[go: up one dir, main page]

TWI328044B - - Google Patents

Download PDF

Info

Publication number
TWI328044B
TWI328044B TW96150826A TW96150826A TWI328044B TW I328044 B TWI328044 B TW I328044B TW 96150826 A TW96150826 A TW 96150826A TW 96150826 A TW96150826 A TW 96150826A TW I328044 B TWI328044 B TW I328044B
Authority
TW
Taiwan
Prior art keywords
weight
index
converter
steel
pure
Prior art date
Application number
TW96150826A
Other languages
Chinese (zh)
Other versions
TW200927944A (en
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW96150826A priority Critical patent/TW200927944A/en
Publication of TW200927944A publication Critical patent/TW200927944A/en
Application granted granted Critical
Publication of TWI328044B publication Critical patent/TWI328044B/zh

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

1328044 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種轉爐煉鋼製程,特別是指一種可 以訂定石灰用量標準的轉爐煉鋼製程。 【先前技術】 高爐煉鐵過程中’會先加入焦炭、石料(例如:石灰石 蛇紋石)等助溶劑,將燒結鐵鑛粒.加熱熔融成鐵水後,送 往煉鋼廠進行煉鋼。接著便會進人轉爐煉鋼過程,首先將廢 鋼放入一轉爐底部,再將經高爐煉鐵而由鐵水容器運送來 的鐵水,經過事前處理後再倒入盛銳桶内,並裝填入轉爐 内進行吹氧精煉。為了達到客戶要求之良質鋼品的出鋼成 份規格,在吹止前會再添加入適量石灰、白雲石、輕燒白 雲石、螢石、猛合金鐵和石夕合金鐵等一起溶解,將炫鋼成 分作調質以符合規範後產出鋼液,以進行後續之作業程序 ’至於鋼液中的雜質元素磷、硫,則是利用石灰予以脫除 ’並產生未溶於鋼液中的爐渣。 以往煉鋼廠的轉爐煉鋼製程是利用電腦靜態控制模式 L來決定煉鋼過程中的石灰投入量,此一模式必需先接收 前:爐的數據資料’經過計算後才能得到下一爐的石灰投 入量,然而,由於煉鋼廠需快速吹煉生產,前一爐結束至 次-爐開始吹煉往往只有10〜15分鐘,前一爐的分析結果 並無法及時地回饋給下一爐使用。 因此,實際上,石灰用量如果無法及時、迅逮地利用 腦靜L控制模式來計异決定,便會改由技術人員憑藉經 5 1328044 驗決定之。一旦技術人員經驗不足、拿捏不當,即有相當 可能性會加入過少或過多的石灰,過少的石灰會使得練鋼 過程中的脫填、脫硫的效率較差、鋼液合格率降低,過多 的石灰卻會增加爐渣、浪費石灰原料成本。 據上所述,如何建立一種新的轉爐煉鋼製程,其係採 用制式化的石灰用量標準’不需依靠技術人員的經驗不 會產生人為誤差,便成為轉爐煉鋼業者所亟需努力研究發 展的方向》1328044 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a converter steelmaking process, and more particularly to a converter steelmaking process in which a lime dosage standard can be set. [Prior Art] In the blast furnace ironmaking process, cosolvents such as coke and stone (for example, limestone serpentine) are first added, and the sintered iron ore particles are heated and melted into molten iron, and then sent to a steel mill for steelmaking. Then it will enter the converter steelmaking process. First, the scrap steel will be placed in the bottom of a converter, and the molten iron transported from the hot metal container by the blast furnace ironmaking will be poured into the Shengrui barrel after pre-treatment. Fill in the converter for oxygen blowing refining. In order to meet the customer's requirements for the quality of the steel components of the steel, the appropriate amount of lime, dolomite, light burnt dolomite, fluorite, fierce alloy iron and Shixi alloy iron will be added together before blowing. The steel composition is tempered to meet the specifications and the molten steel is produced for the subsequent operation procedure. 'As for the impurity element phosphorus and sulfur in the molten steel, it is removed by lime' and produces slag which is not dissolved in the molten steel. . In the past, the converter steelmaking process in the steelmaking plant used the computer static control mode L to determine the amount of lime input during the steelmaking process. This model must first receive the data from the front: the furnace data after calculation to obtain the lime of the next furnace. The amount of input, however, because the steel mill needs to be blown quickly, the end of the previous furnace to the beginning of the furnace is usually only 10 to 15 minutes, and the analysis results of the previous furnace cannot be fed back to the next furnace in time. Therefore, in fact, if the amount of lime cannot be determined in a timely and rapid manner using the brain static L control mode, it will be decided by the technicians according to the test of 5 1328044. Once the technicians are inexperienced and improperly handled, there is a high probability that too little or too much lime will be added. Too little lime will make the de-slubration efficiency in the steel-making process worse, the qualification rate of molten steel is reduced, and too much lime It will increase the cost of slag and waste lime raw materials. According to the above, how to establish a new converter steelmaking process, which adopts the standardized lime dosage standard, does not rely on the experience of technicians and does not cause human error, which has become an urgent need for research and development of converter steel producers. Direction

【發明内容】 因此,本發明之目的,即在提供一種可以訂定出石灰 用量標準的轉爐煉鋼製程,能夠有效避免人為誤差產生。 於是,本發明轉爐煉鋼製程,包含一填入步驟、一吹 煉步驟’及-出鋼步驟’該填入步驟是將鐵水與廢鋼填入 -轉爐中,接著進行該吹煉步驟,將一預定用量的石灰 (wCa0)加人該_中,#將氧氣吹人該轉爐中,崎吹氧精SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a converter steelmaking process in which a lime dosage standard can be set, which can effectively avoid human error. Therefore, the converter steelmaking process of the present invention comprises a filling step, a blowing step 'and a tapping step', the filling step is to fill the molten iron and the scrap into the converter, and then the blowing step is performed. A predetermined amount of lime (wCa0) is added to the _, ## oxygen is blown into the converter, and the oxygen is blown

此時’石灰是用來產生未溶於鋼液中的爐渣,最後則 是進行該出鋼步驟,將該轉爐傾斜使未含有爐渣的鋼液流 出’以產出目標鋼種。 —入外歹鄉γ所添加的 換算次步驟 經由下列次步驟決定之:一總合次步驟 一選擇次步驟、-相乘次步驟,及-計算次步驟。 於該總合次步驟中,是將加入轉爐内吹煉的原料中所 :有的…重量,予以加總,而得出一㈣重量指: 後進行該換算次步驟,利用㈣與二氧化石夕兩者 6 分子量的數值換算’而得出一爐渣二氧化妙指標 (WSi〇2)=(\vSi)x60/28 ’另外進行該選擇次步驟,隨著目標鋼 種的硫含量上限(S)而選擇不同數值的鹽基度指標(B),該睡 基度指標(B)是氧化鈣(CaO)/二氧化矽(Si〇2)的重量比,其範 圍在1.5〜10之間,再進行該相籴次步驟,將該選擇次步驟 所得到的鹽基度指標(B),乘以該換算次步驟所得到的爐渣 一乳化梦指標(Wsi〇2) ’即得到爐潰中的氧化妈重量(ws), 最後再進行該計算次步驟’將爐渣中的氧化鈣重量(Ws)除以 石灰中的氧化鈣重量百分比’即獲得該吹煉步驟中所添加 的石灰的預定用量(WCaC))。 本發明之功效在於’藉由該吹煉步驟中所添加的石灰 的預定用量(WCa0)是是利用目標鋼種的硫含量上限規範而訂 疋鹽基度指標(B) ’來計算出爐潰中的氧化約重量(ws),再 將Ws除以石灰中的氧化舞重量百分比(ECa〇),方能得到整 體煉鋼製程所添加的石灰的預定用量(WCa0)。因此,對於純 粹依靠技術人員的經驗而投入石灰所產生的誤差,可以有 效避免,同時也能使石灰用量標準化,進而避免石灰原料 成本的浪費,降低爐渣量,確保鋼液品質。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之兩個較佳實施例的詳細說明中,將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明t ’類似的元件是以相同的編號來表示。 6參閱圖卜本發明轉爐煉鋼製程1的第-較佳實施例, 包含一填入㈣η、-吹煉步驟12’及一出鋼步驟13,兮 填入步驟u是將鐵水與廢鋼填人—轉爐中,接著進行^ 煉步驟12,將一預定用量的石灰(w⑽)加入該轉爐中,再 將氧氣吹人該轉爐中,進行吹氧精煉,此時,石灰是用來 產生未溶於鋼液中的爐逢,最後則是進行該出鋼步驟13, 將該轉爐傾斜使未含有爐㈣鋼液流出,以產出目標鋼種 〇 其中’該吹煉步驟12中所添加的石灰的預定用量 (wCa〇)是經由下列次步驟決定之:一總合次步驟ΐ2ι、一換 算-欠步驟122、一選擇次步驟123、一相乘次步驟124 ,及 一計算次步驟125。 於該總合次步驟121中,是將加入轉爐内吹煉的原料 中所含有的矽元素重量,予以加總,而得出一純矽重量指 標(WSi) ’其中’加入轉爐内吹煉的含矽原料包括有鐵水、 廢鋼、回爐鋼、矽鐵及碳化矽,該純矽重量指標(Wsi)是將 上述各種含矽原料的矽元素重量,予以加總,如下列方程 式所載: WSi=(WHMxHMSi) + (WscxSCsi) + (WRexReSi) + (WFeSix EFeSi)+ (WsicxEsic)..........................................單位:Kg WHM :鐵水,(Kg) HMsi :鐵水的矽元素重量百分比(%)At this time, 'lime is used to produce slag which is not dissolved in the molten steel, and finally, the tapping step is carried out, and the converter is inclined so that the molten steel not containing the slag is discharged to produce the target steel. - Sub-steps of conversion added to 歹 歹 γ are determined by the following steps: one total combination step one selection sub-step, - multiplication sub-step, and - calculation sub-step. In the total mixing step, it is added to the raw materials blown in the converter: the weight of each is added, and one (four) weight is obtained: after the conversion step, the (four) and the dioxide are used. In the evening, the numerical conversion of the molecular weights of the two 6s yields a slag sulphur dioxide index (WSi 〇 2) = (\vSi) x 60 / 28 'In addition, the selection step is performed, with the upper limit of the sulfur content of the target steel grade (S) And select the salt base index (B) of different values, the sleep basis index (B) is the weight ratio of calcium oxide (CaO) / cerium oxide (Si 〇 2), and the range is between 1.5 and 10, and then Performing the phase-by-step step, multiplying the salt basis index (B) obtained in the selected sub-step by the slag-emulsified dream index (Wsi〇2) obtained in the sub-step of the conversion, that is, obtaining oxidation in the furnace collapse Ma weight (ws), and finally the calculation step of 'calculating the weight of calcium oxide (Ws) in the slag by the weight percentage of calcium oxide in the lime' to obtain the predetermined amount of lime added in the blowing step (WCaC) )). The effect of the present invention is that the predetermined amount (WCa0) of lime added in the blowing step is calculated by using the upper limit specification of the sulfur content of the target steel and the base index (B) of the base is calculated. The oxidation is about the weight (ws), and the Ws is divided by the oxidized dance weight percentage (ECa〇) in the lime to obtain the predetermined amount (WCa0) of the lime added to the overall steelmaking process. Therefore, the error caused by the investment of lime in the purely relying on the experience of the technician can be effectively avoided, and the lime dosage can be standardized, thereby avoiding waste of lime raw material cost, reducing the amount of slag, and ensuring the quality of the molten steel. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the invention. Before the present invention is described in detail, it is to be noted that the same elements in the following descriptions are denoted by the same reference numerals. 6 Referring to the first preferred embodiment of the converter steelmaking process 1 of the present invention, comprising a filling (4) η, a blowing step 12' and a tapping step 13, and the filling step u is filling the molten iron with the scrap steel In the person-converter, a refining step 12 is carried out, a predetermined amount of lime (w(10)) is added to the converter, and oxygen is blown into the converter for oxygen refining. At this time, lime is used to produce undissolved In the furnace, the furnace is finally subjected to the tapping step 13, and the converter is tilted so that the molten steel (4) is not discharged to produce the target steel, wherein the lime added in the blowing step 12 is The predetermined amount (wCa〇) is determined by the following sub-steps: a total combination step ΐ2ι, a conversion-under-step 122, a selection sub-step 123, a multi-multiplication step 124, and a calculation sub-step 125. In the total mixing step 121, the weight of the cerium element contained in the raw material blown into the converter is added, and a pure enthalpy weight index (WSi) is obtained, which is added to the converter for blowing. The cerium-containing raw materials include molten iron, scrap steel, blasted steel, strontium iron and tantalum carbide. The pure ruthenium weight index (Wsi) is the sum of the weights of the cerium elements of the above various cerium-containing raw materials, as shown in the following equation: WSi =(WHMxHMSi) + (WscxSCsi) + (WRexReSi) + (WFeSix EFeSi)+ (WsicxEsic)............................. .............Unit: Kg WHM: molten iron, (Kg) HMsi: weight percentage of cerium in molten iron (%)

Wsc :廢鋼量(Kg) SCSi :廢鋼的矽元素重量百分比(%) WRe :回爐鋼量(Kg) Resi :回爐鋼的矽元素重量百分比(%) WFeSi :硬鐵量(Kg) EFeSi :矽鐵的矽元素重量百分比(%)Wsc : Scrap quantity (Kg) SCSi : Weight percentage of niobium in scrap steel (%) WRe : Recycled steel quantity (Kg) Resi : Weight percentage of niobium in reclaimed steel (%) WFeSi : Hard iron quantity (Kg) EFeSi : Neodymium iron Weight percentage of bismuth element (%)

Wsic ;碳化碎量(Kg) ESic :碳化矽的矽元素重量百分比(%) 其中’當鐵水的矽元素重量百分比(HMSi)> 0.90%時, L328044 是以0.90%計算該純石夕^量指標(Ws〇, #鐵水的石夕元素重 量百分比(HMSi)<〇.25%時’是以〇25%計算該純石夕重量指 標(wsi),當鐵水的矽元素重量百分比(HMsi)介於〜 0.90%之間時’収以(HMSi)的實際值計算該純碎重量指標 (WSi)。 不 當能夠測得廢鋼的矽元素重量百分比(SCsi)時,是以 (scSi)的實際值計算該純㈣量指標(Wsi),t無法測得廢鋼 的矽兀素重S百分比(SCSi)時,則是以預設值〇 1〇%計算該 純矽重量指標(WSi)。 當能夠測得回爐鋼的矽元素重量百分比(RESi)時是以 (RESi)的實際值計算該純矽重量指標(Wsi),當無法測得回爐 鋼的矽70素重量百分比(RESi)時,則是以預設值〇 1〇%計算 該純矽重量指標(wsi)。 當上述總合次步驟121結束之後,便會獲得該純矽重 量指標(wSi),然後進行該換算次步驟122,利用純矽與二氧 化矽兩者分子量的數值換算,而得出一爐渣二氧化矽指標 (WSiO2)=(WSi)x60/28,其中,所採用的數值6〇即為二氧化 矽(si〇2)的分子量,數值28即為矽(Si)的分子量;也就是說 ’利用比例觀念’將原本WSi〇2 : WSi=60 : 28的比例關係, 換算成該爐渣二氧化矽指標(Wsi〇2)的計算公式,其單位為 Kg。 另外進行該選擇次步驟123,隨著目標鋼種的硫含量上 限(S)而選擇不同數值的鹽基度指標(B),該鹽基度指標(B) 是氧化鈣(CaO)/二氧化矽(si〇2)的重量比,其範圍在【5〜1〇 9 1328044 _ · 之間;較佳的是,當目標鋼種的硫含量上限(S) S 60ppm時 ,鹽基度指標(B)=5,當 60ppm<S<80ppm 時,B=4.5,當 S2 80ppm 時,B=4 〇 再進行該相乘次步驟124,將該選擇次步驟123所得到 的鹽基度指標(B),乘以該換算次步驟122所得到的爐渣二 氧化矽指標(WSi〇2),即得到爐渣中的氧化鈣重量(Ws);亦 即,爐渣中的氧化鈣重量(Ws)= (B)x(WSi〇2),其單位為KgWsic; carbonization fragmentation (Kg) ESic: weight percent of niobium in niobium carbide (%) where 'when the weight fraction of niobium in molten iron (HMSi)> is 0.90%, L328044 is calculated as 0.90% of the pure stone. The quantity index (Ws〇, #石石的石夕元素重量百分比(HMSi)<〇.25%' is the calculation of the pure stone weight index (wsi) by 〇25%, when the weight of the cerium element of the molten iron (HMsi) Calculate the pure weight index (WSi) from the actual value of (HMSi) when it is between ~0.90%. When it is possible to measure the weight percentage of bismuth element (SCsi) of scrap, it is (scSi) The actual value of the pure (four) quantity index (Wsi) is calculated, and when the weight percentage of the scrap steel (SCSi) cannot be measured, the pure weight index (WSi) is calculated by the preset value 〇1〇%. When the weight percentage of ruthenium element (RESi) of the recycled steel can be measured, the pure enthalpy weight index (Wsi) is calculated based on the actual value of (RESi). When the 矽70 weight percent (RESi) of the refractory steel cannot be measured, The pure weight index (wsi) is calculated by the preset value 〇1〇%. After the above total number of steps 121 is completed, The pure ruthenium weight index (wSi) is obtained, and then the conversion step 122 is performed, and the numerical value of the molecular weight of both pure ruthenium and ruthenium dioxide is used to obtain a slag cerium oxide index (WSiO2)=(WSi)x60. /28, wherein the value of 6〇 is the molecular weight of cerium (si〇2), and the value 28 is the molecular weight of cerium (Si); that is, the 'utilization concept' will be the original WSi〇2 : WSi The ratio of =60 : 28 is converted into the calculation formula of the slag cerium oxide index (Wsi 〇 2), and its unit is Kg. In addition, the selection step 123 is performed, along with the upper limit (S) of the sulfur content of the target steel. Select the salt base index (B) with different values. The salt base index (B) is the weight ratio of calcium oxide (CaO) / cerium oxide (si 〇 2), which ranges from [5~1〇9 1328044 _ · Between; preferably, when the upper limit of sulfur content (S) S 60 ppm of the target steel grade, the salt base index (B) = 5, when 60 ppm < S < 80 ppm, B = 4.5, when S2 80 ppm, B=4 〇 and then performing the multiplication step 124, multiplying the salt basis index (B) obtained in the sub-step 123 by the conversion The slag cerium oxide index (WSi 〇 2) obtained in step 122 obtains the weight of calcium oxide (Ws) in the slag; that is, the weight of calcium oxide in the slag (Ws) = (B) x (WSi 〇 2) , its unit is Kg

最後再進行該計算次步驟125,將爐潰中的氧化釣重量 (Ws)除以石灰中的氧化鈣重量百.分比(以ECa0表示),即獲 得該吹煉步驟12中所添加的石灰的預定用量(WCa0);亦即 ,石灰的預定用量(WCa0)= (Ws)/(ECa〇),其單位為Kg。 據上所述,下列表一即為依照該實施例所界定的各項 步驟,而得到的石灰預定用量(WCa0):Finally, the calculation sub-step 125 is performed to divide the oxidized fishing weight (Ws) in the furnace by the weight percentage of the calcium oxide in the lime (indicated by ECa0), that is, the lime added in the blowing step 12 is obtained. The predetermined amount (WCa0); that is, the predetermined amount of lime (WCa0) = (Ws) / (ECa 〇), the unit of which is Kg. According to the above, the following list 1 is the predetermined amount of lime (WCa0) obtained according to the steps defined in the embodiment:

實施樣本1—中磷鋼 琉含量上限(S)為50ppm 實施樣本2_高磷鋼 硫含量上限(S)為80ppm 鐵水的石夕元素重量 (WHMxHMsi) (WHMxHMsi) 265000x0.0026=689 260000x0.0025=650 廢鋼的碎元素重量 (WscxSCsi) (WscxSCsi) 20000x0.0010=20 30000x0.0010=30 回爐鋼的石夕元素重 (WReXResi) (WReXResi) 量 0x0.0010=0 0x0.0010=0 矽鐵的矽元素重量 (WfeSiXEFeSi) (WfeSiXEreSi) 20x0.75=15 0x0.75=0 碳化矽的矽元素重 (WsicxEsic) (WsicxEsic) 量 0x0.49 =0 50x0.49 =25 wsi (上述總和) 689+20+0+15+0=724 650+30+0+0+25=705 Wsi〇2 = Wsix60/28 724x60/28=1551 705x60/28=1511 10 1328044 B 5 4 Ws=BxWsi〇2 5x1551=7755 4x1511=6044 EcaO 0.9 0.9 WCa〇=Ws/Eca〇 7755/0.9=8617 6044/0.9=6716 表一 本發明轉爐煉鋼製程1的第二較佳實施例,大致類似 於前述第一較佳實施例,同樣包含有圖1所示主要步驟( 填入步驟11、吹煉步驟12 ’及出鋼步驟13)與次步驟(總 合次步驟121、換算次步驟122、選擇次步驟123、相乘次Example 1—The upper limit (S) of the content of bismuth in the medium phosphorus steel is 50 ppm. The upper limit (S) of the sample 2_high phosphorus steel is 80 ppm. The weight of the zea element of the molten iron (WHMxHMsi) (WHMxHMsi) 265000x0.0026=689 260000x0. 0025=650 Crushed element weight of scrap (WscxSCsi) (WscxSCsi) 20000x0.0010=20 30000x0.0010=30 Residual steel of Shixi element weight (WReXResi) (WReXResi) Quantity 0x0.0010=0 0x0.0010=0 矽铁Weight of germanium element (WfeSiXEFeSi) (WfeSiXEreSi) 20x0.75=15 0x0.75=0 Weight of tantalum element of silicon carbide (WsicxEsic) (WsicxEsic) Quantity 0x0.49 =0 50x0.49 =25 wsi (sum of the above) 689+ 20+0+15+0=724 650+30+0+0+25=705 Wsi〇2 = Wsix60/28 724x60/28=1551 705x60/28=1511 10 1328044 B 5 4 Ws=BxWsi〇2 5x1551=7755 4x1511=6044 EcaO 0.9 0.9 WCa〇=Ws/Eca〇7755/0.9=8617 6044/0.9=6716 Table 1 A second preferred embodiment of the converter steelmaking process 1 of the present invention is substantially similar to the first preferred embodiment described above Also includes the main steps shown in FIG. 1 (filling in step 11, blowing step 12' and tapping step 13) and sub-steps (total step 121, conversion step 122, selection) Step 123 once, twice multiplied

步驟124,及計算次步驟125),故不再另外繪製圖式,而 該第二較佳實施例相較於第一較佳實施例,不同的地方在 於: 本實施例於煉鋼過程中除了添加石灰之外,還另外添 加有白雲石與輕燒白雲石,因此,於該計算次步驟125中 旦爐潰中的氧化㊅重量(Ws)還要再扣除白#石中的氧化詞重 量’以及輕燒白雲石中的氧㈣重量,才會除以石灰令的 氧化詞重里百分比(以Eea。表示),而獲得該吹煉步驟I: 中所添加的石灰的駭用量(Wea。),如下列方程式所載: Wca〇=[(Ws)- (WDolxEDol)- (Wb d〇ixEb D〇i)J/Eca〇 單位:Kg c氧化辦重量(Kg)以中的氧化約重量百分比(%) 白带 Ed〇1 . wB.D。,重量(Kg) :雲石中的氧化鈣重量百分比(%) 輕燒白雲石重量(Kg)二.雲石中的氧化㈣量百 下列表二即為前述實施樣本卜中仙、實施。 ㈣鋼,於煉鋼過程t,—併加人白雲石與輕燒白雲石的 11 L328044 狀況’並以此計算出石灰預定用量(wCa0): 實施樣本1 —中璃銅 實施樣本2 — |§7蹲鋼 Ws=BxWsin, 5x1551=7755 4x1511=6044 EcaO 0.9 0.9 白雲石中的氧化鈣 重量 600 600 WDolxED〇1 輕燒白雲石中的氧 化鈣重量 Wb.Do1XEb.Do1 ° 0 " Wca〇 = (ws —上述兩項總 i°)/EcaO (7755- 600- 0)/0.9= 7950 (6044— 600- 0)/0.9= 6048 表二 綜上所述,本發明轉爐煉鋼製程丨,是以目標鋼種的硫 含量上限規範而訂定鹽基度指標(B),來計算出爐渣中的氧 化鈣重量(Ws),再除以石灰中的氧化鈣重量百分比(Eca〇)( 右煉鋼過程中還有白雲石與輕燒白雲石的添加,還要將兩 者所含有的氧化鈣重量予以列入計算),方能得到該吹煉步 • 驟12中所添加的石灰的預定用量(WCa0);因此,對於純粹 依靠技術人員的經驗而投入石灰所產生的誤差可以有效 免同時也此使石灰用量標準化,進而避免石灰原料成 本的展費,降低爐渣量,讀保鋼液品質所以破實能達到 本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請:利 範圍及發明說明内容所上 早的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 12 1328044 【圖式簡單說明】 圖1是一方塊流程圖,說明本發明轉爐煉鋼製程之第 一較佳實施例,其中的主要步驟,包含有填入步驟、吹煉 步驟,及出鋼步驟,而該吹煉步驟中所添加的石灰的預定 用量(wCa0),是由多個次步驟推導而來,包含有總合次步驟 、換算次步驟、選擇次步驟、相乘次步驟,及計算次步驟Step 124, and calculation sub-step 125), so the drawing is not further drawn, and the second preferred embodiment is different from the first preferred embodiment in that: in this embodiment, in addition to the steel making process In addition to the addition of lime, dolomite and light burnt dolomite are additionally added. Therefore, in the calculation step 125, the oxidation weight (Ws) in the furnace collapse is further deducted from the weight of the oxidation word in the white stone. And the weight of oxygen (4) in the light burned dolomite is divided by the percentage of the oxidized word in lime (indicated by Eea), and the amount of strontium added to the lime added in the blowing step I: (Wea.), As set forth in the following equation: Wca〇=[(Ws)- (WDolxEDol)- (Wb d〇ixEb D〇i)J/Eca〇 Unit: Kg c Oxidation weight (Kg) to about oxidized by weight (% ) leucorrhea Ed〇1 . wB.D. Weight (Kg): Percentage of calcium oxide in marble (%) Weight of light burned dolomite (Kg) 2. Oxidation in marble (4) Quantity Table 2 below is the implementation of the above sample. (4) Steel, in the steelmaking process t, - plus the condition of 11 L328044 of dolomite and light burned dolomite 'and calculate the amount of lime used (wCa0): Implementation sample 1 - medium copper implementation sample 2 - | § 7蹲Steel Ws=BxWsin, 5x1551=7755 4x1511=6044 EcaO 0.9 0.9 Calcium oxide weight in dolomite 600 600 WDolxED〇1 Calcium oxide weight in light burned dolomite Wb.Do1XEb.Do1 ° 0 " Wca〇= ( Ws—the above two total i°)/EcaO (7755- 600- 0)/0.9= 7950 (6044—600- 0)/0.9= 6048 Table 2 In summary, the converter steelmaking process of the present invention is The upper limit of the sulfur content of the target steel grade and the salt base index (B) is set to calculate the weight of calcium oxide (Ws) in the slag, which is divided by the weight percentage of calcium oxide in the lime (Eca〇) (right steelmaking process) There is also the addition of dolomite and light burnt dolomite, and the weight of calcium oxide contained in the two is included in the calculation) to obtain the predetermined amount of lime added in the blowing step (12) (WCa0) ); therefore, the error caused by the input of lime by purely relying on the experience of the technician can be effective This amount of lime also standardized, thereby avoiding the lime feed to the present exhibition costs, reduce the amount of slag, molten steel so breaking solid read ensure quality to achieve the purpose of the present invention. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the application of the present invention: the equivalent range and the early equivalent change and modification of the description of the invention All remain within the scope of the invention patent. 12 1328044 [Simplified illustration of the drawings] Fig. 1 is a block diagram showing a first preferred embodiment of the converter steelmaking process of the present invention, wherein the main steps include a filling step, a blowing step, and a tapping step. And the predetermined amount (wCa0) of the lime added in the blowing step is derived from a plurality of sub-steps, including a total sub-step, a sub-step, a sub-step, a multi-step, and a calculation Next step

13 1328044 【主要元件符號說明】 1 轉爐煉鋼製程 WSi 純矽重量指標 11 填入步驟 WSi〇2 爐渣二氧化矽指 12 吹煉步驟 標 121 總合次步驟 B 鹽基度指標 122 換算次步驟 Ws 爐渣中的氧化飼 123 選擇次步驟 重量 124 相乘次步驟 EcaO 石灰中的氧化鈣 125 計算次步驟 重量百分比 13 出鋼步驟 WCa〇 石灰的預定用量 1413 1328044 [Explanation of main component symbols] 1 Converter steelmaking process WSi pure crucible weight index 11 Filling step WSi〇2 Slag cerium oxide finger 12 Blowing step mark 121 Total combination step B Salt basicity index 122 Conversion substep Ws Oxidation feed in slag 123 Select substep weight 124 Multiply step EcaO Calcium oxide in lime 125 Calculate the weight of the second step 13 The predetermined amount of WCa 〇 lime in the tapping step 14

Claims (1)

、申請專利範圍: 一種轉爐煉鋼製程,包含: 一填入步驟,將鐵水與廢鋼填入一轉爐中; 人煉步驟’將一預定用量的石灰(wCa0)加入該轉 爐中:再將氧氣吹人該轉爐中,進行吹氧精煉,此時, 石灰疋用來產生未溶於鋼液中的爐渣;及 出鋼步驟’將該轉爐傾斜使未含有爐渣的鋼液流 出’以產出目標鋼種; /、中該吹煉步驟中所添加的石灰的預定用量 (wCa0)是經由下列次步驟決定之: :總合次步驟,將加入轉爐内吹煉的原料中所含有 的夕元素重量,予以加總,而得出―純矽重量指標(Wy) -換算次步驟,利用純矽與二氧化矽兩者分子量的 數值換算’而仟出一爐渣二氧化矽指標 60/28 ; 選擇夂步驟,隨著目標鋼種的硫含量上限⑻而選 擇不同數值的鹽基度指標(B),該鹽基度指標⑻是氧化 別㈤)/二氧化邦i〇2)的重量比,其範圍在i 5〜ι〇之 間; 的鹽基度指 一相乘次步驟,將該選擇次步驟所得到 標⑻’乘以該換算次步驟所得到的爐渣二氧切指標 (WSi〇2),即得到爐渣中的氧化鈣重量;及 -十算—人步驟’將爐渣中的氧化鈣重量(Ws)除以石 15 1328044 灰中的氧化鈣重量百分比(ECa0),即獲得該吹煉步驟中 所添加的石灰的預定用量(WCa0)。 2. 依據申請專利範圍第1項所述之轉爐煉鋼製程,其中, 於該選擇次步驟’當目標鋼種的硫含量上限(s)$ 6〇ppm 時’鹽基度指標(B)=5 ’ 當 60ppm < S < 80ppm 時,B=4.5 ’當 Sg 80ppm 時,B=4。 3. 依據申請專利範圍第2項所述之轉爐煉鋼製程,其中, 於該計算次步驟中,爐渣中的氧化鈣重量(Ws)還要再扣 除白雲石中的氧化鈣重量,以及輕燒白雲石中的氧化鈣 重量,才會除以石灰中的氧化鈣重量百分比。 4. 依據申請專利範圍第2或3項所述之轉爐煉鋼製程,其 中,於該總合次步驟中,加入轉爐内吹煉的含矽原料包 括有鐵水、廢鋼、回爐鋼、矽鐵及碳化矽,該純矽重= 指標(WSi)是將上述各種含矽原料的矽元素重量, .. ,予以加 5. 依據申請專利範圍帛4項所述之轉爐煉鋼製程,其 於該總合次步驟中,當鐵水的石夕元素重量百分比’ >〇规時,是以G.9G%計算該純♦重量指標 二) 鐵水的石夕元素重量百分比_si)<〇25%時是以1备 計算該純石夕重量指標(Wsi),當鐵水的以幸〇.25% °·25%-·90ο/- 值§t异該純石夕重量指標(wSi)。 、實際 6. 依據申請專利範圍第5項所述之轉爐練鋼製程 於該總合次步驟中,t能夠測得廢鋼 *其中’ 東重量百分 16 1328044 比(scSi)時’是以(SCsi)的實際值計算該純矽重量指標 (Wsi) ’當無法測得廢鋼的矽元素重量百分&(SCsi)時, 則是以預設值〇.〗〇%計算該純矽重量指標(Wsi)。 7.依據申請專利範圍第6項所述之轉爐練鋼製程,其中, 於該總合次步驟中,當能夠測得回爐鋼㈣元素重量百 分比(REsi)時,是以⑽一實際值計算該純矽重量指標 (Wsi) ’當無法測得回爐鋼的石夕元素重量百分比(RESi)時 則是以預設值Patent application scope: A converter steelmaking process, comprising: a filling step of filling molten iron and scrap into a converter; a human refining step 'adding a predetermined amount of lime (wCa0) to the converter: then oxygen Blowing the converter, performing oxygen blowing refining, at this time, the lime crucible is used to produce the slag which is not dissolved in the molten steel; and the tapping step 'tilting the converter to make the molten steel not containing the slag flow out' to produce the target Steel; /, the predetermined amount of lime added in the blowing step (wCa0) is determined by the following steps:: the total mixing step, adding the weight of the element contained in the raw material blown in the converter, Add the total, and get the "pure 矽 weight index (Wy) - conversion sub-step, using the numerical conversion of the molecular weight of both pure bismuth and cerium oxide, and extract a slag cerium oxide index 60/28; According to the upper limit of the sulfur content of the target steel grade (8), the salt base index (B) of different values is selected, and the salt base index (8) is the weight ratio of the oxidation (5))/dioxide state i〇2), and the range is i. Between 5 and ι〇; Degree refers to a multi-phase multiplication step, multiplying the target (8)' obtained by the sub-step by the slag dioxy-cut index (WSi〇2) obtained by the conversion sub-step, thereby obtaining the weight of calcium oxide in the slag; and -10 The calculation - human step 'divides the weight of calcium oxide (Ws) in the slag by the weight percentage of calcium oxide (ECa0) in the stone 15 1328044 ash, that is, the predetermined amount (WCa0) of the lime added in the blowing step is obtained. 2. According to the converter steelmaking process described in item 1 of the scope of the patent application, in the selection substep 'When the upper limit of sulfur content of the target steel grade (s) is $6〇ppm, the salt base index (B)=5 'When 60ppm < S < 80ppm, B=4.5 'When Sg is 80ppm, B=4. 3. According to the converter steelmaking process described in claim 2, wherein in the calculation step, the weight of calcium oxide (Ws) in the slag is further subtracted from the weight of calcium oxide in the dolomite, and the light burning The weight of calcium oxide in the dolomite is divided by the weight percent of calcium oxide in the lime. 4. According to the converter steelmaking process described in claim 2 or 3, wherein in the total mixing step, the cerium-containing raw materials blown into the converter include molten iron, scrap steel, steelback furnace, ferroniobium And the niobium carbide, the pure niobium weight = index (WSi) is the weight of the niobium element of the above various niobium-containing raw materials, and is added. 5. According to the scope of the patent application, the converter steelmaking process described in item 4, In the total combination step, when the weight percentage of the lithium element of the molten iron is '> 〇, the pure ♦ weight index is calculated by G.9G%. 2) the weight percentage of the lithium element of the molten iron _si) < At 25%, the pure Shishi weight index (Wsi) is calculated as 1 unit. When the molten iron is fortunately. 25% °·25%-·90ο/- value §t is the pure Shishi weight index (wSi) . Actual 6. According to the converter steelmaking process described in item 5 of the scope of the patent application, in the total number of steps, t can measure scrap steel* where 'the east weight percentage is 16 1328044 ratio (scSi) when it is (SCsi The actual value of the calculation of the pure weight index (Wsi) 'When the weight percentage of the tantalum element of the scrap can not be measured & (SCsi), the pure weight index is calculated by the preset value 〇. Wsi). 7. According to the converter steelmaking process described in claim 6 of the patent application, wherein, in the total number of steps, when the weight percentage (REsi) of the steel (4) of the return steel can be measured, the calculation is based on (10) an actual value. Pure weight index (Wsi) 'When the weight of the stone element (RESi) of the steel is not measured, it is the default value. 〇·1〇%計算該純矽重量指標(Wsi)。矽·1〇% calculates the pure weight index (Wsi). 1717
TW96150826A 2007-12-28 2007-12-28 Process of steelmaking by rotary smelting furnace TW200927944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96150826A TW200927944A (en) 2007-12-28 2007-12-28 Process of steelmaking by rotary smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96150826A TW200927944A (en) 2007-12-28 2007-12-28 Process of steelmaking by rotary smelting furnace

Publications (2)

Publication Number Publication Date
TW200927944A TW200927944A (en) 2009-07-01
TWI328044B true TWI328044B (en) 2010-08-01

Family

ID=44863777

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96150826A TW200927944A (en) 2007-12-28 2007-12-28 Process of steelmaking by rotary smelting furnace

Country Status (1)

Country Link
TW (1) TW200927944A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI637248B (en) * 2017-04-24 2018-10-01 中國鋼鐵股份有限公司 Method and system for designing steelmaking process

Also Published As

Publication number Publication date
TW200927944A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP7151494B2 (en) Method for recycling converter slag
JP4411306B2 (en) Method for manufacturing reduced briquettes
CN103484596B (en) Semi-steel slagging agent and its preparation method and semi-steel steelmaking method
TWI328044B (en)
CN102560131B (en) Premelted refining slag and preparation method thereof
CN118186183B (en) A calcium aluminate synthetic slag and its preparation method and its application in the smelting method of high carbon steel
JP5360174B2 (en) How to remove hot metal
CN104109736B (en) A kind of method of 304 stainless steel of AOD converter smeltings
CN105112598B (en) A kind of method that converter product bottom slag is directly used in pneumatic steelmaking
CN105506271B (en) Chrome ore composite pellet and its production method and application are used in a kind of argon oxygen decarburizing furnace reduction
JPH11335718A (en) Method for utilizing magnesia base waste brick
JPWO2019117200A1 (en) Refining method of molten iron
JP3750589B2 (en) Decarburization furnace slag manufacturing method and steel making method
CN105506219A (en) Aluminum-free heating agent for chemical heating outside molten steel furnace and preparation method thereof
TWI328042B (en)
CN104789731B (en) Semi-steel making slag former and its slagging method
JP4421314B2 (en) Determination of slag amount in hot metal refining
TWI328043B (en)
JP2013001915A (en) METHOD FOR REFINING Cr-CONTAINING MOLTEN STEEL
KR101084579B1 (en) Steelmaking flux using ferro-vanadium slag
JP6627601B2 (en) Hot metal dephosphorizer and method
TWI808760B (en) Method of electric furnace steelmaking
CN108384923A (en) A kind of iron melt desulfurizing agent and preparation method
JP7377763B2 (en) Electric furnace steelmaking method
RU2737837C1 (en) Slag-forming mixture for refining steel and briquettes from slag-forming mixture

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees