TWI343850B - - Google Patents
Download PDFInfo
- Publication number
- TWI343850B TWI343850B TW097119012A TW97119012A TWI343850B TW I343850 B TWI343850 B TW I343850B TW 097119012 A TW097119012 A TW 097119012A TW 97119012 A TW97119012 A TW 97119012A TW I343850 B TWI343850 B TW I343850B
- Authority
- TW
- Taiwan
- Prior art keywords
- electron microscope
- laser
- lens
- laser light
- scanner
- Prior art date
Links
- 238000012545 processing Methods 0.000 claims description 123
- 230000003287 optical effect Effects 0.000 claims description 46
- 238000005286 illumination Methods 0.000 claims description 11
- 238000013507 mapping Methods 0.000 claims description 11
- 238000010899 nucleation Methods 0.000 claims 1
- 210000001747 pupil Anatomy 0.000 claims 1
- 238000003754 machining Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 18
- 239000011159 matrix material Substances 0.000 description 12
- 238000003860 storage Methods 0.000 description 9
- 241001417527 Pempheridae Species 0.000 description 8
- 238000010894 electron beam technology Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 5
- 238000010408 sweeping Methods 0.000 description 5
- 238000001493 electron microscopy Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 1
- 241000218691 Cupressaceae Species 0.000 description 1
- 241000064494 Diplobatis ommata Species 0.000 description 1
- 240000008168 Ficus benjamina Species 0.000 description 1
- 244000007853 Sarothamnus scoparius Species 0.000 description 1
- 208000004350 Strabismus Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001615 p wave Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- APTZNLHMIGJTEW-UHFFFAOYSA-N pyraflufen-ethyl Chemical compound C1=C(Cl)C(OCC(=O)OCC)=CC(C=2C(=C(OC(F)F)N(C)N=2)Cl)=C1F APTZNLHMIGJTEW-UHFFFAOYSA-N 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0643—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0648—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/067—Dividing the beam into multiple beams, e.g. multifocusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/083—Devices involving movement of the workpiece in at least one axial direction
- B23K26/0853—Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted for a procedure covered by only one of the other main groups of this subclass
- B23K37/04—Auxiliary devices or processes, not specially adapted for a procedure covered by only one of the other main groups of this subclass for holding or positioning work
- B23K37/0408—Auxiliary devices or processes, not specially adapted for a procedure covered by only one of the other main groups of this subclass for holding or positioning work for planar work
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0017—Etching of the substrate by chemical or physical means
- H05K3/0026—Etching of the substrate by chemical or physical means by laser ablation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/42—Printed circuits
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laser Beam Processing (AREA)
Description
1343850 . 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種以對印刷基板等被加工物進行開孔 ^ 加工為主要目的之雷射加工裝置,尤其有關一種以提升生 ' 產性為目的之同時多點照射型雷射加工裝置。 ' 【先前技術】 習知技術中,已提案有一種為了謀求提升生產性而將 來自雷射光源的一束雷射光分光成兩束而能夠同時加工兩 • 個孔的雷射加工裝置(參照例如專利文獻1)。在該雷射加 工裝置中,係以第1偏光裝置將一束雷射光分光成兩束雷 射光,再導引至使該兩束雷射光的光路大致一致的第2偏 光裝置。此時,經第1偏光裝置而分光的雷射光之中的一 方的雷射光(以下稱為主光束)係經由一組鏡片(轉向鏡, bend mirror.)而被導引至第2偏光裝置。此外.,另一方的 雷射光(以下稱為副光束)係在藉由一對第1電鏡掃描器 (galvano scanner)群而沿著互不平行的2軸方向進行掃描 • . 後被導引至第2偏光裝置而混合。通過第2偏光裝置的兩 束雷射光係藉由一對第2電鏡掃描器群而沿著互不平行的 2軸方向進行掃描,再入射於ίθ透鏡,而照射至工作台上 的被加工物。在此,由於副光束係藉由第1電鏡掃描器群 - 而進行掃描,與通過一組鏡片而來的主光束相比,副光束 的角度存在有若干偏離,因此通過ίθ透鏡後的主光束與 副光束便分別照射在工作台上的相異位置。藉此,便能夠 以一個ί 6>透鏡同時加工兩個孔,而提升生產性。 4 320239 [s] 除此之外,尚提案有另一種雷射加工袭置 偏光裝置將一束雷射光分光成兩束雷射光,龙^係以苐1 鏡掃描器使各束雷射光朝2軸方向進行掃梅/错由〜對電 射光導引至第2偏光裝置,之後再以—個再將兩束雷 工兩個孔而使生產性提升(參照例如專例文獻、,鏡同時加 此外’亦有在專利文獻1揭示的雷射 ° 用以在目的位置進行孔加工的各電鏡掃插器的χ中產生 之技術(參照例如專利文獻3)。 、角度指令值 專利文獻1 :國際公開第03/041904號公報 專利文獻2 :日本特開2005-230872號公報 專利文獻3 :國際公開第〇3/〇8〇283號公報 【發明内容】 (發明所欲解決之課題) 然而,在專散獻丨所記躺雷射加工褒 光Γ方的副光束側係經由合計兩組(亦即4台經分 描器,比主光束侧的—組二 的電鏡掃 使鏡片部旋轉而使用 。夕°而;電鏡掃描器係 —^ 與經由固定鏡片的情形相比較不穩 二惡:的述電鏡掃描器的副光束必然有加工品 點位置束:藉由設置在與⑺透鏡的前焦 的第1電鏡掃果知插理想位置)隔有距離之位置 透鏡的前焦點位置到第7光束進行掃描。因此,若從 於ίθ透鏡的牲从^ 電鏡掃描器群的距離愈遠,則由 V f寸性,加工 〇 广1343850. 6. Description of the Invention: [Technical Field] The present invention relates to a laser processing apparatus which is mainly used for opening and processing a workpiece such as a printed substrate, and more particularly relates to an improved productivity A multi-point illumination type laser processing apparatus for the purpose. [Prior Art] In the prior art, a laser processing apparatus capable of simultaneously processing two holes by splitting one laser beam from a laser light source into two beams in order to improve productivity is proposed (refer to, for example, Patent Document 1). In the laser processing apparatus, a laser beam is split by a first polarizing means into two beams of laser light, and is guided to a second polarizing means for substantially matching the optical paths of the two beams of laser light. At this time, one of the laser beams split by the first polarizing means (hereinafter referred to as a main beam) is guided to the second polarizing means via a set of lenses (bend mirrors). In addition, the other laser light (hereinafter referred to as a sub-beam) is scanned in a non-parallel two-axis direction by a pair of first galvano scanner groups. The second polarizing device is mixed. The two laser beams that have passed through the second polarizing device are scanned in a two-axis direction that is not parallel to each other by a pair of second electron microscope scanner groups, and are incident on the ίθ lens to be irradiated onto the workpiece on the table. . Here, since the sub beam is scanned by the first electron microscope scanner group, there is a slight deviation in the angle of the sub beam compared to the main beam passing through a group of lenses, so the main beam after passing through the ίθ lens The sub-beams are respectively illuminated at different positions on the table. In this way, it is possible to simultaneously process two holes with one ί 6> lens to improve productivity. 4 320239 [s] In addition, another laser processing polarizer has been proposed to split a beam of laser light into two beams of light, and the ^1 mirror scanner makes each beam of laser light toward 2 In the direction of the axis, the sweeping/missing is guided to the second polarizing device by the electro-optic light, and then the two holes of the two beams are used to improve the productivity (refer to, for example, the special document, the mirror is added simultaneously). In addition, there is a technique in which the lasers disclosed in Patent Document 1 are generated in the cymbal of each of the electron microscope scanners for performing hole processing at the target position (see, for example, Patent Document 3). Angle command value Patent Document 1: International Japanese Patent Publication No. 2005-230872 (Patent Document 3): International Publication No. 3/〇8〇283 (Convention) The sub-beam side of the slanting laser processing 褒 Γ 经由 经由 经由 经由 经由 合 合 合 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副 副夕°°; SEM scanner-^ with the feeling of passing through the fixed lens Compared with the unstable dioxin: the sub-beam of the SEM scanner must have a beam of processed product points: a lens positioned at a distance from the first electron microscope that is placed in front of the (7) lens. The front focus position is scanned to the 7th beam. Therefore, if the distance from the ίθ lens is greater than the distance from the SEM scanner group, it is processed by V f.
Lua質(加工孔真圓度與焦點餘柃 320239 5 1343850 ^ 度)會有惡化的傾向,結果便有對被加工物進行加工的加工 孔品質亦惡化之問題點。 此外,專利文獻所2記載的雷射加工裝置係經第1偏 • 光裝置分光成兩束的雷射光皆非經由固定鏡片而是經由電 , 鏡掃描器而進行掃描之構成,由於在f 6»透鏡與電鏡掃描 ' 器之間需要有設置第2偏光裝置的空間,因此不論哪一種 雷射光皆在與f0透鏡的前焦點位置隔有距離之位置進行 掃描。結果便有不論哪一種雷射光的加工孔品質皆惡化的 ®問題點。 而且,在如專利文獻1所記載的雷射加工裝置之構成 中,由於光學系統複雜,因此在專利文獻3所記載之為了 控制光束位置而必須進行的各電鏡掃描器之角度指令值等 的調校(calibration)作業中,亦有在試加工時需要較多的 點數而花費時間的問題點。 本發明係鑒於上述而研創者,其目的在於獲得一種降 φ 低同時多點照射型雷射加工裝置中因兩束雷射光所造成的 加工品質之差距,而能夠謀求加工品質的提升之雷射加工 裝置。此外,本發明的另一目的在於獲得一種能夠容易地 進行控制用來照射雷射光的加工位置所需要的調校作業之 雷射加工裝置。 ' (解決課題的手段) - 為了達成上述目的,本發明的雷射加工裝置係對配置 於工作台上的被加工物上的兩點以上同時照射雷射光以進 行加工之雷射加工裝置,該雷射加工裝置係具備:第1偏 6 320239 m 1343850 光裝置,係將-束雷射光分光成光路相異的第i與第2雷 射先,第1電鏡掃描器,係配置在前述第1雷射光的光路 上,且使前述第1雷射光朝前述工作台上的第i方向進行 掃描;第2電鏡掃描器,係配置在前述第2雷射光的光路 上’且使前述第2雷射光朝前述工作台上之與前述第i方 =相異的第2方向進行掃描;第2偏光裝置,係混合前述 第1及第2雷射光;主電鏡掃插器,係由一對第3及第4 電鏡掃描器所組成’使經混合的前述第1及第2雷射光朝 前述工作台上之相異的第3與第4方向進行掃描;以及f Θ透鏡,係使來自前述主電鏡掃描器的前述第丨及第2雷 射光分別聚光於前述被加工物上的預定位置。 * (發明的效果) 依據本發明,係設計為經第!偏光裝置分光的任 光皆是經由3台電鏡掃㈣之構成,因此具有能夠在維 持同時多點照射之生產性下提升加工品質之效果。 【實施方式】 以下,參照附圖,詳細說明本發明的雷射加工裝置 ^佳實施形態。另外,本發明並非由下述的實施形態所限 疋者。 實施形態1 在進行本發_雷射加U的㈣前,先針 雷射加工裝置構成的概要進行說明。第】4圖係習知例 時多點照射型雷射加工裳置的構造圖。雷射加工 二 備:ΧΥ工作台2η ’係载置印刷基板等被加工物⑽,Ί 320239 7 1343850 •能夠在水平面(χγ平面)内移動;以及光學系統,係用以將The Lua quality (the roundness of the machined hole and the focus of the embers 320239 5 1343850 ^ degrees) tend to deteriorate, and as a result, the quality of the machined hole for processing the workpiece is also deteriorated. Further, in the laser processing apparatus described in Patent Document 2, the laser light split by the first partial light-receiving device is configured to be scanned by the mirror scanner instead of the fixed-lens light, because it is f 6 »The space between the lens and the SEM scanner needs to be set between the second polarizer, so that any kind of laser light is scanned at a distance from the front focus position of the f0 lens. As a result, there is a problem that the quality of the processed holes of any laser light deteriorates. Further, in the configuration of the laser processing apparatus described in Patent Document 1, since the optical system is complicated, the angle command value of each of the electron microscope scanners necessary for controlling the position of the light beam described in Patent Document 3 is adjusted. In the calibration work, there are also problems in that it takes a lot of points during trial processing and takes time. The present invention has been made in view of the above, and an object of the present invention is to obtain a laser which can improve processing quality by reducing the difference in processing quality caused by two laser beams in a multi-point illumination type laser processing apparatus. Processing device. Further, another object of the present invention is to obtain a laser processing apparatus capable of easily performing a calibration operation required for controlling a processing position for irradiating laser light. (Means for Solving the Problem) - In order to achieve the above object, the laser processing apparatus of the present invention is a laser processing apparatus that simultaneously irradiates laser light at two or more points on a workpiece placed on a table to perform processing. The laser processing apparatus includes: a first offset 6 320239 m 1343850 optical device that splits the laser beam into the first and second lasers with different optical paths, and the first electron microscope scanner is disposed in the first The first laser light is scanned on the optical path of the laser light in the ith direction on the stage; the second electron microscope scanner is disposed on the optical path of the second laser light and the second laser light is emitted Scanning in a second direction different from the i-th side of the workbench; the second polarizing means mixing the first and second laser beams; and the main electron microscope sweeper is a pair of third and third The fourth electron microscope scanner is configured to scan the mixed first and second laser light toward the different third and fourth directions on the table; and the f Θ lens for scanning from the main electron microscope The aforementioned first and second laser beams of the device are respectively concentrated Is a predetermined position on the workpiece. * (Effects of the Invention) According to the present invention, it is designed to be the first! Since the light splitting of the polarizing means is constituted by three electron mirror sweeps (four), it has the effect of improving the processing quality while maintaining the productivity of simultaneous multi-point irradiation. [Embodiment] Hereinafter, a preferred embodiment of a laser processing apparatus according to the present invention will be described in detail with reference to the accompanying drawings. Further, the present invention is not limited by the following embodiments. (Embodiment 1) An outline of the configuration of the first-needle laser processing apparatus will be described before (4) of the present invention. Fig. 4 is a structural diagram of a conventional multi-point illumination type laser processing. Laser processing 2: ΧΥ table 2η ′ is placed on the printed substrate and other objects (10), Ί 320239 7 1343850 • can move in the horizontal plane (χγ plane); and optical system, used to
自未圖示的雷射振盪器射出的雷射光L·照射於χγ工作A 211上的被加工物212。其中,在第14圖令,以載置被力口口 \工物f12的XYJ1作台211的面為水平面,以在水平面内相 互正交的兩輪為x軸與Y軸,以與該X轴與γ轴兩者垂直 的轴為Z轴。The laser beam L emitted from the laser oscillator (not shown) is irradiated onto the workpiece 212 on the χγ operation A 211. In the 14th order, the surface of the XYJ1 on which the force port/worker f12 is placed is the horizontal plane, and the two wheels orthogonal to each other in the horizontal plane are the x-axis and the Y-axis, and the X The axis perpendicular to both the axis and the gamma axis is the Z axis.
光學系統係具備:第1偏絲置222,係由偏光分束 鏡^)eam,splltter)等構成,將自未圖示的雷射振盪器射出 的 =刀光成兩束雷射光' Lb ;第2偏光裝置223, 係由偏光〔切等構成,隸第1偏光裝置222分光且行 進於不同光路而來的兩束雷射光La、Lb混合(mi}〇,並導 引至大致相同的光路;以及W透鏡228,係將來自第2偏 光裝置223的經混合的雷射光La、Lb聚光於被加工物212 上 卜乂使經分光的兩束雷射光La、Lb在第1偏光裝 置222與第2偏光裝置挪之間的光路長度成為相同之^ 卜1前述第2偏光裝置223將兩束雷射光b 兩Γ孔口。由係,為了使用一個f 0透鏡228來同時加工 配置S 解’係說明在雷射光L、La、Lb的光路 配置鏡片22la至221(1與 幻元裕 226b,俾使雷射㈣器 224a、224b、226a χ轴、γ轴、心-先路成為與上述所設定 了以90度的角声折彎(及私、致平行的情形。此情形下, 巧度折4 C反射)雷射 上的鏡片224至221(1係 的先路’配置在光 I战例如相對於圖中所示之χ s 320239 座標系統的任一軸形成45度的 裝置222反射的雷射光u的本度此外,在由第1偏光 Lb朝2軸方向進行掃描並係設有用以將雷射光 電鏡掃描器224a、224b。電## 偏光裝置223的一對 的旋轉軸成為X轴方向之描益224a係以令鏡月225a 令鏡片225b的旋轉轴成為^配置’電鏡掃描器224b係以 鏡掃描器224a進行掃插 方式配置。藉由使電 211上的X軸方向進行 b勺使辑射光Lb朝ΧΥ工作台 掃描,便能夠使雷射使電鏡掃指器進行 進行掃描。 U朝灯工作台川上的Y軸方向 並且’在第2偏光襄置?? 置有將來自第2偏光f置二工透鏡228之間係設 2 、置223的經混合之雷射光La、Lb朝 軸方向進油推並導引至被加玉物21 器226a、226b。電錄沖„„ ooe , 盯食于電鏡抑抱 ,,,.7 τ描态226a係以令鏡片227a的旋轉 ’’’、°之方式配置,電鏡掃描器226b係以令鏡片 =旋轉轴成為Y軸方向之方式配置。藉由使電鏡掃描 裔226a進讀描,便能夠使雷射光La、Lb朝χγ工作台 11上的X軸方向進行掃描,藉由使電鏡择描S 226b進行 掃描’便能夠使雷射光心⑪㈣工作台犯上❸轴 方向進行掃描。 以下’針對如上述構造的雷射加工裝置的動作進行說 明。將自未圖示的雷射振盪器射出的雷射光l的偏光方向 5周整至45度的方向,該雷射光L係經兩個鏡片221a、221b 反射而入射於第1偏光裝置222。第i偏光裝置⑽係將 320239 9 該田射光分光成偏光方向與入射面成垂直的p波之雷射 光、及偏光方向與入射面成平行的s波之雷射光。The optical system includes: a first eccentric wire 222, which is composed of a polarization beam splitting mirror ^) eam, splltter), etc., and a light emitted from a laser oscillator (not shown) into two laser beams 'Lb; The second polarizing means 223 is composed of polarized light (cut or the like), and the two laser beams La and Lb which are split by the first polarizing means 222 and travel on different optical paths are mixed (mi}〇 and guided to substantially the same optical path. And the W lens 228 condenses the mixed laser light La, Lb from the second polarizing means 223 on the workpiece 212, so that the two beams of laser light La, Lb that are split are in the first polarizing means 222. The optical path length between the second polarizing means and the second polarizing means is the same. The second polarizing means 223 divides the two laser beams b into two apertures. In order to simultaneously process the S solution using a f 0 lens 228 'Describes that the optical paths of the laser light L, La, and Lb are arranged to the lenses 22la to 221 (1 and the phantom 226b, so that the laser (four) devices 224a, 224b, 226a, the y-axis, the gamma axis, the heart-first path become the above It is set to bend at an angle of 90 degrees (and private and parallel). In this case, the skill is 4 C reflection. The upper lenses 224 to 221 (the first system of the 1 series are disposed in the light I, for example, the laser light u reflected by the device 222 forming a 45 degree with respect to any axis of the 239 320239 coordinate system shown in the figure. Scanning the first polarized light Lb in the two-axis direction and connecting the pair of rotating shafts of the laser photoelectric scanners 224a and 224b and the electric ## polarizing device 223 to the X-axis direction The mirror month 225a causes the rotation axis of the lens 225b to be arranged. The EM scanner 224b is arranged by the mirror scanner 224a. By b-spring the X-axis direction of the electric 211, the multiplexed light Lb is directed toward the boring table. Scanning, the laser can be scanned by the electron microscope scanner. U is directed to the Y-axis direction of the lamp stage and 'in the second polarizing device is set to have the second polarized lens f from the second lens 228. The mixed laser light La, Lb of the second setting 223 is pushed in the axial direction and guided to the jade 21 226a, 226b. The electric recording is „„ooe, and the food is immersed in the electron microscope. ,, .7 τ θ 226a is arranged so that the rotation of the lens 227a is '', °, electron microscope The scanner 226b is disposed such that the lens = the rotation axis is in the Y-axis direction. By scanning the electron beam scanning 226a, the laser light La, Lb can be scanned in the X-axis direction on the χγ table 11. By scanning the electron beam selection S 226b, the laser light 11 (four) stage can be scanned in the x-axis direction. The following describes the operation of the laser processing apparatus having the above configuration. The polarization direction of the laser light 1 emitted from the laser oscillator (not shown) is adjusted to 5 degrees in the direction of 5 degrees, and the laser beam L is reflected by the two lenses 221a and 221b and enters the first polarizing means 222. The i-th polarizing device (10) splits the field light into a p-wave laser light whose polarization direction is perpendicular to the incident surface, and a s-wave laser light whose polarization direction is parallel to the incident surface.
/穿透第1偏光裂置222的雷射光(以下稱為主光束)La 係經由兩個鏡片221c、222ld而被導引至第2偏光裝置 223。另一方面,經第i偏光裝置222反射的雷射光(以下 稱副光束)Lb係藉由電鏡掃描器224a、以扑朝2軸方向進 仃掃描後被導引至第2偏光裳置223。此處,主光束匕係 恆常地在同樣的位置被導弓丨至第2偏光裝置如,而副光 束Lb係藉由控制電鏡掃描$ 224&、22仙的擺角來調整入 射於第2偏光裝置223的位置與角度。The laser light (hereinafter referred to as main beam) La penetrating the first polarizing split 222 is guided to the second polarizing means 223 via the two lenses 221c and 222ld. On the other hand, the laser beam (hereinafter referred to as sub-beam) Lb reflected by the i-th polarizing means 222 is scanned by the electron microscope scanner 224a in the two-axis direction and then guided to the second polarized skirt 223. Here, the main beam enthalpy is constantly bowed to the second polarizing means at the same position, and the sub beam Lb is adjusted to be incident on the second by controlling the electron microscope to scan the slant angle of 22 224 & 22 sen. The position and angle of the polarizing device 223.
之後,主光束La係由第2偏光裝置223反射,副光束 1^係穿透第2偏光裝置223,藉此’兩束雷射光卜让係 仃進於大致相同的光路而被導引至電鏡掃插器2咖、 226b。接著,在藉由電鏡掃描器226&、22讣而朝2軸方向 進行掃描後被導弓丨至ίθ透鏡228,而分別聚先於被加工物 2!2上的預定位置,以實施加工。此時,藉由使電_描 加工 器224a、224b、226a、226b進行掃描,便能夠將主光束 U與副光束Lb照射於被加卫物212上的任意相異兩點。 待掃描區域内的孔之加工全部結束後,藉由使χγ'工作么 ⑵朝圖中的Π方向移動,便能夠實施下—個掃描區㈣ 此處,使第1組的電鏡掃推器224a、224b分別成為某 個角度時,則經分光的雷射光Lb會在第2偏錢置挪以 後描繪出相同的軌跡而力叫目同的位置。現在,假設有兩 320239 丄3Thereafter, the main beam La is reflected by the second polarizing means 223, and the sub beam 1^ penetrates the second polarizing means 223, whereby the two beams of laser light are guided into the substantially identical optical path and guided to the electron microscope. Sweeper 2 coffee, 226b. Then, after scanning in the two-axis direction by the electron microscope scanners 226 & 22, the guide lens is guided to the ίθ lens 228, and is respectively placed at a predetermined position on the workpiece 2! 2 to perform processing. At this time, by scanning the electric ray processors 224a, 224b, 226a, and 226b, the main beam U and the sub beam Lb can be irradiated to the two points different from each other on the object 212. After the processing of the holes in the area to be scanned is completed, the next scanning area (4) can be implemented by moving the χγ' operation (2) in the direction of the 中 in the figure. Here, the first group of the electron microscope scanner 224a is used. When 224b is at a certain angle, the split laser light Lb will draw the same trajectory after the second shift of money, and the same position will be called. Now suppose there are two 320239 丄3
St近的欲加工孔位置A及β,首先,只要藉由第2 任—兄掃描器226a、226b朝2軸方向進行掃描以加工其中 者(例如A)的孔位置,則主光束。便在該位The position of the holes A and β to be processed near St, first, the main beam is processed by scanning the second axis-sharp 226a, 226b in the two-axis direction to process the hole position of the one (for example, A). In this position
• 孔加工。妞从 ^ J ' 朝 得者’只要藉由第1組電鏡掃描器224a、224b再 *' /,2柏方向並從孔位置A往另一孔位置B的方向進行掃 田’則副光束Lb便對另一孔位置B進行加工。 々如上所述,在具有第14圖的構成之雷射加工裝置中, • ^ 2組電鏡掃描器226a、226b的功能係能夠視為主掃描, 1組電鏡掃描器224a、224b的功能係能夠視為如上述從 2位置A到孔位置B之差分掃描,而容易於直覺上理解其 結構。此外,實際上便如同其功能,第1組電鏡掃描器 224a、224b所掃描的擺角係比第2組電鏡掃描器226心22肋 所掃描的擺角小。 然而,在上述的雷射加工裝置中,經分光之一方的副 光束Lb係經由合計2組(亦即4台)、較多的電鏡掃描器 • 224a、224b、226a、226b。而由於電鏡掃描器係使鏡片部 旋轉而使用,與經由固定鏡片的情形相比較不穩定,因此 田1J光束Lb所進行的加工必然有加工品質(此處所指之加工 品質係指掃描區域内的孔的真圓性·焦點餘裕度等加工孔 品質、以及加工位置精度偏差這兩點)容易惡化的問題點。 此外,從f0透鏡228的前焦點位置到使光束進行掃描的 最遠的電鏡掃描器224a之長距離亦是加工品質(尤其是加 工孔品質)惡化的原因之一。 因此,本發明提供一種雷射加工裝置,其構成係設計 320239 11 1343850 各光路的雷射光La、Ly5在χγ 進行掃描;第2偏光裳i 25作台11上朝相異的方向 經第1偏絲置21分光且行進於偏光分束鏡等構成’將 光La予以混合並料至/同光料來的兩束雷射 器26a、26b(以下,將該等:相_光路;電鏡掃描 鏡掃描器.、_,係使來;^器26&、2此稱為主電 的雷射光在XY工作台偏光裝置25之經混合 描;以及透鏡28,係將經現」上朝相異的方向進行掃 於被加工物12上。在此,副雷射光、L々聚光 申請專利範圍記載的第1、第插f 23a、23_對應 電鏡掃描器26a、26b係對應第3鏡掃描态,同樣地,主 另外,為了簡單起見,(係就下:電鏡掃描器。 在光路上的鏡片22a至22f與雷參二月形進仃說明:配置 2讣係以將雷射光l、La、Lb以==撝态2如、23b、26a、 目的,而配置成例如相對於圖中所,_^的角度折彎(反射)為 一軸形成45度的角度,俾使雷射:之XYZ座標系統的任 為與Χϋ、γ軸、ζ軸中任-者大致'_La、LyS的光路成 如下:穿透第1偏光裝置21的雷射也订。此外,光路構成 置25反射,被第1偏光裝置21及〜La係被第2偏光裝 第2偏光裝置25。並且構成為使“、的雷射光係穿透 W在第丨偏光裝置2丨與第2偏兩束雷射光^、 成為相同。 、置25之間的光路長度 在本實施形態1中,配置在經第 兩束雷射光La、L/5的光路上之^偏光裝置21分光的 <鏡片22a至2f的個數及 320239 13 1343850 電鏡掃描器23a、23b的個數皆係配置成在兩光路相等。此 外’為了使兩束雷射光、L/9不會出現特性上的差異, 亦對電鏡掃描器的配置方法研擬對策。亦即,從Μ透鏡 到電鏡掃描益23a、23b的配置位置之光路長度皆係設計成 在兩光路相等。 亦即’穿透第1偏光裝置21的雷射光(以下稱為α光 束)U之至第2偏光裝置25的光路上係設有η(η為自然數) 片的鏡片(22a至22c)及-個電鏡掃描器23a。此外,經第 1偏光裝置21反射的雷射光(以下稱為$光束Μ之至第2 裝置25的光路上係設有n(n為自然數)片的鏡片(22d 及—個電鏡掃描器娜。而在第】圖的情況中,n=3 述的構成’由於在兩光路上配置相同數目的鏡 為相同Γ'描益’因此通過兩光路上的雷射光的品質便成 圖所此:,在本實施形態1卜可考慮例如第1圖與第2 ==主電鏡掃描器26a係以使鏡片27a的旋轉轴成 --::::::rrr26b#-w^^27b 2“、27b 較?::=:: :挪’ , η 处兄的前焦點位置F。然而 可能在相同位置配置複數個鏡片,因此考慮儘 /片的情形。亦即,在使電鏡掃描器必的 二二隹電鏡掃描器26b的鏡片27b儘量接近於Μ透 窥Μ的刖焦點位置F之位詈西? <位置配置主電鏡掃描器26a、26b, 320239 14 1343850 俾使連結電鏡掃描器26a的鏡片27a的中心位置與電鏡掃 描益26b的鏡片?7h 66由、dt* Αώ 丄 、 27b的中心位置之直線的中心點成為ίθ j鏡28的則焦點位置F。但此時,考慮到主電鏡掃描器 服、26b各自的鏡片27a、27b會進行旋轉,而必須以使 等二二2二27b兩者間不會發生干涉的方式選擇兩鏡片 a' 27b(電鏡掃描器26a、26b)間之距離2Y。 =圖所示的例中係考慮將電鏡掃描器26a的鏡片 开二T I以固定、使電鏡掃描器挪進行旋轉時的情 如此一來,雷射光主Μ透鏡28的入射位置 =向改變。相反地’考慮將電鏡掃描器26b的 W 固定、使電鏡掃描器服進行旋轉時的 C二此:來,雷、射光L…往㈣鏡⑸的入射位 26b 改變。如此,藉由使電鏡择描器咖、 的入::’便能夠改變雷射光La、…"㈣鏡28 的入射位置(入射角度)。 浐播t匕外’光學系统係如第1圖所示,α光束用的電 ===光束㈣的電鏡掃描請的掃描方 (假設為二的’方式來決定。在該第1圖的例令, 方向的方式配置電鏡掃使鏡片2知的旋轉軸成為2軸 掃插栺益23&,俾使α光束La用的電鏡 作&、田方向在緊接其後處係為X方向而在XY:L 1下台11上則成為X方& L al ^ 為Μ方向的方式配Λ外,以使鏡片灿的旋轉轴成 的電鏡掃描器丄鏡掃描器2北’嶋光束W用 田 '掃插方向在緊接其後處係為Z方向而 320239 15 850 ,m台li上則成為y方向。亦印,藉由使電鏡掃描 盗23a進行掃描’便能夠使雷射光^往乂丫工作台^上 的X軸方向進行掃描,藉由使電鏡掃插器伽進行掃描, ^能夠使雷射光W往χγ工作台u_^y㈣向進行掃 描0 控制部30係、進行求取主電鏡掃插器·、娜及副電 =描器孤、23㈣鏡片角度與加工孔位置之關係的調校 :乍業,具有控制用以將雷射光La照射於加工孔位置 主電鏡掃㈣26及副電鏡掃描器咖、娜的鏡片角度 關於該控制部3G所進行的調校作業及加工控制作 業係在實施形態4進行說明。• Hole machining. The girl from the ^ J ' 者 者 ' as long as the first group of electron microscope scanners 224a, 224b and then * ' /, 2 cypress direction and from the hole position A to the other hole position B in the direction of sweeping 'the sub-beam Lb The other hole position B is processed. As described above, in the laser processing apparatus having the configuration of Fig. 14, the functions of the ^ 2 group of electron microscope scanners 226a, 226b can be regarded as the main scanning, and the functions of the one group of the electron microscope scanners 224a, 224b can be It is regarded as a differential scan from the 2 position A to the hole position B as described above, and it is easy to intuitively understand the structure. Further, in practice, as with its function, the swing angles scanned by the first group of electron microscope scanners 224a, 224b are smaller than the swing angles scanned by the core 22 ribs of the second group of electron microscope scanners 226. However, in the laser processing apparatus described above, the sub-beams Lb which are one of the split beams pass through a total of two groups (i.e., four units) and a large number of electron microscope scanners 224a, 224b, 226a, and 226b. However, since the electron microscope scanner uses the lens portion to rotate and is unstable compared with the case of fixing the lens, the processing performed by the field 1L beam Lb necessarily has processing quality (the processing quality referred to herein means the scanning area). The problem of the deterioration of the hole quality and the machining position accuracy such as the hole roundness and the focus margin of the hole is likely to deteriorate. Further, the long distance from the front focus position of the f0 lens 228 to the farthest electron microscope scanner 224a for scanning the light beam is also one of the causes of deterioration in processing quality (especially, the quality of the processing hole). Therefore, the present invention provides a laser processing apparatus, which is designed to design 320239 11 1343850, and the laser light La, Ly5 of each optical path is scanned at χγ; the second polarized light is used for the first partial bias in the opposite direction. The wire is set to 21 and travels to a polarizing beam splitter or the like to form two laser beams 26a, 26b that mix and combine the light La to the same material (hereinafter, the same: phase_optical path; electron microscope scanning mirror) The scanner, _, is made; the device 26 & 2, the laser light, which is called the main power, is mixed in the XY table polarizing device 25; and the lens 28 is now different. The direction is scanned on the workpiece 12. Here, the first and the second f 23a, 23_ corresponding to the electron beam scanners 26a and 26b described in the sub-laser light and the L 々 concentrating application range correspond to the third mirror scanning state. Similarly, the Lord, in addition, for the sake of simplicity, (the system is down: the electron microscope scanner. The lenses 22a to 22f on the optical path and the February of the Thunderbolt are described as follows: configuration 2 讣 system to laser light l, La Lb is configured to be, for example, angled with respect to _^ in the figure, with == 撝 state 2, 23b, 26a, purpose (for example) The light is formed at an angle of 45 degrees for one axis, so that the laser path of the XYZ coordinate system is the same as that of the Χϋ, γ axis, and ζ axis, and the optical path of the '_La, LyS is as follows: penetrating the first polarizing device In addition, the optical path is set to reflect 25, and the second polarizing means 21 and the second polarizing means 2 are attached to the second polarizing means 25, and the laser light is transmitted through the W. The second polarizing device 2 is the same as the second polarized light. The length of the optical path between the electrodes 25 is arranged on the optical path passing through the second laser beams La and L/5 in the first embodiment. The number of lenses 22a to 2f and the number of 320239 13 1343850 electron microscope scanners 23a and 23b are arranged to be equal in the two optical paths. In addition, 'in order to make two beams of laser light, L/9 There is no difference in characteristics, and the countermeasures for the configuration of the SEM scanner are also developed. That is, the optical path lengths from the Μ lens to the TEM scanning 23a, 23b are designed to be equal in the two optical paths. 'The laser light penetrating the first polarizing device 21 (hereinafter referred to as α beam) U to the second polarized light The optical path of the device 25 is provided with lenses (22a to 22c) of η (n is a natural number) and an electron microscope scanner 23a. Further, the laser light reflected by the first polarizing means 21 (hereinafter referred to as $beam Μ) The optical path of the second device 25 is provided with a lens (22d and an electron microscope scanner) of n (n is a natural number). In the case of the first figure, the configuration of n=3 is due to The same number of mirrors are arranged on the two optical paths to be the same one, so the quality of the laser light passing through the two optical paths is plotted. In the first embodiment, for example, FIG. 1 and the second == main The electron microscope scanner 26a is such that the rotation axis of the lens 27a is -::::::rrr26b#-w^^27b 2", 27b is more than:::=:::Nove', the front focus position of the brother at η F. However, it is possible to configure a plurality of lenses in the same position, so consider the case of the film. That is, the lens 27b of the electron microscope scanner 26b, which is necessary for the electron microscope scanner, is as close as possible to the position of the focus point F of the squint. <Position Configuration Main Electron Microscope Scanners 26a, 26b, 320239 14 1343850 The center position of the lens 27a connecting the electron microscope scanner 26a and the lens of the electron microscope scanning 26b? The center point of the straight line at 7h 66, dt* Αώ 丄 , and 27b is the focus position F of the ίθ j mirror 28. However, at this time, in consideration of the rotation of the respective lenses 27a, 27b of the main scanning electron microscope scanner, 26b, it is necessary to select the two lenses a' 27b in such a manner that the interference does not occur between the two 22 2 27b (electron microscopy) The distance between the scanners 26a, 26b) is 2Y. In the example shown in the figure, when the lens of the electron microscope scanner 26a is turned on and fixed, and the electron microscope scanner is rotated, the incident position of the laser main lens 28 is changed. Conversely, considering the fixing of W of the electron microscope scanner 26b and the rotation of the electron microscope scanner, the incident position 26b of the (four) mirror (5) is changed by the lightning, the light L. In this way, the incident position (incident angle) of the laser light La, ... " (four) mirror 28 can be changed by making the electron microscope::'. As shown in Fig. 1, the optical system of the 光束 匕 , , α α α α α α α α α α α α α α α α α α α α α α α α α α 电 电 电 电 电 电 电 电 电 电 电 α 电 α α α α Align the direction of the electron mirror to make the rotation axis of the lens 2 become the 2-axis sweeping benefit 23 &, and the electron beam of the alpha beam La is used as the & the field direction is followed by the X direction. On the XY:L 1 lower stage 11, the X-ray & L al ^ is the Μ direction of the Λ , 以 , 以 以 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电'The direction of the sweeping is followed by the Z direction and 320239 15 850, and the m stage is the y direction. Also printed, by scanning the SEM 23a for scanning, it is possible to make the laser light Scanning in the X-axis direction on the table ^, by scanning the SEM sweeper, the laser light can be scanned toward the χ gamma table u_^y (4) to scan the 0 control unit 30, and the main SEM scan is performed. Interpolator, Na and sub-electricity = Tracing, 23 (four) adjustment of the relationship between the angle of the lens and the position of the processing hole: industry, with control to use the mine Light La is irradiated to the machining position of the main hole and the sub electron microscope scan electron microscope scanner ㈣26 coffee, calibration and operation control processing jobs based on the angle of Na lens control unit 3G performed in embodiment 4 will be described.
古兒明接著—^對具有上述構成的雷射加U的動作進行 二月。心射振盈器2。振盪出的雷射光l係藉由 、置21而分光成穿透側的雷射光L 々。穿透側的雷射光(亦即“束)L: = _雷射光L 仏至22c及一個α光束用的電—些固定鏡片 第2偏光裝跡同樣地,反射側的^而被導引至 $亦經由另-些固定鏡片⑽至22 "先束 鏡掃描器23d而被導引至第2偏光裝置束用的電 裝置25的各雷射光La、L万係 :由第2偏光 進行掃描,並通_透鏡28,藉此日^鏡;;描器 1、撕 的兩點。接著’加工被加工物12。此時 2扑及主電鏡掃描器服、皆依 見掃插器23a、 設定好的加卫資訊來控制鏡片角度。 部3Q所預先 320239 16 1343850 在此’說明能夠以本實施形態1的雷射加工裝置讓加 工品質提升的理由。在第1偏光裝置21與第2偏光裝置 25之間分光的兩雷射光La、L々的品質係因為通過相同數 \ 目的鏡片及電鏡掃描器而成為相等。因此,改善加工點位 , 置精確度偏差與加工孔品質這兩個點。 加工點位置精確度之偏差係在加工點的位置偏差,係 相對於理想位置的誤差偏差。電鏡掃描器掃描時的角度偏 ^ 差係造成該加工點位置精確度之偏差的主要原因·。藉由本 實施形態1,α光束La及/5光束W係分別經由3台電鏡 掃描器,少於習知例的副光束Lb所經由的4台,因 加工位置精確度之偏差。 另一方的加工孔品質係表示一邊使Z軸高度變化一邊 使電鏡掃描器在掃描區域内進行掃描而進行加工時的加工 孔的真圓性程度者。通常’若孔的真圓率為預定值以土時, 則會將=工孔品質判斷為佳,而該加工孔品質被判斷為佳 籲的Z軸範圍愈大,焦點餘裕度會愈寬,加工孔品質會愈好。 ,此,Z軸係指,含有副電鏡掃描器23a、23b、第2電鏡 掃十田器23與主電鏡掃描器26a、26b、及f 6»透鏡28而構 成者,且為具有朝與相對於灯工作台u的上表面成垂直 、方向(Z軸方向)平行之方向移動的機構之零件群。 般而言’到加工點前之光路所插入的鏡片的數目愈 ^所傳播雷射光的品質(真圓性)會愈差,而有加工點的 $束品質,€、化的傾向。結果,加工孔品質亦惡化。這是由 鏡的平面若嚴格來說,凹凸形狀在縱及橫方向上大多 320239 1343850 不同,而傳播於複數片之此種鏡片的雷射光的光束的擴散 角度或聚光點的Z位置在縱及橫方向上會有極大差異。耳 體而言,電鏡掃描器的鏡片係設計成特殊形狀的鏡片,^ 亦f平面度較差者,因此,當光路上存在有複數個電鏡掃 描斋時,在加工點的光束品質惡化會變得非常地顯著。 ^第3—1圖係加工孔品質佳之狀態的示意圖。第3_2圖 係加工孔品質差之狀態的示意圖。如第W圖所示,當傳 播雷射光L的鏡片與電鏡的片數較少時,由於依以圖;所 不的座標轴為基準的XZ平面及【平面剖切雷射光L時的 形狀係-致’因此焦點高度相等,光束怪常地為直圓,不 淪在焦點附近的Z軸的哪處剖切,雷射光L皆為圓形。秋 :::3-2圖所示’當傳播雷射光£的鏡片與電鏡的片 數較夕時,依以圖中所示的座標軸為基準的χζ平面及γζ m切雷射形狀並不—致。亦即,焦點高度(ζ 釉)不同。結果,在盘隹點位罟附 ㈣止τ * 〜,,、點位置附近之Ζ轴垂直之方向剖切 雷射先L時,係呈槽圓形狀。在第3_2圖中 ==角度與聚光位置在縱及橫方向不同:、一 先乙攸杈橢圓變化至縱橢圓時的情形。 :4圖係顯示加工孔品質的一評價方法例之圖。加工 :質的評價方法係藉由求取z._ 軸範圍係當使Z轴高度變化而报“運仃#價该 壯的w 度釔化而形成加工孔時,加工孔的形 為預定的百分比以上者。亦即,該Z軸範圍 糸力孔σσ質被視為佳之範圍。此外,該 加工愈容易進行。 轴乾圍愈廣 320239 束』1= 圖的雷射加工裝置的主光 :_2圖係顯示本實施形態1的雷射加工裝置㈣束L 筮的加工孔0口質被判斷為佳之範圍的一例之圖。首先,如 1圖所不’在主光束La中’傳播雷射光的電鏡 226: 226b的個數係少至2個,而在副光束 =射光的電鏡掃描m 224b、226a、的個^ =個。因此’僅傳播於2個電鏡掃描器2脱、2咖的= 雷射光的加工孔品質較高’但傳播於4個電鏡掃描器 ^224b、226a、226b的副雷射光Lb的加工孔The ancient child Ming-^ performed the action of the laser plus U having the above-described configuration in February. Heart-shooting vibrator 2. The oscillating laser light 1 is split by the 21 to be the laser light L 々 on the penetrating side. The laser light on the penetrating side (ie, the "beam" L: = _ laser light L 仏 to 22c and the electro-optical lens for the alpha beam are second polarized. Similarly, the reflective side is guided to $ is also guided to the laser light La, L of the electric device 25 for the second polarizing device beam via the other fixed lenses (10) to 22 " the beam mirror scanner 23d: scanning by the second polarized light And the lens _ lens 28, thereby taking the day ^ mirror;; the tracer 1, the two points of tearing. Then 'processing the workpiece 12. At this time 2 and the main electron microscope scanner service, all rely on the sweeper 23a, The setting of the guard information is used to control the lens angle. Section 3Q Pre-320239 16 1343850 Here, the reason why the processing quality can be improved by the laser processing apparatus according to the first embodiment will be described. The first polarizing means 21 and the second polarized light are used. The quality of the two laser beams La and L, which are split between the devices 25, is equal by the same number of lenses and electron microscope scanners. Therefore, the processing points are improved, and the accuracy deviation and the quality of the machined holes are improved. The deviation of the accuracy of the machining point position is the positional deviation of the machining point, which is relative to The error deviation of the position is determined. The angle error at the time of scanning by the electron microscope scanner is the main cause of the variation in the accuracy of the position of the machining point. With the first embodiment, the α beam La and the /5 beam W are respectively passed through three sets of electricity. The mirror scanner is smaller than the deviation of the machining position accuracy by the four sub-beams Lb of the conventional example. The other machining hole quality means that the electron microscope scanner is in the scanning area while changing the Z-axis height. The degree of roundness of the machined hole when the machining is performed by scanning. Generally, if the true circle ratio of the hole is a predetermined value, the quality of the hole is judged to be good, and the quality of the machined hole is judged as The larger the Z-axis range of Jiayu, the wider the focus margin and the better the quality of the machined hole. Here, the Z-axis refers to the sub-electron scanner 23a, 23b, the second electron microscope sweeper 23 and the main The electron microscope scanners 26a and 26b and the f 6» lens 28 are formed as a component group having a mechanism that moves in a direction parallel to the upper surface of the lamp stage u and parallel to the direction (Z-axis direction). Generally speaking, the light before the processing point The more the number of lenses inserted, the worse the quality of the transmitted laser light (the true roundness) will be, and the quality of the beam at the processing point will be reduced. The result is that the quality of the processed hole is also deteriorated. If the plane is strictly speaking, the concave and convex shape is different in the longitudinal and lateral directions, and most of the 320239 1343850 is different, and the diffusion angle of the light beam of the laser light propagating in the plurality of lenses or the Z position of the light collecting point is in the longitudinal and lateral directions. There will be great differences. In terms of the ear, the lens of the SEM scanner is designed as a specially shaped lens, and the flatness is also poor. Therefore, when there are multiple electron microscopes on the optical path, the beam at the processing point Quality deterioration can become very noticeable. ^ Figure 3-1 is a schematic diagram of the state in which the quality of the processed hole is good. Fig. 3-2 is a schematic view showing a state in which the quality of the processing hole is poor. As shown in FIG. W, when the number of lenses and electron microscopes for propagating the laser light L is small, the XZ plane based on the coordinate axis of the reference and the shape system when the laser beam L is cut plane is used. - So that 'the focus is equal, the beam is often straight, not cut at the Z axis near the focus, the laser light L is round. Autumn:::3-2 shows that when the number of lenses and electron microscopes that propagate laser light is eve, the χζ plane and γζ m-cut laser shape based on the coordinate axis shown in the figure are not— To. That is, the focus height (ζ glaze) is different. As a result, in the case where the 隹 * 罟 ( 四 四 τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷In Fig. 3-2, the == angle and the condensing position are different in the longitudinal and lateral directions: a case where the first 攸杈 ellipse changes to the vertical ellipse. The :4 figure shows an example of an evaluation method for the quality of the machined hole. Machining: The quality evaluation method is based on the z._ axis range. When the Z-axis height is changed and the "Wheeling value" is reported, the shape of the machined hole is predetermined. Above the percentage, that is, the Z-axis range of the force hole σσ is considered to be a good range. In addition, the processing is easier. The shaft dry circumference is wider than 320,239 bundles. 1= The main light of the laser processing device of the figure: _2 The figure shows an example of a range in which the processing hole 0 of the laser beam processing apparatus (1) beam L 本 of the first embodiment is judged to be preferable. First, as shown in Fig. 1, the laser light is propagated 'in the main beam La'. The number of electron microscopes 226: 226b is as few as two, and in the sub beam = electron beam scanning m 224b, 226a of the light, ^ = one. Therefore 'only spreads to 2 electron microscope scanner 2, 2 coffee = The quality of the processed hole of the laser light is high', but the machining hole of the sub-laser light Lb that is transmitted to the four electron microscope scanners ^224b, 226a, 226b
地低。相對於此’如第Η圖所示,傳播雷射光P ==目為3個的α光束L…光⑽的二 。口質皆比第5-1圖所示的習4垂益 ^ 孔 加工孔品質還佳。而且•射光:、置光束以的 的H士功〜 射先的加工品質被判定為佳 祀圍大致冋等,且兩者重疊的範圍(亦即以 尸加工孔品質成為良好之Z軸範圍)係比第=加 雷射加工裝置之情形還寬。亦即,藉由改善光束品 之一方的雷射光的光束品質,便雷 置的力…。此外,隨著第丨圖所示的副=裳 之射Θ透鏡28的前焦點位置F的配置距離^^ $孔品質愈益改善。亦即,如第1圖所示,藉由本、4_’ 开场1的構成,由於在傳播α光束La ◎光束^的= 路個別配置-個副電鏡掃描器23a、23b,且能夠將先 位置接近前焦點仅置F,因此能夠改善加工孔品質 320239 19 1343850 之外,由於離别焦點位置F的各副電鏡掃描器2%、2北的 設置距離相等,以—射光La、Ly9進行加工所得的 加工孔品質會同等。 ' _依據本實施㈣1,經分光的任-雷射S La、L/5皆 、僅經由3台電鏡掃描器,且亦縮短自透鏡別的前焦點 位置y到光束掃描之最遠的副電鏡掃描器23&、2北的距 離,藉此,能夠在維持與習知的同時多點照射型相同的生 鲁產性之情況下解決習知的副光束的加工品質劣化的問題。 $外,由於兩雷㈣La的加工品質成為同等,因此 月匕夠擴大可進行加工品質佳的加工之z轴高度的範圍,而 具有能夠在比習知雷射加工裝置更寬廣之條件範圍下進行 加工之效果。 實施形態2 第6圖係本發明的雷射加工褒置的實施形態2的構成 圖,第7-1圖係第6圖的雷射加工裝置的副電鏡掃描器與 _主電鏡掃描器之從X軸方向觀看時的配置關係圖,第卜2 圖係第6圖的雷射加工裝置的“透鏡的前焦點位置附近 的電鏡掃描器的配置關係圖。該雷射加工裝置的特徵在 於,使實施形態i的第!圖中之電鏡掃描器服的鏡片. 的旋轉軸相對於Z軸傾倒達角度Θ而進行配置。此外,副 +電鏡择描器23a、23b亦相對於實施形態!的情形的位置跟 著傾倒達角度<9進行配置。該等電鏡掃描器2如、23b'服 =鏡片24a、24b、27a的旋轉轴係分別構成同一個直角座 標系統。並且,於實施形態Ϊ的兩光路内的鏡片22b與副 320239 20 1343850 u 23a之間、以及鏡片22d與副 之間各配置有兩個鏡片22g至22j :,23b 示的XYZ座標系統變專兄片係將圖中所 的直π^ # I 线傾倒^ 铩糸統用者。其中’比鏡片22g、2 ϋ W0 _光路係構成為與 xyz直角座標系 ::為基準而設的 是由於$了$心 轴的任1平行。這 為了魏加X點高度而必須相對於χγ 在本實施形態2的情形中,其特徵為。 26a以傾斜沾曲能 文哥鏡掃描器 配置在電鏡掃描器娜的斜下 °如第7_1.圖至第7—2圖所示,盥第2圖 /、 =1的配置位置相比,僅使電鏡掃描器26a在二= 正方向傾斜達角度Θ而進行配置。藉由如此 月 =鏡片27a、27b的可動範圍來考慮兩者不會 = 離’則能使兩個鏡片27a、27b之間的距離比.實施 情_小。結果’ f Θ透鏡28的前焦點位置㈤透鏡2卜 的先束掃描理想位置)與兩個鏡片27a、27b之間 二 亦能夠比實施形態!的第2圖的情形縮短’而能夠提升雷 射光的加工孔品質。此外,睃著將電鏡掃描器26a傾斜達 a角度Θ,亦使電鏡掃描器23a、23b與第2圖所示的實施形 二的配置位置相比,在yz面内朝z軸正方向傾斜读备 g而進行配置。 ’ 又 在如上述使電鏡掃描器23a、23b、26a傾斜的情形下, 使各電鏡掃描器23a、23b、26a、26b進行掃插時在χγ工 作台11上的雷射光La、L/3的掃描方向會成為與乂軸及γ 320239 21 1343850 軸平行的方向。Low ground. In contrast to this, as shown in the second figure, the propagation of the laser light P == three of the alpha beam L ... light (10). The quality of the wells is better than that of the wells of the 4th hole. In addition, the amount of light that is applied to the light beam is determined to be approximately the same as that of the first shot, and the range in which the two are overlapped (that is, the quality of the processed hole is a good Z-axis range) It is wider than the case of the first plus laser processing device. That is, by improving the beam quality of the laser light on one side of the beam product, the force of the thunder is set. Further, as the arrangement distance of the front focus position F of the sub-shooting lens 28 shown in the second figure is improved, the hole quality is improved. That is, as shown in Fig. 1, by the configuration of the present 4_'open field 1, the sub-electron microscopy scanners 23a and 23b are individually arranged in the = path of the α-beam La ◎ beam ^, and the first position can be approached. The front focus is only set to F, so it is possible to improve the quality of the machined hole 320239 19 1343850. Since the distances of the sub-electron scanners 2% and 2 in the separation focus position F are equal, the machining is performed by the light-emitting La and Ly9. The quality of the holes will be the same. ' _ According to this implementation (4) 1, the split-lens S-La, L/5 are only passed through 3 electron microscope scanners, and also shorten the front-focus position y from the lens to the farthest sub-electron microscope of the beam scanning By the distance between the scanners 23 & 2 and the north, it is possible to solve the problem of deterioration in the processing quality of the conventional sub-beam while maintaining the same productivity as the conventional multi-point illumination type. In addition, since the processing quality of the two Rays (four) La is equal, the Moonlight expands the range of the z-axis height that can be processed with good quality, and can be carried out under a wider range of conditions than the conventional laser processing apparatus. The effect of processing. Embodiment 2 FIG. 6 is a configuration diagram of a second embodiment of a laser processing apparatus according to the present invention, and FIG. 7-1 is a sub-electron microscopy scanner and a _main electron microscope scanner of the laser processing apparatus of FIG. The arrangement diagram when viewed in the X-axis direction, and the second diagram is the arrangement diagram of the electron microscope scanner in the vicinity of the front focus position of the lens of the laser processing apparatus of Fig. 6. The laser processing apparatus is characterized in that In the first embodiment of the embodiment, the rotation axis of the lens of the electron microscope scanner is tilted by an angle 相对 with respect to the Z axis. Further, the sub + electron microscope selectors 23a and 23b are also opposed to the embodiment! The position is followed by the tilting angle < 9. The scanning axes of the electron microscope scanners 2, 23b' = lenses 24a, 24b, 27a respectively form the same right angle coordinate system. Two lenses 22g to 22j are disposed between the lens 22b and the pair 320239 20 1343850 u 23a in the optical path, and between the lens 22d and the pair: the XYZ coordinate system shown in 23b becomes a straight line in the figure. π^ # I line dumping ^ 用 user. The ratio lens 22g, 2 ϋ W0 _ optical path system is configured to be in the xyz rectangular coordinate system: the reference is based on any one of the $$ spindles. This is necessary for the Weijia X point height relative to χγ. In the case of the second embodiment, the feature is that the 26a is arranged obliquely under the oblique angle of the electron microscope scanner by the oblique curved energy mirror scanner, as shown in Fig. 7_1. to Fig. 7-2, Fig. 2 Compared with the arrangement position of =1, the EM scanner 26a is only tilted at an angle Θ in the second=positive direction. By the month = the movable range of the lenses 27a and 27b, the two are not considered to be away from each other. Then, the distance between the two lenses 27a, 27b can be made smaller than that of the implementation. As a result, the front focus position of the f Θ lens 28 (five) the ideal position of the front scan of the lens 2) and the two lenses 27a, 27b. In addition, the quality of the processed hole of the laser beam can be improved by shortening the situation of the second figure of the embodiment! Further, the electron microscope scanner 26a is tilted by an angle Θ, and the electron microscope scanners 23a and 23b are also used. 2 is shown in the positive direction of the z-axis in the yz plane as compared with the configuration position of the second embodiment shown in the figure. The reading is performed by reading the reading g. In the case where the electron microscope scanners 23a, 23b, and 26a are tilted as described above, the respective electron microscope scanners 23a, 23b, 26a, and 26b are swept by the gamma gamma table 11 at the time of sweeping. The scanning directions of the light rays La and L/3 become parallel to the x-axis and the axis of γ 320239 21 1343850.
依據本實施形態2,除了有實施形態1的效果之外, 由於使主電鏡掃描器26a、26b接近配置於ίθ透鏡28的 前焦點位置F,因此與實施形態1相比,具有能夠進一步 提升加工孔品質之效果。 實施形態3 在實施形態2中,為了使光束位置不會因Ζ軸的上下 調整機構(藉由使加工頭部分動作而調整焦點位置之構造) 進行的動作而變化,而必須於光路途中設置與Ζ轴平行的 光轴’而有針對一光路’在第1分光(第1偏光裝置21)之 後的鏡片數比實施形態1多了兩片以上之問題。因此,在 本實施形@ 3’係針對將在第1分光之後的鏡片數設計成 與實施形態1相同的片數之情形進行說明。 第8圖係本發明的雷射.加工裝置的實施形態3的構成 圖。該雷射加工裝置的特徵在於,在實施形態1的第1圖 中以僅使電鏡掃描$ 26a在電鏡掃描器撕的斜下侧傾 斜的狀態進行配置。該電鏡掃描器咖的配置位置係與實 施形態2的第7、2圖所示者相同,因此省略1說明。 此外’在本實施形態3,僅使電鏡掃描_ 26a傾斜達 角度Θ進仃配置,而其他的副電鏡掃描器23心伽與鏡片 22g至22j係與實施形態丨相同地According to the second embodiment, in addition to the effects of the first embodiment, since the main electron microscope scanners 26a and 26b are arranged close to the front focus position F of the ίθ lens 28, the processing can be further improved as compared with the first embodiment. The effect of hole quality. (Embodiment 3) In the second embodiment, in order to change the position of the light beam by the vertical adjustment mechanism of the boring shaft (the structure for adjusting the focus position by operating the machining head portion), it is necessary to provide the light path in the middle of the optical path. There is a problem that the number of lenses after the first splitting (first polarizing means 21) is larger than that of the first embodiment in the optical axis "parallel to the x-axis". Therefore, in the present embodiment, the case where the number of lenses after the first splitting is designed to be the same as that of the first embodiment will be described. Fig. 8 is a view showing the configuration of a third embodiment of the laser processing apparatus of the present invention. In the first embodiment of the first embodiment, the laser processing apparatus is configured such that only the electron microscope scanning $26a is tilted obliquely on the oblique side of the electron microscope scanner. The arrangement position of the electron microscope scanner is the same as that shown in Figs. 7 and 2 of the second embodiment, and therefore the description of 1 is omitted. Further, in the third embodiment, only the electron microscope scanning _ 26a is inclined up to the angle 仃 仃 arrangement, and the other sub electroscope scanner 23 and the lenses 22g to 22j are the same as the embodiment 丨
^ ^ „ 配置成使光路與以XY 工作為基準的χγζ座標系統的χ#、γ軸、及2_ 任-軸成平行。因此,能夠使光束位置不會因ζ軸的上下 调整機構所進行的動作而變化。 320239 22 1343850 在本實〜3的情形中,使各電鏡掃描器心、2北、 26a、26b進行掃描時在χγ 七二n^ ^ „ It is configured so that the optical path is parallel to the χ#, γ-axis, and 2_ 任-axis of the χγζ coordinate system based on XY operation. Therefore, the beam position can be prevented from being caused by the up-and-down adjustment mechanism of the ζ axis. 320239 22 1343850 In the case of the real ~3, when scanning each ECG scanner, 2 North, 26a, 26b, χγ七二n
Ω ui i 仕XY工作台11上的雷射光La、L ===與X轴及Y軸平行的方向,而是成為與 以非直㈣預定角度交又的兩條軸平行之方向。 依據本實施形態3,第2偏光裝置25 描器26a、26b的掃描蝴統係以χγ工作☆二:準: ί = 電鏡掃描器細,的掃描座標ί統不 再疋直角熟錢而是具有某個角度0, 偏光裝置21)之後的鏡片數只要為與實施形能/相同的較 少片數的構成:可’因此,與實施形態2相比,^能 抑制加工孔品質的劣化之效果。 八啕此幻 實施形態4 在實施形態1至3中ρ钟兩仏丄 器及鏡的配置進行了說明。如:=工f:置中的電鏡掃: 1的光學系統中係如第1圖所示,1如’在實施形態 描器23a及Θ光束L/3用的電於:二"U用的電鏡掃 叩幻電鏡掃描器23b的揣忻古氏糸 正交’則直覺上容易理解,能接的知描方向為 如,在實施形態1(第1圖)中,二達到最大。例 28,則α光束La用的電鏡掃為,想的Μ透鏡 其後處係X軸方向,因此在χγ a的掃描方向在緊接 工作么11 而泠光束用的電鏡掃描器 係X軸方向, 處係Ζ方向,因此在ΧΥ工^台u的掃描方向在緊接其後 實際上由於理想的f Θ透鏡二上方向。然而’ 極限等原因,電鏡掃描器所谁〜 k透鏡裝設精度的 订的掃描方向並無法在XY工 320239 1343850 作台11上成為直線。此外,由於能夠藉 描方法(控制方法)來控制加工孔位置, 兄掃插器的掃 3所示’亦能夠為如α光束u用的 1如實施形態2、 束W用的電鏡掃描器挪的掃描方二23a及万光 此,不管是哪一種情形,皆必須各=之構成。因 挪、26^的角度,以對目標之孔==力如、 因此,在本實施形態4 +,係就用 ^仃孔加工。 孔加工的電崎描器控财法進行說明。 第二 =雷射加工装置的控制者係第1圖、第6圖、 不的控制部30。該控制部3〇係具備以下功能: 調校功能3丨,係求取電鏡掃描器的 :片度、开^成於Π工作台11上的加工孔位置之關係; 、3L model)儲存功能32,係儲存模型,該模型係用以求 取對由調;^功& .31所求出之作為目標的位置進行孔加工 用的電鏡掃描器23a、23b ' 26a、26b的鏡片角度;加工資 訊儲存功旎33,係儲存對被加工物丨2進行之開加工孔的 位置等加工資訊;以及加工控制功能,係使用加工資訊儲 存力此33所儲存的加工資訊及模型儲存功能犯的模型來 進行電鏡掃插$ 23a、23b、26a、26b與雷射振盪器20的 控制。 以下’先說明雷射加工裝置的控制方法的概要,接著 針對用以進行控制的調校方法進行說明。 雷射加工裝置係需要有以下功能:對欲加工的XY工作 口 11上的孔座標(目標孔座標),求取實現其加工所需要的 24 320239 !343850 電鏡掃描器23a、23b、26a、26b的角度(角度指令值)。 第9圖係顯示第14圖所示的習知的同時多點照射型雷 射加工裝置的各電鏡掃描器的鏡片角度與加工孔的座標之 關係的方塊線圖。如該第9圖所示,在習知的同時多點咚 射型雷射加工裝置中,係採用卩下方法,該方法係求取 光束La的加工孔座標(ax,ay),而藉由與該主光束“的加 工孔座標(ax,ay)的差分來求取副光束Lb的加工孔座標 (bx’by)。亦即’藉由第2組的電鏡掃描器226a、22肋的鏡 片角度來決定主光束La的加工孔座標(ax,ay)。另一方的副 ^束让的加工孔座標(bx,by)係除了藉由第2組的電鏡掃描 :226a、226_鏡片角度之外,還藉由第】組的電鏡掃描 =224a 224b的鏡片角度來決不過,若匯整該等主光 及副光束Lb,即可得到4輸人4輸出之關係,亦即 定4個電鏡掃描器加、224卜2施、2咖的鏡片 ^度時’ 2個加工孔座標(4個座標成分)便決定。據此,便 係為映一)陳詳細說明請 光,Γ2Γ=雷射加工裝置中,如上所述,和偏 π刀先的兩雷射光皆傳播於相同數目的電鏡掃描 之主光束盘副光束的八猫、成憂差別,因此沒有所謂 雷射加:裝置等、。亦即,用於本發明的 的如第9圖所於無法適用上述之利用習知 7如弟9圖所不的映射關係 的4個電鏡掃描器的鏡 :以決—孔座標 h两度之方、去’因此需要新的用來 320239 25 1^43850 決定加工孔座標的控制方法。 第10圖係顯示本發明的雷射加工裝置的各電鏡掃描 器的鏡片角度與加工孔的座標之關係的方塊線圖。如第10 ' 圖所示,在本發明的雷射加工裝置中,關於α光束, ’加工孔之位置座標(α χ,α y)係除了藉由主電鏡掃描器 26a、26b的鏡片角度之外,還藉由配置於“光束的光 路上的副電鏡掃描器23a的鏡片角度來決定。此外,關於 _ /5光束La,加工孔位置座標(/Sx, y?y)亦是除了藉由主電 鏡掃描器26a、26b的鏡片角度之外,還藉由配置於召光束 L万的光路上的副電鏡掃描器23b的鏡片角度來決定。並 且,若進行匯整觀察’可得知具有下述映射關係,亦即一 旦決定4台電鏡掃描器23a、23b、26a、26b的鏡片角度時, 4個加工孔座標αχ、ay、、万y(兩個孔各有χ座標與γ座 標’因此有4個變數)便決定。. 據此,本實施形態4的特徵在於,為了求取兩個加工 _孔座標(4個加工孔座標之成分),而使用第1〇圖的方塊線 圖所表示之映射的反映射模型。此外,尚有4輸入4輸出 之特徵,亦即由第10圖得知,相對於兩個加工孔的目標位 置座標αχ、α y、、石y的4輸入,為了實現在其孔座標 ax、ay、I、的加工而輸出4台電鏡掃描器23a、23b、 26a、26b的鏡片角度的估計值gae、gbe、gCe、gde之4變 數。並且,本實施形態4所使用的反映射模型係使用含有 4輸入4輸出的多項式之多項式模型,而實現自4台電鏡 掃描器23a、23b、26a、26b的鏡片角度來求取4個加工孔 320239 26 1343850 座標αχ、ay、px、&之功能。此處,多項式係指僅以常 數與變數的四則運算進行計算的數式,可考慮許多種類。 若以使用矩陣的數式來表示本實施形態所使用的反映 =型’便如下面的式⑴。此處,代表4台電鏡掃描 益23a、23b、26a、26b的鏡片角度的估計值之矩陣,Α係 次(η為自然數)的多項式模型表示的目標孔座桿 矩陣,X係代表矩陣Α的係數矩陣(或未The laser light La, L === on the XY ui i XY table 11 is parallel to the X-axis and the Y-axis, but is parallel to the two axes intersecting at a predetermined angle other than straight (four). According to the third embodiment, the scanning of the second polarizing means 25 of the scanners 26a, 26b is performed by χ γ ☆ two: quasi: ί = the SEM scanner is fine, and the scanning coordinates are no longer at right angles but have At a certain angle of 0, the number of lenses after the polarizing device 21) is a configuration having a smaller number of sheets than the shape energy/conformity: Therefore, it is possible to suppress the deterioration of the quality of the machined hole as compared with the second embodiment. . The ambiguous embodiment 4 The arrangement of the ρ clock and the mirror in the first to third embodiments has been described. Such as: = work f: centered electron microscope scan: 1 in the optical system as shown in Figure 1, 1 such as 'in the embodiment of the scanner 23a and the beam L / 3 for electricity: two " U The electron microscopic broom 叩 叩 扫描 扫描 叩 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' In Example 28, the electron beam of the α-beam La is scanned so that the desired Μ lens is in the X-axis direction, so that the scanning direction of χγ a is in the immediate operation 11 and the X-axis direction of the SEM beam is used. , the direction of the Ζ, so the scanning direction of the ^ u u u 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上 实际上However, for the reason of the limit, etc., the scanning direction of the TEM scanner is not straight on the XY machine 320239 1343850. In addition, since the processing hole position can be controlled by the drawing method (control method), the sweep of the brother sweeper 3 can also be used for the alpha beam u as in the embodiment 2, and the electron microscope scanner for the beam W is moved. Scanning 2A and Wanguang, in either case, must be composed of =. Because of the angle of 26^, the hole to the target == force, therefore, in the fourth embodiment of this embodiment, the hole is processed by ^. The electric processing method of the hole processing is described. Second, the controller of the laser processing apparatus is the first diagram, the sixth diagram, and the control unit 30. The control unit 3 has the following functions: The adjustment function 3丨 is to obtain the relationship between the slice of the electron microscope scanner and the position of the machining hole opened on the boring table 11; 3L model) storage function 32 Is a storage model for obtaining the lens angle of the electron microscope scanners 23a, 23b ' 26a, 26b for performing hole processing on the target position determined by the adjustment; ^gong &.31; The information storage function 33 is a processing information for storing the position of the machined hole for the workpiece 丨2, and the processing control function, which is the processing information stored in the processing information and the model of the model storage function. The SEM scans $23a, 23b, 26a, 26b and the control of the laser oscillator 20 are performed. Hereinafter, the outline of the control method of the laser processing apparatus will be described first, and then the adjustment method for performing the control will be described. The laser processing apparatus requires the following functions: the hole coordinates (target hole coordinates) on the XY working port 11 to be processed, and the 24 320239 !343850 electron microscope scanners 23a, 23b, 26a, 26b required for processing thereof are obtained. Angle (angle command value). Fig. 9 is a block diagram showing the relationship between the lens angle of each electron microscope scanner of the conventional multi-point illumination type laser processing apparatus shown in Fig. 14 and the coordinates of the machined hole. As shown in FIG. 9, in the conventional simultaneous multi-point radiation type laser processing apparatus, a squatting method is adopted, which is obtained by taking the processed hole coordinates (ax, ay) of the light beam La by A machined hole coordinate (bx'by) of the sub-beam Lb is obtained from the difference of the processed hole coordinates (ax, ay) of the main beam. That is, the lens of the rib of the second group of electron microscope scanners 226a, 22 The angle of the machined hole coordinates (ax, ay) of the main beam La is determined. The other side of the beam allows the machined hole coordinates (bx, by) to be scanned by the second group of electron mirrors: 226a, 226_lens angle In addition, by the electron beam scanning of the 】 group, the lens angle of 224a 224b is determined, if the main light and the sub-beam Lb are collected, the relationship between the output of 4 inputs and 4 outputs can be obtained, that is, 4 electron microscopes are set. Scanner plus, 224 2 2, 2 coffee lenses ^ degree when 2 processing hole coordinates (4 coordinate components) will be determined. According to this, it is a reflection of the details) please light, Γ 2 Γ = laser In the processing apparatus, as described above, both of the laser light before the π-knife are propagated to the same number of eight-eyes of the main beam of the main beam of the scanning electron beam. There is no such thing as a laser plus a device or the like. That is, as shown in FIG. 9 for the present invention, the above-described four mapping relationships using the conventional 7 and the ninth figure are not applicable. The mirror of the electron microscope scanner: the two-degree square of the hole-to-hole coordinate h, so a new control method for determining the coordinates of the hole is required for 320239 25 1^43850. Figure 10 shows the laser processing device of the present invention. A block diagram of the relationship between the lens angle of each electron microscope scanner and the coordinates of the machined hole. As shown in Fig. 10', in the laser processing apparatus of the present invention, regarding the alpha beam, the position coordinates of the machining hole (α) χ, α y) is determined by the lens angle of the sub-electron scanner 23a disposed on the optical path of the light beam, in addition to the lens angles of the main electron microscope scanners 26a and 26b. Further, regarding the _ /5 beam La, the machined hole position coordinates (/Sx, y?y) are also arranged by the light beam of the main beam mirrors 26a, 26b by the lens beam The lens angle of the sub-electron scanner 23b on the road is determined. Further, when the observation is performed, it is known that the following mapping relationship is obtained, that is, when the lens angles of the four electron microscope scanners 23a, 23b, 26a, and 26b are determined, the four processed hole coordinates αχ, ay, and 10,000 (The two holes each have a χ coordinate and a γ coordinate, so there are 4 variables). Accordingly, the fourth embodiment is characterized in that in order to obtain two machining_hole coordinates (components of four machining hole coordinates), the mapping inverse mapping model represented by the block diagram of the first drawing is used. In addition, there are still 4 input and 4 output characteristics, that is, it is known from Fig. 10 that the four coordinates of the target position coordinates αχ, α y, and stone y with respect to the two machining holes, in order to achieve the coordinates ax in the hole, The processing of ay and I outputs four variables of the estimated angles gae, gbe, gCe, and gde of the lens angles of the four electron microscope scanners 23a, 23b, 26a, and 26b. Further, in the inverse mapping model used in the fourth embodiment, a polynomial model including a polynomial of four inputs and four outputs is used, and four processing holes are obtained from the lens angles of the four electron microscope scanners 23a, 23b, 26a, and 26b. 320239 26 1343850 Functions of coordinates αχ, ay, px, & Here, the polynomial refers to a formula that is calculated only by the arithmetic operations of constants and variables, and many types can be considered. The reflection = type used in the present embodiment is expressed by the following equation (1). Here, a matrix representing the estimated values of the lens angles of the four electron microscope scanning benefits 23a, 23b, 26a, 26b, a target hole seat bar matrix represented by a polynomial model of the Α system (η is a natural number), and an X system representing a matrix Α Coefficient matrix (or not
Be=AX…⑴ 平’ :]如’在1次多項式模型的情料, 成為如同項數$15偏t人夕項式模型的情形中,係 型的J=::n下式(3)之形式,*3次多項式模 另外補充說明,除了此處 如使用式⑷的1分等之多項式外’亦可考慮例 B*Be=AX...(1) Ping ' :] as in the case of the 1st polynomial model, in the case of the item $15 partial t-type model, the type J=::n is the following formula (3) Form, *3rd degree polynomial mode, additional explanation, except for the polynomial of 1 point, etc., using equation (4), etc.
[g?T e e e Sb > Sc > Sd[g?T e e e Sb > Sc > Sd
Py,β*,a ct, X k2 k3 ^1-2 ^1-3 k2-2 ^2-3 ^2-4 ^3-2 ^3-3 ^3-4 ^4-2 k4— kS-2 ^5-4 . -⑵ ____B* _Py,β*,a ct, X k2 k3 ^1-2 ^1-3 k2-2 ^2-3 ^2-4 ^3-2 ^3-3 ^3-4 ^4-2 k4- kS- 2 ^5-4 . -(2) ____B* _
••••⑶ 320239 27 _x^43850 i6a > Sb > Sc J Sd ] l1、: ~~P*Py βχβ,2 ·· axJay a,3 .kjs-i k3M k3s.3 …⑷ 上列的式中,係數矩陣x的成分kl-1、kl2、·.係多項••••(3) 320239 27 _x^43850 i6a > Sb > Sc J Sd ] l1:: ~~P*Py βχβ,2 ·· axJay a,3 .kjs-i k3M k3s.3 (4) In the formula, the components of the coefficient matrix x are kl-1, kl2, ·.
式的係數,係由配合光學系統的特性而於之後說明的調校 方法來決定。如該等式⑵至式⑷所示,矩陣x係僅由多 項式的係數所構成之矩陣。例如,在1次多項式模型的情 形中,係數矩陣X為5x4的矩陣,在2次多項式模型的情 形中’係數矩陣X為15><4_陣,在3次多項式模型的情 形中,係數矩陣X為35x4的矩降。 若提高多項式的次數而增加項數的話,則能夠進行精 度更南的加卫孔位置㈣,但會變成為了求取其多項式模The coefficient of the equation is determined by the adjustment method described later in accordance with the characteristics of the optical system. As shown in the equations (2) to (4), the matrix x is a matrix composed only of coefficients of a polynomial. For example, in the case of the first-order polynomial model, the coefficient matrix X is a matrix of 5x4, and in the case of the second-order polynomial model, the 'coefficient matrix X is 15><4_array, in the case of the third-order polynomial model, the coefficient The matrix X is a moment drop of 35x4. If the number of polynomials is increased and the number of terms is increased, the position of the guard hole (4), which is more southerly, can be performed, but it becomes a polynomial mode.
kw kU3 kM - k 2-1 k 2-2 ...... •,係數矩p車而而要更多的資料。雖然能夠使用任意次數 的少項式,但由實驗結果得知,在用於印刷基板等之開孔 的雷射加工裝置之情形下’當使用由所有次數為3次以下 =所構成的多項式模型(項數=35)時,便能夠產生可滿足 要求規格之精度的反映射模型。 w ' 了求$上述多項式模型的係數(未知參數),需要 二。,=^翁處理係藉由控制部30的調校功能31來 2fih 處理中’係將各電鏡掃描11 23a、23b、26a 265的鏡片角度擺定—些的角度值以進行試加工,並以α 320239 28 攝影機等攝像手段29來測定實際被加工的孔座標。從各電 鏡掃插器23a、23b、26a、26b的角度資料心、gb、gc、gd 及當時被加工的孔座標資料、ay、,使用最小 • 平方法或加權最小平方法等手段來決定上述多項式模型的 係數(未知參數)。以調校功能31依上述方法算出的各電鏡 掃福器的鏡片角度進行加工的兩個孔座標之映射的反映射 模坦(多項式模型)係儲存於模型儲存功能32。 藝在該調校處理中,本發明的雷射加工裝置仍發揮能夠 比習知的同時多點照射型雷射加工裝置縮短作業時間的顯 著效果β藉由利用以下的簡單例子進行比較來說明該效果。 比較在本發明及習知的調校處理中,將第1組的電鏡 掃描器23a、23b(或224a、224b)分別擺定4種鏡片角度以 進行試加工、將第2組的電鏡掃描器26a、26b(或226a、 226b)分別擺定3種鏡片角度以進行試加工時的情形。第 11圖係顯示使用習知的同時多點照射型雷射加工裝置時的 g 加工孔位置之圖。第12圖係顯示使用本發明的雷射加工裝 置時的加工孔位置之圖》另外’為了簡單起見,此處係假 設理想的ίθ透鏡28、228 ,且為在χγ工作台η、211上 掃描於直線上者。在該等圖中,橫軸表示χγ工作台11、 211上的X軸,縱軸表示ΧΥ工作台11 ' 221上的Υ轴。此 - 外,「〇」記號表示由主光束La或〇:光東La所形成的加 . 工孔之位置’「X」記號表示由副光束Lb或β光束L冷所形 成的加工孔之位置。 第13圖係顯示調校所需要的加工孔數之圖。在以習知 29 320239 [s] 1343850 的雷射加工裝置(第14圖)進行試加工的情形中,電鏡掃梅 器的鏡片角度的組合係有3x3x4x4 = 144種’而雷射光La、 Lb為兩束,因此要進行確認者為288種。但由於光學系統 的特性,而存在有重複加工於相同位置的部分。例如,從 第9圖的方塊線圖可得知,在習知技術的同時多點照射型 雷射加工裝置中,主光束La的光學系統並未依據電鏡掃描 器224a、224b的鏡片位置’因此確認3x3 == 9種即可。亦 即’位置相同的狀況不需進行重複加工,因此需要確認的 孔數係變得比288種少,而成為153種。 另一方面,在以本發明的雷射加工裝置進行試加工的 /中電鏡知描的鏡片角度的組合有3x3x4 = 36種, 而雷射光l〇:、l石為兩束,因此要進行確認者為72種。 就連在此簡單的例子中,本發明的雷射加工褒置都能 夠比習知技術減少81個調校時進行試加工的孔數。而在^ 際的調校處理中,係需要更微細地擺動電鏡掃描器的鏡片 又因此與習知技術之間的孔數差會更明顯。在調校處 理中,係以攝像裝置29來測定經該試加工之孔的座標,孔 數愈多’則該測定作業會花費愈多的時間。 藉由如上說明的調校處理求取係數矩陣,並決定多項 式模型:係數。接著’在實際的加工中,控制部30的加工 控制力齙34係從加工資訊儲存功能33取得XY工作台11 、座私(〇: X,α y)、(沒χ,^ y)以作為被加工物12上的欲 32將所,取得的欲開孔位置座標輪人至儲存於模型儲 的夕項式模型,並將電鏡掃描器23a、23b、26a、 320239 m 30 1343850 26b的鏡片角度控制成演算後所得之電鏡掃描器的鏡片角 度印、帥、1如。藉由上述過程,便能夠在作為目標的 被加工物12上的位置開孔。 另外,在上述說明中,雖然是列舉實施形態工的雷射 力:工裝置的情形為例,但實施形態2、3之情形亦能夠同樣 藉由使用多項式模㈣控制電鏡掃描器23a、23b、26a、 26b的鏡片位置而控制加工孔位置。 依據本實施形態4,由於在經第丨偏光裝置21分光的 :光路上配置相同數目的電鏡掃描器,因此能夠減少調校 處理所需要的加1孔數,而有能夠將調校處理時間大幅地 縮短的顯著效果。糾,對於具有此種光學彡、統之 X裝置’係具有可利用以4台電鏡掃描器的鏡二二 加工的兩個孔座標之映射的反映射模型來控^ : 之效果。 札位置 …另外,在上述的實施形態丨至4中, 光成兩束的雷射光的各光路上配置有2個 、、分 例,但只要各光路上的數目相同,亦可配置任2描器之 鏡掃描器。此外,亦可麵本概念’將分光成 p電 先再分光成兩束、或準備複數台雷射 门雷射 工孔數。 增加同時加 [產業上的利用可能性] 如上所述,本發明的雷射加工裝置係 複數個高精度的孔加工的情形。 ’、 同時進行 【圖式簡單說明】 320239 1343850 第1圖係本發明的雷射加工裝置的實施形態1的構成 第、2圖係第1圖的雷射加工裝置的⑺透鏡的前焦點 位置附近的電鏡掃描器的配置關係圖。 第3-1圖係加工孔品質佳之狀態的示意圖。 第3-2圖係加工孔品質差之狀態的示意圖。 第4圖係顯示加卫孔品質的-評價方法例之圖。 第5-1圖係顯示習知雷射加工裝置的主光束與副光束 的加,孔品質被判斷為佳之範圍的一例之圖。 第5-2圖係顯示實施形態j的雷射加工裝置的“光束 與石光束的加工孔品質被判斷為佳之範_ —例之圖。 圖。第6圖係本發明的雷射加卫裝置的實施形態2的構成 :广圖係第6圖的雷射加工裝置的副電鏡掃描器盘 電鏡掃描器之從Χ轴方向觀看時的配置關係圖。'、 ^ Η圖係第6圖的雷射加卫裝置的^透鏡的前焦 ‘,置附近的電鏡掃描器的配置關係圖。Kw kU3 kM - k 2-1 k 2-2 ...... • The coefficient moment p is for the car and requires more information. Although it is possible to use an arbitrary number of minor terms, it is known from the experimental results that in the case of a laser processing apparatus for opening a substrate or the like, 'when using a polynomial model composed of all times of three times or less = When the number of items (the number of items = 35), it is possible to generate an inverse mapping model that satisfies the accuracy of the required specifications. w ' To find the coefficient of the above polynomial model (unknown parameter), need two. The processing is performed by the adjustment function 31 of the control unit 30. In the 2fih processing, the angle values of the lens angles of the respective electron microscope scans 11 23a, 23b, and 26a 265 are set to be trial-processed, and α 320239 28 The imaging means 29 such as a camera measures the actual hole coordinates to be processed. From the angle data center, gb, gc, gd of each of the electron microscope sweepers 23a, 23b, 26a, and 26b, and the hole coordinate data, ay at the time, using the minimum/flat method or the weighted least squares method, etc. The coefficient of the polynomial model (unknown parameter). The inverse mapping mode (polynomial model) of the mapping of the two hole coordinates processed by the adjustment function 31 in accordance with the lens angle of each of the electron microscope bailers calculated by the above method is stored in the model storage function 32. In the adjustment processing, the laser processing apparatus of the present invention exhibits a remarkable effect of shortening the working time compared to the conventional multi-point irradiation type laser processing apparatus, and the comparison is made by using the following simple example. effect. In the present invention and the conventional calibration process, the first group of electron microscope scanners 23a, 23b (or 224a, 224b) are respectively set to four lens angles for trial processing, and the second group of electron microscope scanners are compared. 26a, 26b (or 226a, 226b) respectively set the three lens angles for trial processing. Fig. 11 is a view showing the position of the g-machined hole when a conventional multi-point irradiation type laser processing apparatus is used. Fig. 12 is a view showing the position of the processed hole when the laser processing apparatus of the present invention is used. Further 'for the sake of simplicity, the ideal ίθ lens 28, 228 is assumed here, and is on the χγ table η, 211. Scan on a straight line. In the figures, the horizontal axis represents the X-axis on the χγ table 11, 211, and the vertical axis represents the Υ axis on the ΧΥ table 11'221. In addition, the "〇" symbol indicates the addition of the main beam La or 〇: Guangdong La. The position of the hole "X" indicates the position of the machining hole formed by the cooling of the sub beam Lb or the β beam L. . Figure 13 is a diagram showing the number of machining holes required for adjustment. In the case of the trial machining of the laser processing apparatus (Fig. 14) of the conventional 29 320239 [s] 1343850, the combination of the lens angles of the electron microscope sweeper is 3x3x4x4 = 144 kinds and the laser light La, Lb is Two bundles, so there are 288 kinds to be confirmed. However, due to the characteristics of the optical system, there are portions that are repeatedly processed at the same position. For example, as can be seen from the block diagram of FIG. 9, in the conventional multi-point illumination type laser processing apparatus, the optical system of the main beam La does not depend on the lens position of the electron microscope scanners 224a, 224b. Confirm 3x3 == 9 kinds. In other words, the number of holes to be confirmed is less than 288, and 153 types are required. On the other hand, in the laser processing apparatus of the present invention, the combination of the lens angles of the pilot/middle mirrors is 3x3x4 = 36, and the laser light l〇: and l stone are two bundles, so it is necessary to confirm There are 72 kinds. Even in this simple example, the laser processing apparatus of the present invention can reduce the number of holes for trial processing when 81 adjustments are made than the conventional technique. In the adjustment process, it is necessary to oscillate the lens of the electron microscope scanner more finely, and thus the difference in the number of holes between the conventional technique and the prior art is more conspicuous. In the adjustment process, the camera device 29 measures the coordinates of the hole to be tested, and the larger the number of holes, the more time the measurement operation takes. The coefficient matrix is obtained by the calibration process as explained above, and the polynomial model: coefficient is determined. Then, in the actual machining, the machining control force 龅 34 of the control unit 30 acquires the XY table 11 and the seat (〇: X, α y), (no, y) from the machining information storage function 33 as The desired position on the workpiece 12 is obtained by the coordinate wheel of the desired opening position, and the lens angle stored in the model storage, and the lens angle of the electron microscope scanner 23a, 23b, 26a, 320239 m 30 1343850 26b Control the lens angle of the SEM scanner obtained after the calculation, handsome, 1 as. By the above process, it is possible to open a hole at a position on the workpiece 12 as a target. Further, in the above description, the case where the laser force of the embodiment is used is an example of the work device, but in the case of the second and third embodiments, the electron microscope scanners 23a and 23b can be controlled by using the polynomial mode (4). The position of the lens of 26a, 26b controls the position of the machined hole. According to the fourth embodiment, since the same number of electron microscope scanners are disposed on the optical path split by the second polarizing means 21, the number of holes to be added required for the adjustment processing can be reduced, and the adjustment processing time can be greatly increased. Significantly shortened ground. Correction, for an X device having such an optical system, has an inverse mapping model that can be mapped by two aperture coordinates of a mirror of two electron microscope scanners. In the above-described embodiments 丨 to 4, two light beams are arranged on each of the optical paths of the two beams, and a plurality of sub-examples are arranged. However, as long as the number of the optical paths is the same, any two of them may be arranged. Mirror scanner. In addition, it is also possible to use the concept of ' splitting the light into p power and then splitting it into two beams, or preparing a plurality of laser gates. Addition and Addition [Industrial Applicability] As described above, the laser processing apparatus of the present invention is a case of a plurality of high-precision hole machining. ' Simultaneously, the following is a brief description of the drawings. 320239 1343850 FIG. 1 is a view showing the configuration of the first embodiment of the laser processing apparatus of the present invention, and the vicinity of the front focus position of the (7) laser processing apparatus of the first embodiment. The configuration diagram of the electron microscope scanner. Fig. 3-1 is a schematic view showing a state in which the quality of the processed hole is good. Fig. 3-2 is a schematic view showing a state in which the quality of the processed hole is poor. Fig. 4 is a view showing an example of the method of evaluating the quality of the guard hole. Fig. 5-1 is a view showing an example in which the main beam and the sub beam of the conventional laser processing apparatus are added, and the hole quality is judged to be a good range. Fig. 5-2 is a view showing the "quality of the processed hole of the beam and the stone beam" in the laser processing apparatus of the embodiment j. Fig. 6 is a laser-assisted device of the present invention. The configuration of the second embodiment is a configuration diagram when the sub-electron scanner scanner of the laser processing apparatus of Fig. 6 is viewed from the y-axis direction. ', ^ Η图图雷的图雷The front focus of the lens of the illuminating device is placed, and the configuration diagram of the nearby electron microscope scanner is placed.
第8圖係本發明的雷射加工裳置的音㈣能3的構成 雷射加工裝置的 之關係的方塊線 缉射加工裝置的各電鏡掃描 之關係的方塊線圖。 320239 32 1343850 第11圖係顯示使用習知的同時多點照射型雷射加工 裝置時的加工孔位置之圖。 第12圖係顯示使用本發明的雷射加工裝置時的加工 孔位置之圖。 第13圖係顯示調校所需要的加工孔數之圖。 第14圖係習知例的同時多點照射型雷射加工裝置的 構造圖。 【主要元件符號說明】 • 1卜211 XY工作台 12、212被加工物 20 雷射振盪器 21、222 第1偏光裝置 22a 至 22j 、 24a 、 24b 、 27a 、 27b 、 221a 至 221d 、 225a 、 225b、227a、227b 鏡片 23a 、 23b 、 26 、 26a 、 26b 、 224a 、 224b 、 226a 、 226b 電鏡掃描器 25、223 第2偏光裝置 28、228 ίθ透鏡 29 攝像裝置 30 控制部 31 調校功能 32 模型儲存功能 33 加工資訊儲存功能 34 加工控制功能 ga、gb、gc、gd 鏡片角度 L、La、L.y5 .雷射光 33 320239Fig. 8 is a block diagram showing the relationship between the respective electron microscope scans of the square line radiation processing apparatus in the relationship of the laser processing apparatus of the present invention. 320239 32 1343850 Fig. 11 is a view showing the position of a machined hole when a conventional multi-point illumination type laser processing apparatus is used. Fig. 12 is a view showing the position of the processing hole when the laser processing apparatus of the present invention is used. Figure 13 is a diagram showing the number of machining holes required for adjustment. Fig. 14 is a structural view showing a conventional multi-point irradiation type laser processing apparatus of a conventional example. [Description of main component symbols] • 1 211 XY table 12, 212 workpiece 20 laser oscillator 21, 222 1st polarizing means 22a to 22j, 24a, 24b, 27a, 27b, 221a to 221d, 225a, 225b 227a, 227b Lens 23a, 23b, 26, 26a, 26b, 224a, 224b, 226a, 226b Electron microscopy scanner 25, 223 Second polarizing means 28, 228 ίθ lens 29 Imaging device 30 Control unit 31 Tuning function 32 Model storage Function 33 Machining information storage function 34 Machining control functions ga, gb, gc, gd Lens angle L, La, L.y5. Laser light 33 320239
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007140210A JP4297952B2 (en) | 2007-05-28 | 2007-05-28 | Laser processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200902207A TW200902207A (en) | 2009-01-16 |
TWI343850B true TWI343850B (en) | 2011-06-21 |
Family
ID=40105426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097119012A TW200902207A (en) | 2007-05-28 | 2008-05-23 | Laser processing apparatus |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4297952B2 (en) |
KR (1) | KR100955149B1 (en) |
CN (1) | CN101314196B (en) |
TW (1) | TW200902207A (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5178557B2 (en) * | 2009-02-02 | 2013-04-10 | 三菱電機株式会社 | Spectroscopic unit and laser processing apparatus using the same |
JP5511644B2 (en) * | 2010-12-07 | 2014-06-04 | 住友重機械工業株式会社 | Laser processing apparatus and laser processing method |
TWI459039B (en) * | 2011-05-18 | 2014-11-01 | Uni Via Technology Inc | Apparatus and method for transforming a laser beam |
CN104203482B (en) * | 2013-01-04 | 2015-07-22 | 三菱电机株式会社 | Machining control device, laser machining device, and laser control method |
US9842665B2 (en) | 2013-02-21 | 2017-12-12 | Nlight, Inc. | Optimization of high resolution digitally encoded laser scanners for fine feature marking |
WO2014130089A1 (en) | 2013-02-21 | 2014-08-28 | Nlight Photonics Corporation | Non-ablative laser patterning |
US10464172B2 (en) | 2013-02-21 | 2019-11-05 | Nlight, Inc. | Patterning conductive films using variable focal plane to control feature size |
KR102020912B1 (en) | 2013-02-21 | 2019-09-11 | 엔라이트 인크. | Laser patterning multi-layer structures |
TWI611855B (en) * | 2013-09-09 | 2018-01-21 | n萊特股份有限公司 | Optimization of high resolution digitally encoded laser scanners for fine feature marking |
US10618131B2 (en) | 2014-06-05 | 2020-04-14 | Nlight, Inc. | Laser patterning skew correction |
JP6218770B2 (en) * | 2014-06-23 | 2017-10-25 | 三菱電機株式会社 | Laser processing equipment |
CN105195904B (en) * | 2014-06-23 | 2020-03-10 | 三菱电机株式会社 | Laser processing apparatus |
JP5952875B2 (en) * | 2014-09-30 | 2016-07-13 | 株式会社片岡製作所 | Laser processing machine, work distortion correction method for laser processing machine |
JP5902281B2 (en) * | 2014-11-19 | 2016-04-13 | 三星ダイヤモンド工業株式会社 | Laser processing equipment |
US9837783B2 (en) | 2015-01-26 | 2017-12-05 | Nlight, Inc. | High-power, single-mode fiber sources |
US10050404B2 (en) | 2015-03-26 | 2018-08-14 | Nlight, Inc. | Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss |
US10520671B2 (en) | 2015-07-08 | 2019-12-31 | Nlight, Inc. | Fiber with depressed central index for increased beam parameter product |
JP6395681B2 (en) * | 2015-08-28 | 2018-09-26 | 三菱電機株式会社 | Laser processing equipment |
US10074960B2 (en) | 2015-11-23 | 2018-09-11 | Nlight, Inc. | Predictive modification of laser diode drive current waveform in order to optimize optical output waveform in high power laser systems |
US11179807B2 (en) | 2015-11-23 | 2021-11-23 | Nlight, Inc. | Fine-scale temporal control for laser material processing |
EP3380266B1 (en) | 2015-11-23 | 2021-08-11 | NLIGHT, Inc. | Fine-scale temporal control for laser material processing |
CN108698164B (en) | 2016-01-19 | 2021-01-29 | 恩耐公司 | Method of processing calibration data in a 3D laser scanner system |
US10663767B2 (en) | 2016-09-29 | 2020-05-26 | Nlight, Inc. | Adjustable beam characteristics |
US10732439B2 (en) | 2016-09-29 | 2020-08-04 | Nlight, Inc. | Fiber-coupled device for varying beam characteristics |
US10730785B2 (en) | 2016-09-29 | 2020-08-04 | Nlight, Inc. | Optical fiber bending mechanisms |
US11173548B2 (en) | 2017-04-04 | 2021-11-16 | Nlight, Inc. | Optical fiducial generation for galvanometric scanner calibration |
CN109471333B (en) * | 2017-09-08 | 2020-05-01 | 上海微电子装备(集团)股份有限公司 | Galvanometer correction system and method |
JP6781209B2 (en) * | 2018-08-03 | 2020-11-04 | ファナック株式会社 | Laser machining equipment control device and laser machining equipment |
GB201913631D0 (en) * | 2019-09-20 | 2019-11-06 | Alltec Angewandte Laserlicht Tech Gesellschaft Mit Beschraenkter Haftung | Electromagnetic radiation system |
WO2021221665A1 (en) * | 2020-04-30 | 2021-11-04 | Promega Corporation | Laser illumination techniques for capillary electrophoresis |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3479878B2 (en) | 2000-03-27 | 2003-12-15 | 住友重機械工業株式会社 | Laser processing method and processing apparatus |
TW555612B (en) * | 2001-11-15 | 2003-10-01 | Mitsubishi Electric Corp | Laser machining apparatus |
DE10296810B4 (en) * | 2002-03-26 | 2006-05-11 | Mitsubishi Denki K.K. | Laser beam positioning device calculates unknown parameter, for directing laser beam to target position on workpiece, in accordance with distance between coordinates of current and target positions |
TWI275439B (en) * | 2003-05-19 | 2007-03-11 | Mitsubishi Electric Corp | Laser processing apparatus |
WO2005118207A1 (en) * | 2004-06-01 | 2005-12-15 | Mitsubishi Denki Kabushiki Kaisha | Laser beam apparatus |
KR20060037568A (en) * | 2004-10-28 | 2006-05-03 | 주식회사 이오테크닉스 | Dual beam laser processing system |
JP2006122988A (en) * | 2004-10-29 | 2006-05-18 | Mitsubishi Electric Corp | Laser beam machine |
TWI382795B (en) * | 2005-03-04 | 2013-01-11 | Hitachi Via Mechanics Ltd | A method of opening a printed circuit board and an opening device for a printed circuit board |
KR100819616B1 (en) * | 2006-03-13 | 2008-04-04 | 미쓰비시덴키 가부시키가이샤 | Laser processing equipment |
-
2007
- 2007-05-28 JP JP2007140210A patent/JP4297952B2/en active Active
-
2008
- 2008-05-23 TW TW097119012A patent/TW200902207A/en unknown
- 2008-05-28 CN CN2008101001805A patent/CN101314196B/en active Active
- 2008-05-28 KR KR1020080049651A patent/KR100955149B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
TW200902207A (en) | 2009-01-16 |
JP2008290137A (en) | 2008-12-04 |
CN101314196B (en) | 2012-06-27 |
KR20080104993A (en) | 2008-12-03 |
CN101314196A (en) | 2008-12-03 |
JP4297952B2 (en) | 2009-07-15 |
KR100955149B1 (en) | 2010-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI343850B (en) | ||
US11648629B2 (en) | Laser processing apparatus, laser processing method, and correction data generation method | |
JP7210871B2 (en) | Laser processing method and apparatus | |
JP2011206850A (en) | Laser beam machining apparatus | |
CN1617784A (en) | Laser processing device | |
US20210053149A1 (en) | Laser processing apparatus, laser processing method, and correction data generation method | |
JP2009125761A (en) | Laser beam machining apparatus | |
JP2005205429A (en) | Laser processing machine | |
JP5916755B2 (en) | Apparatus for forming an interference grating on a sample | |
KR101634329B1 (en) | Laser exposure device | |
KR101026356B1 (en) | Laser scanning device | |
CN108802988A (en) | Super-resolution optical micro imaging system and its adjusting method | |
CN110121397A (en) | Laser processing and laser processing device | |
CN102230883A (en) | High-resolution high-speed polarization difference imaging method | |
CN102789066A (en) | Laser beam conversion device and method | |
JP3955587B2 (en) | Laser irradiation device | |
CN113340927B (en) | Charged particle beam device with interferometer for height measurement and method for operating the same | |
CN109623155B (en) | Method for performing near 4 pi solid angle femtosecond laser direct writing processing by utilizing multi-photon excitation and application | |
Ren et al. | An efficient method to generate near-ideal hollow beams of different shapes for box potential of quantum gases | |
JP2024159235A (en) | Fusion machine | |
CN115356741A (en) | Spectrum confocal ranging system based on scanning galvanometer | |
TW200422131A (en) | Laser processing device | |
JP2008012538A5 (en) | ||
JP5189472B2 (en) | Laser processing apparatus and optical path adjusting method in laser processing apparatus | |
JP7333502B2 (en) | Crack detector |