path component is produced by a sheet micromachining process. In this technique, each of the microporous materials is produced by a precipitation technique such as spin coating on a planar substrate, and a phase transition is formed by the film material dissolved in the solution during the spin drying of the spin coating. The phase change material is microporous. The final microporous dried sheet can be formed into the fluid path by photographic printing, which includes photoresist coating, exposure, patterning of the photoresist, and application of the gaseous plasma to the metal. Move 26 1356164 The Republic of China on June 08, 100 to the microporous membrane. Micromachined materials, methods of forming microporous fluid path components, and edge seals are described in more detail in U.S. Patent Publication No. 2, 127, 333. The dry reagent contained in a particular location of the microporous fluid path element can be precipitated using a nozzle micro-dispensing step known in the art and is often used in the manufacture of lateral flow element devices. Other membrane-based dry reagent devices. Other embodiments of the present invention comprise an array of detection devices comprising an array of a Xixia microreactors made of --------m-r m. In a preferred embodiment of the array device, it is fabricated by micromachining techniques. Other aspects and features of the present invention will become apparent to those skilled in the <RTIgt; [Embodiment]
弟一圖係顯示本發明之診斷裝置中一部分的一儀器 制電滲透注射器之圖式。整個細節描述中,注射器與注 器幫浦為可替換的。流體路徑、流體元件與流體路徑元 亦為可代換。分離元件、分離器與流體接收區域、流體 收位置亦可代換。第一圖人係俯視圖,顯示一基材具 兩整合電極可與最初乾燥之微孔流體路徑元件丨產生電 接觸。第一電極具有一接觸襯墊7用於連接電子電路, -接觸區域8可與流體元件i製造電氣接觸。第二個電極 有一接觸襯塾5用於連接外圍電路,及—鄰近流體元件l 流體施加端2之接觸區域6,用以與從流體施加端2提供 ,體製造電氣接觸…第-密封元件9在注射器之流體』 役70件1與流體接收區域13下覆蓋基材1〇,但不覆蓋電4 27 1356164 民國100年06月08日 之接觸區域5,6,7與8»此處有一第二密封元件覆蓋注射 器之流體路徑元件但不會覆蓋其流體施加端2或其流出端 3»第二密封元件也覆蓋接收元件ι2的一部分但不覆蓋其 流體接收區域13。 '、 第一與第二密封元件9、11於注射器周圍形成一密封 薄片,如第一 c圖所示,其係為一沿著第一 A圖之B_B,線 之剖面圖。此處有一遮蓋元件23位於注射器之流出端3的 密封元件11及流體接收元件12之接收區域13與開口之 上。遮蓋元件22被後封在第二密封元件11於注射器之流出 端3與流體接收元件12之接收區域13之周圍形成一閉鎖的 氣至15。此處有一空氣隔絕元件14流動性地阻絕注射器之 流出端3與流體接收元件12之流體接收區域13。流體接收 元件為一微孔條,其一端連接流體電路21而另一端連接流 體電路2 2 ’組成一樣本流體施加區域。沿著其長度,有一 流體注入區域13。 於使用包含本注射器之裝置期間,一樣本流體施加於 流體電路22之樣本流體施加區域。一電氣連接係經由接觸 襯塾5與7與外部電子控制電路產生。一流體被加入本裝置 之流體施加端20,於電極之接觸區域6產生電氣接觸並於 流體路徑元件1之流體施加端2產生流體與電氣接觸。該流 體藉由毛細燈芯現象流至元件1,填滿其流出端3但不會超 過。此期間’注射器中的流體會被空氣隔絕元件14與流體 接收元件12及其他與其連接之流體電路,如第一 a圖所示 之區域21、22分開。儀器控制動力會被施加於電極。—存 在於接觸區域8之充電電極(power electrode)與接觸區域 6之接地電極(grounded electrode )間的電壓差會於流體元 28 民國100年06月08日 2長度中接觸區域6與8間產生—電場。當元件1的微孔 有界面電位時,該電場會驅動電滲透流體。當其表 =¾荷與界面電位為負&’於位置8接觸區域之負電壓時 泣將1體由流體施加區域2〇推經注射器之流體路徑並流出 :=端3 °备流體流出流出端’會取代空氣隔絕14至閉鎖 虱室U之元件16之末端15並壓縮之。現在流體接觸流體 ,收元件12之接收端13 ’並由被加壓的腔室15將流體推 及到接—收_錢1J與流體屬1、0」赫△主龍中的辑 劑會與流體接收元件12或是流體電路中的化學物質反應。 被注射體中的試劑係可包含於流體中由流體施加區域20注 入注射器’或是當它—開始因流體之燈芯效應從施加區域 2。〇引入,試劑會由注射劑途徑j的乾燥試劑來源移動。乾 燥试劑較佳係位於位置4。當儀器控制幫浦後,接觸區域8 電極的電源會被關掉或逆轉。現在加壓室15會推動流體 回到元件1而腔至15之末端μ之被加壓氣體會膨脹至充滿 腔至,包括氣體隔絕區14藉此回到注射器最初隔離之休拿、 狀態。 於注射器與流體接收元件的另一實施例中,氣室15被 排出至位置16,例如經由覆蓋元件23之孔洞或經由密封元 件11的導管延伸。本例中,當儀器控制動力施加於注射器 之電極時,流體會流出元件1之流出端3。該流體會取代空 氣隔絕區14的空氣至氣室15之排出端16,且流體會與流 體接收元件12之流體接收區13接觸。因為該被排入大氣之 氣室於本例中並非被加壓,而流體不會被打到元件12。然 而,注射器之幫浦流體中之化學物及試劑、元件12之流體 接收區域13内的化學物與試劑會擴散。於接觸區域8之電 29 1356164 民國100年06月08曰 極的儀器控制幫浦動力會被逆轉,直到腔室令的注射流體 回到注射器並將空氣拉回氣體隔絕區,使幫浦回到最初休 息狀態。 這裡還有其他注射器與流體接收元件之可能的結構被 使用在上述之注射器。第二A圖至第二s圖係顯示以流體 接收元件連接本發明之注射器之其他方法。本圖顯示一注 射器包含一密封流體路徑、整合電極、流體施加端、流體 施加區域、具有氣體隔離元件之流出端。這些組成如第一 圖所述’集中在第二A圖至第二s圖之虛線區域的100, 1 〇 1與102。這裡有四種注射器之結構與流體接收元件描繪 於第二A圖至第二η圖。於流出端具有氣室之注射器係可 連接至無流體接收之元件(第二Α圖與第二£圖),或連接至 三種之一的元件。係可連接至單獨且與其他流體電路無連 接的流體接收元件118(第二B圖與第二F圖係可連接至 流體接收元件11G ’其為具有—流體接收端流體且另一端連 接其他流體電路103之流體路徑(第二c圖與第二(}圖)。係 可連接至流體接收το件115 ’其為-流體路徑兩端皆與流體 電路(105、1G6連接至115兩端)以及流體接收區連接。第二 A圖與第—D圖顯不流體接枚元件連接至注射器之封閉氣 至120,而第一 E圖與第二Η圖顯示它們連接至排氣室 130。第二D圖與第一圖相同。 一實施例於第一圖或第二D圖之構造為一裝置包含一 運送樣本urn條與❹控狀注射m㈣至該侧流 條》本例中115為側流條,105含有一樣本施加區域及1〇6 含有一樣本流出區域。側流條115係可含有一捕捉區域, 該區域構成-訊號產生微反應器,而注射胃謂係可用來 30 1356164 民國100年06月〇8日 注入洗滌液、-結合體妓酵素受質於側流條t 捉區域,當進行一配體結合試驗時。 捕 第一 I圖至第二Q圖顯示兩流體接收元件如何連接至 -流體注射器。圖中描繪出一注射器平行連接至兩流體接 收儿件於封閉氣室。當氣室排氣時,複數個接收元件以類 似的平行連接方式連接至一注射器亦為可能,但並 在第二圖中。 U-圖」丄圖—與第圖—顯兔二關·—器立接I第 -單獨流體接收元件118與第二平行連接至三種型離S 中-種流體接收元件。第二W、第二M圖與第圖顯 不連接至一第—流體路經元件110,於其另-端具有-流體 電路113,以及-平行連接至三種型態中其中之—種的第二 流體接收元件。第二〇、2PDQ圖係顯示連接至第一流體 路徑115,其兩端係接至流體電路1〇5、1〇6之流體接收 區,以及第二平行連接至三種型態之一的流體接收元件。 明顯,,其係可能平行連接三個或更多個流體元件至單一 注射器’在某些必須的分析試驗中。 第二R圖顯示多個注射器如何連接至一單一流體接收 元件。本圖t,有-流體接收流體路# 115含有流體電路 105、106於兩端。此處有三個注射器1〇〇、ι〇ι及1〇2可注 射流體於元件115全長之三個區域。此處有一密閉氣室位 於每-注射區域12G、121及122。這三個注射器之三個接 地電極係可獨立由其中之一連接至三個中之一的注射器元 件之流體施加端之分離流體施加區域,如第二r圖所示。 更佳為第二s圖中三個注射器之接地電極會連接至一單一 流體施加區域之一點’其涵蓋所有三個注射器之流體施加 31 1356164 民國100年06月〇8曰 端。此裝置亦可由一流體加入導管完成。 第二R圖與第二S圖所示之實施例構造係為一裝置, 包含-運送樣本之侧流條與儀器控制之多注射器歧管用於 將流體注入側流條。於本例中115為侧流條,1〇5含有一樣 本施加區,106包含一樣品流出區。側流條115係可包含一 捕捉區,該捕捉區構成一訊號產生微反應器。注射器ι〇〇 係可使用來注射含有報告結合體之流體,注射器1〇1係可 用來注射一洗滌液,而注射器1〇2係可用來注射一酵素受 質至側流條並經過微反應區域,當需要進行一三明治形式 配體結合試驗時。 一般來說,本發明之一裝置包含至少由一儀器控制注 射器,經由一流體接收元件連接至一流體電路,可參考第 一圖中任一結構。本裝置更進一步包含一樣本施加區域用 於將樣本流體導入裝置之流體電路,以及至少一個訊號產 生微反應區域。此一微反應區域係可位於流體接收元件或 連接的流體電路中。一靠近訊號產生微反應之偵測器可測 量反應過程中發生的微反應,以決定樣本中之欲分析物的 濃度。使用時,第二圖中任一不同之本裝置會被插入一偵 測設備之接收孔洞,包含一埋入光線偵測器之平面厚板連 接至儀器設備。當本裝置插入偵測設備之孔洞時,該厚板 亦埋入通電之彈簧,其一端係連接至儀器設備中之電路, 而另一端連接電極接觸墊。本裝置偵測設備之接收孔具有 偵測厚板與裝置基材10共平面且相當靠近,光線偵測器位 於靠近本裝置之訊號產生之微反應器區域。該偵測厚板與 基材10形成部分黑暗孔洞使無外來光源進入。 如第一圖中之實施例裝置與第二A圖至第二S圖之各 32 1356164 田1UU平UC)月08日 種變化之裝置,皆被建造在—標準 ^^ φ , ^ ^ 知早电机板上之輔助電極以 袄供電力於、體電路。裝置被安褒在平面絕 !〇。被分開的電極為鍍金之鋼電極,其具有⑽5毫求= 的纖金’以標準電路板技術製造。其上為一薄層〇 〇25 ς 米备度的元件9,該元件鼻 τη Ώ u 系兀件為—矽附者之厚板(AdhesiveBRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a diagram showing a portion of an instrumentation electroosmotic syringe of a diagnostic apparatus of the present invention. The syringe and injector pump are replaceable throughout the detailed description. Fluid paths, fluid components, and fluid path elements are also replaceable. The separation element, the separator, the fluid receiving area, and the fluid receiving position can also be replaced. The first figure is a top view showing a substrate having two integrated electrodes that are in electrical contact with the initially dried microporous fluid path component. The first electrode has a contact pad 7 for connecting electronic circuitry, and the contact area 8 can make electrical contact with the fluid element i. The second electrode has a contact pad 5 for connecting the peripheral circuit, and - a contact area 6 adjacent to the fluid application end 2 of the fluid element 1 for providing electrical contact with the body from the fluid application end 2, the first sealing element 9 In the fluid of the syringe, 70 pieces 1 and the fluid receiving area 13 cover the substrate 1〇, but do not cover the electricity. 4 27 1356164 The contact area of the Republic of China on June 08, 5, 6, 7 and 8» The second sealing element covers the fluid path element of the injector but does not cover its fluid application end 2 or its outflow end 3»the second sealing element also covers a portion of the receiving element ι2 but does not cover its fluid receiving area 13. The first and second sealing members 9, 11 form a sealing sheet around the syringe, as shown in the first c-figure, which is a cross-sectional view taken along line B_B of the first A drawing. Here, a covering member 23 is located on the sealing member 11 of the outflow end 3 of the syringe and the receiving region 13 and the opening of the fluid receiving member 12. The cover member 22 is post-sealed to form a latching gas 15 around the second sealing member 11 at the outflow end 3 of the syringe and the receiving region 13 of the fluid receiving member 12. Here, an air insulating member 14 fluidly blocks the outflow end 3 of the syringe and the fluid receiving region 13 of the fluid receiving member 12. The fluid receiving member is a microporous strip having one end connected to the fluid circuit 21 and the other end connected to the fluid circuit 2 2 ' to constitute the same fluid application region. A fluid injection zone 13 is provided along its length. The same fluid is applied to the sample fluid application area of the fluid circuit 22 during use of the device containing the injector. An electrical connection is made via contact pads 5 and 7 with an external electronic control circuit. A fluid is introduced into the fluid application end 20 of the apparatus to make electrical contact at the contact area 6 of the electrode and to make fluid and electrical contact at the fluid application end 2 of the fluid path element 1. The fluid flows to the element 1 by the capillary wick phenomenon, filling its outflow end 3 but not exceeding it. During this time, the fluid in the syringe will be separated from the fluid receiving element 12 and other fluid circuits connected thereto by the air insulating member 14, such as the regions 21, 22 shown in Fig. a. Instrument control power is applied to the electrodes. - the voltage difference between the power electrode of the contact region 8 and the grounded electrode of the contact region 6 is generated between the contact regions 6 and 8 of the length of the fluid element 28, June 8, 100, Republic of China -electric field. When the micropores of element 1 have an interface potential, the electric field drives the electroosmotic fluid. When the table = 3⁄4 load and the interface potential is negative & 'the negative voltage of the contact area of the position 8, the weeping body 1 is pushed by the fluid application area 2〇 through the fluid path of the syringe and flows out: = 3 ° spare fluid outflow and outflow The end 'will replace the air isolation 14 to the end 15 of the element 16 of the lock chamber U and compress it. Now that the fluid is in contact with the fluid, the receiving end 13' of the receiving element 12 is pushed by the pressurized chamber 15 and the fluid is pushed into the receiving and collecting medium 1 and the fluid genus 1, 0" The fluid receiving element 12 or a chemical in the fluid circuit reacts. The reagent in the body to be injected may be contained in the fluid by the fluid application zone 20 to be injected into the syringe 'or as it is - starting from the application zone 2 due to the wicking effect of the fluid. Introduced, the reagent will move from the source of the dry reagent from injection route j. The drying reagent is preferably in position 4. When the instrument controls the pump, the power to the contact area 8 electrode is turned off or reversed. The pressurized chamber 15 will now push the fluid back into the element 1 and the pressurized gas at the end of the chamber to 15 will expand to fill the cavity, including the gas barrier zone 14 thereby returning to the rest of the syringe. In another embodiment of the syringe and fluid-receiving element, the plenum 15 is expelled to position 16, for example via a hole in the cover element 23 or via a conduit of the sealing element 11. In this example, when the instrument controls the power applied to the electrodes of the injector, the fluid will flow out of the outflow end 3 of the element 1. This fluid replaces the air of the air isolation zone 14 to the discharge end 16 of the plenum 15 and the fluid contacts the fluid receiving zone 13 of the fluid receiving element 12. Since the venting chamber is not pressurized in this example, the fluid is not hit to the component 12. However, the chemicals and reagents in the pump fluid of the syringe, and the chemicals and reagents in the fluid receiving region 13 of the element 12 diffuse. In the contact area 8 electricity 29 1356164 The Republic of China 100 years June 08 bungee instrument control pump power will be reversed until the chamber causes the injection fluid back to the syringe and pull the air back into the gas isolation zone, so that the pump returns Initial rest state. There are other possible configurations of syringes and fluid receiving elements for use in the syringes described above. The second to second s drawings show other methods of connecting the syringe of the present invention with a fluid receiving member. The figure shows a syringe comprising a sealed fluid path, an integrated electrode, a fluid application end, a fluid application region, and an outflow end having a gas isolating member. These compositions are concentrated as shown in the first figure by 100, 1 〇 1 and 102 in the dotted area of the second to second s diagrams. There are four injector configurations and fluid-receiving elements depicted in Figures 2A through 2D. The syringe with the plenum at the outflow end can be connected to the fluid-free receiving element (second and second map) or to one of the three components. It can be connected to a fluid receiving element 118 that is separate and not connected to other fluid circuits (the second B and second F diagrams can be connected to the fluid receiving element 11G' which has a fluid receiving end fluid and the other end is connected to other fluids The fluid path of the circuit 103 (second c and second (}) is connectable to the fluid receiving member 115' which is - both ends of the fluid path are connected to the fluid circuit (105, 1G6 to both ends 115) and The fluid receiving zone is connected. The second A and D-D show fluid-free elements are connected to the closed gas of the injector to 120, while the first E and second figures show that they are connected to the exhaust chamber 130. The figure D is the same as the first figure. An embodiment is constructed in the first figure or the second figure D. The device comprises a transport sample urn strip and a control injection m (four) to the side flow strip. In this example, 115 is a lateral flow. Strips 105 contain the same application area and 1〇6 contain the same outflow area. The side stream strip 115 can contain a capture area, which constitutes a signal-generating microreactor, and the injection stomach is available for 30 1356164 Republic of China 100 Injecting washing liquid, knot, on the 8th of June The body enzyme is subjected to the lateral flow t capture area when performing a ligand binding test. The first to second Q diagrams show how the two fluid receiving elements are connected to the fluid injector. A syringe is depicted in the figure. Parallel connection to the two fluid receiving members in the enclosed plenum. It is also possible to connect a plurality of receiving elements to a syringe in a similar parallel connection when the plenum is vented, but in the second figure. U-图丄 — 与 与 显 显 显 显 显 显 显 显 第 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独 单独The first figure is not connected to a first fluid path element 110, has a -fluid circuit 113 at its other end, and - is connected in parallel to a second fluid receiving element of one of three types. The 2PDQ map shows a fluid receiving region connected to the first fluid path 115, the two ends of which are coupled to the fluid circuits 1〇5, 1〇6, and the second parallel connected to one of the three types. , which may connect three or more fluids in parallel The piece to a single syringe 'in some necessary analytical tests. The second R diagram shows how multiple syringes are connected to a single fluid receiving element. Figure 12, the fluid-receiving fluid path # 115 contains fluid circuits 105, 106 There are three syringes 1 〇〇, ι〇ι and 1 〇 2 injectable fluid in three areas of the full length of the element 115. There is a closed plenum at each of the injection zones 12G, 121 and 122. The three grounding electrodes of the injectors can be independently connected to the separated fluid application region of the fluid application end of the injector element of one of the three, as shown in the second r diagram. More preferably in the second s diagram The grounding electrode of the three syringes will be connected to one of the points of a single fluid application area. It covers the fluid application of all three injectors. 31 1356164 The Republic of China 100 June 〇 8 曰 end. This device can also be completed by a fluid addition conduit. The embodiment shown in the second R and second S diagrams is a device comprising a side flow strip carrying the sample and an instrument controlled multi-injector manifold for injecting fluid into the side flow strip. In this example 115 is a side flow strip, 1 〇 5 contains the same application zone, and 106 contains a sample effluent zone. The sidestream strip 115 can include a capture zone that constitutes a signal generating microreactor. The syringe can be used to inject a fluid containing the reporter combination, the syringe 1〇1 can be used to inject a washing solution, and the syringe 1〇2 can be used to inject an enzyme into the lateral flow strip and pass through the microreaction zone. When a sandwich-type ligand binding assay is required. In general, one of the devices of the present invention comprises at least one instrument-controlled injector connected to a fluid circuit via a fluid-receiving element, reference being made to any of the structures of Figure 1. The device further includes a fluid circuit for introducing the sample fluid into the device, and at least one signal generating a microreaction region. This microreaction zone can be located in the fluid receiving element or the connected fluid circuit. A detector that produces a microreaction near the signal measures the microreaction that occurs during the reaction to determine the concentration of the analyte in the sample. In use, any of the different devices in the second figure will be inserted into the receiving hole of a detecting device, and a flat thick plate embedded in the photodetector is connected to the instrument device. When the device is inserted into the hole of the detecting device, the thick plate is also embedded with a spring that is energized, one end of which is connected to the circuit in the instrument device, and the other end is connected to the electrode contact pad. The receiving hole of the detecting device of the device has a detecting thick plate coplanar and relatively close to the device substrate 10, and the photodetector is located in the microreactor region generated by the signal close to the device. The detection slab forms a partial dark hole with the substrate 10 so that no external light source enters. The apparatus of the embodiment shown in the first figure and the apparatus of the second A to the second S (32 1356164 field 1UU flat UC) month 08 kinds of changes are all built in - standard ^^ φ , ^ ^ The auxiliary electrode on the motor board is powered by 袄, and the body circuit. The device is mounted on the plane! The separated electrodes are gold-plated steel electrodes having (10) 5 milligrams = fiber gold' manufactured by standard circuit board technology. On top of it is a thin layer of 〇25 ς 备 备 元件 元件 元件 , , , , , , , , Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad
Research嶋),其由一具有在電極接觸區域5 6 7 8上之開 口之吸附歧(adhesive shee賴切而成。吸附厚板之開口 J—在—電择接見隨(上形成二了趾表φ,其驗一—接觸區 域的電極之金屬之頂端表面共平面。微孔流體路徑元件 U2由每-片約〇·15毫米厚度之薄層模切。元件ι於流出 端約寬1毫米。如第-圖所示,該元件係可為一長方形, 其流體施加端亦約冑1毫米寬。若其流體施加端較寬則會 形成一不規則四邊形。 我們通常較喜歡不規則梯形(trapez〇id)幫浦,其進入端 與流出端之寬度比例約為4:1,因為可以較高速率抽吸。當 π件12運送流體至相鄰的流體電路21,22,其可為約^毫 米之長方形條’如圖-所示’雖然其他形狀依流體接收元 件之特殊實行之需求也可以使用。當流體接收元件為一微 反應器時可為-正方形或圓形厚板。流體元件 1,12女裝在約0.5至數毫米具有空氣缺口 14之附著板9之 上,於位置13將流體注入元件丨之流出端3與流體接收元 件12分開。根據實驗實施之形式,流體路徑元件〗,12其係 可由製成之微孔材料薄層所作之成模切條,且可經過先浸 泡(用來阻礙或是導入表面電位)或於特殊位置使充滿注射 劑的前處理。 各種不同多孔性材質與接收元件之表面處理被進一步 33 1356164 於此討論。對於流體注入元件來說,具有〇 22毫微米孔徑 之纖維素石肖酸鹽較佳,因為其具有有效率之電渗透推力所 需之高表面電位°接著,—第二料附厚板11安裝於微孔 流體路徑it件之上。吸附厚板u為G15毫米厚由三層 0 05毫微米之薄層(Adhesive Research 7876)組成由一薄Research嶋), which consists of an adsorption difference with an opening in the electrode contact area 5 6 7 (adhesive shee. The opening J of the adsorption thick plate is seen in the electro-optic connection) φ, the first one - the top surface of the metal of the electrode of the contact area is coplanar. The microporous fluid path element U2 is die-cut by a thin layer of about 15 mm thickness per piece. The element ι is about 1 mm wide at the outflow end. As shown in the figure, the element can be a rectangle with a fluid application end of about 1 mm wide. If the fluid application end is wider, a trapezoid is formed. We usually prefer an irregular trapezoid (trapez). 〇 id) pump, the ratio of the width of the inlet end to the outflow end is about 4:1 because it can be pumped at a higher rate. When the π piece 12 carries fluid to the adjacent fluid circuit 21, 22, it can be about ^ The rectangular strip of mm is shown in Figure - although other shapes may be used depending on the particular implementation of the fluid receiving element. When the fluid receiving element is a microreactor, it may be a square or circular thick plate. Fluid element 1 , 12 women have about 0.5 to a few millimeters Above the attachment plate 9 of the gas gap 14, the outflow end 3 of the fluid injection element is separated from the fluid receiving element 12 at a position 13. According to an experimental implementation, the fluid path element 12 can be made of a microporous material. The thin layer is made into a die-cut strip and can be pre-soaked (to block or introduce surface potential) or pre-filled at a special position. The surface treatment of various porous materials and receiving elements is further 33 1356164 For the fluid injection element, a cellulose silicate having a pore size of 〇22 nm is preferred because of its high surface potential required for efficient electroosmotic thrust. Next, the second material is attached. The thick plate 11 is mounted on the microporous fluid path it. The adsorption thick plate u is G15 mm thick and consists of three layers of 0 05 nm thin layer (Adhesive Research 7876) consisting of a thin
板模切而來。其覆蓋元件U但不覆蓋其流體施加端2,氣體 缺:區14或其流出端3)其覆蓋元件12之-部(但非流體接 收區13或鄰近之區域16)。一聚酿薄膜覆蓋元件^由一薄 層模切,並安裝至於苐二密封元件11開口之上,以第-圖 之區域3,4,13,16為界,而形成封閉之氣體凹洞15。 最後裝配步驟’厚板之平面合成物被 耽兩分鐘)。此厚板1丨之歸劑會密ί ί厚Ϊ 9之黏著劑,厚板23亦密封元件β12,重要的 :·周】流至元件1周圍並於電極接觸間之區域形成 周圍之&封’如第_ C圖之ΒΒ,剖面圖所示。 决讲ί =各種不同之構造顯示於第一圖與第二圖,可用 方式如以下所述。射至接^件而流體電路之連接 由注射器以電滲透抽吸流體: 1。二不同結構的注射器(同第二圖之注射器 )τ供探时。為了特殊需求之操作 特性:ι.當流體加入/射态必須有以下 生性之毛細殖#⑽體 時’需由乾燥狀態成為可再 生ft之毛細填裝;2 #沒有 丹 過其流出端;3.當電力施於整合電^渗透時,無流體超 有用之流體速率下超過盆流 時’可再生的流體於 件將研究其组成:材料^面處理、之流體路徑元 忠從多孔性以及孔徑大小 34 1356164 民國100年06月08日 與形狀及尺寸。我們研究整合電極與其接觸區域與接觸面 積。我們研究氣室與其孔洞尺寸、氣體缺口尺寸、排氣結 構。當幫浦運作時,上述設計參數於最初毛細流體充滿速 率之效果,最初步驟十幫浦元件之流出端之阻流效果以及 當根據元件之流體阻力產生之電滲透抽吸特色皆為探討範 圍。 實驗一:注入排氣管道 本例為研究注射器中無流體注入、於流出端之排氣路 徑且無其他流體接收元件時之抽吸特色而構築之。此一構 築顯示於第二E圖,該注射器剛開始抽吸時藉由先加入一 水狀流體至一開始乾燥的注射器之流體施加端。接著,一 電壓施於整合電極間,而流量可由測量不同時間排氣管道 中流體之長度與該區域橫切面面積而得知。由此可得電滲 透移動率(electro-osmotic mobility, EOM)。 最佳實施方式其注射器之流體包含低傳導率之水狀溶 液:一濃度約2 m Μ(毫莫爾濃度)電解液較佳,且10mM(毫 莫爾濃度)為適用範圍上限。一微孔纖維素硝酸鹽/醋酸鹽 (Millipore MF membrane GSWP)具有一多孔性為 0.75、孔洞 半徑為0.11微米做為注射器之流體路徑。此處有一整合正 極接地電極與注射器之流體施加端接觸以及一整合負極電 極於注射器之微孔流體路徑。典型的注射流體為2mM水狀 緩衝液包含N-(2-羥乙基)哌嗪-N-2-乙烷磺酸(HEPES)或二 羥基二乙胺(DEA)緩衝液。於一 0-60伏特之固定電壓,其 抽吸速率維持在百秒左右之穩定。此處無可見氣泡形成於 流體流中。酸鹼度之效果維持在酸鹼度為7>pH>10之間。 於較高濃度電解質中,抽吸速度會降低。約10mM以上電 35 1356164 民國100年06月08日 解質濃度會使得注射器吸取太多電流而無法在電壓升高下 操作,因為陰極會放出氣泡至流體中。注射器電解液之濃 度以兩種方式影響幫浦。當濃度增加時,離子強度亦增 加,德拜屏蔽長度(Debye screening length)下降。如此會降 低界面電位而形成習知之EOM。此外,一較高電解液濃度 導致注射流體之較高電傳導。結果當給予一定幫浦電壓時 會有一較高電流拉引造成一較大電極之極性。當電極極化 時,多數電壓會通過電極而少數則穿過微孔流體路徑元 件,導致較低抽吸速率。加入氧化還原分子至注射流體可 降低電極之極化已被研究,但會限制幫浦之普遍性因其會 干擾下游微反應器之生化反應。當注射器與金電極一起運 作且注射器流體含有少於l〇mM緩衝電極液並且不加氧化 還原劑時’則無顯著電極極化現象。 以注射器流體裝填注射器: 一注射器之最初乾燥之微孔流體路徑元件被裝填, 田注射器*IL體被加入注射器之流體施加端。該流體因毛細 =〜作用充滿S玄元件至其流出端。使用較佳之流體路徑材 料其為具有微米孔徑之微孔纖維素硝酸鹽/醋酸 鹽,於一 5毫米長之注射器裝填時間約5〇秒。 整合電極之位置: ^ 一般而言,無論正極是否接近流體施加端皆可實施。 取佳實施方式為當正極浸泡在注射器微孔途徑之流體外 側超過其施加端但與其有電氣接觸。陰極電極位置可位 於該注射器微孔流體路徑至流出端長度間之任何位置,但 36 1356164 民國100年06月08日 較理想是位於離流出端約一半到四分之三長度之位置。此 配置可於超過流出端之負極留下一零場區域給乾燥試劑之 可能位置。當負極太靠近流體施加端之正極時,電流會太 高而限制本裝置在低電壓、低抽吸速率之運作。典型電極 接觸區域在正極為0.5 X 5mm,在負極為0.5x1 mm寬。 流體路徑形狀與尺寸: _________長_友整_1|揭_形_4_1射_器_流_體盖„徑_皆_灰探封_範_圍丄二_典— 型長方形流體路徑元件約為4.25 mm長、1mm寬、150微米 厚之纖維素硝酸鹽/醋酸鹽,孔隙度為0.7、孔徑為0.11微 米。一注射器由此流體路徑構成,其正極超過其流體施加 端,其負極離流體施加端約3mm(離流出端l_25mm),以 2mM DEA為注射液運作。抽吸速度係為0.5毫微升/秒/伏 特,其在施加之電壓下為線性。於40伏特之操作電壓時, 抽吸速度為20毫微升/秒。一典型梯形流體路徑約為 4.25mm長,於流體施力σ端為4mm寬,於流出端為1至 1.5mm寬。當以相同電極位置與注射器流體吸取速率運作 時,會與電壓呈線性,其速率為1.1毫微升/秒/伏特。一操 作電壓為40伏特時抽吸速率為45毫微升/秒。我們較傾向 於使用梯形注射器因為其具有較高抽吸速速度,但其流出 端與長方形注射器在幾何上是相同的。流出端大小被流體 接收元件大小所限制。 流體路徑材料與表面處理: 微孔纖維素墙酸鹽/醋酸鹽(Millipore MF membrane GSWP)具有0.11毫米孔徑,當使用2mM DEA注射器流體 37 1356164 民國100年06月08曰 時’其具有一較高且較一致的EOM約2_5 X 108 m2/伏特· 秒。此與梯形(長方形)注射器1.1(0.5)毫微升/秒/伏特一 致。其他研究材料則有較低或零的E0M。一表面經前處理 之低EOM材料,例如先泡製在一陰離子表面活性劑例如十 一烧基境酸氨鹽(ammonium dodecylsulfonate),接著藉由乾 燥可引入表面電荷並加強E0M。然而,較佳係避免這一類 處理,因表面活性劑會被排入注射流體令而進入流體加入 儿件與流體電流,有可能會對該位置之生化反應有不良影 響此處應特別/主意稍後會描述的冷光素酶。由於上述所 使用之纖維素硝酸鹽/醋酸鹽無表面修飾,因此較適合使用 在注射器流體路徑。 實驗二:注射至一密閉腔室 注射器含有一封閉氣室於其流出端,但無其他流體接 收疋件被建構以探討無限量流體載入之注射器之吸取特 性。該構造顯示於第二Α圖。首先,注射器裝填水狀流體 至最初為乾燥注射器之流體施加端。接著一電壓施加於整 合電極間。流體會由注射器流出端至最初體積V1且ρι'為 一大氣壓之封閉管道所取代。當流體充滿腔室時空氣會被 壓縮直到穩定狀態流體會停止。新的空氣體積為V2小於 VI。最後可停止流體的壓力可由波爾定律計算出 P2=V1/V2。-具G.11微米隸之微孔纖維切酸鹽/ 鹽被使用。 注射器之微孔途徑的孔徑: 微孔纖維素硝酸鹽/醋酸鹽材質之梯形注射器(進入端 38 丄獨164 民國100年06月08日 見4mm,流出端寬1.5mm,長度4.25mm,厚度為0.15mm) 孔隙度為0.75至0.85 ’孔徑為〇 u至2 5微米範圍。注射 器裝置於封閉氣室之流出端。不同電壓由〇至j 〇〇伏特間, 其停止流體之壓力可被測量。停止流體之壓力與電壓幾乎 呈線性增加。小孔徑材料相較於大孔徑材料需以較大背壓 停止流體。-具有孔徑0.U微米之注射器可抵抗Q17大氣 壓/伏特之背壓。典型運作之電壓為4〇伏特,則停止流體之 兔1為丄微复材一料其—停止注射流體之背壓 為〇_〇 1大氣壓。典型運作之電壓為40伏特時則停止流體之 背壓為0.4大氣壓。 密封注射器: 密封注射器周圍之品質對於獲取較佳的流速相當重 要。不適當地密封注射器之流體路徑周圍之氣體通道,在 ,渗透吸取時將會因注射器之流出端與流體施加端之間的 塗力差造餘由通道㈣1產生的結果會較不穩定且低 於預期之電滲透吸取速率。 實驗三:注入流體接收元件於封閉氣室 鲁 為了探討注射器之抽吸性質以一流體抗性注射器與 躺之封閉氣至連接至流體接收元件;以及連接至流 位置之流體接收條元件而建立之。長方形與梯形注 二白在探#圍。注射器之結構與流體接收元件如第二 #作此結構之注射器的各種步職示於第三A 二—£圖。第一流體被加入起初乾燥條之流體施加端( 圖)4乾燥條會因側毛細流而充滿第__流體(第三 接下來最初乾燥之注射器先注入-水狀流體(2n 39 1356164 民國100年06月〇8日 DEA溶液)至其流體施加端(第三c圖)。該注射器因毛細流 被充滿至流出端(第三D圖)。一電壓被施加於整合電極 間。流體被由注射器之流出端取代至一開始體積V1且 Pl=l大氣壓之封閉氣室。當流體充滿該氣室時,封閉氣室 之空氣被壓縮直到當壓縮停止時之穩定狀態(第三E圖)。穩 定狀態中,流體會沿著流體接收條兩端流動(流體流至第二 Η圖之區域105與106),如第三F圖所示。新產生之氣室中 空氣之體積為V2小於VI。穩定狀態之壓力可由波爾定律 可計算出P2=V1/V2。流體注入步驟之後,電壓會被開啟並 壓縮氣室中之氣體且回復至位於注射器流出端的原來位 置,並將注射流體與流體接收端之流體隔離(第三G圖)。 第四圖所顯示之一梯形注射器(入口寬4mm、流出端 1.5寬mm、長度4.25mm、厚度〇.15mm)係使用一微孔纖維 素硝酸鹽/醋酸鹽做為注射氣之流體路徑(孔隙度〇 7、孔徑 011微米)及微孔聚醚砜之流體接收條(lmm寬、9mm長且 1mm長之流體接收區域於中央位置,並向兩端延伸4mm, 厚度〇.15mm,孔徑0.25微米)。穩定流動狀態之壓力與施 加〇.〇3大氣壓/伏特之電壓呈線性增加。 注射器之規格: 為明確瞭解一注射器如何根據注射器設計之特徵而運 作,需考慮一模型注射器包含一注射器流體路徑先以毛細 机由流體施加端充滿至流出端。注射器流體路徑包含一長 L、流出端寬w、流體施加端寬w之梯形厚板,及一高乜之 多孔材料,其孔隙度Ψ,孔洞通道彎曲度τ及孔徑a。此處 有第一電極位於注射器之流體施加端〔或一流體超過流體 施加端但流體連接之)。此處有__第二電極與注射器之流體 40 - w) Lr\n{W I w)The board is die-cut. It covers the element U but does not cover its fluid application end 2, the gas deficiency: zone 14 or its outflow end 3) which covers the part of the element 12 (but not the fluid-receiving zone 13 or the adjacent zone 16). A polymeric film covering member is die cut from a thin layer and mounted over the opening of the second sealing member 11 to define a closed gas pocket 15 by the regions 3, 4, 13, 16 of the first drawing. . The final assembly step 'the flat composition of the slab is smashed for two minutes). The thickener 1 丨 归 会 会 会 ί Ϊ Ϊ Ϊ 之 之 之 之 之 之 之 之 之 之 Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ The seal is as shown in the section _ C, as shown in the sectional view. The ί = various configurations are shown in the first and second figures, and the available modes are as follows. The connection to the fluid circuit is directed to the connector. The fluid is aspirated by a syringe to electrolyze: 1. Two syringes of different construction (sinus with the syringe of the second figure) are supplied for exploration. Operating characteristics for special needs: ι. When the fluid is added/injected, it must have the following fibrogenic colony #(10) body's need to be filled from the dry state into a regenerative ft capillary; 2 #无丹过过出端; 3 When electric power is applied to the integrated electrolysis, when the fluid flow rate exceeds the basin flow, the regenerable fluid will be studied for its composition: material surface treatment, fluid path element loyalty from porosity and pore size. 34 1356164 June 08, 100, with the shape and size of the Republic of China. We studied the integrated electrode and its contact area and contact area. We studied the chamber and its pore size, gas gap size, and exhaust structure. When the pump is in operation, the above design parameters are the effect of the initial capillary fluid filling rate. The first step of the flow-stopping effect of the outflow end of the pump component and the characteristics of the electro-osmotic pumping according to the fluid resistance of the component are all discussed. Experiment 1: Injecting the exhaust duct This example was constructed to study the suction characteristics of the injector without fluid injection, the exhaust path at the outflow end, and no other fluid receiving elements. This configuration is shown in Figure 2E, when the syringe is initially pumped by first adding an aqueous fluid to the fluid application end of the initially dry syringe. Next, a voltage is applied between the integrated electrodes, and the flow rate can be known by measuring the length of the fluid in the exhaust conduit at different times and the cross-sectional area of the region. Thereby, electro-osmotic mobility (EMM) can be obtained. Preferably, the fluid of the syringe contains a low conductivity aqueous solution: a concentration of about 2 m Torr (mmol concentration) is preferred, and 10 mM (mole concentration) is the upper end of the range of application. A microporous cellulose nitrate/acetate (Millipore MF membrane GSWP) has a fluid path with a porosity of 0.75 and a pore radius of 0.11 micron as a syringe. There is an integrated positive electrode ground electrode in contact with the fluid application end of the injector and a microporous fluid path that integrates the negative electrode to the injector. A typical injection fluid is a 2 mM aqueous buffer comprising N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid (HEPES) or dihydroxydiethylamine (DEA) buffer. At a fixed voltage of 0-60 volts, the pumping rate is maintained at around 100 seconds. No visible bubbles are formed here in the fluid stream. The effect of pH is maintained between pH > pH > pH > In higher concentrations of electrolyte, the pumping speed is reduced. About 10 mM or more 35 1356164 The Republic of China, June 8, 100 The concentration of the solution will cause the syringe to draw too much current and cannot operate at the voltage rise because the cathode will release bubbles into the fluid. The concentration of the syringe electrolyte affects the pump in two ways. As the concentration increases, the ionic strength also increases and the Debye screening length decreases. This will reduce the interface potential and form a conventional EOM. In addition, a higher electrolyte concentration results in higher electrical conduction of the injected fluid. As a result, when a certain pump voltage is applied, a higher current pull causes a larger electrode polarity. When the electrodes are polarized, most of the voltage will pass through the electrodes and a few will pass through the microporous fluid path components, resulting in a lower pumping rate. The addition of redox molecules to the injection fluid reduces the polarization of the electrode, but limits the generality of the pump as it interferes with the biochemical reaction of the downstream microreactor. When the syringe is operated with the gold electrode and the syringe fluid contains less than 1 mM buffer electrode solution and no oxidizing agent is added, there is no significant electrode polarization. The syringe is filled with syringe fluid: the initially dried microporous fluid path element of a syringe is filled and the field syringe *IL body is added to the fluid application end of the syringe. The fluid acts as a capillary = ~ to fill the S-element to its outflow end. A preferred fluid path material is a microporous cellulose nitrate/acetate having a micron pore size and a 5 mm long syringe loading time of about 5 sec. Position of the integrated electrode: ^ In general, it can be implemented regardless of whether the positive electrode is close to the fluid application end. A preferred embodiment is when the positive electrode is immersed in the outer side of the fluid in the microporous path of the syringe beyond its application end but in electrical contact therewith. The position of the cathode electrode can be anywhere between the fluid path of the micropore of the syringe and the length of the outflow end, but 36 1356164 is preferably located at about half to three quarters of the length from the outflow end. This configuration leaves a zero field area over the negative electrode at the outflow end for the possible location of the dry reagent. When the negative electrode is too close to the positive electrode of the fluid application end, the current will be too high to limit the operation of the device at low voltage and low pumping rate. The typical electrode contact area is 0.5 x 5 mm at the positive pole and 0.5 x 1 mm wide at the negative electrode. Fluid path shape and size: _________长_友整_1|揭____1_1射_器_流_体盖„径_均_灰探封_范_围丄二_典——型形流路元件元件A cellulose nitrate/acetate having a length of about 4.25 mm, a width of 1 mm, and a thickness of 150 μm, having a porosity of 0.7 and a pore diameter of 0.11 μm. A syringe is constituted by the fluid path, the positive electrode of which exceeds the fluid application end, and the negative electrode thereof The fluid application end is about 3 mm (1-25 mm from the outflow end) and operates with 2 mM DEA as the injection. The pumping speed is 0.5 nanoliters per second per volt, which is linear at the applied voltage. At an operating voltage of 40 volts The pumping speed is 20 nanoliters per second. A typical trapezoidal fluid path is about 4.25 mm long, 4 mm wide at the fluid application force σ end, and 1 to 1.5 mm wide at the outflow end. When using the same electrode position with a syringe When the fluid draw rate is operating, it is linear with the voltage at a rate of 1.1 nanoliters per second per volt. The pumping rate is 45 nanoliters per second at an operating voltage of 40 volts. We prefer to use trapezoidal syringes because It has a higher suction speed, but its outflow end with a rectangular syringe Geometrically the same. The size of the outflow end is limited by the size of the fluid receiving element. Fluid path material and surface treatment: Millipore MF membrane GSWP has a 0.11 mm aperture when using a 2 mM DEA syringe Fluid 37 1356164 The Republic of China 100 June 06 曰 'It has a higher and more consistent EOM of about 2_5 X 108 m2 / volt · sec. This is a trapezoidal (rectangular) syringe 1.1 (0.5) nanoliter / sec / volt Consistent. Other research materials have lower or zero EOM. A surface pretreated low EOM material, such as first brewed in an anionic surfactant such as ammonium dodecylsulfonate, and then borrowed Drying can introduce surface charge and enhance EOM. However, it is better to avoid this type of treatment, because the surfactant will be discharged into the injection fluid and enter the fluid to join the children and fluid current, which may biochemical reaction to the position. There are adverse effects here. The luciferase enzymes should be specially/intended later. Since the cellulose nitrate/acetate used above has no surface modification, it is suitable. Used in the syringe fluid path. Experiment 2: Injection into a closed chamber syringe containing a closed plenum at its outflow end, but no other fluid receiving elements were constructed to investigate the suction characteristics of an infinite amount of fluid loaded syringe. First, the syringe is filled with a water-like fluid to the fluid application end that is initially the dry syringe. A voltage is then applied between the integrated electrodes. The fluid will flow from the injector to the initial volume V1 and the flow rate is atmospheric. Replaced by closed pipes. When the fluid fills the chamber, the air is compressed until the steady state fluid stops. The new air volume is V2 less than VI. Finally, the pressure at which the fluid can be stopped can be calculated from Bohr's law P2 = V1/V2. - Microporous fiber dirate/salt with G.11 micron is used. Pore size of the micropore of the syringe: Trapezoidal syringe of microporous cellulose nitrate/acetate (into the end 38 丄 164 BC, June 4, 2010, see 4mm, the outflow end is 1.5mm wide, the length is 4.25mm, the thickness is 0.15 mm) Porosity 0.75 to 0.85 'The pore size is in the range of 〇u to 25 μm. The injector device is located at the outflow end of the enclosed plenum. The voltage of the stop fluid can be measured from 〇 to j 〇〇 volts. The pressure and voltage of the stopped fluid increase almost linearly. Small pore materials require a larger back pressure to stop the fluid than large pore materials. - A syringe with a pore size of 0. U micron is resistant to back pressure at Q17 atmospheric pressure per volt. The typical operating voltage is 4 volts, and the rabbit 1 is stopped. The back pressure of the injection fluid is 〇_〇 1 atmosphere. When the typical operating voltage is 40 volts, the back pressure of the fluid is stopped at 0.4 atmospheres. Sealing the syringe: The quality around the sealed syringe is important to achieve a better flow rate. Disadvantageously sealing the gas passage around the fluid path of the syringe. When the osmotic suction is taken, the result of the difference in the coating force between the outflow end of the syringe and the fluid application end will be less stable and lower than that produced by the channel (4)1. The expected rate of electroosmotic suction. Experiment 3: Injecting a fluid-receiving element into a closed gas chamber in order to investigate the pumping properties of the syringe with a fluid-resistant syringe and a closed gas to the fluid-receiving element; and a fluid-receiving strip element connected to the flow position . Rectangular and trapezoidal notes Two whites are exploring #围. The various steps of the structure of the syringe and the fluid-receiving element, such as the second syringe of this configuration, are shown in Figure 3A. The first fluid is added to the fluid application end of the initial drying strip (Fig.). 4 The drying strip is filled with the first __ fluid due to the side capillary flow (the third injection of the initial first syringe is injected - aqueous fluid (2n 39 1356164 Republic of China 100) From June 8th, DE8th DEA solution) to its fluid application end (third c diagram). The syringe is filled to the outflow end due to capillary flow (third D diagram). A voltage is applied between the integrated electrodes. The outflow end of the syringe is replaced by a closed plenum having a starting volume V1 and P1 = 1 atmosphere. When the fluid fills the plenum, the air enclosing the plenum is compressed until a steady state when compression is stopped (Fig. EE). In steady state, fluid will flow along both ends of the fluid-receiving strip (fluid flow to areas 105 and 106 of the second map), as shown in Figure 3. The volume of air in the newly created chamber is V2 less than VI. The steady state pressure can be calculated by Bohr's law as P2 = V1/V2. After the fluid injection step, the voltage is turned on and the gas in the gas chamber is compressed and returned to the original position at the outflow end of the syringe, and the fluid and fluid are injected. Receiving end Fluid isolation (third G diagram). One of the trapezoidal syringes shown in Figure 4 (inlet width 4 mm, outflow end 1.5 mm wide, length 4.25 mm, thickness 〇.15 mm) uses a microporous cellulose nitrate/acetate As the fluid path of the injection gas (porosity 〇7, aperture 011 μm) and the fluid receiving strip of the microporous polyethersulfone (the fluid receiving area of 1 mm wide, 9 mm long and 1 mm long is at the center position, and extends 4 mm to both ends). , thickness 〇.15mm, aperture 0.25μm). The pressure of the steady flow state increases linearly with the voltage of 〇3〇/pressure. The specification of the syringe: In order to clearly understand how a syringe operates according to the characteristics of the syringe design, Consider a model syringe comprising a syringe fluid path first filled with a capillary machine from the fluid application end to the outflow end. The syringe fluid path comprises a length L, an outflow end width w, a fluid application end width w of a trapezoidal thick plate, and a sorghum Porous material, porosity Ψ, porosity channel curvature τ and aperture a. Here the first electrode is located at the fluid application end of the syringe [or a fluid that exceeds the fluid application end but the fluid Take it). Here there is __Second electrode and syringe fluid 40 - w) Lr\n{W I w)
民國100年06月.08日 路徑之入口距離〗及有一區域,其於零場區流出端之長度為 L-I零場區。一流體黏度為η ,其流動速率q如下所示· Q = 方程式1 簡化成方程式2用於一寬度為w之長方形 薄板On the date of June, 2008, the Republic of China, the entrance distance of the path and an area, the length of the outflow end of the zero field area is the L-I zero field area. A fluid viscosity is η, and its flow rate q is as follows. Q = Equation 1 is simplified into Equation 2 for a rectangular sheet of width w.
Q \fhw Lt VMeo 方程式2 當ν為電壓施於該長度ί而^。為電渗透遷移率(ε陶 時,第一項為電滲透流體。當沿著該薄板長度有一壓力差 ρ時(正ρ為-背廢可致使流體往相反方向致電渗透流體), 第二項為給予壓力驅動流體。電滲透流體速度依照 長L而非電極分隔,但在提供之電壓下,幫浦所拉引之電 會隨者I減少而增加。 抽吸速率: 第五圖係顯示第四圖結構與大小之梯形注 形注射接收元件統-的幫浦數據。流體逮度與電壓益注^ (排氣操作)之關係顯示三角形數據點。停止流體之壓力與 無限量加入(封閉流出氣室)之關係顯示菱形數據點。注射 流體之壓力與電壓之關係顯示方形數據點。注射器忸之流 1356164 民國100年06月08日 體傳導性與流體接收元件GL之流體傳導性可以方程式3與 4分別計算之。這些方程式由微分梯形注射器與長方形注入 之方程式1與2而獲得。 「_dQ _ i^i(W -w)a2 ............方程式 3 方程式4 dQ _ {fAiwa1 dP StjLt 由這些方程式與已知之孔隙度、孔徑與元件之尺寸, 如第四圖所示,一注射器之傳導率為-6.4 nanoliters /second / atmosphere 而總載入之傳導率為 27 nanoliters /second / atmosphere。這些被計算之吸取與载入之傳導率的數據線 顯示於第五圖。注射器之流體等效電路(equivalent circuit) 與流體接收元件顯示於第四圖。由第五圖圖表所示,當連 接於注射器經由任何接收流體元件並知道其流動傳導率時 即可得知注入速度。於預定壓力下,填充時之傳導率線與 注射器傳導率線之交又點係指氣室中驅動流體經過接收元 件之氣體壓力與液體流經該元件之速度。流經一載入體之 速度可由最大抽吸速率於零載入時(排出運作時)乘以 GL/(GL+GI)來計算。當注射器之傳導率遠小於流體接收元 件之傳導率時(包含流體電路連接於此之傳導率), G1«GL,該注射器之抽吸速率將接近注射器於零載入時 (排出運作時)之最大抽吸速率,且抽吸速率係與流體接收 元件及流體電流連接於此之載入傳導率無關,且特別重要 的是本例中於注射運作間或由裝置至裝置間,載入之傳導 42 1356164 民國100年06月08日 率會改變。本發明中較佳之電流應該被設計來以類似於此 之狀態下操作。為達到此注射器傳導率之狀態,GI必須藉 由選擇較小扎徑材料(方程式3之中的a)縮小,而接收元件 與流體電流連接於此則需較大孔徑。 進一步闡明第四圖裝置與其等效電路。無載入之最大 抽吸速率由已載入之速率減掉一因子27/(27+6.4)=0.81而 得。假設接收流體元件剛開始被一黏滯度於0.001<η <0」〇92Pa.s筢圍_間―之槔本巍韓= 時,此一扳 收元件之傳導率為 27 nanoliters /second / atmosphere,而 當 η=0.002 其為 13.5 nanoliters/second/atmosphere 。如果 接收元件一開始充滿一樣本其黏度η = 0. 002,而接收一注入 流體其η = 0.001,當黏滯力高之流體為黏滯力較低之流體所 取代時,抽吸速率會由0.68增加到其最大速度0.81。抽吸 速率同樣會隨著不同機器間施以不同黏滯度之流體而改 變。一裝置的不同載入抽吸速率之再現性將由特殊診斷試 驗之需.求決定,但典型一注射器連接至一接收元件其最初 含有一樣本流體,則該注射器之傳導率應少於接收元件傳 導率的0.05»GI=0.05GL時抽吸速率為於排氣過程中最大 抽吸速率之95% ,且在載入傳導率改變時仍維持不變。第 四圖之注射器其GI=6.4時,較佳最小載入傳導率為128, 典型運作電壓為40伏特時,流速為44nL/sec。氣室中的驅 動流體經過填載時之壓力為0.34大氣壓。 在本裝置之診斷應用,一有用注射器抽吸速度由充滿 一流體接收元件所需時間決定,尤其是流體元件之尺寸, 而充滿流體接收元件所需時間由一特殊試驗所需時間決 定。一典型流體接收元件之尺寸為10mm長、1 mm寬、 43 1356164 民國100年06月08日 0.15mm高、孔隙度〇7,容積約為1〇〇〇nL。一代表性 之抽吸速度即充滿典魏體接收元件所需時間約為5〇秒或 更夕L有二之抽吸速度至少20nL/s。短路徑幫浦(L<3mm: 可以低電壓(V<12伙特)操作此規格。較長路徑長度 (3mm<L<6mm)需要較大電壓(12<v<25伏特)。更長路俨長 度(6mm<L<12mm)需要更大電壓(26<V<5〇伏特)。‘寬二幫、 浦將以較高流速運送,但如果㈣㈣端之尺寸被流體接 收端之尺寸所限制,職理想之高速^·浦為梯形的,即流 體施加端較寬,流出端較窄。Q \fhw Lt VMeo Equation 2 When ν is the voltage applied to the length ί and ^. For electroosmotic mobility (the first term is an electroosmotic fluid. When there is a pressure difference ρ along the length of the sheet (positive ρ is - back waste can cause the fluid to call the osmotic fluid in the opposite direction), the second term In order to give pressure to drive the fluid, the velocity of the electroosmotic fluid is separated by the length L instead of the electrode, but at the voltage supplied, the power drawn by the pump increases with the decrease of the I. The pumping rate: The fifth figure shows the The four-characteristic structure and size of the trapezoidal injection-injection-receiving component system--the pump data. The relationship between the fluid catch and the voltage benefit ^ (exhaust operation) shows the triangle data point. Stop the pressure of the fluid and add infinitely (closed outflow The relationship between the gas chambers shows the diamond data points. The relationship between the pressure and the voltage of the injected fluid shows a square data point. The flow of the syringe is 1356164. The fluid conductivity of the body conduction and fluid receiving element GL can be Equation 3 Calculated separately from 4. These equations are obtained from differential trapezoidal injectors and rectangular injection equations 1 and 2. "_dQ _ i^i(W -w)a2 ............ Equation 3 Equation 4 dQ _ {fAiwa1 dP StjLt consists of these equations with known porosity, pore size and component dimensions. As shown in the fourth figure, the conductivity of a syringe is -6.4 nanoliters / second / atmosphere and the total loading conductivity is 27 nanoliters / second / The data lines of the calculated conductivity of the extracted and loaded are shown in the fifth figure. The fluid equivalent circuit and the fluid receiving element of the injector are shown in the fourth figure. The injection velocity is known when connected to the syringe via any receiving fluid element and knowing its flow conductivity. At a predetermined pressure, the intersection of the conductivity line at the time of filling and the conductivity line of the syringe is referred to as the driving fluid in the chamber. The velocity of the gas passing through the receiving element and the velocity at which the liquid flows through the element. The speed of flow through a loading body can be calculated by multiplying the maximum pumping rate at zero loading (during the discharge operation) by GL/(GL+GI). When the conductivity of the syringe is much smaller than the conductivity of the fluid receiving element (including the conductivity of the fluid circuit connected thereto), G1 « GL, the suction rate of the syringe will be connected The maximum pumping rate of the syringe at zero loading (during operation), and the pumping rate is independent of the loading conductivity at which the fluid receiving element and fluid current are connected, and it is particularly important that the injection operation is performed in this example. Between the device and the device, the conduction of the load 42 1356164 The rate of the Republic of China on June 08 will change. The preferred current in the present invention should be designed to operate in a state similar to this. To achieve this syringe conductivity In the state, the GI must be reduced by selecting a smaller diameter material (a in Equation 3), and a larger aperture is required for the receiving element to be connected to the fluid current. The fourth diagram device and its equivalent circuit are further clarified. The maximum pumping rate without loading is subtracted from the loaded rate by a factor of 27/(27 + 6.4) = 0.81. Assuming that the receiving fluid element is initially subjected to a viscosity of 0.001 < η < 0 〇 92 Pa.s _ 间 间 间 巍 = = = = = , , , , , = = = = = 27 27 27 27 27 27 27 27 27 27 / atmosphere, and when η = 0.002 it is 13.5 nanoliters/second/atmosphere. If the receiving element is initially filled with its viscosity η = 0.0002 and receives an injected fluid with η = 0.001, when the fluid with high viscous force is replaced by a fluid with low viscous force, the pumping rate will be 0.68 is increased to its maximum speed of 0.81. The pumping rate will also change with different viscosities of fluids between the machines. The reproducibility of the different loading aspiration rates of a device will be determined by the needs of a particular diagnostic test, but typically a syringe is connected to a receiving element that initially contains the same fluid, and the conductivity of the injector should be less than the conduction of the receiving component. At a rate of 0.05»GI=0.05 GL, the pumping rate is 95% of the maximum pumping rate during venting and remains constant as the loading conductivity changes. The syringe of Figure 4 has a preferred minimum loading conductivity of 128 when GI = 6.4 and a flow rate of 44 nL/sec at a typical operating voltage of 40 volts. The driving fluid in the gas chamber was loaded with a pressure of 0.34 atm. In diagnostic applications of the device, a useful syringe suction rate is determined by the time required to fill a fluid-receiving element, particularly the size of the fluid element, and the time required to fill the fluid-receiving element is determined by the time required for a particular test. A typical fluid receiving element is 10 mm long, 1 mm wide, and 43 1356164. It is 0.15 mm high, with a porosity of 〇7 and a volume of about 1 〇〇〇 nL. A representative pumping speed, i.e., the time required to fill the receiving element, is about 5 sec. or even more than 20 lb/s. Short path pump (L<3mm: This specification can be operated with low voltage (V<12 lbs). Longer path length (3mm <L<6mm) requires a larger voltage (12 < v < 25 volts). The 俨 length (6mm < L < 12mm) requires a larger voltage (26 < V < 5 volts volts). 'Wide gangs, Pu will be transported at a higher flow rate, but if the size of the (4) (four) end is limited by the size of the fluid receiving end The ideal high speed ^·Pu is trapezoidal, that is, the fluid application end is wider and the outflow end is narrower.
洩漏率:Leakage rate:
本發明之-注射器之特色在於其有兩種狀態:當益幫 浦動力施加時為停機狀態及當幫浦動力施加於整合電極時 為開機狀態。最初停機狀態中’注射器藉由流出端之空氣 缺口與其他流體元件分離。於理想之開機狀態時,流體會 流過注射器之流出端。於理想之開機狀態,流體流速必須 只視施加之幫浦電力而定,而非注射器所連接之流體接收 凡件之流體阻力,亦非一般操作幫浦時注射器之進入端與 流出端之間的壓力差。抽吸後於理想中休機狀態,必須無 進一步洩漏流進出於注射器,如此下游流體元件例如微反 應器的位置於休機狀態是穩定的。 注射器於休機狀態之洩漏率的量決定注射器使用前該 裝置使用流體電路期間,注射器之空氣缺口隔離之效率, 以及注射器抽吸之後流體位置之穩定性。空氣缺口隔絕有 疋尺寸,因此在注射器為停機狀態時(該注射器需要與附 近流體接收元件隔離),流體總量可能會經由注射器之流出 端漏進或漏出,則流體總量並不足以使一流體橫斷空氣缺 44 1356164 民國100年06月08日 口隔絕裝置(並與附近之流體元件接觸)。當由一大體積空 氣缺口隔絕一相當容易逸漏之幫浦時,會造成當操作注射 器於開機狀癌時需要更多時間填滿一大空氣缺口體積之負 面結果。/主射器戌漏速率由該注射器之流體阻力與注射 器於休機狀態時,也許因正常操作與注射器組合之流體電 流所產生的壓力差所決定的。一壓力差也許在流體流經附 近的流體元件時產生(典型為高於周遭壓力約1〇〇〇〇 pascal 一或Α1-Λ-氣^1^當二笙射器見接至流I接1元1其i由 之流體驅動,例如鄰近之注射器),或當有一毛細燈芯作用 之力量因與注射器流體及流出端之活化表面作用時(較小, 通常為 lOOPascal)。 使用本發明之一診斷裝置包含一注射器時,注射器一 開始充滿流體(此時被隔離)之後,典型所需一段時間為 200秒但有時㈣5〇〇秒。此段時間,當注射器之流速為其 休止狀態之茂漏流速時,則需要注射器之流出端的隔離區 域未被填滿。更進一步,於接下來之抽吸過程中,當注射 器為開,狀態時,隔離區域可只需幾秒或更少時間就被電 滲透之机體注入相鄰流體接收元件所橫斷。丫列如假設需要 於約50秒或更短時間内注射1〇〇〇此流體進入一血型大小之 f體接收元件時,其典型抽吸速率為2〇nL/Se/,、並且當空 口約為流體接收元件體積的10%時(亦為典型值), I氣缺σ於開機狀態需五秒橫斷。因此’對一有用之注 射器’開機狀態流量與關機狀態茂漏流量之 200/5=40 ® „ 、戎更大,但彔少亦應超過20。在多數案例中,如 泣:離時間間隔較長,開機狀態流量與關機狀態沒漏 抓里t例會較大。例如一则秒隔離時間(注射器之一流 45 1356164 民國100年06月08曰 體注射步驟之前的一於微反應器之延伸捕捉步驟所需時間) 同樣流體接收元件與空氣缺口隔絕之幾何結構下,流速與 洩漏速度之比例必須為1〇〇。抽吸之後停機狀態之滲漏亦可 以同樣方法決定。若流體接收元件之流體體積在開機狀態 下於50秒填滿,其必須相較於關機狀態下一 2〇〇秒的培養 步驟具有超過10%的穩定性’流速對滲漏速度比值需為 40。若欲達5%之穩定度則該比值需為8〇。综合上述,本 發明之一注射器需有一流體與滲漏率比值至少2〇才可使 用,一般應用約為40,100為一最大的案例。 開機與休機之流體比例由方程式1可導出如下: _£_ + 1=8^The syringe of the present invention is characterized in that it has two states: when the power is applied, it is in a stopped state and when the pump power is applied to the integrated electrode, it is turned on. In the initial shutdown state, the syringe is separated from other fluid components by the air gap at the outflow end. In the ideal on state, fluid will flow through the outflow end of the syringe. In the ideal power-on state, the fluid flow rate must be determined only by the applied power of the pump. The fluid connected to the non-injector receives the fluid resistance of the workpiece, and is not between the inlet and the outlet of the syringe when the pump is normally operated. Pressure difference. After the suction is in an ideal state of rest, no further leakage must flow into the syringe, so that the position of the downstream fluid element, such as the microreactor, is stable in the off state. The amount of leakage rate of the syringe in the rest state determines the efficiency of the air gap isolation of the syringe during use of the fluid circuit by the device prior to use of the syringe, and the stability of the fluid position after syringe suction. The air gap is isolated from the size of the crucible so that when the syringe is in a shutdown state (the injector needs to be isolated from nearby fluid receiving elements), the total amount of fluid may leak or leak through the outflow end of the syringe, and the total amount of fluid is not sufficient to Fluid cross-sectional air shortage 44 1356164 The National Insulation Device of June 8, 100 (and contact with nearby fluid components). When a pump that is relatively easy to escape is isolated by a large volume of air gap, it will result in more time to fill a large air gap volume when operating the syringe in the on-state cancer. The rate of leakage of the main emitter is determined by the difference in pressure between the fluid resistance of the syringe and the fluid flow of the syringe in the off-state of the syringe. A pressure differential may occur as the fluid flows through nearby fluid components (typically about 1 〇〇〇〇 pascal or more than 1 〇〇〇〇 scal 气 气 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当Element 1 is driven by fluid, such as an adjacent syringe, or when a capillary wick acts as a force with the syringe fluid and the activating surface of the outflow end (smaller, typically 100 Pascal). When a diagnostic device of the present invention comprises a syringe, the syringe is initially filled with fluid (which is now isolated), typically for a period of 200 seconds but sometimes (four) 5 seconds. During this time, when the flow rate of the syringe is the leak rate of the resting state, the isolated area of the outflow end of the syringe is not filled. Further, during the subsequent aspiration process, when the injector is in the open state, the isolation region can be injected into the adjacent fluid-receiving member by the electro-permeable body in a matter of seconds or less. If the column needs to be injected into a blood-sized f-body receiving element in about 50 seconds or less, the typical pumping rate is 2〇nL/Se/, and when the air is about For 10% of the volume of the fluid receiving component (also typical), the I gas deficiency σ takes five seconds to traverse in the power-on state. Therefore, for a useful syringe, the power-on flow rate and the shutdown state of the leakage flow are 200/5=40 ® „, 戎 is larger, but the reduction should also exceed 20. In most cases, such as weeping: from the time interval Long, the state of the power-on state and the state of the power-off state are not leaky. For example, a second isolation time (one syringe flow 45 1356164, the Republic of China 100 years, June 08, the first step of the micro-reactor capture step Time required) In the same geometry where the fluid receiving element is isolated from the air gap, the flow rate to the leak rate must be 1 〇〇. The leakage of the shutdown state after suction can also be determined in the same way. If the fluid volume of the fluid receiving element Filled in the on state for 50 seconds, it must have more than 10% stability compared to the shutdown state of the next 2 sec. The flow rate to leakage rate ratio needs to be 40. If you want to reach 5% For stability, the ratio needs to be 8 〇. In summary, one of the syringes of the present invention needs to have a ratio of fluid to leakage ratio of at least 2 〇, and the general application is about 40,100 is the largest case. Proportion of fluid power to the machine off by Equation 1 can be derived as follows: _ £ _ + 1 = 8 ^
Qy=〇 Pa2 ....................方程式5 β亥比例與微孔注射器流體路徑元件之孔經3 =操:幫浦電壓V之壓差p有關。當注射器連接至流 :接收:件之排氣室時,注射器之渗漏速率為1〇 虽注射器連接至流體接收 侧〇Pa((M大氣壓), 1之封閉耽至時則為 體。下表顯示我們丄支持壓力驅動之流 體速度比例於典型操作為\Q 主要孔徑與未達到一流 湖時之壓力列表如下:為之細作電壓以及於該比例為 46 1356164 民國100年06月08曰 < Pa.s 0.001 <eo m2 / V .s 2E-08 P = 100 V volts 1 5 9 12 40 100 20,000 50,000 Q/Qv=〇 = 40 <3 <m 0.20 0.45 0.60 0.69 1.3 2.0 28 45 Q/Qv=〇 = 100 0.13 0.28 0.38 0.44 0.8 1.3 18* 28 P = 10000 V volts 1 5 9 12 40 100 20,000 50,000 Q/Q v=〇 = 40 <a <m 0.02 0.04 0.06 0.07 0.13 0.20 2.8 4.5 Q/Q v=〇 =100 0.01 0.03 0.04 0.04 0.08 0.13 1.8 2.8 該表顯示一注射器具有一排出流出物,使用EOM= 2 X 1(T8 m2/volt-second 之材質與一黏滯度為 0.001 Pascal-seconds之水狀注射液操作,當特別操作於一開機與 休機流體比例為40(100)且須對抗一 lOOPascal壓差,必須 有一孔徑小於2.0(1.3)微米於小於100伏特之較低電壓操 作,較佳為12伏特電池操作小於0.7(0.4)微米,若於5伏特 操作則以0.4(0.3)微米較佳。一具有封閉氣室於流出端之注 射器經歷1〇,〇〇〇 Pascals之壓差且於一般40伏特下操作需要 一具0.13微米或更小之孔徑之材質。 本發明之注射器所需之小孔徑不會使用在標準側流診 斷裝置也不會用於實驗室晶片(Lab-on-a-ch ip)技術中電 滲透幫浦之開放路徑構造微孔材料。一由28毫米半徑之開 放路徑所構成之注射器,典型使用在建置於傳統實驗室晶 片(Lab-on-a-chip)技術之微流體裝置,需操作20,000伏 特以達到典型所需流體速度比例40,若為50,000伏特可達 100。因此習知實驗室晶片之標準開放路徑幫浦由於容易影 響休機狀態之滲漏流體,不能藉由目前發明中所述之空氣 47 1356164 民國100年06月08日 缺口之被動的閥門調節工具來控制,因此需使用主動關閉 - 裝置。 實驗室數據一般來說支持上方所表示之模組計算。由 小孔徑注射材料之滲漏非常少。關機狀態中注射器之隔絕 效果若其孔徑大於若干微米是較不佳的,尤其是當氣室表 面接近注射器之流出端為活化的或是有表面活性劑於注射 流體中。 由整合儲存槽裝填流體至注射器 • 本發明之流體組成元件包含具整合電極之注射器及與 其連接之流體電路,係可整合至塑膠讀卡機其亦包含一含 有填載注射器流體之整合密封流體儲存槽。具有流體組件 與整合流體儲存槽之讀卡機包含單一步驟裝置,其具試驗 所需之所有流體於一單一整合單元。本發明中之該流體組 件可被建置於一標準印刷電路板基材上,如第一圖至第四 圖所示。本例中整合電之電氣接觸位置至外部接觸工具與 流體同於組件基材之同一邊。流體組件也可以被建構於雙 邊收縮電路基材上,該基材具有穿過基材的電氣連接過孔 籲 (through-substrate electrical connection vias ),因此流體電 路可以被建構在收縮基材之上表面,而接觸區域至外部接 觸工具位於較低表面。當將一信用卡尺寸之卡片外殼加入 流體元件時為較佳結構,如第六圖與第六A圖所示。 第六圖之裝置為一具有流體元件與一密封流體儲存槽 嵌入其中之信用卡大小之診斷卡之俯視圖。第六A圖顯示 由第六圖之AA’與BB’切面之側面圖。流體元件具有相同流 體構造如第二S圖所示,除了注射器為梯形而整合電極經 48 1356164 民國100年06月08日 由基材連接至另一側之基材外部之接觸工具。診斷卡包含 一塑膠卡片外殼601。該外殼具有一流體儲存凹槽604,其 上方與下方有一塗上鋁箔之聚乙烯薄片。該凹槽含有一低 傳導率之水狀缓衝液。儲存槽流體由融合塗上鋁線之聚乙 烯密封住。該卡片外殼亦包含一飲水槽603其具有一進入 端於閥門工具606與一具有氣孔613之流出端605。卡片外 殼更進一步包含一空洞602可容納流體模組600。 _ 流蒐模鬼6_00_包_含_一_環氧金_屬_#_021之_模_想基材其兩_側 皆進行金鍍銅之金屬化反應。模組之基材上方流體端,金 屬已形成整合電滲透抽吸電極623與624,624A,624B用 於與注射器接觸。下方金屬形成襯墊621與622, 622A, 622B用於與外部電子接觸工具接觸。此處有四個鍍金屬的 洞(其中兩個為625,626顯示於第六A圖),經由環氧基質 將上方電極電器連接至下方襯墊。環氧基模組與電極由習 知之標準收縮迴圈電路技術製程。此處有一第一密封工具 627為一膜切附著元件位於環氧基模組上方表面。元件627 覆蓋模組表面但不包括623,624,624A與624B該處整合 電極與注射器之流體元件接觸。此處有一微孔條元件629 於第一密封層之上。元件629具有一樣本施加端640以及一 已知流體填充體積之流體蒐集元件641於流出端。此處亦 有三個微孔注射器路徑元件628,628A及628B,其流出端 與條狀元件629被元件629全長中之三個流體接收位置的氣 體缺口分開。注射途徑元件為梯形具有一寬的流體施加端 以及窄的流體流出端。一第二密封元件630覆蓋微孔流體 元件但不含流體施加端與流出端,亦排除氣室包括氣體缺 口與注射器的流出端之流體接收區域629。一周圍密封形成 49 1356164 民國100年06月08日 於微孔元件周圍,當密封元件627與630壓縮於其周圍時。 最後裝配中,流體模組600被插入外殼孔洞620並密封 之。卡片進一步被密封在上方膜切薄板610與一下方膜切 薄板611。此一步驟十,外殼元件圍住流體模組上之注射器 流出端之氣室並圍住塑膠卡中的鑄造之飲水槽603形成一 流體路徑。 當使用一樣本流體加入元件629之樣本施加端640且其 沿著條狀物經過捕捉區域660並進入流體蒐集元件641。樣 本流體中之一欲分析物於捕捉區域被捕捉。接下來,該卡 片插入設備工具之卡片孔洞。該卡片孔洞具有一平面表 面,包含一厚板其具有一元件與一卡片下端咬合。當卡片 插入,卡片下方表面與卡片插入孔洞之厚板表面平行並分 開。該厚板有一嵌入裝有彈簧之電子接觸靠近模組之電子 接觸墊以及兩個升高的區域靠近卡片之流體儲存槽604與 閥門606,當卡片插入卡片之孔洞時。於孔洞中,卡片接下 來會被帶至與厚板接觸。裝有彈簀之接觸電子元件現在與 模組之電子接觸襯墊接觸。第一厚板升高與卡片於位置650 接觸並將塞子606經由卡片外罩之孔洞607推出,藉此分離 位置608之頂端薄片密封。第二厚板上升與位置651之卡片 接觸,壓低流體儲存槽並經由分離密封區域608以取代流 體進入路徑603。流體被取代進入路徑之流體充滿區域 603A之流出端605。區域603A係為注射流體之施加區域。 該區域流體現在由流體施加端至流出端經由毛細燈芯現象 充滿注射器。注射器流出端之乾燥試劑藉由毛細填充溶 解。一儀器控制電壓施加於第一注射器電極624A相對於一 共同輔助電極621接觸流體施加區域603A,致使一含有一 50 1356164 民國100年06月08日 溶解的酵素標定結合物之第一流體被電滲透沿著包含經由 捕捉區域660至流出路徑670之條狀物629注入。一標定結 . 合物於660位置被欲分析物捕捉,藉此標定該捕捉複合 物。一第二儀器控制電壓施於第二注射電極624,致使一第 二流出液藉由電滲透沿著包含捕捉區之條狀物注入。該清 洗流體移除未多餘鍵結之結合物。一第三儀器控制電壓施 於第三注射器電極624B,使得一含有酵素基質之第三流體 藉*盖滲透」毛久氬括捕盖轉之條_狀_物。當基質為產生化學____________; 螢光者,基質與位置660之酵素標定產生一光線訊號可由 一光線偵測器測量,該偵測器靠近卡片的位置660,所偵測 <§ 之光線訊號與樣本中之欲分析物的濃度成正比。 實驗四:電滲透注射冷光素酶化學螢光試劑 本實驗中注射器之構造與第二Q圖所顯示相似,除了使 用排氣室以外。本裝置中,注射器為梯形元件其流出端孔 洞為1mm,而進入孔洞為4mm,全長4.25mm,厚度為 0.15mm,包含微孔纖維素硝酸鹽/醋酸鹽,孔隙度為0.7, 孔徑為0.11。此處有一排氣室具有一 1mm寬之通道於注射 器流出端,該注射器包含一 〇.5mm長氣體缺口將流出端與 第一流體接收元件分開。第一流體接收元件為一側流條, ® 其中央有流體接收區域、一樣本施加端以及流出端。此元 件為一 0.15mm厚、1mm寬、8mm長之微孔聚喊,其孔隙 度為0.7、孔徑為0.25微米。此處有一第二流體接收元件藉 由另一 0.5mm空氣缺口與第一個流體接收元件分開。第二 流體接收元件為一反應區域包含一聚醚襯墊〇.15mm厚,長 與寬2mm,充滿含有ATP、螢光素酶、鎂離子與缓衝液之 流體且可以為乾燥。試驗試劑由Sigma公司購得。 51 1356164 民國100年06月08曰 本裝置插入至設備工具之插入孔洞,一含有螢光素欲 試驗之A樣本流體被加入第一流體接收元件之流體接收 端,與一充滿包含2mM水狀DEA之注射器流體至注射器之 流體施加區域。該流體充滿兩元件至其流出端。當每一元 件中充滿流體,一儀器控制電壓(40伏特)施於一注射器之 整合電極而流體被抽出注射器之流出端(以 45 nanoliters/second速度)。於第一個注射步驟注射流體流一 段時間(約20秒)後足以流過第一體接收元件之流體接受區 域並覆蓋之。但不會到第二流體接收元件,此時注射器電 壓已經關掉。此時流體接收元件之流體接收區域的螢光素 會擴散至被注入流體與之接觸。於第二注射步驟施以一電 壓(40伏特)於注射器約20秒可使流體移動較遠,所以此時 可以位於超過第二流體接收元件之位置。此處有一於注射 流體内之螢光素與第二流體接收元件之螢光素酶反應產生 光線訊號,其被一接近第二流體接收元件之光線偵測器偵 測(5mm X 5mm面積之光二極體,其具有光電流每一安培放 大109伏特輸出;由EOS公司提供)。一組相同之診斷裝置 被使用於測試被緩衝液系列稀釋(serial dilution)之各種濃度 之螢光素樣本。本試驗反應中之螢光素之莫爾數由濃度乘 以注射器流體條之流體體積來獲得。 螢光素之莫爾數的劑量反應曲線與光線訊號在6 x10_14 to 6 X 1CT11 moles範圍呈線性,具有4mV之偵測器靈敏度 之偵測器輸出為微微莫爾(picomole)之螢光素。本示範實驗 被使用來決定兩步驟程序中之第二步驟偵測靈敏度。該兩 步驟試驗程序將使用一鹼基磷酸酶標定於一三明治試驗, 被標記欲分析物複合物形成於樣本流體條捕捉區,第一步 52 1356164 民國100年06月08日 步驟中之螢光素磷酸基質以電滲透方式注入捕捉區產生螢 光素。第二步驟中,螢光素被運送至第二流體接收元件, 於此處和螢光素酶反應產生可偵測之光線訊號。基於該偵 測器8微瓦之基線2SD的易變性,限制在2 X 1 〇_15莫爾以 上之登光素可被偵測。驗基墙酸酶標記由螢光素峨酸鹽產 生1000 moles/sec螢光素超過我們於標記後培養1〇〇秒時 預計之限制2x1〇—2Q莫爾。10微升之樣本流體含有一濃度Qy=〇Pa2 .................... Equation 5 β Hai ratio and the hole of the micropore injector fluid path component 3 = operation: differential pressure of the pump voltage V p related. When the syringe is connected to the flow: receiving: the exhaust chamber of the piece, the leakage rate of the syringe is 1 〇 although the syringe is connected to the fluid receiving side 〇Pa ((M atmospheric pressure), the closed 耽 of the body is the body. Shows that we support the pressure-driven fluid velocity ratio in the typical operation of the \Q main aperture and the pressure when not reaching the first-class lake is as follows: for the voltage and the ratio is 46 1356164 Republic of China 100 years June 08 曰 < Pa .s 0.001 <eo m2 / V .s 2E-08 P = 100 V volts 1 5 9 12 40 100 20,000 50,000 Q/Qv=〇= 40 <3 <m 0.20 0.45 0.60 0.69 1.3 2.0 28 45 Q/ Qv=〇=100 0.13 0.28 0.38 0.44 0.8 1.3 18* 28 P = 10000 V volts 1 5 9 12 40 100 20,000 50,000 Q/Q v=〇= 40 <a <m 0.02 0.04 0.06 0.07 0.13 0.20 2.8 4.5 Q /Q v=〇=100 0.01 0.03 0.04 0.04 0.08 0.13 1.8 2.8 This table shows a syringe with a discharge effluent using EOM= 2 X 1 (T8 m2/volt-second material with a viscosity of 0.001 Pascal- Second water injection operation, when the special operation is between a start-up and a suspension fluid ratio of 40 (100) and must fight one The lOOPascal differential pressure must have a lower voltage operation with a pore size less than 2.0 (1.3) microns and less than 100 volts, preferably less than 0.7 (0.4) microns for a 12 volt battery operation and 0.4 (0.3) microns for a 5 volt operation. Preferably, a syringe having a closed chamber at the outflow end undergoes a pressure difference of 1 〇, 〇〇〇 Pascals and operates at 40 volts in general requires a material having a pore size of 0.13 μm or less. The small aperture will not be used in standard lateral flow diagnostics and will not be used in lab-on-a-ch ip technology for the open-path construction of microporous materials in electroporation pumps. The path consists of a syringe, typically used in a microfluidic device built on Lab-on-a-chip technology, operating at 20,000 volts to achieve a typical required fluid velocity ratio of 40, at 50,000 volts. Up to 100. Therefore, the standard open-path pump of the conventional laboratory wafer is not able to pass the air described in the current invention due to the leakage fluid that easily affects the state of the suspension. The passive gap of the Republic of China on June 08, 100 Valving means to control, and therefore need to use actively closed - means. Laboratory data generally supports the module calculations indicated above. Very little leakage from small aperture injection materials. The isolation effect of the syringe in the off state is less preferred if the pore size is larger than a few microns, especially if the gas chamber surface is activated near the outflow end of the syringe or has a surfactant in the injection fluid. Loading Fluid from the Integrated Storage Tank to the Syringe • The fluid component of the present invention comprises a syringe with integrated electrodes and a fluid circuit coupled thereto, which can be integrated into a plastic card reader and also includes an integrated sealed fluid reservoir containing a fluid filled with a syringe groove. A card reader having a fluid assembly and an integrated fluid reservoir includes a single step device having all of the fluid required for testing in a single integrated unit. The fluid component of the present invention can be constructed on a standard printed circuit board substrate as shown in the first to fourth figures. In this example, the electrical contact position of the electrical is integrated to the same side of the external contact tool and fluid as the component substrate. The fluid assembly can also be constructed on a bilaterally contracted circuit substrate having through-substrate electrical connection vias through the substrate so that the fluid circuit can be constructed on the surface of the shrink substrate And the contact area to the external contact tool is located on the lower surface. A preferred structure is obtained when a credit card sized card housing is added to the fluid element, as shown in Figures 6 and 6A. The device of the sixth diagram is a top view of a credit card sized diagnostic card having a fluid element and a sealed fluid storage slot embedded therein. Figure 6A shows a side view of the AA' and BB' cut planes of the sixth figure. The fluid element has the same fluid configuration as shown in the second S-picture, except that the syringe is trapezoidal and the integrated electrode is connected to the outside of the substrate by the substrate from the substrate on June 08, 100. The diagnostic card contains a plastic card housing 601. The outer casing has a fluid storage recess 604 with a polyethylene foil coated with aluminum foil above and below. The groove contains a low conductivity aqueous buffer. The reservoir fluid is sealed by a polyethylene wire fused with aluminum wire. The card housing also includes a drinking fountain 603 having an entry end to the valve tool 606 and an outflow end 605 having an air vent 613. The card housing further includes a void 602 for receiving the fluid module 600. _ Stream search ghost 6_00_包_含_一_epoxy gold_genus_#_021____ The base of the substrate is both metallized by gold plating. At the fluid end above the substrate of the module, the metal has formed integrated electroosmotic suction electrodes 623 and 624, 624A, 624B for contact with the injector. The lower metal forms pads 621 and 622, 622A, 622B for contact with external electronic contact tools. There are four metallized holes (two of which are 625, 626 shown in Figure 6A), connecting the upper electrode electronics to the underlying liner via an epoxy matrix. The epoxy module and electrode are fabricated by conventional standard shrink loop circuit technology. Here, a first sealing tool 627 is a film-cut attachment member located on the upper surface of the epoxy module. Element 627 covers the surface of the module but does not include 623, 624, 624A and 624B where the integrated electrode is in contact with the fluid element of the injector. There is a microporous strip element 629 over the first sealing layer. Element 629 has the same application end 640 and a fluid collection element 641 of known fluid fill volume at the outflow end. There are also three micropore syringe path elements 628, 628A and 628B having an outflow end separated from the strip element 629 by a gas gap at three fluid receiving locations throughout the length of element 629. The injection route member has a trapezoidal shape with a wide fluid application end and a narrow fluid outflow end. A second sealing member 630 covers the microporous fluid element but does not contain the fluid application end and the outflow end, and also excludes the fluid receiving region 629 of the gas chamber including the gas gap and the outflow end of the syringe. A surrounding seal is formed. 49 1356164 Around the microporous element, the sealing elements 627 and 630 were compressed around them. In the final assembly, the fluid module 600 is inserted into the housing aperture 620 and sealed. The card is further sealed to the upper film cut sheet 610 and an lower film cut sheet 611. In the first step, the outer casing member encloses the air chamber of the outflow end of the syringe on the fluid module and encloses the cast drinking trough 603 in the plastic card to form a fluid path. When the same fluid is applied to the sample application end 640 of the element 629 and it passes the strip through the capture zone 660 and into the fluid collection element 641. One of the sample fluids is to be captured in the capture area. Next, the card is inserted into the card hole of the device tool. The card aperture has a planar surface and includes a slab having an element that engages a lower end of a card. When the card is inserted, the lower surface of the card is parallel to the surface of the thick plate of the card insertion hole and is separated. The slab has an electronic contact pad embedded in the spring-contacting electronic module adjacent the module and two raised regions adjacent the fluid reservoir 604 and valve 606 of the card when the card is inserted into the hole of the card. In the hole, the card is brought down to be in contact with the slab. The contact electronics with the magazine are now in contact with the electronic contact pads of the module. The first slab rises in contact with the card at position 650 and pushes the plug 606 through the hole 607 of the card cover, thereby separating the top sheet seal of the position 608. The second slab rises into contact with the card at position 651, depressing the fluid reservoir and replacing the fluid entry path 603 via the separation seal region 608. The fluid displaced into the path fills the outflow end 605 of the region 603A. Region 603A is the application area for the injection fluid. The fluid in this region now fills the syringe from the fluid application end to the outflow end via the capillary wick phenomenon. The dried reagent at the outflow end of the syringe is dissolved by capillary filling. An instrument control voltage is applied to the first injector electrode 624A to contact the fluid application region 603A with respect to a common auxiliary electrode 621, such that a first fluid containing a 50 1356164 enzyme-labeled conjugate dissolved on June 08, 100, is electrically infiltrated. Injection along a strip 629 comprising a capture zone 660 to an outflow path 670. A calibration complex is captured by the analyte at position 660, thereby calibrating the capture complex. A second instrument control voltage is applied to the second injection electrode 624 such that a second effluent is injected along the strip containing the capture zone by electroosmosis. The cleaning fluid removes the conjugate that is not redundantly bonded. A third instrument control voltage is applied to the third injector electrode 624B such that a third fluid containing the enzyme matrix is infiltrated by the cap. When the substrate is chemically generated ____________; the phosphor, the substrate and the position 660 enzyme calibration produces a light signal that can be measured by a light detector that is near the card position 660 and detects the <§ light signal It is proportional to the concentration of the analyte in the sample. Experiment 4: Electroosmotic injection of luciferase chemical fluorescent reagent The construction of the syringe in this experiment is similar to that shown in the second Q diagram except that the exhaust chamber is used. In the device, the syringe is a trapezoidal element having a hole of 1 mm at the outflow end, a hole of 4 mm, a length of 4.25 mm, a thickness of 0.15 mm, a microporous cellulose nitrate/acetate, a porosity of 0.7, and a pore diameter of 0.11. There is a venting chamber having a 1 mm wide passageway at the injector outlet end, the syringe containing a 〇.5 mm long gas gap separating the outflow end from the first fluid receiving element. The first fluid receiving element is a side flow strip, and has a fluid receiving area, the same application end, and an outflow end in the center. This element is a 0.15 mm thick, 1 mm wide, 8 mm long micropore cluster with a porosity of 0.7 and a pore size of 0.25 microns. Here a second fluid receiving element is separated from the first fluid receiving element by a further 0.5 mm air gap. The second fluid-receiving member is a reaction zone comprising a polyether liner, 15 mm thick, 2 mm long and 2 mm wide, filled with a fluid containing ATP, luciferase, magnesium ions and buffer and which may be dry. Test reagents were purchased from Sigma. 51 1356164 The Republic of China was placed on the insertion hole of the equipment tool. The A sample fluid containing the fluorescein test was added to the fluid receiving end of the first fluid receiving element, and filled with 2 mM water-containing DEA. The syringe fluid is directed to the fluid application area of the syringe. The fluid fills the two components to their outflow end. When each element is filled with fluid, an instrument control voltage (40 volts) is applied to the integrated electrode of a syringe and fluid is drawn out of the outflow end of the syringe (at 45 nanoliters/second). The injection of the fluid stream for a period of time (about 20 seconds) in the first injection step is sufficient to flow through and cover the fluid receiving area of the first body receiving member. However, it does not reach the second fluid receiving element, at which point the syringe voltage has been turned off. At this time, the fluorescein of the fluid receiving region of the fluid receiving member diffuses into contact with the injected fluid. Applying a voltage (40 volts) to the syringe for a second injection step in the second injection step allows the fluid to move farther away, so that it can be located beyond the second fluid receiving element. Here, a luciferase in the injection fluid reacts with the luciferase of the second fluid-receiving element to generate a light signal, which is detected by a photodetector close to the second fluid-receiving element (5mm X 5mm area light II) A polar body with a photocurrent output of 109 volts per ampere; provided by EOS). A set of identical diagnostic devices was used to test various concentrations of luciferin samples in serial dilutions of buffer. The Moiré number of luciferin in this test reaction is obtained by multiplying the concentration of the fluid volume of the syringe fluid strip. The dose response curve of the luciferin Moir number is linear with the light signal in the range of 6 x 10_14 to 6 X 1 CT11 moles, and the detector output with 4mV detector sensitivity is picomole luciferin. This demonstration experiment was used to determine the second step detection sensitivity in the two-step procedure. The two-step test procedure will be calibrated using a one-base phosphatase assay in a sandwich assay, and the labeled analyte complex will be formed in the sample fluid strip capture zone, first step 52 1356164 Fluorescence in the steps of the Republic of China on June 08 The phosphoric acid matrix is injected into the capture zone by electroosmosis to produce luciferin. In the second step, the luciferin is transported to a second fluid-receiving element where it reacts with luciferase to produce a detectable light signal. Based on the variability of the baseline 2SD of the detector at 8 microwatts, the luminosity limit above 2 X 1 〇 _15 can be detected. The wall enzymease label produced by luciferin citrate produced 1000 moles/sec of luciferin when we cultured for 1 sec. after labeling. The expected limit is 2x1〇-2Q Mohr. 10 microliters of sample fluid contains a concentration
〜 一Hx_上0^5^—j產二參义析物分子含2 X 10 莫爾標記分子,標記有一個鹼基磷酸酶分子。當欲分 析物完全被捕捉於捕捉位置,該位置將有2 X 1 〇_20莫爾的 被捕捉鹼基磷酸酶。偵測器之偵測極限由偵測器敏感度決 定’其敏感度為一 10微升樣本體積中約2xi〇-15|\/j。 實驗五.電滲透注射二氧環院(di〇xetane)基質以產生鹼基 磷酸酶化學螢光 本實驗_,使用一注射器結構類似前述第二j圖所顯 示’除了 一排氣室以外。於本裝置中注射器為梯形元件, 流出孔洞為1mm寬’輸入孔洞為4πιΙη,長度4.25mm,厚 度為0.15mm ’包含有微孔纖維素硝酸鹽/醋酸鹽,孔隙度 為0.7,孔徑為0.11。此處有一排氣室具有一 lmm寬通道於 注射器流出端,包含—05mm長氣體缺口將流出端與第一 流體接收元件分開。第一接收元件為一乾燥試劑加入區域 含有一驗基磷酸酶使用於發出螢光之二氧環烷基質 (CDP-star由TropixInc購得)。此處有一第二流體接收元 件由另一 0.5mm之氣體缺口與第一個流體接收元件分開。 第二流體接收元件為一側流條中央有一流體接收區域,一 樣本施加端與一流出端。第二流體接收元件為一反應區域 53 1356164 民國100年06月08日 為一 0.15mm厚,1mm寬8mm長之微孔尼龍,其孔隙度為 0.7、孔徑為0.25mm。該元件於組裝前以標準操作程序之 BSA阻隔處理之。 本裝置插入至設備工具之插入孔洞,一含有鹼基磷酸 酶欲試驗之樣本流體被加入第一流體接收元件之流體接收 端,與一填充注射流體,該流體包含2mM水狀DEA至注射 器之流體施加區域。該流體充滿兩元件至其流出端。當每 一元件中充滿流體,一儀器控制電壓(40伏特)施於一注射 器之整合電極而流體被抽出注射器之流出端(以45 nanoliters/second速度)。於第一個注射步驟注射流體流一 段時間(15秒)後足以流過第一體接收元件之流體接受區域 並覆蓋之,但不會到第二流體接收元件,此時注射器電壓 已經關掉。此時流體接收元件之流體接收區域的螢光素^ 氧環烷基質.會擴散至被注入之流體與之接觸。於第二注射 步驟施以一電壓(40伏特20秒)於注射器可使流體移動較 遠,所以此時可以位於超過第二流體接收元件之位置。此 處有一於注射流體内之二氧環烷基質與第二流體接收元件 之鹼基磷酸酶反應產生光線訊號,該訊號被一接近第二流 體接收元件之光線偵測器(5mm X 5mm面積之光二極體具有 光電流每一安培放大109伏特輸出;由EOS,公司提供)所偵 測。一組相同之診斷裝置被使用於測試被一系列緩衝液稀 釋之各種濃度之鹼基磷酸酶樣本。本試驗反應中之鹼基磷 酸酶之莫爾數由濃度乘以注射器流體條的之流體體積而獲 得。 鹼基磷酸酶之莫爾數的劑量反應曲線與光線訊號於1 x1(T14 to 1 X 1CT18 moles範圍呈線性,具有ΙΟΟμν之偵測 54 1356164 民國100年06月08日 器靈敏度之摘測器輸出為微微微莫爾(attomo 1 e)之驗基構 酸酶。本示範實驗被使用來決定鹼基磷酸酶標記用於三明 治形式配體結合試驗之敏感度。基於該偵測器5微瓦之基 線2SD的變異性,限制在5 X 10_2Q莫爾以上之鹼基磷酸酶 或lOpL樣本液中5 X 1(Γ15Μ可被偵測。 實驗六:捕捉結合生物素(Biotin)至驗基填酸酶於鏈霉親和 素(Streptavidin )捕捉區域標記,與使用電渗透吸取二氧環 烷基質以產生訊號_________________________________ 此為一配體結合試驗範例於一具提供產螢光基質注射 器之側流條完成。本實驗中,一注射器結構類似前述第二I 圖所顯示,於本裝置中注射器為梯形元件,流出孔洞為 1mm寬,輸入孔洞為4mm,長度4.25mm厚度為0.15mm, 含有微孔纖維素硝酸鹽/醋酸鹽,孔隙度為0.7,孔徑為 0.11。此處有一排氣室具有一 1mm寬通道於注射器流出 端,包含一 0.5mm長氣體缺口將流出端與第一流體接收元 件分開。第一接收元件為一乾燥試劑加入區域,含有一驗 基填酸酶使用之發螢光之二氧環烧基質(CDP-star由 Tropix Inc.得)。此處有一第二流體接收元件由另一 0.5mm之氣體缺口與第一個流體接收元件分開。第二流體 接收元件為一側流條中央有一流體接收區域,一樣本施加 端與一流出端。第二流體接收元件為一 〇. 15mm厚,1 mm 寬,8mm長之微孔尼龍,其孔隙度為0.7、孔徑為 0.25mm。此元件最初加入鏈霉親和素至一 1 mm長捕捉區域 於該條狀物中央(藉由滲浸於600 nanoliters流體,該流體 包含10mg/liter之溶液),之後於安裝該裝置之前以 SUPERBLOCK (Pierce Biotechnology Inc)根據其操作手冊 55 1356164 民國100年06月08日 所推薦之程序進行阻隔處理。 本裝置插入至設備工具之插入孔洞。6" L含有生物素 與鹼性磷酸酶標記結合之一定濃度(通常為0.1至·50ρΜ)被 加入第二流體接收元件之流體接收端,與一填充注射流 體,該流體包含2mM水狀DEA被加入注射器之流體施加區 域。該流體充滿兩元件至其流出端。當每一元件中充滿流 體,一儀器控制電壓(40伏特)施於一注射器之整合電極而 流體被以45nanoliters/second速度抽出注射器之流出端。於 此注射步驟注射流體流一段時間(15秒)後足以流過第一體 接收元件並覆蓋之,此時注射器電壓已經關掉。此時第一 流體接收元件之流體接收區域的螢光二氧環烷基質會擴散 至被注入流體與之接觸。於第二注射步驟,施以一電壓(40 伏特20秒)於注射器可使流體移動較遠,所以此時可以位於 超過第二流體接收元件之位置。此處有一於注射流體内之 二氧環烷基質與第二流體接收元件之鹼基磷酸酶反應產生 光線訊號,被一接近第二流體接收元件之光線偵測器(5mm X 5mm面積之光二極體具有光電流每一安培放大109伏特 輸出;由EOS公司提供)所偵測。一組相同之診斷裝置被使 用於檢測一系列緩衝液稀釋之各種濃度生物素與鹼基磷酸 酶結合之樣本。本試驗中ΙΟΟμν之真空管訊號靈敏度為微 微莫爾(picomolae)與生物素濃度呈線性反應。該偵測器5 微瓦之基線2SD的變異性所決定之偵測界限限制在5 X 1(Γ14 Μ可被偵測。 實驗七:捕捉結合生物素(Biotin)至鹼基磷酸酶於鏈霉親和 素(Streptavidin)捕捉區域標記,與使用電渗透吸取二氧環 烷基質至以產生訊號 56 1356164 民國100年06月08曰 此為一配體結合試驗範例於一具提供螢光基質注射器 之側流條完成的第二種結構。本實驗中,一注射器結構類 似前述第二I圖所顯示。於本裝置中該注射器係為一梯形元 件,流出孔洞為1mm寬,輸入孔洞為4mm,長度4.25mm 厚度為0.15mm,包含有微孔纖維素硝酸鹽/醋酸鹽,孔隙 度為0.7,孔徑為0.11。此處有一封閉氣室於注射器之流出 端,該處與兩流體接收元件連接。該氣室為0.6mm寬,200 "m高之通路連接至注射器之流出端橫斷兩濟體换取_& 件,且尾端為一寬2mm、長10mm、高200;am之密閉氣 室。此處有一 0.5mm之氣體缺口將注射器之流出端與 0.6mm寬、1.5mm長之第一流體接收元件分開。第一流體 接收元件為一乾燥試劑加入區域含有一產螢光環氧環烷基 質用以與驗基攝酸酶反應(CDP-star由Tropix Inc.得)。此 處有一第二流體接收元件被另一 0.15mm氣體缺口分開。第 二流體接收元件為一側流條中央有一流體接收區域,一樣 本施加端與一流出端。該元件為一 0.15mm厚,1 mm寬, 8mm長之微孔尼龍,其孔隙度為0.7、孔徑為0.25mm (Osmonics: Magna MEMBRANE) ·〇此元件最初加入鏈霉親和 素至一 2mm寬、1mm長之捕捉區域於該條狀物中央流體接 收區與流出區之間(藉由滲浸於600 nanoliters流體,該流體 包含10mg/liter之溶液),之後於安裝該裝置之前以 SUPERBLOCK (Pierce Biotechnology Inc)根據其操作手冊 所推薦之程序進行阻隔處理。 本裝置插入至設備工具之插入孔洞。6m L含有生物素 與鹼性磷酸酶標記結合之一定濃度(通常為0.1至50pM)被 加入第二流體接收元件之流體接收端,且一注射流體,其 57 1356164 民國100年06月08日 流體包含2mM水狀DEA,被加入注射器之流體施加端。該 流體充滿至兩元件至其流出端。當每一元件中充滿流體, 一儀器控制電壓(4 0伏特)施於一注射器之整合電極而流體 被以45nanoliters/second速度抽出注射器之流出端。於此注 射步驟注射流體流一段時間(15秒)後足以流過第一體接收 元件並覆蓋之,此時注射器電壓已經關掉。此時第一流體 接收元件之螢光二氧環烷基質會擴散至被注入流體與之接 觸。於第二注射步驟,施以一電壓(40伏特20秒)於注射器 可使流體移動較遠,所以此時可以位於超過第二流體接收 元件之位置。此處有一於注射流體内之二氧環烷基質與第 二流體接收元件之捕捉複合物中之鹼基磷酸酶反應產生光 線訊號,被一接近第二流體接收元件之光線偵測器 (5mmx5mm面積之光二極體具有光電流每一安培放大1010 伏特輸出;由EOS公司提供)偵測。一組相同之診斷裝置被 使用於測試被緩衝液系列稀釋之各種濃度之生物素與鹼基 磷酸酶結合之樣本。本試驗中243famp之真空管訊號靈敏 度為微微莫爾與生物素濃度呈線性反應。該偵測器5微瓦 之基線2SD的變異性所決定之偵測界限限制在4x 10_15 Μ 可被偵測。 上述之目前發明的實施例只是範例。改變,修改與變 化也許會影響特殊實施例,但並不脫離本發明之範圍皆包 含在本發明之申請專利範圍中。 58 1356164 民國100年06月08日 【圖式簡單說明】 第一A-C圖係顯示本發明較佳實施例中包含整合型電 極連接至流體接收元件組成之儀器控制電滲透注射器之俯 視圖與剖面圖。 第一 A-Η圖係顯示儀器控制電滲透注射器包含整合型 —— —電尨爲-其-他丕同連赉-單二盈體接-吃―器―元件模式之僻提一圖。 第二I-Q圖係顯示儀器控制電滲透注射器包含整合型 電極與其他不同平行連接兩個流體接收器元件模式之俯視 圖。 、 第二R-S圖係顯示複數儀器控制電滲透注射器包含^ 合型電極與其他不同平行連接兩個流體接收器元件模式^ 俯視圖。 ' 體接 第二A-G圖係顯示注射器之流體注射運作時與流 收件連接之俯視圖。 第四A-B圖係顯示注射器連接至流體接收元件包含毫 米尺寸與裝置之流體流動分別地等效電路俯視圖。~ One Hx_ on 0^5^—j produces two sensitized analyte molecules containing 2 X 10 Mohr-labeled molecules labeled with a base phosphatase molecule. When the analyte is completely captured in the capture position, the position will have 2 X 1 〇 20 moles of the captured base phosphatase. The detection limit of the detector is determined by the sensitivity of the detector. The sensitivity is about 2xi〇-15|\/j in a 10 μl sample volume. Experiment 5. Electroosmotic injection of diox xetane matrix to generate base phosphatase chemical fluorescence This experiment, using a syringe structure similar to that shown in the second j diagram above, except for an exhaust chamber. In the present apparatus, the syringe is a trapezoidal member, and the outflow hole is 1 mm wide. The input hole is 4 πιηη, the length is 4.25 mm, and the thickness is 0.15 mm. The microporous cellulose nitrate/acetate is contained, the porosity is 0.7, and the pore diameter is 0.11. There is a venting chamber having a 1 mm wide passageway at the outflow end of the syringe, containing a -05 mm long gas gap separating the outflow end from the first fluid receiving element. The first receiving element is a dry reagent addition zone containing a phosphatase for the fluorescent dioxetane (CDP-star is commercially available from Tropix Inc). Here, a second fluid receiving member is separated from the first fluid receiving member by another 0.5 mm gas gap. The second fluid receiving member has a fluid receiving region in the center of one side of the flow bar, a sample application end and a first-class output end. The second fluid receiving element is a reaction zone. 53 1356164 The country is a 0.15 mm thick, 1 mm wide and 8 mm long microporous nylon having a porosity of 0.7 and a pore diameter of 0.25 mm. The component was treated with a BSA barrier of standard operating procedures prior to assembly. The device is inserted into the insertion hole of the device tool, a sample fluid containing the base phosphatase test is added to the fluid receiving end of the first fluid receiving element, and a filling injection fluid containing 2 mM water DEA to the syringe fluid Apply area. The fluid fills the two components to their outflow end. When each element is filled with fluid, an instrument control voltage (40 volts) is applied to the integrated electrode of a syringe and fluid is drawn out of the outflow end of the syringe (at 45 nanoliters/second). After the fluid flow is injected for a period of time (15 seconds) in the first injection step, it is sufficient to flow through the fluid receiving area of the first body receiving member and cover it, but not to the second fluid receiving member, at which time the syringe voltage has been turned off. At this time, the fluorescein of the fluid-receiving region of the fluid-receiving member diffuses into contact with the fluid to be injected. Applying a voltage (40 volts for 20 seconds) to the syringe during the second injection step allows the fluid to move farther away, so that it can be located beyond the second fluid-receiving element. Here, a dioxycycloalkyl group in the injection fluid reacts with the base phosphatase of the second fluid-receiving element to generate a light signal, and the signal is received by a photodetector close to the second fluid-receiving element (5 mm X 5 mm area) The photodiode has a photocurrent output of 109 volts per ampere amplification; provided by EOS, Inc.). A set of identical diagnostic devices was used to test various concentrations of base phosphatase samples diluted by a series of buffers. The number of moles of base phosphatase in this assay reaction is obtained by multiplying the concentration by the volume of fluid in the syringe fluid strip. The dose response curve of the Moir number of the base phosphatase and the light signal are linear in the range of 1 x 1 (T14 to 1 X 1 CT18 moles, with the detection of ΙΟΟμν 54 1356164 The sensitivity of the detector output of the Republic of China on June 08 The enzyme acylase of Atmox 1 e. This demonstration experiment was used to determine the sensitivity of the base phosphatase label for sandwich-type ligand binding assays. Based on this detector 5 microwatts Baseline 2SD variability, limited to 5 X 1 (Γ15Μ can be detected in base phosphatase or lOpL sample solution above 5 X 10_2Q Mohr. Experiment 6: Capturing bound biotin (Biotin) to assay ligase The region label is captured by Streptavidin, and the dioxetane is extracted by electroosmosis to generate a signal _________________________________ This is a ligand binding assay paradigm completed in a lateral flow strip providing a fluorescent matrix injector. In this experiment, a syringe structure is similar to that shown in the second I diagram above. In this device, the syringe is a trapezoidal element, the outflow hole is 1 mm wide, the input hole is 4 mm, and the length is 4.25 mm and the thickness is 0.15 mm. Containing microporous cellulose nitrate/acetate with a porosity of 0.7 and a pore size of 0.11. There is a venting chamber with a 1 mm wide channel at the outflow end of the syringe, including a 0.5 mm long gas gap to the outflow end and the first The fluid receiving element is separated. The first receiving element is a dry reagent addition zone containing a fluorescent dioxin ring-burning matrix (CDP-star from Tropix Inc.) used by the test enzyme lysing enzyme. The fluid receiving element is separated from the first fluid receiving element by another 0.5 mm gas gap. The second fluid receiving element has a fluid receiving area in the center of the side flow strip, the same application end and the first-class outlet. The second fluid receiving element A 15 mm thick, 1 mm wide, 8 mm long microporous nylon with a porosity of 0.7 and a pore size of 0.25 mm. This element was initially filled with streptavidin to a 1 mm long capture zone in the center of the strip. (by immersing in 600 nanoliters of fluid, the fluid contains 10 mg/liter of solution), and then before installing the device, SUPERBLOCK (Pierce Biotechnology Inc) according to its operating manual 55 1356164 Republic of China 100 years 06 The procedure recommended on the 08th is blocked. The device is inserted into the insertion hole of the device tool. 6" L contains a certain concentration (usually 0.1 to ·50ρΜ) combined with biotin and alkaline phosphatase label is added to the second fluid receiving The fluid receiving end of the element, with a fill injection fluid containing 2 mM water DEA was added to the fluid application area of the syringe. The fluid fills the two components to their outflow end. When each element is filled with fluid, an instrument control voltage (40 volts) is applied to the integrated electrode of a syringe and the fluid is drawn out of the outflow end of the syringe at a rate of 45 nanoliters/second. At this injection step, the fluid stream is injected for a period of time (15 seconds) sufficient to flow through the first body receiving member and cover it, at which point the syringe voltage has been turned off. At this time, the fluorescent dioxycycloalkyl group of the fluid receiving region of the first fluid receiving member is diffused to be contacted with the injected fluid. In the second injection step, a voltage (40 volts for 20 seconds) is applied to the syringe to move the fluid farther away, so that it can be located above the second fluid receiving element. Here, there is a dioxoalkyl group in the injection fluid and a base phosphatase reaction of the second fluid-receiving element to generate a light signal, and a photodetector close to the second fluid-receiving element (a light dipole of 5 mm X 5 mm area) The body has a photocurrent output of 109 volts per ampere amplification; provided by EOS. A set of identical diagnostic devices was used to detect a range of buffer-diluted samples of various concentrations of biotin combined with base phosphatase. In this test, the vacuum tube signal sensitivity of ΙΟΟμν is a linear reaction between picomolae and biotin concentration. The detector's 5 microwatt baseline 2SD variability determines the detection limit to 5 X 1 (Γ14 Μ can be detected. Experiment 7: Capture binding biotin (Biotin) to base phosphatase in Streptomyces Streptavidin captures the regional marker and uses electroosmotic to absorb the dioxetane to generate the signal 56 1356164. This is a ligand binding assay paradigm on the side of a fluorescent matrix syringe. The second structure completed by the flow bar. In this experiment, a syringe structure is similar to that shown in the second figure I. In the device, the syringe is a trapezoidal element, the outflow hole is 1 mm wide, the input hole is 4 mm, and the length is 4.25. Mm is 0.15 mm thick and contains microporous cellulose nitrate/acetate with a porosity of 0.7 and a pore size of 0.11. There is a closed gas chamber at the outflow end of the syringe where it is connected to the two fluid receiving elements. The chamber is 0.6mm wide, and the 200 "m high passage is connected to the outflow end of the syringe to cross the two bodies for the _& and the tail end is a closed air chamber of 2 mm wide, 10 mm long and 200 high; There is a 0.5mm gas shortage here. The mouth separates the outflow end of the syringe from the first fluid receiving element of 0.6 mm width and 1.5 mm length. The first fluid receiving element is a dry reagent addition zone containing a fluorinated epoxy cycloalkyl group for acid absorption with the test group. Enzyme reaction (CDP-star from Tropix Inc.) where a second fluid-receiving element is separated by another 0.15 mm gas gap. The second fluid-receiving element has a fluid-receiving area in the center of one side of the strip, the same application end. With a first-class origin, the component is a 0.15mm thick, 1mm wide, 8mm long microporous nylon with a porosity of 0.7 and a pore size of 0.25mm (Osmonics: Magna MEMBRANE). 〇This component was originally added with streptavidin. A capture area of up to 2 mm wide and 1 mm long is between the central fluid receiving zone and the effluent zone of the strip (by infiltrating 600 nanoliters of fluid containing 10 mg/liter of solution), before installing the device The barrier is treated with SUPERBLOCK (Pierce Biotechnology Inc) according to the procedure recommended in its operating manual. The device is inserted into the insertion hole of the device tool. 6m L contains biotin combined with alkaline phosphatase label A certain concentration (usually 0.1 to 50 pM) is added to the fluid receiving end of the second fluid receiving element, and an injection fluid, 57 1356164, the fluid of the Republic of China on June 8, 100 contains 2 mM water DEA, which is applied by the fluid added to the syringe. The fluid is filled to the two components to its outflow end. When each component is filled with fluid, an instrument control voltage (40 volts) is applied to the integrated electrode of a syringe and the fluid is drawn out of the outflow end of the syringe at a rate of 45 nanoliters/second. . At this injection step, the injection fluid stream is sufficient to flow through the first body receiving member and cover it for a period of time (15 seconds), at which point the syringe voltage has been turned off. At this time, the fluorescent dioxycycloalkyl group of the first fluid receiving member diffuses to contact the injected fluid. In the second injection step, a voltage (40 volts for 20 seconds) is applied to the syringe to move the fluid farther away, so that it can be located beyond the second fluid receiving element. Here, a dioxycycloalkyl group in the injection fluid reacts with the base phosphatase in the capture complex of the second fluid-receiving element to generate a light signal, and is detected by a photodetector (5 mm x 5 mm area) close to the second fluid-receiving element. The light diode has a photocurrent output of 1010 volts per ampere; provided by EOS). A set of identical diagnostic devices was used to test samples of various concentrations of biotin mixed with base phosphatase diluted in buffer. The sensitivity of the vacuum tube signal of 243famp in this test is a linear reaction between the micro moir and the biotin concentration. The detection limit of the detector's 5 microwatt baseline 2SD variability is limited to 4x 10_15 Μ can be detected. The embodiments of the present invention described above are merely examples. Variations, modifications, and variations may affect the particular embodiments, but are not intended to be included in the scope of the invention. 58 1356164 The following is a schematic view of a preferred embodiment of the present invention showing an instrument-controlled electroosmotic injector comprising an integrated electrode connected to a fluid-receiving element in accordance with a preferred embodiment of the present invention. The first A-Η diagram shows that the instrument controls the electroosmotic syringe to include an integrated type—the electric 尨 is a 其 其 其 其 其 其 其 其 其 其 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 单 。 。 。 。 。 。. The second I-Q diagram shows a top view of the instrument control electroosmotic syringe including an integrated electrode and two different parallel connected fluid receptor component modes. The second R-S diagram shows that the plurality of instruments control the electroosmotic injector comprises a combination of two electrodes and two different fluid receiver elements in a parallel manner. ' Body Attachment The second A-G diagram shows a top view of the syringe's fluid injection operation connected to the flow. The fourth A-B diagram shows an equivalent circuit top view of the syringe connected to the fluid receiving element containing the millimeter size and fluid flow of the device, respectively.
第五圖係顯禾第四圖A裝置之流體特徵。 第六圖係顯示一步驟診斷卡組合一帶有多種多注 樣本流體路徑與整合具有注射器原本流體的密封儲存 俯視圖。 第六A圖係顯示第六圖之診斷卡的剖面圖。 【主要元件符號對照說明】 1 微孔流體路徑元件 2 流體施加端 59 1356164 民國100年06月08日 3 流出端 5 襯墊 6 接觸區域 7 襯墊 8 接觸區域 9 第一密封元件 10 基材 11 密封元件 12 第一密封元件 13 流體接收區域 14 空氣隔絕元件 15 氣室 20 流體施加區域 21 流體電路 22 流體電路 23 流體電路 22 遮蓋元件,流體電路 23 遮蓋元件 103 流體電路 105 流體電路(流體接收元件) 106 流體電路(流體接收元件) 110 流體接收元件(流體路徑元件) 113 流體電路 115 流體接收元件(側流條,第一流體路徑) 118 流體接收元件 120 封閉氣室,注射區域 1356164 民國100年06月08日 121 注射區域 122 注射區域 , 130 排氣室 . 600.流體模組 601 塑膠卡片外殼 602 空洞 603 飲水槽 603A流寧车碑區蜂_ (流體施加區域)___ _______________ 604 流體儲存凹槽 605閥門工具(流出端) · 606 閥門 607 卡片外罩之孔洞 608 分離位置 610 上方臈切薄板 611 下方膜切薄板 613 氣孔 620 環氧金屬片 621 襯墊(共同輔助電極) 622襯墊 ® 622A襯墊 622B襯墊 623 整合電滲透抽吸電極 624 整合電滲透抽吸電極 624A整合電滲透抽吸電極 624B整合電滲透抽吸電極 625 鍍金屬的洞 61 1356164 民國100年06月08日 626 鏟金屬的洞 627 密封元件 628 微孔注射器路徑元件 628A微孔注射器路徑元件 628B微孔注射器路徑元件 629 條狀元件 630 第二密封元件 640 樣本施加端 641 流體蒐集元件 660 捕捉區域 670 流出路徑The fifth figure shows the fluid characteristics of the device of Figure 4A. The sixth figure shows a one-step diagnostic card combination with a plurality of multi-injection sample fluid paths and a sealed storage top view incorporating the original fluid of the syringe. Figure 6A is a cross-sectional view showing the diagnostic card of the sixth figure. [Main component symbol comparison description] 1 Microporous fluid path component 2 Fluid application end 59 1356164 Republic of China 100 June 08 3 Outflow end 5 Pad 6 Contact area 7 Pad 8 Contact area 9 First sealing element 10 Substrate 11 Sealing element 12 first sealing element 13 fluid receiving area 14 air insulating element 15 gas chamber 20 fluid application area 21 fluid circuit 22 fluid circuit 23 fluid circuit 22 covering element, fluid circuit 23 covering element 103 fluid circuit 105 fluid circuit (fluid receiving element 106 fluid circuit (fluid receiving element) 110 fluid receiving element (fluid path element) 113 fluid circuit 115 fluid receiving element (side flow strip, first fluid path) 118 fluid receiving element 120 closed air chamber, injection area 1356164 Republic of China 100 years June 08 121 Injection area 122 Injection area, 130 Exhaust chamber. 600. Fluid module 601 Plastic card housing 602 Cavity 603 Drinking trough 603A Flowing car monument area bee _ (Fluid application area) ___ _______________ 604 Fluid storage groove 605 valve tool (outflow end) · 606 valve 607 card cover hole 608 Separation position 610 Upper chopping sheet 611 Lower film cutting sheet 613 Pore 620 Epoxy sheet 621 Pad (common auxiliary electrode) 622 pad® 622A pad 622B pad 623 Integrated electro-osmotic suction electrode 624 Integrated electro-osmosis pumping Suction electrode 624A integrated electro-osmotic suction electrode 624B integrated electro-osmotic suction electrode 625 metal-plated hole 61 1356164 Republic of China 100 June 08 626 Shovel metal hole 627 Sealing element 628 Micro-pore syringe path element 628A Micro-hole syringe path element 628B Microporous Syringe Path Element 629 Strip Element 630 Second Sealing Element 640 Sample Application End 641 Fluid Collecting Element 660 Capture Area 670 Outflow Path
6262
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/649,683 US7722817B2 (en) | 2003-08-28 | 2003-08-28 | Lateral flow diagnostic devices with instrument controlled fluidics |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200510717A TW200510717A (en) | 2005-03-16 |
TWI356164B true TWI356164B (en) | 2012-01-11 |
Family
ID=34216995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW093125746A TWI356164B (en) | 2003-08-28 | 2004-08-27 | Injector pump and device comprising the same |
Country Status (6)
Country | Link |
---|---|
US (2) | US7722817B2 (en) |
EP (1) | EP1664725B1 (en) |
JP (1) | JP4891077B2 (en) |
CA (1) | CA2576114C (en) |
TW (1) | TWI356164B (en) |
WO (1) | WO2005022123A1 (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7723099B2 (en) * | 2003-09-10 | 2010-05-25 | Abbott Point Of Care Inc. | Immunoassay device with immuno-reference electrode |
US7407630B2 (en) * | 2003-09-19 | 2008-08-05 | Applera Corporation | High density plate filler |
KR100738093B1 (en) | 2006-01-05 | 2007-07-12 | 삼성전자주식회사 | JH control device and JH control method using the same |
ES2389382T3 (en) | 2006-02-21 | 2012-10-25 | Universal Biosensors Pty Limited | Fluid transfer mechanism |
WO2008105814A2 (en) * | 2006-08-22 | 2008-09-04 | Los Alamos National Security, Llc | Miniturized lateral flow device for rapid and sensitive detection of proteins or nucleic acids |
US7749775B2 (en) * | 2006-10-03 | 2010-07-06 | Jonathan Scott Maher | Immunoassay test device and method of use |
HK1129808A2 (en) * | 2007-10-03 | 2009-12-04 | Diagcor Bioscience Inc Ltd | Reversed flow through platform for rapid analysis of target analytes with increased sensitivity and specificity and the device thereof |
JP2011522521A (en) | 2008-05-05 | 2011-08-04 | ロスアラモス ナショナル セキュリティ,エルエルシー | Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control |
WO2010008524A1 (en) * | 2008-07-16 | 2010-01-21 | Stc. Unm | Capillary driven lateral flow devices |
KR101372233B1 (en) * | 2009-10-09 | 2014-03-11 | 한국전자통신연구원 | Microfluidic device and fluid control method using the same |
WO2011075667A2 (en) | 2009-12-18 | 2011-06-23 | Abbott Point Of Care, Inc. | Biologic fluid analysis cartridge |
WO2012092593A1 (en) | 2010-12-30 | 2012-07-05 | Abbott Point Of Care, Inc. | Biologic fluid analysis cartridge with sample handling portion and analysis chamber portion |
JP5731066B2 (en) | 2011-04-20 | 2015-06-10 | メサ テック インターナショナル,インク. | Cycle-variable amplification reactions for nucleic acids |
WO2013130995A1 (en) * | 2012-03-02 | 2013-09-06 | Atkinson Robert G | Lateral flow analysis system, method and article |
CN104428651B (en) | 2012-04-20 | 2019-01-11 | 达丽斯生物医学公司 | The fluid means and system for sample preparation or independently analyzed |
WO2013159116A1 (en) * | 2012-04-20 | 2013-10-24 | University Of Chicago | Fluidic devices for biospecimen preservation |
US9399986B2 (en) | 2012-07-31 | 2016-07-26 | General Electric Company | Devices and systems for isolating biomolecules and associated methods thereof |
BR102013029443A2 (en) * | 2012-11-15 | 2014-10-29 | Ortho Clinical Diagnostics Inc | QUALITY / PROCESS CONTROL OF A SIDE FLOW TESTING DEVICE BASED ON FLOW MONITORING |
EP2948249A1 (en) | 2013-01-22 | 2015-12-02 | University of Washington through its Center for Commercialization | Sequential delivery of fluid volumes and associated devices, systems and methods |
US20160310942A1 (en) * | 2013-01-22 | 2016-10-27 | University Of Washington | Pressure-based control of fluid volumes and associated devices, systems, and methods |
FR3012982B1 (en) * | 2013-11-08 | 2015-12-25 | Espci Innov | METHOD FOR STORING AND CONCENTRATING A VOLATILE COMPOUND |
US10071373B2 (en) * | 2014-08-08 | 2018-09-11 | Ortho-Clinical Diagnostics, Inc. | Lateral-flow assay device having flow constrictions |
US20160310948A1 (en) | 2015-04-24 | 2016-10-27 | Mesa Biotech, Inc. | Fluidic Test Cassette |
US11067526B2 (en) | 2017-08-17 | 2021-07-20 | Abbott Point Of Care Inc. | Devices, systems, and methods for performing optical and electrochemical assays |
CN109630401B (en) * | 2018-11-16 | 2022-11-25 | 泰州博英生物科技有限公司 | Syringe pump for micro-fluidic device |
US11327048B2 (en) | 2019-03-26 | 2022-05-10 | Siemens Healthcare Diagnostics Inc. | Methods and apparatus for performing sample measurements using visible light on samples manipulated with acoustic waves |
CN110538680B (en) * | 2019-08-19 | 2024-08-06 | 昆山汇先医药技术有限公司 | Microfluidic sample processing equipment |
JP6991407B1 (en) * | 2020-03-24 | 2022-01-13 | 京セラ株式会社 | Channel device |
WO2022197057A1 (en) * | 2021-03-18 | 2022-09-22 | 주식회사 폴리윅 | Electro-osmosis assisted lateral flow assay device and method thereof |
CN113254865B (en) * | 2021-07-02 | 2021-09-28 | 北京亿华通科技股份有限公司 | Method for calculating internal parameters of fuel cell system |
US12226468B2 (en) | 2023-06-26 | 2025-02-18 | Research Development Foundation | Immunoreactive peptides |
Family Cites Families (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5622871A (en) * | 1987-04-27 | 1997-04-22 | Unilever Patent Holdings B.V. | Capillary immunoassay and device therefor comprising mobilizable particulate labelled reagents |
US4551209A (en) * | 1984-01-19 | 1985-11-05 | Integrated Ionics, Inc. | Method of calibrating conductive metal oxide electrodes |
US4739380A (en) * | 1984-01-19 | 1988-04-19 | Integrated Ionics, Inc. | Integrated ambient sensing devices and methods of manufacture |
US4613422A (en) * | 1984-01-19 | 1986-09-23 | Integrated Ionics Inc. | Ambient sensing devices |
US4629424A (en) * | 1984-08-30 | 1986-12-16 | Integrated Ionics, Inc. | Intraoral ambient sensing device |
US4864229A (en) * | 1986-05-03 | 1989-09-05 | Integrated Ionics, Inc. | Method and apparatus for testing chemical and ionic sensors |
CA1303983C (en) * | 1987-03-27 | 1992-06-23 | Robert W. Rosenstein | Solid phase assay |
US4855240A (en) * | 1987-05-13 | 1989-08-08 | Becton Dickinson And Company | Solid phase assay employing capillary flow |
US5120643A (en) * | 1987-07-13 | 1992-06-09 | Abbott Laboratories | Process for immunochromatography with colloidal particles |
FR2621393B1 (en) * | 1987-10-05 | 1991-12-13 | Toledano Jacques | DEVICE FOR IMMUNOENZYMATIC DETECTION OF SUBSTANCES FROM A DROP OF BLOOD OR LIQUID FROM ANY BIOLOGICAL MEDIUM |
EP0400042B1 (en) * | 1988-02-08 | 1997-01-08 | I-Stat Corporation | Metal oxide electrodes |
US4933048A (en) * | 1988-02-16 | 1990-06-12 | I-Stat Corporation | Reference electrode, method of making and method of using same |
US4954087A (en) * | 1988-04-27 | 1990-09-04 | I-Stat Corporation | Static-free interrogating connector for electric components |
US4908112A (en) * | 1988-06-16 | 1990-03-13 | E. I. Du Pont De Nemours & Co. | Silicon semiconductor wafer for analyzing micronic biological samples |
US5096669A (en) * | 1988-09-15 | 1992-03-17 | I-Stat Corporation | Disposable sensing device for real time fluid analysis |
US5212050A (en) * | 1988-11-14 | 1993-05-18 | Mier Randall M | Method of forming a permselective layer |
US6306594B1 (en) * | 1988-11-14 | 2001-10-23 | I-Stat Corporation | Methods for microdispensing patterened layers |
US5063081A (en) * | 1988-11-14 | 1991-11-05 | I-Stat Corporation | Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor |
US5200051A (en) * | 1988-11-14 | 1993-04-06 | I-Stat Corporation | Wholly microfabricated biosensors and process for the manufacture and use thereof |
US5075078A (en) * | 1989-10-05 | 1991-12-24 | Abbott Laboratories | Self-performing immunochromatographic device |
US5008616A (en) * | 1989-11-09 | 1991-04-16 | I-Stat Corporation | Fluidics head for testing chemical and ionic sensors |
USD337164S (en) * | 1990-07-19 | 1993-07-06 | I-Stat Corporation | Cartridge for a blood monitoring analyzer |
USD332833S (en) * | 1990-07-19 | 1993-01-26 | I-Stat | Portable clinical diagnostic instrument |
US5112455A (en) * | 1990-07-20 | 1992-05-12 | I Stat Corporation | Method for analytically utilizing microfabricated sensors during wet-up |
US5124661A (en) * | 1990-07-23 | 1992-06-23 | I-Stat Corporation | Reusable test unit for simulating electrochemical sensor signals for quality assurance of portable blood analyzer instruments |
US5821399A (en) * | 1993-07-16 | 1998-10-13 | I-Stat Corporation | Automatic test parameters compensation of a real time fluid analysis sensing device |
US5416026A (en) * | 1993-10-04 | 1995-05-16 | I-Stat Corporation | Method for detecting the change in an analyte due to hemolysis in a fluid sample |
US5447440A (en) * | 1993-10-28 | 1995-09-05 | I-Stat Corporation | Apparatus for assaying viscosity changes in fluid samples and method of conducting same |
EP0725593B1 (en) * | 1993-10-28 | 2004-04-07 | I-Stat Corporation | Fluid sample collection and introduction device |
US5514253A (en) * | 1994-07-13 | 1996-05-07 | I-Stat Corporation | Method of measuring gas concentrations and microfabricated sensing device for practicing same |
US5609824A (en) * | 1994-07-13 | 1997-03-11 | I-Stat Corporation | Methods and apparatus for rapid equilibration of dissolved gas composition |
US5632876A (en) * | 1995-06-06 | 1997-05-27 | David Sarnoff Research Center, Inc. | Apparatus and methods for controlling fluid flow in microchannels |
US5753517A (en) * | 1996-03-29 | 1998-05-19 | University Of British Columbia | Quantitative immunochromatographic assays |
US5798273A (en) * | 1996-09-25 | 1998-08-25 | Becton Dickinson And Company | Direct read lateral flow assay for small analytes |
GB2322192B (en) * | 1997-02-14 | 2001-01-31 | Unilever Plc | Assay devices |
US6090251A (en) * | 1997-06-06 | 2000-07-18 | Caliper Technologies, Inc. | Microfabricated structures for facilitating fluid introduction into microfluidic devices |
US6013164A (en) * | 1997-06-25 | 2000-01-11 | Sandia Corporation | Electokinetic high pressure hydraulic system |
US6012902A (en) * | 1997-09-25 | 2000-01-11 | Caliper Technologies Corp. | Micropump |
US6306642B1 (en) * | 1997-11-24 | 2001-10-23 | Quidel Corporation | Enzyme substrate delivery and product registration in one step enzyme immunoassays |
US5997817A (en) * | 1997-12-05 | 1999-12-07 | Roche Diagnostics Corporation | Electrochemical biosensor test strip |
US6576896B2 (en) * | 1997-12-12 | 2003-06-10 | University Of Washington | Electroosmotic fluidic device and related methods |
US6194222B1 (en) * | 1998-01-05 | 2001-02-27 | Biosite Diagnostics, Inc. | Methods for monitoring the status of assays and immunoassays |
US6030827A (en) * | 1998-01-23 | 2000-02-29 | I-Stat Corporation | Microfabricated aperture-based sensor |
US6030582A (en) * | 1998-03-06 | 2000-02-29 | Levy; Abner | Self-resealing, puncturable container cap |
GB9809918D0 (en) | 1998-05-08 | 1998-07-08 | Isis Innovation | Microelectrode biosensor and method therefor |
US6136610A (en) * | 1998-11-23 | 2000-10-24 | Praxsys Biosystems, Inc. | Method and apparatus for performing a lateral flow assay |
JP4402263B2 (en) * | 1999-06-21 | 2010-01-20 | パナソニック株式会社 | Chromatographic quantitative measurement device |
US6750053B1 (en) * | 1999-11-15 | 2004-06-15 | I-Stat Corporation | Apparatus and method for assaying coagulation in fluid samples |
US6316205B1 (en) * | 2000-01-28 | 2001-11-13 | Genelabs Diagnostics Pte Ltd. | Assay devices and methods of analyte detection |
US6438498B1 (en) * | 2000-02-10 | 2002-08-20 | I-Stat Corporation | System, method and computer implemented process for assaying coagulation in fluid samples |
KR100348351B1 (en) * | 2000-05-24 | 2002-08-09 | 주식회사 바이오디지트 | Electrochemical membrane strip biosensor |
GB0030929D0 (en) | 2000-12-19 | 2001-01-31 | Inverness Medical Ltd | Analyte measurement |
US20040208751A1 (en) * | 2001-05-22 | 2004-10-21 | Lazar Juliana M | Microchip integrated multi-channel electroosmotic pumping system |
US7201833B2 (en) * | 2001-06-04 | 2007-04-10 | Epocal Inc. | Integrated solid-phase hydrophilic matrix circuits and micro-arrays |
US20030010638A1 (en) * | 2001-06-15 | 2003-01-16 | Hansford Derek J. | Nanopump devices and methods |
US7419821B2 (en) * | 2002-03-05 | 2008-09-02 | I-Stat Corporation | Apparatus and methods for analyte measurement and immunoassay |
US20040018577A1 (en) * | 2002-07-29 | 2004-01-29 | Emerson Campbell John Lewis | Multiple hybrid immunoassay |
US7682833B2 (en) * | 2003-09-10 | 2010-03-23 | Abbott Point Of Care Inc. | Immunoassay device with improved sample closure |
US7723099B2 (en) * | 2003-09-10 | 2010-05-25 | Abbott Point Of Care Inc. | Immunoassay device with immuno-reference electrode |
EP1789796B1 (en) * | 2004-09-02 | 2011-05-11 | Abbott Point Of Care, Inc. | Blood urea nitrogen (bun) sensor |
WO2007011587A2 (en) * | 2005-07-14 | 2007-01-25 | I-Stat Corporation | Photoformed silicone sensor membrane |
-
2003
- 2003-08-28 US US10/649,683 patent/US7722817B2/en active Active
-
2004
- 2004-08-27 CA CA2576114A patent/CA2576114C/en not_active Expired - Lifetime
- 2004-08-27 JP JP2006524190A patent/JP4891077B2/en not_active Expired - Lifetime
- 2004-08-27 WO PCT/CA2004/001568 patent/WO2005022123A1/en active Application Filing
- 2004-08-27 TW TW093125746A patent/TWI356164B/en not_active IP Right Cessation
- 2004-08-27 EP EP04761732.9A patent/EP1664725B1/en not_active Expired - Lifetime
-
2010
- 2010-03-05 US US12/718,139 patent/US8124026B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1664725A4 (en) | 2012-02-15 |
EP1664725A1 (en) | 2006-06-07 |
EP1664725B1 (en) | 2020-07-01 |
CA2576114C (en) | 2015-08-04 |
US8124026B2 (en) | 2012-02-28 |
US7722817B2 (en) | 2010-05-25 |
WO2005022123A1 (en) | 2005-03-10 |
CA2576114A1 (en) | 2005-03-10 |
US20050047972A1 (en) | 2005-03-03 |
TW200510717A (en) | 2005-03-16 |
US20100202926A1 (en) | 2010-08-12 |
JP2007504434A (en) | 2007-03-01 |
JP4891077B2 (en) | 2012-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI356164B (en) | Injector pump and device comprising the same | |
US8835184B2 (en) | Analysis system | |
JP4627395B2 (en) | Analytical cartridge and liquid feeding control device | |
US20110203700A1 (en) | Interfacing an inlet to a capillary channel of a microfluidic system | |
EP2075584B1 (en) | Microanalysis measuring apparatus and microanalysis measuring method using the same | |
JP5246167B2 (en) | Microchip and liquid feeding method of microchip | |
CN104226385A (en) | A novel micro-fluidic chip and a using method thereof | |
US20030118453A1 (en) | Microfluidics and small volume mixing based on redox magnetohydrodynamics methods | |
JP2005265685A (en) | Plasma component analyzing device | |
EP2353721B1 (en) | Microfluidic device | |
CN217568785U (en) | Micro-fluidic chip | |
Dimov et al. | Hybrid integrated PDMS microfluidics with a silica capillary | |
US11781954B2 (en) | Bridging liquid between microfluidic elements without closed channels | |
JP2016507069A (en) | Novel PoC inspection system and method | |
WO2023161619A1 (en) | Integrated microfluidic test strip | |
IE86140B1 (en) | An analysis system | |
JP2007047149A (en) | Fluid-handling apparatus | |
CN119098234A (en) | Microfluidic analysis device and method for electrochemiluminescence immunoassay detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |