TWI324762B - Improved audio coding systems and methods using spectral component coupling and spectral component regeneration - Google Patents
Improved audio coding systems and methods using spectral component coupling and spectral component regeneration Download PDFInfo
- Publication number
- TWI324762B TWI324762B TW093109731A TW93109731A TWI324762B TW I324762 B TWI324762 B TW I324762B TW 093109731 A TW093109731 A TW 093109731A TW 93109731 A TW93109731 A TW 93109731A TW I324762 B TWI324762 B TW I324762B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- signals
- spectral
- sets
- spectral components
- Prior art date
Links
- 230000003595 spectral effect Effects 0.000 title claims description 360
- 238000000034 method Methods 0.000 title claims description 130
- 238000010168 coupling process Methods 0.000 title claims description 16
- 230000008878 coupling Effects 0.000 title claims description 13
- 238000005859 coupling reaction Methods 0.000 title claims description 13
- 230000008929 regeneration Effects 0.000 title description 2
- 238000011069 regeneration method Methods 0.000 title description 2
- 230000005236 sound signal Effects 0.000 claims description 174
- 238000005259 measurement Methods 0.000 claims description 114
- 238000006243 chemical reaction Methods 0.000 claims description 51
- 238000004458 analytical method Methods 0.000 claims description 36
- 238000001228 spectrum Methods 0.000 claims description 23
- 239000002131 composite material Substances 0.000 claims description 20
- 230000002596 correlated effect Effects 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 6
- 208000027418 Wounds and injury Diseases 0.000 claims description 4
- 230000006378 damage Effects 0.000 claims description 3
- 208000014674 injury Diseases 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims 4
- 230000006978 adaptation Effects 0.000 claims 1
- 230000001276 controlling effect Effects 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 description 42
- 238000003786 synthesis reaction Methods 0.000 description 42
- 238000004519 manufacturing process Methods 0.000 description 41
- 230000008569 process Effects 0.000 description 33
- 230000014509 gene expression Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 16
- 238000004364 calculation method Methods 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 10
- 230000003044 adaptive effect Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 230000002194 synthesizing effect Effects 0.000 description 7
- 230000002776 aggregation Effects 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 241000239290 Araneae Species 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 241000316887 Saissetia oleae Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- XWVFVITVPYKIMH-UHFFFAOYSA-N ethyl n-[4-[benzyl(2-phenylethyl)amino]-2-(2-fluorophenyl)-1h-imidazo[4,5-c]pyridin-6-yl]carbamate Chemical compound N=1C(NC(=O)OCC)=CC=2NC(C=3C(=CC=CC=3)F)=NC=2C=1N(CC=1C=CC=CC=1)CCC1=CC=CC=C1 XWVFVITVPYKIMH-UHFFFAOYSA-N 0.000 description 1
- MKZGVLPHKXXSSG-UHFFFAOYSA-N ethyl n-[4-[benzyl(2-phenylethyl)amino]-2-[4-(trifluoromethyl)phenyl]-1h-imidazo[4,5-c]pyridin-6-yl]carbamate Chemical compound N=1C(NC(=O)OCC)=CC=2NC(C=3C=CC(=CC=3)C(F)(F)F)=NC=2C=1N(CC=1C=CC=CC=1)CCC1=CC=CC=C1 MKZGVLPHKXXSSG-UHFFFAOYSA-N 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000002105 tongue Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/038—Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Description
坎、發明說明: 【發明所屬之技術領域】 發明領域 本發明係關於音訊信號之傳輸、記錄以及重放的音訊 編碼和解碼裝置與料。尤其是,树明提料輸或記錄 所給予的音訊《之所需資訊減少,同時維持重放輸出信 號於所要求位準之感受品質。 L· «tr ^ 發明背景 許多通訊系統面對資訊傳輸和記錄容量要求時常超出 可用容量的問題。結果’在廣播和記錄領域之中有可觀的 相關議題以減低傳輸或記錄有意使人們感知之音訊信號而 不降低其被感知之品質的所需資訊數量。同時也有相關議 題以改請於所要求料或儲存容量讀出信號的被感知 品質。 用以減低資訊容量需求之傳統方法,包含僅傳輸或記 錄輸入信號之選擇部份,而其餘部份則被忽略。習知之技 術,如一般的感知編碼轉換原始音訊信號成為頻譜成份或 頻率次頻帶信號,而那些冗餘的或無關的信號部份可更容 易地被辨識且被忽略。如果信號部份可從信號的其他部份 被再生,則該k號部份被認為是冗餘的。如果該信號部份 對於知覺上是無意義或聽不見的,則該信號部份被認為是 無關的。感知解碼器可從被編碼信號再生該缺失的冗餘部 份,但是其無法產生非冗餘的任何缺失之無關資訊。但是, 故叙關訊之碎在於一_上沒有可紗之效應, 故無關貧蚊損失是可接受的。 的信錢編碼技術僅拾棄那些錄的或知覺上無關 ,;u °ρ伤的5舌’則s亥信號蝙碼技術是知覺上透明的。 覺上透明的技術無法達成充分地減少資訊容量之需 …則需要知覺上非透明的技術捨棄不是冗餘的且是知覺 上有關的額外信號部份。其必然導致被傳輸或被記錄信號 之破感知的保真度•惡化。最好是,知覺上非透明的技術僅 捨棄那些破認為具有最小感知之重要性的信號部份。 被稱為輕合之編碼技術,其時常被認為是知覺 上非透明的技術,可以被使用以減低資訊容量需求。依據 =技術於兩組或更多組輸入音訊信號中之頻謹成份被組 Q以开7成具有這些頻譜成份複合表示之她合的頻道信 號於被組合以形成複合表示之各輸入音訊信 號中,代表 成伤之頻譜封包的附屬資訊同時也被產生。包含被耦 α頻道G 5虎和附屬資訊之編碼信號被傳輸或被記錄以供依 序的接收器之解碼。接收器利用產生被耦合頻道信號之複 製而產生解輕合信號,其是原始輸人信號之不精確的複製 ’並且使用該附屬資訊而調整複製信號中之頻譜成份尺 度’因此原始輸入信號的頻譜封包大致地被恢復。用於雙 頻道立體聲效系統的一般耦合技術組合左方和右方頻道信 號之鬲頻率成分以形成複合高頻率成分之單一信號旅真 產生代表原始左方和右方頻道信號中之高頻率成分頻譜封 I的附屬資讯。轉合技術之一範例被說明於高等電視系統 1324762 委員會(ATSC)標準文件A/52之“數位音訊壓縮(AC-3),,中, 其整體地配合此處參考。 - 附屬資訊和被耦合頻道信號之資訊容量需求應該被選 擇,以最佳化在兩組競爭需求之間的折衷。如果附屬資訊 5 之資訊容量需求被設定為太高’則被耦合頻道將被迫以低 , 精確度位準而傳送其頻譜成份。被耦合頻道之頻譜成份的 較低精確度位準可能導致可聽見位準之編碼雜訊或量化雜 · 訊被注入解耦合信號。相反地,如果被輕合頻道信號之資 訊容量需求被設定為太高,附屬資訊將被迫以低位準之頻 · 10 譜細部傳送頻譜封包。頻譜封包細部之較低位準可能導致 在各解耦合信號之頻譜位準和形狀中之可聽見的差異。 一般’如果附屬資訊傳送具有同量於人類聽覺之系統 的關鍵性頻帶頻寬之頻率次頻帶頻譜位準的話,則良好的 軒衷可被達成。應注意到,解耦合信號可能維持原始輸入 信號的原始頻譜成份之頻譜位準,但是它們一般不維持原 始頻譜成份的相位。如果耦合被限定於高頻率頻譜成份的 話,則這相位資訊之損失是不可感知的,因為人類聽覺系 鲁 统对於相位改變是相對地不靈敏的,尤其是在高頻率。 利用傳統搞合技術被產生之附屬資訊一般是頻譜振中s 〇之量測。結果,於一般系統中之解碼器依據導自頻譜振幅 、 <能量量測而計异尺度因數。這些計算一般需要計算自附 屬資訊被得到之數值平方和的平方根,其需要可觀的計算 資源》 有時被稱為“高頻率再生,,(HFR)之編碼技術是—種知 7 一般’如果附屬資訊傳送具有頻寬同量於人類聽覺系 統的關鍵性頻帶之頻率次頻帶的頻譜位準’則良好的折衷 可被達成。 正如上面討論之耦合技術,利用傳統HFR技術產生之 附屬資訊一般是頻譜搌幅之量測。結果,一般系統中之解 碼器依據導自頻譜振幅之能量的量測而計算尺度因數。這 些計算一般需要計算自附屬資訊被得到的數值平方和之平 方根,其需要可觀之計算資源。 傳統系統使用耦合技術或HFR技術’但是不同時使用 兩者。於許多應用中,比較於HFR技術,耦合技術可以導 致較少的信號惡化,但是HFR技術可達成資訊容量需求之 較大地減少。HFR技術可有利地被使用於多頻道和單一頻 道應用中;但是,耦合技術不提供單一頻道應用中之任何 優點。 L發明内容3 發明概要 本發明之一目的是提供相同於音訊編瑪系統中製作耦 合和HFR技術之信號處理的技術改良。 依據本發明之一論點,一種用以編瑪一組或多組輸入 音訊信號之方法,其包含之步驟有:得到組或多組基頻 帶信號以及一組或多組來自輸入音訊信號之殘餘信號,其 中基頻帶信號之頻譜成份是在第—組頻率次頻帶中且殘餘 信號中之頻譜成份是在不以基頻帶信號被表示之第二組頻 率次頻帶中;得到在解碼時於第二組頻率次頻帶内被產生 之一組或多組合成信號的頻譜成份之能量之量測;得到殘 餘信號之頻譜成份的能量量測;利用在殘餘信號和被合成 信號中之頻譜成份以得到能量量測之平方根和比率而計算 尺度因數;並且組合代表尺度因數之尺度資訊和代表基頻 帶信號中頻譜成份之信號資訊成為被編碼信號。 依據本發明另一論點,一種用以解碼代表一組或多組 輸入音sfl #號之被編碼信號的方法’其包含之步驟有:從 被編碼信號而得到尺度資訊和信號資訊,其中該尺度資訊 代表利用得到頻譜成份能量量測之平方根和比率而計算的 尺度因數且s亥信號資訊代表一組或多組基頻帶信號之頻言普 成份’並且其中基頻帶信號中之頻譜成份代表在第一組頻 率次頻帶中之輸入音訊信號的頻譜成份;針對基頻帶信號 產生相關被合成信號,該合成信號具有在不以該分別基頻 帶信號表示的第二組頻率次頻帶中之頻譜成份,其中該相 關被合成信號中之頻譜成份依據一組或多組尺度因數利用 乘法運算或除法運算而被調整尺度;並且產生一組或多組 輸出音訊信號’該輸出音訊信號代表輸入音訊信號且是從 基頻帶信號和相關的合成信號中之頻譜成份被產生。 依據本發明另一論點,一種用以編碼多數個輸入音訊 信號之方法’其所包含之步驟有··從輸入音訊信號以得到 多數個基頻帶信號、多數個殘餘信號以及一組被輕合頻道 信號,其中基頻帶信號之頻譜成份代表在第一組頻率次頻 帶中之輸入音訊信號頻譜成份且殘餘信號頻譜成份代表在 不以基頻帶信號被表示之第二組頻率次頻帶中之輪入音气 1324762 信號頻譜成份,並且被輕合頻道信號之頻譜成份代表在第 三組頻率次頻帶中兩組或更多組輸入音訊信號的頻譜成份 之複合,得到殘餘彳自说頻譜成份之能量量測以及利用被耗 合頻道信號表示之兩組或更多組的輸入音訊信號;並且組 5 合從能量量測被導出之尺度資訊以及代表基頻帶信號和被 柄合頻道信號中之頻譜成份的信號資訊成為一組被編碼信 號。 依據本發明進一步之論點,一種用以解碼代表多數個 輸入音訊信號之被編碼信號的方法,其包含之步驟有:從 10 被編碼信號得到控制資訊和信號資訊,其中控制資訊從頻 譜成份能量量測被導出且信號資訊代表多數個基頻帶信號 和一組被耦合頻道信號之頻謹成份,基頻帶信號中之頻譜 成份代表在第一組頻率次頻帶中之輸入音訊信號頻譜成份 且被耦合頻道信號之頻譜成份代表在兩組或更多組輸入音 15 訊信號的第三組頻率次頻帶中之頻譜成份的複合;針對基 頻帶信號產生相關被合成信號,該合成信號具有在不以基 頻帶信號被表示之第二組頻率次頻帶中之頻譜成份,其中 該相關的被合成信號中之頻譜成份依據控制資訊而被調整 尺度;從被耦合頻道信號產生利用被耦合頻道信號被表示 20 之兩組或更多組輸入音訊信號的解搞合信號’其中該解耗 合信號具有依據控制資訊被調整尺度之第三組頻率次頻帶 中之頻譜成份;並立從基頻帶信號和相關的被合成信號中 之頻譜成份而產生代表輸入音訊信號之多數個輪出音訊信 號,其中代表兩組或更多組的音訊信號之輸出音訊信號也 11 從分別的解耦合信號中之頻譜成份被產生^ . 本發明的其他論點包含具有進行各種編碼和解碼方法 之處理電路的裝置、傳送可利用一裝置執行之指令程式(其 導致裝置進行各種編碼和解碼方法)之媒體、以及傳送代表 5利用各種編碼方法被產生之輸入音訊信號之被編碼資訊的 媒體。 . 本發明各種特點和較佳實施例可參看下面的討論和附 -- 圖而較佳地被了解,許多圖形中之相同參考號碼是指示相 同之元件。下面討論之内容和圖形僅作為範例並且不應認 鲁 10 為是本發明範疇之限制。 圖式簡單說明 第1圖是一裝置之分解方塊圖,其編碼一音訊信號以供 後序藉由使用高頻率再生之裝置的解碼。 第2圖是使用高頻率再生而解碼被編碼音訊信號之裝 15 置的分解方塊圖。 第3圖是分割音訊信號成為具有反應一種或多種音訊 信號特性而被調適範圍之頻率次頻帶信號的裝置之分解方 · 塊圖。 第4圖是從具有被調適範圍之頻率次頻帶信號而合成 20 音訊信號之裝置的分解方塊圖。 — 第5和6圖是裝置之分解方塊圖,其使用耦合而編碼— 音訊信號以供後序藉由使用高頻率再生和解耦合之裝置的 解碼。 第7圖是使用高頻率再生和解輕合以解碼被編碼音訊 12 1324762 信號的裝置之分解方塊圖。 A使用―組第二分析遽波器庫以提供用於 能量計异的額外頻碰$丨\ ? 塊圖 員°曰成伤而編碼音訊信號的裝置之分解方 5 第9圖是可製作本發明各種論點的襄 【實施方式】 置之分解方塊圖。 實施本發明之模式 A.概觀 10 15 本發明係關於音訊編衫統和方法,其利 輸入音訊信號之“錄”料且僅編碼縣I音訊 基頻帶部份而減低被編碼㈣^資訊容量需求,並且和 產生-被合成信號而依序地解竭該被編碼錢以替代今^ 失的殘餘料。紐編碼錢包含減詩解碼處理^ 制《合成之尺度資訊’因此該被合成信號維持原始輸少 音訊信號的殘餘部分於某一程度頻譜位準。 ~BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an audio encoding and decoding apparatus and apparatus for transmission, recording, and playback of audio signals. In particular, the tree informs the input or records the audio information given that the required information is reduced while maintaining the perceived quality of the reproduced output signal at the desired level. L· «tr ^ Background of the Invention Many communication systems often exceed the available capacity in the face of information transmission and recording capacity requirements. As a result, there are considerable related issues in the field of broadcasting and recording to reduce the amount of information required to transmit or record audio signals that are intended to perceive people without degrading their perceived quality. There are also related issues to change the perceived quality of the signal at the required material or storage capacity. Traditional methods for reducing the need for information capacity include the selection or transmission of only selected portions of the input signal, while the rest are ignored. Conventional techniques, such as general perceptual coding, convert the original audio signal into a spectral component or a frequency sub-band signal, and those redundant or unrelated signal portions can be more easily identified and ignored. If the signal portion can be reproduced from other parts of the signal, the part k is considered redundant. If the signal portion is perceptually meaningless or inaudible, then the portion of the signal is considered to be irrelevant. The perceptual decoder can regenerate the missing redundant portion from the encoded signal, but it cannot produce any missing irrelevant information that is not redundant. However, the fragmentation of the Syrian customs is that there is no effect on the yarn, so the loss of the mosquito-free is acceptable. The credit coding technique only picks up those recorded or perceptually unrelated, and the 5 tongues of the u °ρ injury are sensiblely transparent. The perception that transparent technology cannot achieve the need to substantially reduce information capacity ... requires that perceptually non-transparent technology discards are not redundant and are perceptually relevant additional signal components. It necessarily leads to fidelity/deterioration of the perceived perception of the transmitted or recorded signal. Preferably, the perceptually non-transparent technique simply discards portions of the signal that are considered to be of minimal importance. A coding technique known as Lightweight, which is often considered a perceptually non-transparent technology, can be used to reduce information capacity requirements. According to the = technique, the frequency components in the input audio signals of two or more groups are grouped by the group Q to form a channel signal having a composite representation of the spectral components, and the combined channel signals are combined to form a composite representation. Ancillary information representing the spectrum packet of the wound is also generated. The encoded signal containing the coupled alpha channel G 5 Tiger and affiliate information is transmitted or recorded for decoding by the intended receiver. The receiver generates a de-synchronization signal by generating a copy of the coupled channel signal, which is an inaccurate copy of the original input signal and uses the auxiliary information to adjust the spectral component scale in the replicated signal' thus the spectrum of the original input signal The packet is roughly restored. A general coupling technique for a two-channel stereo system combines the frequency components of the left and right channel signals to form a composite high-frequency component of a single signal to generate a spectrum of high-frequency components representing the original left and right channel signals. Attached information of I. An example of a transition technique is illustrated in the Digital Television System 1324462 Committee (ATSC) Standard Document A/52, "Digital Audio Compression (AC-3)," which is incorporated herein by reference in its entirety. The information capacity requirements of the channel signal should be chosen to optimize the trade-off between the two competing needs. If the information capacity requirement of the affiliate information 5 is set too high, then the coupled channel will be forced to be low, accurate. The spectral components are transmitted at a level. The lower accuracy level of the spectral components of the coupled channels may result in audible levels of encoded noise or quantized noise being injected into the decoupled signal. Conversely, if the channel is lighted The information capacity requirement of the signal is set too high, and the ancillary information will be forced to transmit the spectral packet at a low frequency. The lower level of the spectral packet detail may result in the spectral level and shape of each decoupled signal. The audible difference in the general. Generally, if the ancillary information transmission has the frequency sub-band spectral level of the critical band bandwidth of the system of human hearing, then Good Xuanxin can be achieved. It should be noted that the decoupled signal may maintain the spectral level of the original spectral components of the original input signal, but they generally do not maintain the phase of the original spectral components. If the coupling is limited to high frequency spectral components. The loss of this phase information is imperceptible, because the human auditory system is relatively insensitive to phase changes, especially at high frequencies. The auxiliary information generated by traditional integration techniques is generally spectrum vibration. The measurement of s 〇. As a result, the decoder in the general system calculates the different scale factor based on the measured spectral amplitude, <energy measurement. These calculations generally need to calculate the square root of the sum of the squares obtained from the ancillary information. Need for considerable computing resources. Sometimes called "high-frequency reproduction," (HFR) coding technology is - knowing 7 general 'if the auxiliary information transmission has the same frequency as the frequency band of the human auditory system A good compromise between the spectral levels of the bands can be achieved. As with the coupling techniques discussed above, the ancillary information generated using traditional HFR techniques is typically a measure of spectral amplitude. As a result, the decoder in a typical system calculates the scaling factor based on the measurement of the energy derived from the spectral amplitude. These calculations generally require the calculation of the square root of the sum of the values obtained from the ancillary information, which requires considerable computational resources. Traditional systems use coupling techniques or HFR techniques' but do not use both at the same time. In many applications, coupling technology can result in less signal degradation than HFR technology, but HFR technology can achieve a significant reduction in information capacity requirements. HFR technology can be advantageously used in multi-channel and single-channel applications; however, coupling technology does not provide any of the advantages of a single channel application. SUMMARY OF THE INVENTION 3 SUMMARY OF THE INVENTION It is an object of the present invention to provide a technical improvement over the signal processing of the coupling and HFR techniques in an audio gamma system. In accordance with one aspect of the present invention, a method for composing one or more sets of input audio signals includes the steps of: obtaining one or more sets of baseband signals and one or more sets of residual signals from the input audio signal Where the spectral component of the baseband signal is in the first set of frequency subbands and the spectral components in the residual signal are in the second set of frequency subbands not represented by the baseband signal; obtained in the second set during decoding The measurement of the energy of the spectral components of the signal generated in one or more of the frequency sub-bands; the energy measurement of the spectral components of the residual signal; the spectral components in the residual signal and the synthesized signal are used to obtain the energy amount The scale factor is calculated by measuring the square root and the ratio; and the scale information representing the scale factor and the signal information representing the spectral components in the baseband signal are combined into the encoded signal. According to another aspect of the present invention, a method for decoding an encoded signal representing one or more sets of input sounds sfl # is included in the steps of: obtaining scale information and signal information from the encoded signal, wherein the scale The information representative uses the scale factor calculated by obtaining the square root and ratio of the spectral component energy measurement and the sigma signal information represents the frequency component of one or more sets of baseband signals' and wherein the spectral components in the baseband signal represent a spectral component of the input audio signal in a set of frequency sub-bands; generating a correlated synthesized signal for the baseband signal, the composite signal having spectral components in a second set of frequency sub-bands not represented by the respective baseband signals, wherein The spectral components of the correlated synthesized signal are scaled by multiplication or division according to one or more sets of scale factors; and one or more sets of output audio signals are generated. The output audio signal represents an input audio signal and is derived from Spectral components in the baseband signal and associated composite signals are generated. According to another aspect of the present invention, a method for encoding a plurality of input audio signals includes the steps of: inputting an audio signal to obtain a plurality of baseband signals, a plurality of residual signals, and a set of coupled channels. a signal, wherein a spectral component of the baseband signal represents a spectral component of the input audio signal in the first set of frequency subbands and a residual signal spectral component represents a rounded tone in a second set of frequency subbands not represented by the baseband signal The gas spectrum component of the 1324462 signal, and the spectral components of the light-weighted channel signal represent a composite of the spectral components of two or more sets of input audio signals in the third set of frequency sub-bands, resulting in an energy measurement of the residual spectral components. And two or more sets of input audio signals represented by the consumed channel signals; and the group 5 combines the scale information derived from the energy measurements and the signals representing the spectral components of the baseband signal and the stalked channel signal The information becomes a set of encoded signals. According to a further aspect of the present invention, a method for decoding an encoded signal representative of a plurality of input audio signals includes the steps of: obtaining control information and signal information from 10 encoded signals, wherein control information is derived from spectral component energy quantities The measurement is derived and the signal information represents a frequency component of a plurality of baseband signals and a set of coupled channel signals. The spectral components in the baseband signal represent spectral components of the input audio signal in the first set of frequency subbands and are coupled to the channel. The spectral component of the signal represents a composite of spectral components in a third set of frequency sub-bands of two or more sets of input 15 signals; a correlated synthesized signal is generated for the baseband signal, the synthesized signal having a baseband not The signal is represented by a spectral component of a second set of frequency sub-bands, wherein the spectral components of the associated synthesized signal are scaled according to control information; and the two generated from the coupled channel signal are represented by the coupled channel signal Group or more groups of input audio signals, the decomposed signal Having a spectral component of a third set of frequency sub-bands calibrated according to control information; and generating a plurality of round-trip audio signals representative of the input audio signal from the spectral components of the baseband signal and the associated synthesized signal, wherein The output audio signals of the two or more sets of audio signals are also generated from the spectral components of the respective decoupled signals. Other aspects of the present invention include apparatus having processing circuitry for performing various encoding and decoding methods, and transmitting A medium that utilizes a device-executed instruction program (which causes the device to perform various encoding and decoding methods), and a medium that conveys encoded information representing 5 input audio signals generated using various encoding methods. The various features and preferred embodiments of the present invention are understood by reference to the description The content and graphics discussed below are merely examples and should not be construed as limiting the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is an exploded block diagram of an apparatus for encoding an audio signal for subsequent decoding by means of a high frequency reproduction device. Figure 2 is an exploded block diagram of a device for decoding an encoded audio signal using high frequency reproduction. Figure 3 is a block diagram of a device for dividing an audio signal into a frequency sub-band signal having a range adapted to reflect one or more of the characteristics of the audio signal. Figure 4 is an exploded block diagram of an apparatus for synthesizing 20 audio signals from frequency sub-band signals having an adapted range. – Figures 5 and 6 are exploded block diagrams of the device that are coupled to encode the audio signal for later decoding by means of a device that uses high frequency reproduction and decoupling. Figure 7 is an exploded block diagram of a device that uses high frequency reproduction and de-flashing to decode the encoded audio 12 1324762 signal. A uses the "group second analysis chopper library to provide additional frequency collisions for energy metering." The block diagram of the device that encodes the audio signal into the injury is shown in Figure 9. Figure 9 is a production发明 各种 各种 实施 实施 实施 实施 实施 实施 实施 实施 实施 。 。 [Embodiment] Mode for Carrying Out the Invention A. Overview 10 15 The present invention relates to an audio editing system and method for inputting a recording of an audio signal and encoding only a portion of a county I audio baseband portion to reduce encoding (4) information capacity requirements And the generated-synthesized signal sequentially depletes the encoded money to replace the current lost material. The New Coded Money contains the reduced poem decoding process, "Synthetic Scale Information", so the synthesized signal maintains the residual portion of the original input audio signal to a certain level of spectral level. ~
20 這編碼技術於此處被稱為高頻率再生(HFR),因為預期 於許多製作中殘餘信號將包含較高頻率頻譜成份。但是, 原理上,這技術不被限制僅用於高頻率頻譜成份之合成。 基頻帶信號可包含一些或所有的較高頻率頻譜成份,或可 包含散佈於輸入信號總頻寬之頻率次頻帶中的頻譜成份。 1.編碼器20 This coding technique is referred to herein as High Frequency Reproduction (HFR) because it is expected that in many productions the residual signal will contain higher frequency spectral components. However, in principle, this technique is not limited to the synthesis of high frequency spectral components only. The baseband signal may contain some or all of the higher frequency spectral components, or may include spectral components interspersed in the frequency subband of the total bandwidth of the input signal. Encoder
第1圖展示一組音訊編碼器,其接收一組輸入音訊信號 並且產生一組代表該輸入音訊信號之被編碼信號《分析濾 波器庫10從通道9接收輸入音訊信號,並且,反應地提供代 13 表音訊信號頻譜成份之頻率次頻帶資訊。代表基頻帶信號 頻譜成份之資訊沿著通道12被產生且代表殘餘信號頻譜成 份之資訊沿著通道11被產生。基頻帶信號頻谱成份代表第 —組頻率次頻帶之一組或多組次頻帶中之輸入音訊信號頻 譜内容’其利用在編碼信號中被傳送之信號資訊被表示。 於較佳製作中,第一組頻率次頻帶是較低的頻率次頻帶。 殘餘信號頻譜成份代表第二組頻率次頻帶之—組或多組次 頻帶中之輸入音訊信號頻譜内容’其不被表示於基頻帶信 號並且不利用被編碼信號而被傳送。於—製作中,第—和 第二組頻率次頻帶之結合構成輸入音訊信號之整個頻寬。 能量計算器31計算殘餘信號中之一組或多組頻率次頻 帶的頻譜能量之一組或多組量測。於較佳製作中,從通道 11被接收的頻譜成份被配置於具有同量於人類聽覺系统的 關鍵性頻帶之頻寬的頻率次頻帶中並且能量計算器31提供 這些頻率次頻帶能量之量測。 合成模式21代表信號合成處理程序,其將發生於被使 用以解碼沿著通道51被產生之被編碼信號的解碼處理程序 中。合成模式21可以實施其合成處理程序本身或可以進行 一些可估計被合成信號之頻譜能量而實際上不進行合成處 理程序的其他處理程序。能量計算器32接收合成模式21之 輸出並且計算將被合成之信號的一組或多組頻譜能量之量 測。於較佳製作中,被合成信號之頻譜成份被配置在具有 同置於人類聽覺系統的關鍵性頻帶之頻寬的頻率次頻帶中 並且能量計算器32提供這些頻率次頻帶之一能量量測。 1324762 於第1圖以及第5、6以及8圖之展示中’展示在分析濾 · 波益庫和合成模式之間的連接’其建5義合成模式至少部份 地反應至基頻帶信號;但是,這連接是可選擇的。下面將 討論合成模式之一些製作。這些製作中有些無關於基頻帶 5 信號而操作。 碡 尺度因數計算器40從兩組能量計算器之各組接收一組 或多組能量量測並且計算尺度因數’如下面更詳細之說 * 明。代表被計算之尺度因數的尺度資訊沿著通道41被傳送。 格式器50從通道41接收尺度資訊且從通道12接收代表 · 10基頻帶信號之頻譜成份的資訊。這資訊被組合成為一組被 編碼信號,其沿著用以傳輸或用以記錄之通道51被傳送。 被編碼信號可以利用基頻帶或遍佈包含從超音波至紫外線 之頻譜的頻率調變通訊通道而被傳輸’或可以被記錄於實 質上使用任何記錄技術之媒體上,該等媒體包含磁帶、磁 15卡或碟片、光學卡或光碟、以及於例如紙張媒體上之可檢 測標誌、。 於較佳製作中,基頻帶信號之頻譜成份使用藉由捨棄 _ 任何冗餘的或無關的部份以減低資訊容量需求的感知編碼 處理程序而被編碼。對於本發明,這些編碼處理程序不g · 20 必要的。 疋 2.解碼器 第2圖展示一組音訊解碼器,其接收代表-組音訊作 之破編碼㈣並且產㈣音訊信狀解碼0。解^ 6〇從通道59接收被編碼信號並且從被編碼信號而_^ 15 1324762 資訊和信號資訊。尺度資訊代表尺度因數且信號資訊代表 在第一組頻率次頻帶中具有一組或多組次頻帶之頻譜成份 的基頻帶信號頻譜成份。信號合成構件23進行合成處理以 產生具有在代表不利用編碼信號被傳播之殘餘信號頻譜成 5 份的第二組頻率次頻帶中之一組或多組次頻帶中頻譜成份 之信號。 第2和7圖展示在解格式器60和信號合成構件23之間的 連接’其建議信號合成至少部份地反應至基頻帶信號;但 是’這連接是可選擇的。下面將討論一些信號合成之製作。 10 這些製作中有些無關於基頻帶信號而操作。 信號尺度構件70從自通道61接收之尺度資訊得到尺度 因數。尺度因數被使用以調整利用信號合成構件23所產生 之合成信號的頻譜成份之尺度。合成濾波器庫80從通道71 接收調整尺度之合成信號,從通道62接收基頻帶信號之頻 15 譜成份’並且反應地沿著通道89而產生原始輸入音訊信號 的解碼表示之輸出音訊信號。雖然輸出信號是不相同於原 始的輸入音訊信號,但預期該輸出信號是知覺上難以與輸 入音訊信號區別的或至少對於所給予的應用是知覺上可以 合意和可接受的方式而區別的。 2〇 於較佳製作中,信號資訊代表一組被編碼型式的基頻 帶信號之頻譜成份,該被編碼型式必須使用與被使用於編 瑀器中之編碼處理程序反向的解碼處理程序被解碼。如上 所述’對於本發明,這些處理程序不是必要的》 3.濾波器庫 16 分析和合成濾波器庫可依需要包含數位濾波器技術、 訊塊轉換以及小波轉換之廣泛範圍的任何實際方式被製 作。於分別地具有相同於第圖所展示之一組編碼器和 一組解碼器的一音訊編碼系統中,分析濾波器庫10利用一 修改離散餘弦轉換(MDCT)被製作且合成濾波器庫80利用 一修改反向離散餘弦轉換被製作,該修改反向離散餘弦轉 換被說明於1987年5月之聲波、語音及信號之國際會議,由 Pnncenetal•等人發表之“依據時間領域膺頻消除使用濾波 益群集設計之次頻帶/轉換編碼,,,第2161-64頁。原理上沒 有特定的濾波器庫製作是重要。 分析壚波器庫利用訊塊轉換分割一輸入信號之訊塊或 者區間成為一組代表信號區間頻譜内容之轉換係數而被製 作。一組或者多組相鄰轉換係數之群集代表在具有等量於 私群係數數目之頻寬的特定頻率次頻帶内之頻譜内容。 利用一些數位濾波器型式(例如,多相濾波器),而不是 訊塊轉換,而被製作之分析濾波器庫分割一輸入信號成為 —組次頻帶信號。各次頻帶信號是一種在特定頻率次頻帶 内之輸入信號頻譜内容以時間為主之表示。最好是,次頻 帶信號被大量消減,因此各次頻帶信號具有同量於時間單 元區間之次頻帶信號中之取樣數目的頻寬。 下面之讨論尤其是相關於使用如同上述時間領域膺頻 ’肖除(TDAC)轉換之訊塊轉換的製作。於這討論中,名稱“頻 譜成份”是相關於轉換係數且名稱“頻率次頻帶,,以及“次頻 帶信號”是相關於一組或者多組相鄰轉換係數之族群。本發 明原理可以被應用於其他的製作型式,但是,因此名稱“頻 率次頻帶,,和“次頻帶信號,,也是相關於代表信號的整體頻 寬之部份頻譜内容的信號’並且一般可以了解,名稱“頻譜 成份”是相關於次頻帶信號之取樣或者元素。 B.尺度因數 在使用如同TDAC轉換之編碼系統中,例如,轉換係數 X(k)代表原始輸入音訊信號x(t)的頻譜成份。轉換係數被分 割成為代表基頻帶信號和殘餘信號之不同的集合。被合成 信號之轉換係數Y(k)在使用合成處理程序,例如,下面說 明者,之解碼處理時被產生。 1.計算 於較佳製作中,編碼處理程序提供傳送從殘餘信號之 頻譜能量量測對於被合成信號之頻譜能量量測的比率平方 根被計算出之尺度因數的尺度資訊。針對殘餘信號和被合 成"is號之頻谱能置;£測可以從下列之表示式被計算出. E{k) = x\k) (la) ES{k) = Y2{k) (lb) 其中X(k)=殘餘信號中之轉換係數k ; E(k)=頻譜成份X(k)之能量量測; Y(k)=被合成信號中之轉換係數k;並且 ES(k)=頻譜成份Y(k)之能量量測。 依據各頻譜成份能f量測之附屬資訊之資訊容量需求 對於大多數應用是太高;因此,尺度因數可依據下列之表 示式從頻譜成份之料或者料次頻帶之能量量測被計算 1324762 出: m2 E(m)= ^x2{k) Λ-ml (2a) ES{m)= m2 =lr2(k) (2b) 其中E(m)=針對殘餘信號之頻率次頻帶m的能量量測;且 5 ES(m)=針對被合成信號之頻率次頻帶m的能量量測。Figure 1 shows a set of audio encoders that receive a set of input audio signals and produce a set of encoded signals representative of the input audio signal. The analysis filter bank 10 receives input audio signals from channel 9, and provides a representative 13 Frequency subband information of the spectral components of the audio signal. Information representative of the spectral component of the baseband signal is generated along channel 12 and information representative of the residual signal spectral component is generated along channel 11. The baseband signal spectral components represent the spectral content of the input audio signal in one or more sets of sub-bands of the first set of frequency sub-bands, which are represented by signal information transmitted in the encoded signal. In a preferred implementation, the first set of frequency sub-bands is a lower frequency sub-band. The residual signal spectral components represent the spectral content of the input audio signal in the group or groups of sub-bands of the second set of frequency sub-bands that are not represented by the baseband signal and are transmitted without the encoded signal. In the production, the combination of the first and second frequency subbands constitutes the entire bandwidth of the input audio signal. The energy calculator 31 calculates one or more sets of spectral energy of one or more sets of frequency sub-bands in the residual signal. In a preferred implementation, the spectral components received from channel 11 are placed in a frequency sub-band having the same bandwidth as the critical frequency band of the human auditory system and energy calculator 31 provides measurements of these frequency sub-band energies. . The synthesis mode 21 represents a signal synthesis process that will occur in a decoding process that is used to decode the encoded signal generated along channel 51. The synthesis mode 21 may implement its synthesis process itself or may perform other processes that may estimate the spectral energy of the synthesized signal without actually performing a synthesis process. The energy calculator 32 receives the output of the synthesis mode 21 and calculates the measurement of one or more sets of spectral energy of the signal to be synthesized. In a preferred fabrication, the spectral components of the synthesized signal are placed in a frequency sub-band having a bandwidth that is co-located in the critical frequency band of the human auditory system and the energy calculator 32 provides an energy measurement of one of these frequency sub-bands. 1324762 in Figure 1 and in the presentations of Figures 5, 6 and 8 'showing the connection between the analytical filter and the wave mode and the synthesis mode', the built-in synthesis mode at least partially reacts to the baseband signal; This connection is optional. Some of the production of the synthesis mode will be discussed below. Some of these productions operate without regard to the baseband 5 signal.尺度 The scale factor calculator 40 receives one or more sets of energy measurements from each of the two sets of energy calculators and calculates a scale factor' as described in more detail below. Scale information representing the scale factor being calculated is transmitted along channel 41. The formatter 50 receives the scale information from the channel 41 and receives information representative of the spectral components of the 10 baseband signal from the channel 12. This information is combined into a set of encoded signals that are transmitted along the channel 51 for transmission or for recording. The encoded signal may be transmitted using a baseband or a frequency modulated communication channel that spans the spectrum from ultrasound to ultraviolet light' or may be recorded on media substantially using any recording technology, including magnetic tape, magnetic 15 Card or disc, optical card or optical disc, and detectable logo on, for example, paper media. In a preferred production, the spectral components of the baseband signal are encoded using a perceptual coding process that discards any redundant or unrelated portions to reduce the information capacity requirement. For the present invention, these encoding processes are not necessary.疋 2. Decoder Figure 2 shows a set of audio decoders that receive the decoded code of the representative-group audio (4) and produce (4) audio signal decoding 0. The signal is received from channel 59 and is encoded from the signal and _^ 15 1324762 information and signal information. The scale information represents a scale factor and the signal information represents a baseband signal spectral component having a spectral component of one or more sets of subbands in the first set of frequency subbands. The signal synthesizing means 23 performs a synthesizing process to generate a signal having a spectral component in one or more sets of sub-bands in the second set of frequency sub-bands representing the residual signal spectrum which is propagated without using the encoded signal. Figures 2 and 7 show the connection between the formatter 60 and the signal synthesizing member 23 whose proposed signal synthesis is at least partially reflected to the baseband signal; however, this connection is optional. The production of some signal synthesis will be discussed below. 10 Some of these productions operate without a baseband signal. Signal scale component 70 derives a scale factor from the scale information received from channel 61. The scale factor is used to adjust the scale of the spectral components of the composite signal produced by the signal synthesizing member 23. The synthesis filter bank 80 receives the composite signal of the adjusted scale from channel 71, receives the frequency spectrum component' of the baseband signal from channel 62 and reactively produces the output audio signal of the decoded representation of the original input audio signal along channel 89. Although the output signal is not identical to the original input audio signal, it is expected that the output signal is perceived to be distinguishable from the input audio signal or at least sensiblely acceptable and acceptable for the given application. 2. In a preferred production, the signal information represents the spectral components of a set of encoded baseband signals that must be decoded using a decoding process that is reversed by the encoding process used in the compiler. . As described above, these processes are not necessary for the present invention. 3. Filter Library 16 The analysis and synthesis filter banks can be included in any practical way including a wide range of digital filter techniques, block conversions, and wavelet transforms as needed. Production. In an audio coding system having a set of encoders and a set of decoders, respectively, as shown in the figure, the analysis filter bank 10 is fabricated using a modified discrete cosine transform (MDCT) and the synthesis filter bank 80 is utilized. A modified inverse discrete cosine transform was produced, and the modified inverse discrete cosine transform was described in the May 1987 International Conference on Acoustic Waves, Speech, and Signals, published by Pnncenetal et al. Sub-band/conversion coding of the benefit cluster design,, pp. 2161-64. In principle, no specific filter bank production is important. The analysis chopper library uses block conversion to divide the block or interval of an input signal into one. The group is constructed by representing the conversion coefficients of the spectral content of the signal interval. The cluster of one or more sets of adjacent conversion coefficients represents the spectral content in a particular frequency sub-band having a bandwidth equal to the number of private group coefficients. Filter type (for example, polyphase filter) instead of block conversion, and the resulting analysis filter library splits an input signal into - group sub-band signals. Each sub-band signal is a time-based representation of the spectral content of the input signal in a particular frequency sub-band. Preferably, the sub-band signals are substantially reduced, so each sub-band signal has the same amount The bandwidth of the number of samples in the sub-band signal of the time unit interval. The following discussion relates in particular to the fabrication of block conversion using the time domain 肖 frequency division (TDAC) conversion as in the above-mentioned time domain. In this discussion, the name " The spectral component "is related to the conversion factor and the name "frequency sub-band," and "sub-band signal" is the group associated with one or more sets of adjacent conversion coefficients. The principles of the present invention can be applied to other fabrication formats, but, therefore, the names "frequency sub-band," and "sub-band signals, are also signals related to portions of the spectral content of the overall bandwidth of the signal" and are generally known The name "spectral component" is a sample or element related to the sub-band signal. B. Scale Factor In an encoding system using TDAC conversion, for example, the conversion coefficient X(k) represents the spectral component of the original input audio signal x(t). The conversion coefficients are divided into a different set representing the baseband signal and the residual signal. The conversion coefficient Y(k) of the synthesized signal is generated when a synthesis processing program, for example, the decoding process described below is used. 1. Computation In a preferred fabrication, the encoding process provides scale information that conveys the scale factor from which the spectral energy of the residual signal is measured for the square root of the ratio of the spectral energy measurements of the synthesized signal. For the residual signal and the spectrum of the synthesized "is number can be set; the £ test can be calculated from the following expression. E{k) = x\k) (la) ES{k) = Y2{k) ( Lb) where X(k) = conversion coefficient k in the residual signal; E(k) = energy measurement of the spectral component X(k); Y(k) = conversion coefficient k in the synthesized signal; and ES(k ) = energy measurement of the spectral component Y(k). The information capacity requirement of the ancillary information measured according to each spectral component can be too high for most applications; therefore, the scale factor can be calculated from the spectrum component material or the sub-band energy measurement according to the following expression: 1324472 : m2 E(m)= ^x2{k) Λ-ml (2a) ES{m)= m2 =lr2(k) (2b) where E(m)=energy measurement for the frequency sub-band m of the residual signal And 5 ES(m) = energy measurement for the frequency sub-band m of the synthesized signal.
總和之限制值ml和m2指定次頻帶m中之最低和最高的 頻率頻譜成份。於較佳製作中,頻率次頻帶具有等量於人 類聽覺系統之關鍵性頻帶之頻寬。 總和之限制值也可以使用一組標誌、,例如A: e {μ},被 10 表示,其中{Μ}代表被包含於能量計算中之所有頻譜成份 的集合。為了下面說明之理由,這標誌被使用於這說明之 其餘部份。使用這標誌,表示式2a和2b可以分別地被寫為 如表示式2c和2d之所示:The sum limit values ml and m2 specify the lowest and highest frequency spectral components in the sub-band m. In preferred fabrication, the frequency sub-band has a bandwidth that is equal to the critical frequency band of the human auditory system. The sum limit value can also use a set of flags, such as A: e {μ}, denoted by 10, where {Μ} represents a collection of all spectral components that are included in the energy calculation. This flag is used for the remainder of the description for the reasons explained below. Using this flag, expressions 2a and 2b can be written as shown in expressions 2c and 2d, respectively:
£(/n)= yx2(k) (2c) k^M] 15 ES{m)= yY2{k) (2d) 其中{M卜次頻帶m中所有頻譜成份之集合。 對於次頻帶m之尺度因數SF(m)可以從下面的任一表 示式被計算出: (3a) 20 sF(m)- SS) (3b) 19 但是依據第一組表示式之計算通常是更有效的。 2.尺度因數之表示 最好是,編碼處理程序提供尺度資訊於被編碼信號 中,其以需要比這些尺度因數本身較低的資訊容量之型式 而傳送被計算之尺度因數。多種方法可以被使用以減低尺 度資訊之資訊容量需求。 一種方法表不各尺度因數本身為具有一相關尺度值之 被調整尺度的數目。這可被完成之一方法是表示各尺度因 數為一浮動點數目,其中之假數是被調整尺度之數目並且 相關的指數代表尺度值。假數或者被調整尺度之數目的精 確性可被藝以傳送具有充分精確度的尺度因數。指數或 者尺度值被允許之範圍可被選擇以提供尺度因數充分的動 •4範圍。產生尺度資訊之處理裎序同時也可允許兩組或者 更多组的淨動點假數或者被調整尺度之數目以共用一組共 同的指數或者尺度值。 另種方法利用使相關於一些基底值或者正規化值之 尺度因數正規化而減低資訊容量需求。該基底值可以預先 被拓疋於尺度資訊之編碼和解碼處理程序上或者其可以 調適地被決定。例如,對於—組音訊信號的所有頻率次頻 帶之尺度因數可以相對於音訊信號__區間之最大尺度因數 被正規化’或者它們可以相對於選自被缺之數值集合的 數值被正規化。基底值之—些指示包含尺度資訊,因此解 碼處理程序可倒反正規化之效應。 如果尺度因數可利用在從零至一的範圍内之數值被表 示的話,則需要編碼和解碼尺度資訊之處理於許多製作中 可以是便利的。如果尺度因數相對於等於或者較大於所有 可能尺度因數之一些基底值被正規化的話,則這範圍可被 確保。另外地,如果一些未預期的或者罕見的事件導致一 尺度因數超出這數值的話,則尺度因數可相對於較大於可 適度地被預期的任何尺度因數之一些基底值被正規化且被 設定等於一。如果基底值被限制為二的次方,則使尺度因 數正規化及倒反正規化之處理程序可有效地利用二進位整 數算術函數或者二進位移位操作被執行。 多於一種的這些方法可以一起被使用。例如,尺度資 訊可以包含正規化尺度因數之浮動點表示。 C.信號合成 被合成之信號可以用多種方式被產生。 1.頻率轉換 一種技術利用線性地轉換基頻帶信號之頻譜·成份X(k) 而產生被合成信號之頻譜成份Y(k)。這轉換可以被表示為: y(j)=m (4) 其中差量G-k)是第k組頻譜成份之頻率轉換數量。 當第m組次頻帶令之頻譜成份被轉換成為頻率次頻帶p 時’編碼處理程序可以依據第(5)式之表示式以從第m組頻 率次頻帶中之頻譜成份能量量測而計算頻率次頻帶P之尺 度因數: (5) 1324762£(/n)= yx2(k) (2c) k^M] 15 ES{m)= yY2{k) (2d) where {M is the set of all spectral components in the frequency band m. The scale factor SF(m) for the sub-band m can be calculated from any of the following expressions: (3a) 20 sF(m)- SS) (3b) 19 But the calculation according to the first set of expressions is usually more Effective. 2. Representation of Scale Factor Preferably, the encoding process provides scale information to the encoded signal, which conveys the calculated scale factor in a pattern that requires a lower information capacity than the scale factor itself. A variety of methods can be used to reduce the information capacity requirements of the size information. One method indicates that each scale factor is itself a number of scaled scales with a correlation scale value. One way this can be done is to indicate that each scale factor is a number of floating points, where the number of the scales is the number of scales adjusted and the associated index represents the scale value. The accuracy of the number of artifacts or adjusted scales can be used to convey a scale factor with sufficient accuracy. The range in which the index or scale value is allowed can be selected to provide a sufficient range of scale factors. The processing sequence for generating scale information may also allow two or more sets of net moving point pseudo-numbers or adjusted scales to share a common set of indices or scale values. Another approach reduces the need for information capacity by normalizing the scale factors associated with some of the base values or normalized values. The base value can be pre-expressed on the encoding and decoding process of the scale information or it can be adaptively determined. For example, the scale factor for all frequency sub-bands of the set of audio signals may be normalized with respect to the largest scale factor of the audio signal__ interval or they may be normalized with respect to values selected from the set of missing values. The base value - some indications contain scale information, so the decoding process can reverse the effect of normalization. If the scale factor can be expressed as a value ranging from zero to one, then the processing of encoding and decoding scale information can be convenient in many productions. This range can be ensured if the scale factor is normalized relative to some base values equal to or greater than all possible scale factors. Additionally, if some unexpected or rare event causes a scale factor to exceed this value, the scale factor can be normalized with respect to some of the base values greater than any scale factor that is reasonably expected and set equal to one. . If the base value is limited to the power of two, the processing procedure for normalizing and inverse normalizing the scale factor can be effectively performed using a binary integer arithmetic function or a binary bit operation. More than one of these methods can be used together. For example, a scaled message can contain a floating point representation of a normalized scale factor. C. Signal Synthesis The synthesized signal can be generated in a variety of ways. 1. Frequency Conversion A technique produces a spectral component Y(k) of a synthesized signal by linearly converting the spectral composition X(k) of the baseband signal. This conversion can be expressed as: y(j)=m (4) where the difference G-k) is the number of frequency conversions of the kth group of spectral components. When the spectral components of the mth sub-band are converted into the frequency sub-band p, the 'encoding process can calculate the frequency from the energy content of the spectral components in the m-th frequency sub-band according to the expression of equation (5) The scale factor of the sub-band P: (5) 1324762
w ίΐ^ω £5(ρ) 其中{Ρ}=頻率次頻帶ρ中所有頻譜成份的集合;且w ίΐ^ω £5(ρ) where {Ρ}=the set of all spectral components in the frequency subband ρ;
{Μ}=被轉換之第m組頻率次頻帶中頻譜成份的集合。 集合{M}不需要包含第m組頻率次頻帶中所有的頻譜 5成份並且第m組頻率次頻帶中之一些頻譜成份可以多於工次 地被表示於集合中。這是因為頻率轉換處理程序可能不轉 換第m組頻率次頻帶中之一些頻譜成份並且可能每次以不 同的數量轉換第m組頻率次頻帶中的其他頻譜成份多於— 次。當頻率次頻帶ρ不具有如第m組頻率次頻帶之相同頻譜 10 成份數目時’這些情況的任一者或兩者將發生。{Μ} = set of spectral components in the mth frequency subband of the converted. The set {M} need not contain all of the spectral 5 components of the mth frequency subband and some of the spectral components of the mth frequency subband may be represented in the set more than the work order. This is because the frequency conversion process may not convert some of the spectral components of the mth frequency subband and may convert more spectral components in the mth frequency subband more than once each time in different numbers. Either or both of these cases will occur when the frequency sub-band ρ does not have the same number of components of the frequency spectrum 10 as the m-th frequency sub-band.
下面的範例展示一種情況,其中次頻帶m中之一些頻譜 成份被省略且其他的頻譜成份多於一次地被表示。第m組頻 率次頻帶之頻率範圍是從200Hz至3.5kHz且頻率次頻帶ρ之 頻率範圍是從10kHz至14kHz。利用轉換從500Hz至3.5kHz 15 之頻譜成份成為從10kHz至13kHz的範圍,其中各頻譜成份 之轉換數量是9.5kHz,並且利用轉換從500Hz至1.5kHz之頻 谱成份成為13kHz至14kHz的範圍,其中各頻譜成份之轉換 數量是12.5kHz ’ 一信號於頻率次頻帶ρ中被合成。這範例 中之集合{M}將不包含從200Hz至500Hz之任何頻譜成份, 2〇 但是將包含從1.5kHz至3.5kHz之頻譜成份並且將包含從 500Hz至1.5kHz之各頻譜成份的兩次。 上述之HFR應用說明可以被配合於一組編碼系統以改 22 成信號之被感知的品f的其他考慮。—個考慮是依 .需修改轉換頻譜成份之特點以確保—相干相位被保持於 被轉紅號中。於本發明較佳製作_,頻率轉換數量被限 制’因此被轉換之成份保持一相干相位而不必進一步之任 5何修改。對於例如使用TDAC轉換之製作,這可利用保證轉 換數量是偶數而被達成。 另一考慮疋音SfU§號之雜訊般或者音調般的特徵。於 許多情況中,音訊信號較高頻率部份是比較低頻率部份更 類似雜訊。如果低頻率基頻帶信號是更類似音調且高頻率 10殘餘信號是更類似雜訊,則頻率轉換將產生比原始殘餘信 號更類似音調的高頻率被合成信號。信號高頻率部份特徵 之改變可導致可聽見聲音之惡化,但是惡化之可聽見度可 利用下面說明之合成技術被減低或者避免,該技術使用頻 率轉換和雜訊產生以保持高頻率部份之雜訊般的特徵。 I5 於其他的隋况中,當k號較低頻率和較高頻率部份兩 者皆類似音調時’因為被轉換之頻譜成份不維持原始殘餘 信號的證波結構,故頻率轉換仍然可導致可聽見聲波惡 化。這可聽見聲波惡化之影響可利用限制由頻率轉換所合 成之殘餘信號的最低頻率而被減低或者避免。HFR應用建 20 議用於轉換之最低頻率應該不較低於5kHz。 2.雜訊產生 一種可以被使用以產生被合成信號之第二技術是合成 一雜訊般信號,例如利用產生一序列之假性·隨機數字以代 表時間-領域信號之取樣。這特定的技術具有依序的信號合 23 1324762 成必須使用分析濾波器庫以得到被產生信號之頻譜成 缺點。另外地’ 一雜訊般信號可因使用一假性隨機數字產 生器以直接地產生頻譜成份而被產生。任一方半可、 1以分解 地利用表不式(6)而表示: Y{j) = N(j) (6) 其中Ν0=雜訊般信號的頻譜成份j。 但是,利用任一方法,編碼處理程序合成雜訊般信號 產生這信號所需要之額外計算 資源則增加編妈處理程序之 10 複雜性和製作成本。 3.轉換和雜訊The following example shows a situation in which some of the spectral components of the sub-band m are omitted and other spectral components are represented more than once. The frequency range of the mth frequency subband is from 200 Hz to 3.5 kHz and the frequency subband ρ has a frequency ranging from 10 kHz to 14 kHz. The spectral components from 500 Hz to 3.5 kHz 15 are converted from 10 kHz to 13 kHz, wherein the number of conversions of each spectral component is 9.5 kHz, and the spectral components from 500 Hz to 1.5 kHz are converted into a range of 13 kHz to 14 kHz, wherein The number of conversions of each spectral component is 12.5 kHz ' A signal is synthesized in the frequency sub-band ρ. The set {M} in this example will not contain any spectral components from 200 Hz to 500 Hz, but will contain spectral components from 1.5 kHz to 3.5 kHz and will contain twice the spectral components from 500 Hz to 1.5 kHz. The HFR application description described above can be adapted to a set of coding systems to account for other considerations of the perceived product f of the signal. One consideration is that the characteristics of the converted spectral components need to be modified to ensure that the coherent phase is maintained in the red flag. In the preferred embodiment of the invention, the number of frequency conversions is limited so that the converted components maintain a coherent phase without further modification. For production, for example using TDAC conversion, this can be achieved by ensuring that the number of conversions is even. Another consideration is the noise-like or tonal characteristics of the voice SfU§. In many cases, the higher frequency portion of the audio signal is more like noise than the lower frequency portion. If the low frequency baseband signal is more similar to the tone and the high frequency 10 residual signal is more similar to the noise, then the frequency conversion will produce a higher frequency synthesized signal that is more tonal than the original residual signal. Changes in the high frequency portion of the signal can result in deterioration of the audible sound, but the audibility of the deterioration can be reduced or avoided using the synthesis techniques described below, which use frequency conversion and noise generation to maintain the high frequency portion. Noise-like features. I5 In other cases, when the lower frequency and the higher frequency part of k are similar to the tone, 'because the converted spectral components do not maintain the syndrome structure of the original residual signal, the frequency conversion can still result in I heard the sound waves deteriorated. This can be seen that the effects of sound wave degradation can be reduced or avoided by limiting the lowest frequency of the residual signal synthesized by the frequency conversion. The lowest frequency used for HFR applications should be no less than 5 kHz. 2. Noise Generation A second technique that can be used to generate a synthesized signal is to synthesize a noise-like signal, for example, by generating a sequence of pseudo-random numbers to represent time-domain signals. This particular technique has a sequence of signals that must be used to analyze the filter bank to obtain the spectrum of the resulting signal. Alternatively, a noise-like signal can be generated by using a pseudo-random digital generator to directly generate spectral components. Either one of them can be decomposed and expressed by the formula (6): Y{j) = N(j) (6) where Ν0 = the spectral component j of the noise-like signal. However, using either method, the encoding process synthesizes the noise-like signal. The extra computational resources required to generate this signal increase the complexity and cost of the programming process. 3. Conversion and noise
一種用於信號合成之第三技術是組合一組基頻帶作带 之頻率轉換與被合成之雜訊般信號之頻譜成份。於較佳I 作中,被轉換之信號和雜訊般信號之相對部份是依據於被 編碼信號中被傳送之雜訊-混合控制資訊,如所說明之 15 應用被調適。這技術可以用表示式(7)被表示: Y(i) = a -X(k) + b-N(j) ⑺ 其中a=被轉換頻譜成份之混合參數:且 b=雜訊般頻譜成份之混合參數。 於一製作中,混合參數b是利用採取一組頻譜單調量測 2〇 (SFM)(其是等於頻譜成份值之幾何中數對於算術中數的比 率之對數值)之平方根被計算出,其被調整尺度且被限制以 在從零至一的範圍之内變化。對於這特定的製作,b=i表示 一組雜訊般信號。最好是,混合參數a是從b被導出,如下A third technique for signal synthesis is to combine a set of basebands for the frequency conversion of the band and the spectral components of the synthesized noise-like signals. In a preferred embodiment, the relative portion of the converted signal and the noise-like signal is based on the transmitted noise-mixing control information in the encoded signal, as illustrated by the application. This technique can be expressed by the expression (7): Y(i) = a -X(k) + bN(j) (7) where a = the mixed parameter of the converted spectral components: and b = the mixture of noise-like spectral components parameter. In a production, the mixing parameter b is calculated by taking the square root of a set of spectral monotonic measurements (SFM) which is a logarithm of the ratio of the geometric mean of the spectral component values to the arithmetic mean. Scaled and limited to vary from zero to one. For this particular production, b=i represents a set of noise-like signals. Preferably, the mixing parameter a is derived from b as follows
24 1324762 5 10 15 面表不式之展示: a = 其中C是一常數。 “於較佳製作中,表示式8中之常數e是等於-且雜訊般 仏號被產生以至於其頻魏份間)具有零的平均值及統計 上等效於被組合之轉換頻譜成份的能量量測之能量量測。 合成處理可現和雜訊般信號之頻譜成份其可利用如上面 展。不之表示式7t的被轉換頻譜成份而h混和。這被合成 «中頻率次㈣p之能量可以從下列表示讀計算出: 蛛 = 雄 (9) =一另外的製作中,混合參數代表被指定之頻率函數 或者匕們特定地傳送頻率函數3⑴和吵, 音訊信號之雜訊般特徵如何隨著頻率而變:匕二另二人 的製作中,率:线帶依財被計算出之各次= 的雜訊量測而被提供混合參數β ^ 被合成信號之能量量測計算利用編碼和解 序而被達成。包含雜訊般信號之_成份的計算是非所t 的’因為僅為了進行這些能量計算 斤而 、,比 异目的而使編碼處理+ =須使用額外的計算資源以合成雜_㈣ ^序 理程序之任何其他的目的,被合成信鱿其,於為瑪處 上述較佳製作允許編碼處理' 所需的。 往序得到表示式7 + 之被合成信號的頻谱成份能量量測而不必合成雜::展 ’因為被合成信號中頻譜成份之柏t '风般信 之頻率次頻帶能量统計上 ⑻ 不 號 25 20 1324762 是無關於雜訊般信號之頻譜能量。編碼處理程序可僅依據 被轉換頻譜成份而計算一組能量量測。以此方式被計算出 之能量量測,平均上,將是實際能量的一種精確量測。結 果,編碼處理程序可以依據表示式5而僅從基頻帶信號之頻 5 率次頻帶m的能量量測而計算用於頻率次頻帶p之尺度因 數。 於另外的製作中,頻譜能量量測利用被編碼信號而不 是尺度因數而被傳送。於這另外的製作中,雜訊般信號被 產生,因此其頻譜成份具有一組等於零之平均數以及一組 10 等於1之變異數,並且被轉換頻譜成份被調整尺度,因此他 們的變異數是1。利用如表示式7中所展示之組合成份被得 到的被合成信號之頻譜能量,平均上,是等於常數c。解碼 處理程序可調整這被合成信號尺度以具有相同如原始殘餘 信號的能量量測。如果常數c是不等於1,則調整尺度處理 15 程序同時也應該考慮這常數。 D.麵合 對於解碼信號中被感知信號品質之一所要求的位準, 被編碼信號資訊需求之減少可以藉由使用產生代表兩組或 者更多組音訊信號頻道的被編碼信號之編碼系統中的耦合 20 技術而被達成。 1.編碼器 第5和6圖展示音訊编碼器,其從通道9a和9b接收兩組 輸入音訊信號之頻道,且沿著通道51產生代表兩組輸入音 訊信號頻道之一組被編碼信號。分析濾波器庫l〇a和10b、 26 能量計算器31a、、31b以及32b、合成模式21a和21b、 尺度因數計算器4〇a和4〇b、以及格式器50之細部和特點實 質上是相同於上述第1圖所展示的單一頻道編碼器之構件。 a)共同特點 第5和6圖展示之編碼器是相似的。在差異被說明之 前’共同於兩組製作的特點將被討論。 參看第5和6圖’分析濾波器庫i〇a和i〇b分別地沿著通 道13a和13b而產生頻譜成份’其代表第三組頻率次頻帶中 一組或者多組次頻帶中分別的輸入音訊信號之頻譜成份。 於較佳製作中,第三組頻率次頻帶是一組或者多組中間頻 率次頻帶,其是在第一組頻率次頻帶中低頻率次頻帶之上 且疋在第二組頻率次頻帶中高頻率次頻帶之下。能量計算 器35a和35b各計算一組或者多組頻率次頻帶中之一組或者 多組頻譜能量量測。最好是,這些頻率次頻帶具有等量於 人類聽覺系統之關鍵性頻帶的頻寬並且能量計算器3 5 a和 35b提供這些頻率次頻帶之各組的能量量測。 耗合器26沿著通道27產生一組被耦合頻道信號,其具 有代表從通道13a和13b被接收之頻譜成份的一組複合之頻 譜成份。這複合表示可以多種方式被形成。例如,複合表 示中之各頻譜成份可以利用從通道13&和jjb所被接收之對 應頻譜成份值的總和或者平均值而被計算。能量計算器37 计舁被耦合頻道信號之一組或者多組頻率次頻帶中的一組 或者多組頻譜能量量測。於較佳製作中,這些頻率次頻帶 具有等量於人類聽覺系統之關鍵性頻帶的頻寬並且能量計 丄J厶卄/ΌΖ 算器37提供這些頻率次頻帶之各組的能量量測。 尺度因數計#器44各從能量計算器祝、35b以及37接 收一組或者多組能量量測並且如上面說明地計算尺度因 數。代表被表示於被耦合頻道信號中之各輸入音訊信號的 5尺度因數之尺度資訊,分別地沿著通道45a和45b被傳送。 這尺度資訊可以如上面所說明地被編妈。於較佳製作中, 用於各頻率次頻帶中各輸入頻道信號之尺度因數利用如下 面所表示之任一的表示式被計算:24 1324762 5 10 15 Surface representation: a = where C is a constant. "In a preferred production, the constant e in Equation 8 is equal to - and the noise-like apostrophe is generated such that it has a mean value between zeros and has a zero mean value and is statistically equivalent to the combined converted spectral components. The energy measurement of the energy measurement. The synthesis process can be used to analyze the spectral components of the noise-like signal. It can be used as shown above. It does not represent the converted spectral components of Equation 7t and is mixed with h. This is synthesized «Medium frequency (four) p The energy can be calculated from the following representations: Spider = Male (9) = In another production, the mixing parameters represent the specified frequency function or we specifically transmit the frequency function 3(1) and the noisy characteristics of the noisy, audio signal. How to change with frequency: In the production of the other two, the rate: the line is calculated according to the noise measurement of each = the hybrid parameter is provided by the hybrid parameter β ^ is calculated by the energy measurement of the synthesized signal Encoding and de-sequencing are achieved. The calculation of the _ component containing the noise-like signal is not the same as 'for the calculation of these energy calculations only, the encoding processing += must use additional computing resources to synthesize Miscellaneous _(four) Any other purpose of the program is synthesized and is required for the above-mentioned preferred production of the encoding process. It is necessary to obtain the spectral component energy of the synthesized signal of the expression 7 + without Synthetic Miscellaneous:: Exhibition 'Because of the spectrum component of the synthesized signal, the frequency of the sub-band energy is statistically (8) No. 25 20 1324762 is the spectrum energy of the noise-free signal. The encoding processing can be based only on the Converting the spectral components to calculate a set of energy measurements. The energy measurements calculated in this way will, on average, be an accurate measure of the actual energy. As a result, the encoding process can be based on expression 5 only from the base band. The frequency factor of the frequency band 5 is measured by the energy of the sub-band m to calculate the scaling factor for the frequency sub-band p. In another fabrication, the spectral energy measurement is transmitted using the encoded signal instead of the scaling factor. In production, a noise-like signal is generated, so its spectral components have a set of averages equal to zero and a set of 10 equals 1 variance, and the converted spectral components are modulated. Scale, so their variance is 1. The spectral energy of the synthesized signal obtained using the combined components as shown in Expression 7 is, on average, equal to the constant c. The decoding process can adjust the scale of the synthesized signal to The energy measurement has the same original residual signal. If the constant c is not equal to 1, the adjustment scale processing 15 program should also consider this constant. D. Facets are required for one of the perceived signal qualities in the decoded signal. The reduction in the information requirements of the encoded signal can be achieved by using the coupling 20 technique in an encoding system that produces encoded signals representing two or more sets of audio signal channels. 1. Encoder Figures 5 and 6 show An audio encoder that receives the channels of the two sets of input audio signals from channels 9a and 9b and produces a set of encoded signals representative of the two sets of input audio signal channels along channel 51. The analysis filter banks 10a and 10b, 26 energy calculators 31a, 31b, and 32b, synthesis patterns 21a and 21b, scale factor calculators 4A and 4B, and the format and features of the formatter 50 are substantially Same as the components of the single channel encoder shown in Figure 1 above. a) Common Features The encoders shown in Figures 5 and 6 are similar. The characteristics of the two groups produced together before the differences are explained will be discussed. Referring to Figures 5 and 6, the analysis filter banks i〇a and i〇b generate spectral components along channels 13a and 13b, respectively, which represent the respective one or more sets of sub-bands in the third set of frequency sub-bands. The spectral component of the input audio signal. In a preferred implementation, the third set of frequency sub-bands is one or more sets of intermediate frequency sub-bands that are above the low-frequency sub-bands of the first set of frequency sub-bands and are at high frequencies of the second set of frequency sub-bands Below the sub-band. The energy calculators 35a and 35b each calculate one or more sets of spectral energy measurements in one or more sets of frequency sub-bands. Preferably, these frequency sub-bands have a bandwidth equal to the critical frequency band of the human auditory system and the energy calculators 35a and 35b provide energy measurements for each of these frequency sub-bands. The consumable 26 produces a set of coupled channel signals along channel 27 having a composite set of spectral components representative of the spectral components received from channels 13a and 13b. This composite representation can be formed in a variety of ways. For example, each spectral component in the composite representation can be calculated using the sum or average of the corresponding spectral component values received from channels 13 & and jjb. The energy calculator 37 measures one or more sets of spectral energy measurements in one or more sets of frequency subbands of the coupled channel signals. In a preferred production, these frequency sub-bands have a bandwidth equal to the critical frequency band of the human auditory system and the energy meter 厶卄J 厶卄/ 37 37 provides energy measurements for each of these frequency sub-bands. The scale factor counters 44 each receive one or more sets of energy measurements from the energy calculators, 35b, and 37 and calculate the scale factor as explained above. The scale information representing the 5 scale factors of the respective input audio signals represented in the coupled channel signals are transmitted along the channels 45a and 45b, respectively. This scale information can be compiled as described above. In a preferred production, the scaling factor for each input channel signal in each frequency sub-band is calculated using any of the expressions expressed as follows:
SFM--願⑽) 1〇 响=黑 _ 其中SFi(m)=信號頻道i之頻率次頻帶m的尺度因數;SFM--(10)) 1〇 ring=black _ where SFi(m)=the scale factor of the frequency sub-band m of the signal channel i;
Ei(m)=輸入信號頻道i之頻率次頻帶m的能量量測;且 EC(m)=被耦合頻道之頻率次頻帶m的能量量測。 格式器50從通道41a、41b、45a以及45b接收尺度資訊, 15從通道12a和12b接收代表基頻帶信號頻譜成份之資訊,並 且從通道27接收代表被耦合頻道信號頻譜成份之資訊。這 些資訊被組合成為如上面所說明之用以傳輸或者記錄的一 組被編碼信號。 第5和6圖展示之編碼器以及第7圖展示之解碼器是雙 20 頻道裝置;但是,本發明各種論點可以被應用於較大數量 頻道之編碼系統中。為說明和展示方便起見,說明和圖形 僅參照兩組頻道製作。 28 1324762 b)不同的特點 被輕合頻道"is號中之頻譜成份可以被使用於hfr之解 瑪處理程序中。於此製作中,編碼器可於被編碼信號中提 供控制資訊以使用於解碼處理程序而從被搞合頻道信號產 5 生被合成信號。這控制資訊可依一些方式被產生。 第5圖展示一種方法。依據這製作,合成模式213是反 應於從通道12a被接收的基頻帶頻譜成份並且是反應於從 利用耦合器26被耦合之通道13a所接收之頻譜成份。合成模 式21a、相關的能量計算器31a和32a、以及尺度因數計算器 10 40a以類似於上面討論之計算方式而進行計算。代表這些尺 度因數之尺度資訊沿著通道41a被傳送至格式器50。格式器 也接收來自通道41b之尺度資訊,該尺度資訊代表以相似於 自通道12b和13b之頻譜成份的方式被計算之尺度因數。 於第5圖展示之編碼器的另外製作中,合成模式2ia無 15 關於來自通道12a和13a之一組或者兩組頻譜成份而操作, 且合成模式21b無關於來自通道12b和13b之一組或者兩者 頻譜成份而操作,如上面之討論。 於另一製作中,用於被耦合頻道信號及/或基頻帶信號 之HFR的尺度因數不被計算。取代地,頻譜能量量測之一 20 組表示被傳送至格式器50並且被包含於被編碼信號中,而 不是對應的尺度因數之一組表示。這製作增加解碼處理程 序之計算的複雜性,因為解碼處理程序必須計算至少一些 尺度因數;但是,其確實地減低編碼處理程序之計算複雜 性。 29 1324762 第ό圖展示另一種產生控制資訊之方法。依據這製作, . 尺度調整構件91a和91b從通道27接收被耦合頻道信號且從 . 尺度因數計算器44接收尺度因數,並且進行等效於解碼處 理程序中被達成之處理,將於下面被討論,以從被耦合頻 5 道信號產生解耦合信號。解耦合信號被傳送至合成模式2la * 和21b,並且尺度因數以類似於上面所討論之與第5圖相關 的方式被計算。 · 於第6圖展示之編碼器的另外製作中,如果這此頻级成 份不是計算頻譜能量量測和尺度因數所需的,則合成模式 鲁 10 21a和21b可以無關於基頻帶信號及/或被耦合頻道信號之頻 譜成份而操作。此外,如果HFR*使用灿合頻道信號中 之頻譜成份,則合成模式可以無關於被輕合頻道信號而 作。 、 2.解碼器 15 20 第7圖展示-組音訊解碼器,其從通道S9接收代表兩頻Ei(m) = energy measurement of the frequency sub-band m of the input signal channel i; and EC(m) = energy measurement of the frequency sub-band m of the coupled channel. The formatter 50 receives the scale information from the channels 41a, 41b, 45a, and 45b, 15 receives information representative of the spectral components of the baseband signal from the channels 12a and 12b, and receives information representative of the spectral components of the coupled channel signals from the channel 27. This information is combined into a set of encoded signals for transmission or recording as explained above. The encoders shown in Figures 5 and 6 and the decoder shown in Figure 7 are dual 20 channel devices; however, various aspects of the present invention can be applied to a larger number of channel coding systems. For convenience of illustration and presentation, the descriptions and graphics are only made with reference to two sets of channels. 28 1324762 b) Different characteristics The spectral components of the light channel "is number can be used in the hfr solution. In this production, the encoder can provide control information in the encoded signal for use in the decoding process to generate a synthesized signal from the channel being signaled. This control information can be generated in a number of ways. Figure 5 shows a method. In accordance with this production, the synthesis mode 213 is responsive to the baseband spectral components received from the channel 12a and is responsive to the spectral components received from the channel 13a coupled by the coupler 26. The synthesis mode 21a, the associated energy calculators 31a and 32a, and the scale factor calculator 10 40a are calculated in a manner similar to the calculations discussed above. Scale information representing these scale factors is transmitted to the formatter 50 along the channel 41a. The formatter also receives scale information from channel 41b, which represents a scale factor that is calculated in a manner similar to the spectral components of channels 12b and 13b. In an alternative fabrication of the encoder shown in Figure 5, the synthesis mode 2ia has no 15 operation with respect to one or both sets of spectral components from channels 12a and 13a, and synthesis mode 21b is not related to one of channels 12b and 13b or Operate with both spectral components, as discussed above. In another fabrication, the scaling factor for the HFR of the coupled channel signal and/or the baseband signal is not calculated. Instead, one of the sets of spectral energy measurements is transmitted to formatter 50 and included in the encoded signal, rather than a corresponding set of scale factors. This production increases the computational complexity of the decoding process because the decoding process must compute at least some of the scaling factors; however, it does reduce the computational complexity of the encoding process. 29 1324762 The second chart shows another way to generate control information. According to this production, the scale adjustment members 91a and 91b receive the coupled channel signal from the channel 27 and receive the scale factor from the scale factor calculator 44, and perform processing equivalent to that achieved in the decoding process, which will be discussed below. To generate a decoupling signal from the coupled 5-channel signal. The decoupling signal is transmitted to the synthesis modes 2la* and 21b, and the scale factor is calculated in a manner similar to that discussed above with respect to FIG. · In the additional fabrication of the encoder shown in Figure 6, if the frequency component is not required to calculate the spectral energy measurement and scaling factor, then the composite modes Lu 10 21a and 21b may be independent of the baseband signal and/or Operated by the spectral components of the coupled channel signal. In addition, if HFR* uses the spectral components in the Cannes channel signal, the synthesis mode can be made regardless of the channel signal being tapped. 2. Decoder 15 20 Figure 7 shows a group audio decoder that receives two channels from channel S9.
、之輪人音誠號的-组被編碼錢並且沿著通道撕和 8%產生仏號之解碼表示。解格式器6〇、仿 ㈣、信號尺度構件70a和.、以::&成構件❿ 不之單一頻 舰之細部和特點實質上是相同於上述;庫池和 道解碼器的那些構件。 解格式器60從被編碼信號得到4料 及—組稱合尺度因數。被輕合頻道信號,复^號 輸入音訊信號巾之«成料1複合代表兩組 被傳心兩組輸人音訊信號之各料尺度因數分別 30 1324762 地沿著通道63a和63b被傳送。 信號尺度構件92a沿著通道93a產生一組解耦合信號之 頻譜成份,其接近一組原始輸入音訊信號中對應的頻譜成 份之頻譜能量位準。這些解耦合頻谱成份可利用相乘被耦 5合頻道信號中之各頻譜成份與一適當的耦合尺度因數而被 產生。於配置被耦合頻道信號頻譜成份於頻率次頻帶且提 供各次頻帶一組尺度因數之製作中,解耦合信號之頻譜成 份可以依據(11)之表示式被產生: XD.Xk) = SF-Xm)- XC{k) (11) 10 其中XC(k)=被耦合頻道信號之第m組次頻帶中的第k組頻 譜成份; SFi(m)=第i組信號頻道之第m組頻率次頻帶的尺度因 數;且 XDi(k)=第i組信號頻道之第k組解耦合頻譜成份。 15 各解耦合信號被傳送至一組分別的合成濾波器庫。於 上述較佳之製作中,各解搞合信號之頻譜成份是在第_組 和第二組頻率次頻帶之頻率次頻帶的中間之第三組頻率次 頻帶中之一組或者多組次頻帶中。 如果它們需要信號合成的話’則解耦合頻譜成份同時 20 也被傳送至一組分別的信號合成構件23a或者23b。 E.適應式聚集 如上面討論之配置頻譜成份成為兩組或者三組頻率次 頻帶的編碼系統可以調適包含於各組中之頻率範圍或者次 頻帶範圍。例如,在具有被認為類似於雜訊之高頻率頻譜 31 1324762 成份的輸入音訊信號區間時,減少殘餘信號之第二組頻率 次頻帶頻率範圍的較低端部分是有利的。頻率範圍同時也 可以被調適以移除一組頻率次頻帶集合中的所有次頻帶。 例如,具有大的、突然的振幅改變之輸入音訊信號的HFR 5 處理可以利用從第二組頻率次頻帶集合移除所有的次頻帶 而被禁止。 第3和4圖展示一種方法,其中基頻帶、殘餘及/或被耦 合頻道信號之頻率範圍可以因包含反應至輸入音訊信號之 一組或者多組特性的任何理由而被調適。為執行這特點, 10 第1、5、6和8圖展示之各分析濾波器庫可以被第3圖展示之 裝置所取代並且第2和7圖展示之各合成濾波器庫可以被第 4圖展示之裝置所取代。這些圖形展示頻率次頻帶可以是如 何地對於三組頻率次頻帶被調適;但是,相同之製作原理 可以被使用以調適不同組數的次頻帶。 15 參看至第3圖,分析濾波器庫14從通道9接收一組輸入 音訊信號並且反應地產生被傳送至適應式聚集構件15之一 組頻率次頻帶信號。信號分析構件17分析直接地從輸入音 訊信號被導出及/或從次頻帶信號被導出之資訊並且反應 於這分析而產生頻帶控制資訊。頻帶控制資訊被傳送至適 20 應式聚集構件15,並且其沿著通道18而傳送頻帶控制資訊 至格式器50。格式器50包含被編碼信號中這頻帶控制資訊 的一組表示。 適應式聚集構件15利用指定次頻帶信號頻譜成份至頻 率次頻帶集合而反應至頻帶控制資訊。被指定至第一組次 32 頻帶的頻譜成份沿著通道12被傳送。被指定至第二組次頻 帶的頻譜成份沿著通道11被傳送。被指定至第三組次頻帶 的頻譜成份沿著通道13被傳送。如果有不被包含於任何集 合中之頻率範圍或者間隙,這可利用不排定這範圍或者間 隙中之頻譜成份至任何集合而被達成。 信號分析構件17同時也可以反應於無關輸入音訊信號 之條件而產生頻帶控制資訊以調適頻率範圍。例如,該範 圍可以反應於一信號而被調適,該信號代表傳輸或者記錄 被編碼信號之可用容量或者信號品質所需的位準。 頻帶控制資訊可以許多形式被產生。於一製作中,頻 帶控制資訊對於頻譜成份將被指定的各組指定最低及/或 最高的頻率。於另一製作中,頻帶控制資訊指定多數個預 定配置之頻率範圍中一組。 參看第4圖’適應式聚集構件81從通道71、93和62接收 頻譜成份之集合’並且其從通道68接收頻帶控制資訊。利 用解格式器60 ’頻帶控制資訊自被編碼信號被得到。適應 式♦集構件81利用分佈被接收之頻譜成份集合中的頻譜成 份進入一組頻率次頻帶信號,其被傳送至合成濾波器庫 82,而反應至頻帶控制資訊。合成濾波器庫82反應於頻率 一人頻▼彳5號而沿著通道89產生一組輸出音訊信號。 F.第二分析濾波器庫 利用轉換(例如,上述之TDAC轉換)而執行分析遽波器 庫ίο之音訊編碼器中的表示式la被計算之頻譜能量量測, 例如彳員向於比輸入音訊信號之確實的頻镨能量較低,因 1324762 為分析濾波器庫僅提供實數值轉換係數。使用相同於離散 傅立葉轉換(DFT)之轉換的製作能夠提供更精確之能量計 · 算,因為各轉換係數利用更精確地傳送各頻譜成份真實振 幅之複數值而被表示。 5 依據僅利用從例如TDAC轉換之實數值的轉換係數能 · 量計算的固有不精確性,可藉由使用一組具有正交於分析 鬌 濾波器庫10基底函數的基底函數之第二分析濾波器庫而被 克服。第8圖展示一組音訊編碼器,其是相似於第1圖展示 之編碼器,但是卻包含一組第二分析濾波器庫19。如果編 ® 10 碼器使用TDAC轉換之MDCT以執行分析濾波器庫10,則一 組對應的修改離散正弦轉換(M D S T)可被使用以製作第二 分析濾波器庫19。 能量計算器39自表示式(12)計算更精確之頻譜能量量 測E'(k): 15 E'{k) = Xl2{k) + X22{k) (12) 其中XJkk來自第一分析濾波器庫之第k組轉換係數;且 _ X2(k)=來自第二分析濾波器庫之第k組轉換係數。 於計算頻率次頻帶之能量量測的製作中,能量計算器 39自表示式(13)計算第m組頻率次頻帶之量測: 、 20 E'(m)= VZ,2(A:) + Z22(A:) (13) 尺度因數計算器49以類似於表示式3a或者3b之方式以 自這些更精確之能量量測而計算尺度因數W(m)。一種類似 於表示式3a之計算被展示於表示式14中。 η 14. 34 ___ (14) SF'(m) = f£@V (w) mtf}The group of the singer's singer is coded and truncated along the channel and 8% produces a decoded representation of the nickname. The formatter 6〇, imitation (4), signal scale components 70a and ., are::& components are not the details and features of the single frequency ship are substantially the same as those of the above; the pool pool and the channel decoder. The deformatter 60 derives the four components from the encoded signal and the set of scale factors. The signal is lightly combined, and the input signal is input into the audio signal towel. The composite material represents the two sets of the two sets of input audio signals. The scale factors of each of the two sets of input audio signals are respectively transmitted along the channels 63a and 63b. Signal scale component 92a produces a spectral component of a set of decoupled signals along channel 93a that is close to the spectral energy level of the corresponding spectral component of a set of original input audio signals. These decoupled spectral components can be generated by multiplying the spectral components of the combined 5-channel signal with an appropriate coupling scaling factor. In the process of configuring the spectral component of the coupled channel signal in the frequency sub-band and providing a set of scale factors for each sub-band, the spectral components of the decoupled signal can be generated according to the expression of (11): XD.Xk) = SF-Xm ) - XC{k) (11) 10 where XC(k) = the kth group of spectral components in the mth sub-band of the coupled channel signal; SFi(m) = the mth frequency of the i-th signal channel The scale factor of the frequency band; and XDi(k) = the kth group of decoupled spectral components of the i-th signal channel. 15 Each decoupled signal is passed to a separate set of synthesis filter banks. In the above preferred production, the spectral components of the de-combined signals are in one or more sub-bands of the third group of frequency sub-bands in the middle of the frequency sub-bands of the _th group and the second group of frequency sub-bands. . If they require signal synthesis, then the decoupled spectral components are simultaneously transmitted 20 to a respective set of signal synthesizing members 23a or 23b. E. Adaptive Aggregation The coding system in which the spectral components are configured as two or three sets of frequency sub-bands as discussed above can be adapted to the frequency range or sub-band range included in each group. For example, when having an input audio signal interval that is considered to be similar to the component of the high frequency spectrum 31 1324762 of noise, it is advantageous to reduce the lower end portion of the second set of frequency subband frequency ranges of the residual signal. The frequency range can also be adapted at the same time to remove all sub-bands in a set of frequency sub-bands. For example, HFR 5 processing of an input audio signal having a large, abrupt amplitude change can be disabled by removing all sub-bands from the second set of frequency sub-bands. Figures 3 and 4 illustrate a method in which the frequency range of the baseband, residual, and/or coupled channel signals can be adapted for any reason including one or more sets of characteristics that are reflected to the input audio signal. To perform this feature, each of the analysis filter banks shown in Figures 1, 5, 6 and 8 can be replaced by the device shown in Figure 3 and the synthesis filter banks shown in Figures 2 and 7 can be viewed in Figure 4. Replaced by the display device. These graphical display frequency sub-bands can be adapted for three sets of frequency sub-bands; however, the same fabrication principles can be used to accommodate different sets of sub-bands. Referring to Figure 3, the analysis filter bank 14 receives a set of input audio signals from the channel 9 and reactively produces a set of frequency sub-band signals that are transmitted to the adaptive focusing member 15. Signal analysis component 17 analyzes the information derived directly from the input audio signal and/or derived from the sub-band signal and reacts to the analysis to produce band control information. The band control information is transmitted to the adaptive aggregation component 15 and it transmits band control information to the formatter 50 along the channel 18. The formatter 50 contains a set of representations of this band control information in the encoded signal. The adaptive aggregation component 15 reacts to the band control information using the specified sub-band signal spectral components to the frequency sub-band set. The spectral components assigned to the first set of 32 bands are transmitted along channel 12. The spectral components assigned to the second set of secondary bands are transmitted along channel 11. The spectral components assigned to the third set of sub-bands are transmitted along channel 13. If there are frequency ranges or gaps that are not included in any of the collections, this can be achieved by not arranging the spectral components in the range or gap to any set. The signal analysis component 17 can also generate band control information to adjust the frequency range in response to conditions that are unrelated to the input audio signal. For example, the range can be adapted in response to a signal representative of the level required to transmit or record the available capacity or signal quality of the encoded signal. Band control information can be generated in many forms. In a production, the band control information specifies the lowest and/or highest frequency for each group to which the spectral components will be assigned. In another production, the band control information specifies a set of frequency ranges for a plurality of predetermined configurations. Referring to Fig. 4, the adaptive aggregation member 81 receives a set of spectral components from the channels 71, 93 and 62 and receives band control information from the channel 68. The formatter 60' band control information is derived from the encoded signal. The adaptive component set 81 enters a set of frequency sub-band signals by distributing the spectral components in the set of spectral components received, which are passed to the synthesis filter bank 82 for reaction to the band control information. The synthesis filter bank 82 reacts to a frequency of one person frequency ▼ 彳 5 and generates a set of output audio signals along channel 89. F. The second analysis filter bank performs a spectral energy measurement of the expression la, such as an employee-to-input input, in the audio encoder of the analysis chopper library using a conversion (eg, TDAC conversion described above). The exact frequency energy of the audio signal is low, since the 1324462 provides only real-valued conversion coefficients for the analysis filter bank. Fabrication using the same transformation as discrete Fourier transform (DFT) can provide a more accurate energy meter calculation because each conversion coefficient is represented by a complex value that more accurately conveys the true amplitude of each spectral component. 5 According to the inherent inaccuracy of the conversion coefficient energy calculation using only real values converted from, for example, TDAC, a second analysis filter having a basis function orthogonal to the basis function of the analysis 鬌 filter bank 10 can be used. The library was overcome. Figure 8 shows a set of audio encoders that are similar to the encoder shown in Figure 1, but which includes a second set of analysis filter banks 19. If the X10 encoder uses the TDAC converted MDCT to perform the analysis filter bank 10, a corresponding set of modified discrete sinusoidal transforms (M D S T) can be used to create the second analysis filter bank 19. The energy calculator 39 calculates a more accurate spectral energy measurement E'(k) from the expression (12): 15 E'{k) = Xl2{k) + X22{k) (12) where XJkk is from the first analysis filter The kth group of conversion coefficients of the bank; and _X2(k) = the kth group of conversion coefficients from the second analysis filter bank. In the production of the energy measurement of the calculation frequency sub-band, the energy calculator 39 calculates the measurement of the m-th frequency sub-band from the expression (13): , 20 E'(m) = VZ, 2(A:) + Z22 (A:) (13) The scale factor calculator 49 calculates the scale factor W(m) from these more accurate energy measurements in a manner similar to that of Expression 3a or 3b. A calculation similar to the expression 3a is shown in Expression 14. η 14. 34 ___ (14) SF'(m) = f£@V (w) mtf}
當使用從這些更精確的能量量測被計算之尺度因數 证(m)時應小心處理。依據更精確尺度因數w(⑺)被調整尺 度之被合成信號的頻譜吟份將幾乎無疑地扭曲信號基頻帶 5部份之相對頻譜平衡以及被再生之合成部份 ,因為更精確 之能量量測將永遠是較大於或者等於僅從實數轉換係數被 計鼻之能量量測。這差量可被補償之一種方法,是減低一 半更精確之能量量測,因為,平均上,更精確量測將為較 不精確量測的兩倍大。這減量將提供在信號基頻帶和被合 1〇成部份中一統計上一致的能量位準而維持更精確之頻譜能 量量測的優勢。 表示式14中比率數之分母應該僅從來自分析濾波器庫 10之實數轉換係數被計算,即使來自第二分析濾波器庫19 之另外的係數是可用的。尺度因數之計算應該以此方式被Care should be taken when using the scale factor (m) calculated from these more accurate energy measurements. The spectral division of the synthesized signal, which is scaled according to the more precise scale factor w((7)), will almost certainly distort the relative spectral balance of the 5 part of the signal baseband and the synthesized portion of the regeneration, because of the more accurate energy measurement It will always be greater than or equal to the energy measurement from the real number conversion factor. One way in which this difference can be compensated is to reduce the more accurate energy measurement by half, because, on average, more accurate measurements will be twice as large as the less accurate measurements. This reduction will provide the advantage of maintaining a more accurate spectral energy measurement in the signal baseband and a statistically consistent energy level in the combined portion. The denominator of the ratio number in Expression 14 should be calculated only from the real conversion coefficients from the analysis filter bank 10, even if additional coefficients from the second analysis filter bank 19 are available. The calculation of the scale factor should be
15 完成’因為在解碼處理時,尺度調整將依據僅類似於自分 析濾波器庫10被得到的轉換係數之被合成頻譜成份而被達 成。解碼處理將不存取對應至或者可從得自第二分析濾波 器庫19之頻譜成份被導出的任何係數。 G.製作 20 本發明各種論點可以多種方式被實施,其包含於一般 用途之電腦系統中或者於一些其他裝置中的軟體,該等裝 置包含更專業化的構件,例如數位信號處理器(DSP)電路, 35 1324762 存媒體而被傳送,其中,例如遍及包含從超音波至紫外線 頻率之頻譜的基頻帶或者調變通訊通道,而該儲存媒體實 質上則使用包含磁帶、卡片或者碟片、光學卡或者光碟、 以及類似紙張的媒體上之可檢測標誌的任何記錄技術以傳 5 送資訊。 【圖式簡單說明3 第1圖是一裝置之分解方塊圖,其編碼一音訊信號以供 後序藉由使用高頻率再生之裝置的解碼。 第2圖是使用高頻率再生而解碼被編碼音訊信號之裝 10 置的分解方塊圖。 第3圖是分割音訊信號成為具有反應一種或多種音訊 信號特性而被調適範圍之頻率次頻帶信號的裝置之分解方 塊圖。 第4圖是從具有被調適範圍之頻率次頻帶信號而合成 15 音訊信號之裝置的分解方塊圖。 第5和6圖是裝置之分解方塊圖,其使用耦合而編碼一 音訊信號以供後序藉由使用高頻率再生和解耦合之裝置的 解碼。 第7圖是使用高頻率再生和解耦合以解碼被編碼音訊 20 信號的裝置之分解方塊圖。 第8圖是用以使用一組第二分析濾波器庫以提供用於 能量計算的額外頻譜成份而編碼音訊信號的裝置之分解方 塊圖。 第9圖是可製作本發明各種論點的裝置之分解方塊圖。 37 1324762 【圖式之主要元件代表符號表】 9…通道 9a…通道 9b…通道 10…分析濾波器庫 10a…分析慮波器庫 1 Ob…分析慮波器庫 11…通道 11a…通道 lib…通道 12…通道 12a…通道 12b…通道 13a…通道 13b…通道 14…分析渡波器庫 15…適應式聚集構件 16…通道 17…信號分析構件 18…通道 19…第二分析渡波器庫 21…合成模式 21a···合成模式 21b…合成模式 23…信號合成構件 23a···信號合成構件 23b…信號合成構件 26···耦合器 27…通道 31…能量計算器 31a···能量計算器 31b···能量計算器 32…能量計算器 32a···能量計算器 32b…能量計算器 35…能量計算器 35a···能量計算器 35b···能量計算器 37…能量計算器 39…能量計算器 40…尺度因數計算器 40a…尺度因數計算器 40b…尺度因數計算器 41…通道 41a…通道 41b…通道 44…尺度因數計算器15 Completion' because during the decoding process, the scale adjustment will be based on the synthesized spectral components of the conversion coefficients obtained only similar to the self-analysis filter bank 10. The decoding process will not access any coefficients that correspond to or can be derived from the spectral components from the second analysis filter bank 19. G. Production 20 Various aspects of the present invention can be implemented in a variety of ways, including in general purpose computer systems or software in some other devices, including more specialized components such as digital signal processors (DSPs). The circuit, 35 1324762 is transmitted by storing media, for example, in a baseband or a modulated communication channel including a spectrum from ultrasonic waves to ultraviolet frequencies, and the storage medium substantially uses a magnetic tape, a card or a disc, and an optical card. Or any recording technique for discernable marks on optical discs, and paper-like media, to transmit information. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded block diagram of an apparatus for encoding an audio signal for subsequent decoding by means of a high frequency reproduction device. Figure 2 is an exploded block diagram of a device for decoding an encoded audio signal using high frequency reproduction. Figure 3 is an exploded block diagram of a device for dividing an audio signal into a frequency sub-band signal having a range adapted to reflect one or more of the characteristics of the audio signal. Figure 4 is an exploded block diagram of an apparatus for synthesizing 15 audio signals from frequency sub-band signals having an adapted range. Figures 5 and 6 are exploded block diagrams of the apparatus for encoding an audio signal for coupling for subsequent decoding by means of high frequency reproduction and decoupling. Figure 7 is an exploded block diagram of a device that uses high frequency reproduction and decoupling to decode the encoded audio 20 signal. Figure 8 is an exploded block diagram of an apparatus for encoding an audio signal using a second set of analysis filter banks to provide additional spectral components for energy calculation. Figure 9 is an exploded block diagram of an apparatus in which various aspects of the present invention can be made. 37 1324762 [The main components of the diagram represent the symbol table] 9...channel 9a...channel 9b...channel 10...analysis filter bank 10a...analysis filter library 1 Ob...analysis filter library 11...channel 11a...channel lib... Channel 12...channel 12a...channel 12b...channel 13a...channel 13b...channel 14...analysis of the waver library 15...adaptive aggregation member 16...channel 17...signal analysis component 18...channel 19...second analysis of the waver library 21...synthesis Mode 21a···Synthesis mode 21b...Synthesis mode 23...Signal synthesis component 23a···Signal synthesis component 23b...Signal synthesis component 26···Coupler 27...Channel 31...Energy calculator 31a···Energy calculator 31b ··· Energy calculator 32...Energy calculator 32a···Energy calculator 32b...Energy calculator 35...Energy calculator 35a···Energy calculator 35b···Energy calculator 37...Energy calculator 39...Energy Calculator 40...Scale Factor Calculator 40a...Scale Factor Calculator 40b...Scale Factor Calculator 41...Channel 41a...Channel 41b...Channel 44...Scale Factor Calculator
38 1324762 45a…通道 71b…通道 45b…通道 72 …DSP 49…尺度因數計算器 73--RAM 50…格式器 74 …ROM 51…通道 75…I/O控制 59…通道 76…通訊頻道 60…解格式器 77…通訊頻道 61…通道 80…合成濾波器庫 61a…通道 80a…合成濾波器庫 61b…通道 80b…合成濾波器庫 62…通道 81…適應式聚集構件 62a…通道 82…合成濾波器庫 62b…通道 89…通道 63…通道 89a…通道 63a…通道 89b…通道 63b…通道 91a…尺度調整構件 64…通道 91b…尺度調整構件 68…通道 92a…信號尺度構件 70…信號尺度構件 92b…信號尺度構件 70a…信號尺度構件 93…通道 70b…信號尺度構件 93a…通道 71…通道 71a…通道 93b…通道38 1324762 45a...channel 71b...channel 45b...channel 72 ...DSP 49...scale factor calculator 73--RAM 50...formatter 74 ...ROM 51...channel 75...I/O control 59...channel 76...communication channel 60...solution Formatter 77...communication channel 61...channel 80...synthesis filter bank 61a...channel 80a...synthesis filter bank 61b...channel 80b...synthesis filter bank 62...channel 81...adaptive aggregation member 62a...channel 82...synthesis filter Library 62b...channel 89...channel 63...channel 89a...channel 63a...channel 89b...channel 63b...channel 91a...scale adjustment member 64...channel 91b...scale adjustment member 68...channel 92a...signal scale member 70...signal scale member 92b... Signal Scale Member 70a...Signal Scale Member 93...Channel 70b...Signal Scale Member 93a...Channel 71...Channel 71a...Channel 93b...Channel
3939
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/434,449 US7318035B2 (en) | 2003-05-08 | 2003-05-08 | Audio coding systems and methods using spectral component coupling and spectral component regeneration |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200504683A TW200504683A (en) | 2005-02-01 |
TWI324762B true TWI324762B (en) | 2010-05-11 |
Family
ID=33416693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW093109731A TWI324762B (en) | 2003-05-08 | 2004-04-08 | Improved audio coding systems and methods using spectral component coupling and spectral component regeneration |
Country Status (19)
Country | Link |
---|---|
US (1) | US7318035B2 (en) |
EP (5) | EP2535895B1 (en) |
JP (1) | JP4782685B2 (en) |
KR (1) | KR101085477B1 (en) |
CN (1) | CN100394476C (en) |
AU (1) | AU2004239655B2 (en) |
BR (1) | BRPI0410130B1 (en) |
CA (1) | CA2521601C (en) |
DK (1) | DK1620845T3 (en) |
ES (2) | ES2832606T3 (en) |
HU (1) | HUE045759T2 (en) |
IL (1) | IL171287A (en) |
MX (1) | MXPA05011979A (en) |
MY (1) | MY138877A (en) |
PL (1) | PL1620845T3 (en) |
PT (1) | PT2535895T (en) |
SI (1) | SI2535895T1 (en) |
TW (1) | TWI324762B (en) |
WO (1) | WO2004102532A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI480856B (en) * | 2011-02-14 | 2015-04-11 | Fraunhofer Ges Forschung | Noise generation technology in audio codec |
US9047859B2 (en) | 2011-02-14 | 2015-06-02 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for encoding and decoding an audio signal using an aligned look-ahead portion |
US9384739B2 (en) | 2011-02-14 | 2016-07-05 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for error concealment in low-delay unified speech and audio coding |
US9536530B2 (en) | 2011-02-14 | 2017-01-03 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Information signal representation using lapped transform |
US9583110B2 (en) | 2011-02-14 | 2017-02-28 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for processing a decoded audio signal in a spectral domain |
US9595263B2 (en) | 2011-02-14 | 2017-03-14 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Encoding and decoding of pulse positions of tracks of an audio signal |
US9620129B2 (en) | 2011-02-14 | 2017-04-11 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for coding a portion of an audio signal using a transient detection and a quality result |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7742927B2 (en) * | 2000-04-18 | 2010-06-22 | France Telecom | Spectral enhancing method and device |
SE0202159D0 (en) | 2001-07-10 | 2002-07-09 | Coding Technologies Sweden Ab | Efficientand scalable parametric stereo coding for low bitrate applications |
PT1423847E (en) | 2001-11-29 | 2005-05-31 | Coding Tech Ab | RECONSTRUCTION OF HIGH FREQUENCY COMPONENTS |
US7240001B2 (en) | 2001-12-14 | 2007-07-03 | Microsoft Corporation | Quality improvement techniques in an audio encoder |
US6934677B2 (en) | 2001-12-14 | 2005-08-23 | Microsoft Corporation | Quantization matrices based on critical band pattern information for digital audio wherein quantization bands differ from critical bands |
US7502743B2 (en) | 2002-09-04 | 2009-03-10 | Microsoft Corporation | Multi-channel audio encoding and decoding with multi-channel transform selection |
SE0202770D0 (en) * | 2002-09-18 | 2002-09-18 | Coding Technologies Sweden Ab | Method of reduction of aliasing is introduced by spectral envelope adjustment in real-valued filterbanks |
KR100537517B1 (en) * | 2004-01-13 | 2005-12-19 | 삼성전자주식회사 | Method and apparatus for converting audio data |
US7460990B2 (en) * | 2004-01-23 | 2008-12-02 | Microsoft Corporation | Efficient coding of digital media spectral data using wide-sense perceptual similarity |
DE102004021403A1 (en) * | 2004-04-30 | 2005-11-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Information signal processing by modification in the spectral / modulation spectral range representation |
EP1744139B1 (en) * | 2004-05-14 | 2015-11-11 | Panasonic Intellectual Property Corporation of America | Decoding apparatus and method thereof |
KR20070012832A (en) * | 2004-05-19 | 2007-01-29 | 마츠시타 덴끼 산교 가부시키가이샤 | Coding apparatus, decoding apparatus, and methods thereof |
FR2888699A1 (en) * | 2005-07-13 | 2007-01-19 | France Telecom | HIERACHIC ENCODING / DECODING DEVICE |
US7630882B2 (en) | 2005-07-15 | 2009-12-08 | Microsoft Corporation | Frequency segmentation to obtain bands for efficient coding of digital media |
US20070055510A1 (en) * | 2005-07-19 | 2007-03-08 | Johannes Hilpert | Concept for bridging the gap between parametric multi-channel audio coding and matrixed-surround multi-channel coding |
US7676360B2 (en) * | 2005-12-01 | 2010-03-09 | Sasken Communication Technologies Ltd. | Method for scale-factor estimation in an audio encoder |
US7953604B2 (en) * | 2006-01-20 | 2011-05-31 | Microsoft Corporation | Shape and scale parameters for extended-band frequency coding |
US7831434B2 (en) * | 2006-01-20 | 2010-11-09 | Microsoft Corporation | Complex-transform channel coding with extended-band frequency coding |
US8190425B2 (en) * | 2006-01-20 | 2012-05-29 | Microsoft Corporation | Complex cross-correlation parameters for multi-channel audio |
US9159333B2 (en) | 2006-06-21 | 2015-10-13 | Samsung Electronics Co., Ltd. | Method and apparatus for adaptively encoding and decoding high frequency band |
KR101390188B1 (en) * | 2006-06-21 | 2014-04-30 | 삼성전자주식회사 | Method and apparatus for encoding and decoding adaptive high frequency band |
WO2008021247A2 (en) * | 2006-08-15 | 2008-02-21 | Dolby Laboratories Licensing Corporation | Arbitrary shaping of temporal noise envelope without side-information |
US8675771B2 (en) * | 2006-09-29 | 2014-03-18 | Nec Corporation | Log likelihood ratio arithmetic circuit, transmission apparatus, log likelihood ratio arithmetic method, and program |
US7885819B2 (en) | 2007-06-29 | 2011-02-08 | Microsoft Corporation | Bitstream syntax for multi-process audio decoding |
EP2214163A4 (en) * | 2007-11-01 | 2011-10-05 | Panasonic Corp | CODING DEVICE, DECODING DEVICE AND METHOD THEREFOR |
US8290782B2 (en) * | 2008-07-24 | 2012-10-16 | Dts, Inc. | Compression of audio scale-factors by two-dimensional transformation |
WO2010028297A1 (en) | 2008-09-06 | 2010-03-11 | GH Innovation, Inc. | Selective bandwidth extension |
US8515747B2 (en) * | 2008-09-06 | 2013-08-20 | Huawei Technologies Co., Ltd. | Spectrum harmonic/noise sharpness control |
WO2010028299A1 (en) * | 2008-09-06 | 2010-03-11 | Huawei Technologies Co., Ltd. | Noise-feedback for spectral envelope quantization |
US8532983B2 (en) * | 2008-09-06 | 2013-09-10 | Huawei Technologies Co., Ltd. | Adaptive frequency prediction for encoding or decoding an audio signal |
WO2010031003A1 (en) | 2008-09-15 | 2010-03-18 | Huawei Technologies Co., Ltd. | Adding second enhancement layer to celp based core layer |
US8577673B2 (en) * | 2008-09-15 | 2013-11-05 | Huawei Technologies Co., Ltd. | CELP post-processing for music signals |
WO2010070770A1 (en) * | 2008-12-19 | 2010-06-24 | 富士通株式会社 | Voice band extension device and voice band extension method |
EP2237269B1 (en) * | 2009-04-01 | 2013-02-20 | Motorola Mobility LLC | Apparatus and method for processing an encoded audio data signal |
TWI484481B (en) | 2009-05-27 | 2015-05-11 | 杜比國際公司 | Systems and methods for generating a high frequency component of a signal from a low frequency component of the signal, a set-top box, a computer program product and storage medium thereof |
US11657788B2 (en) | 2009-05-27 | 2023-05-23 | Dolby International Ab | Efficient combined harmonic transposition |
JP5754899B2 (en) | 2009-10-07 | 2015-07-29 | ソニー株式会社 | Decoding apparatus and method, and program |
EP4435779A3 (en) | 2010-01-19 | 2024-10-09 | Dolby International AB | Improved subband block based harmonic transposition |
TWI443646B (en) | 2010-02-18 | 2014-07-01 | Dolby Lab Licensing Corp | Audio decoder and decoding method using efficient downmixing |
JP5609737B2 (en) | 2010-04-13 | 2014-10-22 | ソニー株式会社 | Signal processing apparatus and method, encoding apparatus and method, decoding apparatus and method, and program |
JP5850216B2 (en) | 2010-04-13 | 2016-02-03 | ソニー株式会社 | Signal processing apparatus and method, encoding apparatus and method, decoding apparatus and method, and program |
RU2530254C2 (en) | 2010-07-19 | 2014-10-10 | Долби Интернешнл Аб | Processing audio signals during high frequency reconstruction |
US12002476B2 (en) | 2010-07-19 | 2024-06-04 | Dolby International Ab | Processing of audio signals during high frequency reconstruction |
JP6075743B2 (en) | 2010-08-03 | 2017-02-08 | ソニー株式会社 | Signal processing apparatus and method, and program |
JP5707842B2 (en) | 2010-10-15 | 2015-04-30 | ソニー株式会社 | Encoding apparatus and method, decoding apparatus and method, and program |
TWI480857B (en) | 2011-02-14 | 2015-04-11 | Fraunhofer Ges Forschung | Audio codec using noise synthesis during inactive phases |
TWI488176B (en) | 2011-02-14 | 2015-06-11 | Fraunhofer Ges Forschung | Encoding and decoding of pulse positions of tracks of an audio signal |
US9666200B2 (en) * | 2012-02-23 | 2017-05-30 | Dolby International Ab | Methods and systems for efficient recovery of high frequency audio content |
EP2682941A1 (en) * | 2012-07-02 | 2014-01-08 | Technische Universität Ilmenau | Device, method and computer program for freely selectable frequency shifts in the sub-band domain |
EP2720222A1 (en) * | 2012-10-10 | 2014-04-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for efficient synthesis of sinusoids and sweeps by employing spectral patterns |
WO2014118161A1 (en) | 2013-01-29 | 2014-08-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for generating a frequency enhancement signal using an energy limitation operation |
CN105103224B (en) | 2013-04-05 | 2019-08-02 | 杜比国际公司 | Audio coder and decoder for alternating waveforms coding |
US8804971B1 (en) | 2013-04-30 | 2014-08-12 | Dolby International Ab | Hybrid encoding of higher frequency and downmixed low frequency content of multichannel audio |
EP2830056A1 (en) | 2013-07-22 | 2015-01-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for encoding or decoding an audio signal with intelligent gap filling in the spectral domain |
CN105531762B (en) | 2013-09-19 | 2019-10-01 | 索尼公司 | Code device and method, decoding apparatus and method and program |
AU2014371411A1 (en) | 2013-12-27 | 2016-06-23 | Sony Corporation | Decoding device, method, and program |
FR3020732A1 (en) * | 2014-04-30 | 2015-11-06 | Orange | PERFECTED FRAME LOSS CORRECTION WITH VOICE INFORMATION |
EP2963646A1 (en) * | 2014-07-01 | 2016-01-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Decoder and method for decoding an audio signal, encoder and method for encoding an audio signal |
US10521657B2 (en) | 2016-06-17 | 2019-12-31 | Li-Cor, Inc. | Adaptive asymmetrical signal detection and synthesis methods and systems |
AU2018304166B2 (en) * | 2017-07-17 | 2020-08-27 | Li-Cor, Inc. | Spectral response synthesis on trace data |
BR112020008223A2 (en) * | 2017-10-27 | 2020-10-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | decoder for decoding a frequency domain signal defined in a bit stream, system comprising an encoder and a decoder, methods and non-transitory storage unit that stores instructions |
CA3152262A1 (en) | 2018-04-25 | 2019-10-31 | Dolby International Ab | Integration of high frequency reconstruction techniques with reduced post-processing delay |
SG11202010374VA (en) | 2018-04-25 | 2020-11-27 | Dolby Int Ab | Integration of high frequency audio reconstruction techniques |
CN110556117B (en) * | 2018-05-31 | 2022-04-22 | 华为技术有限公司 | Coding method and device for stereo signal |
WO2020092955A1 (en) * | 2018-11-02 | 2020-05-07 | Li-Cor, Inc. | Adaptive asymmetrical signal detection and synthesis methods and systems |
US10958485B1 (en) * | 2019-12-11 | 2021-03-23 | Viavi Solutions Inc. | Methods and systems for performing analysis and correlation of DOCSIS 3.1 pre-equalization coefficients |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3995115A (en) | 1967-08-25 | 1976-11-30 | Bell Telephone Laboratories, Incorporated | Speech privacy system |
US3684838A (en) | 1968-06-26 | 1972-08-15 | Kahn Res Lab | Single channel audio signal transmission system |
JPS6011360B2 (en) | 1981-12-15 | 1985-03-25 | ケイディディ株式会社 | Audio encoding method |
US4667340A (en) | 1983-04-13 | 1987-05-19 | Texas Instruments Incorporated | Voice messaging system with pitch-congruent baseband coding |
US4790016A (en) | 1985-11-14 | 1988-12-06 | Gte Laboratories Incorporated | Adaptive method and apparatus for coding speech |
WO1986003873A1 (en) | 1984-12-20 | 1986-07-03 | Gte Laboratories Incorporated | Method and apparatus for encoding speech |
US4885790A (en) | 1985-03-18 | 1989-12-05 | Massachusetts Institute Of Technology | Processing of acoustic waveforms |
US4935963A (en) | 1986-01-24 | 1990-06-19 | Racal Data Communications Inc. | Method and apparatus for processing speech signals |
JPS62234435A (en) | 1986-04-04 | 1987-10-14 | Kokusai Denshin Denwa Co Ltd <Kdd> | Voice coding system |
EP0243562B1 (en) | 1986-04-30 | 1992-01-29 | International Business Machines Corporation | Improved voice coding process and device for implementing said process |
US4776014A (en) | 1986-09-02 | 1988-10-04 | General Electric Company | Method for pitch-aligned high-frequency regeneration in RELP vocoders |
US5054072A (en) | 1987-04-02 | 1991-10-01 | Massachusetts Institute Of Technology | Coding of acoustic waveforms |
US4969192A (en) * | 1987-04-06 | 1990-11-06 | Voicecraft, Inc. | Vector adaptive predictive coder for speech and audio |
US5127054A (en) | 1988-04-29 | 1992-06-30 | Motorola, Inc. | Speech quality improvement for voice coders and synthesizers |
US5109417A (en) | 1989-01-27 | 1992-04-28 | Dolby Laboratories Licensing Corporation | Low bit rate transform coder, decoder, and encoder/decoder for high-quality audio |
US5054075A (en) | 1989-09-05 | 1991-10-01 | Motorola, Inc. | Subband decoding method and apparatus |
CN1062963C (en) | 1990-04-12 | 2001-03-07 | 多尔拜实验特许公司 | Adaptive-block-lenght, adaptive-transform, and adaptive-window transform coder, decoder, and encoder/decoder for high-quality audio |
KR100228688B1 (en) | 1991-01-08 | 1999-11-01 | 쥬더 에드 에이. | Encoder / Decoder for Multi-Dimensional Sound Fields |
JP3076086B2 (en) * | 1991-06-28 | 2000-08-14 | シャープ株式会社 | Post filter for speech synthesizer |
JP2693893B2 (en) | 1992-03-30 | 1997-12-24 | 松下電器産業株式会社 | Stereo speech coding method |
JP3398457B2 (en) * | 1994-03-10 | 2003-04-21 | 沖電気工業株式会社 | Quantization scale factor generation method, inverse quantization scale factor generation method, adaptive quantization circuit, adaptive inverse quantization circuit, encoding device and decoding device |
KR960704300A (en) * | 1994-05-25 | 1996-08-31 | 이데이 노부유키 | Encoding method, decoding method, encoding / decoding method, encoding apparatus, decoding apparatus, and encoding / decoding apparatus (Encoding method, decoding method, encoding / decoding method, encoding apparatus, decoding apparatus, and encoding / decoding apparatus) |
DE19509149A1 (en) | 1995-03-14 | 1996-09-19 | Donald Dipl Ing Schulz | Audio signal coding for data compression factor |
JPH08328599A (en) | 1995-06-01 | 1996-12-13 | Mitsubishi Electric Corp | Mpeg audio decoder |
US5937000A (en) * | 1995-09-06 | 1999-08-10 | Solana Technology Development Corporation | Method and apparatus for embedding auxiliary data in a primary data signal |
US5812971A (en) * | 1996-03-22 | 1998-09-22 | Lucent Technologies Inc. | Enhanced joint stereo coding method using temporal envelope shaping |
DE19628293C1 (en) | 1996-07-12 | 1997-12-11 | Fraunhofer Ges Forschung | Encoding and decoding audio signals using intensity stereo and prediction |
EP0878790A1 (en) * | 1997-05-15 | 1998-11-18 | Hewlett-Packard Company | Voice coding system and method |
SE512719C2 (en) | 1997-06-10 | 2000-05-02 | Lars Gustaf Liljeryd | A method and apparatus for reducing data flow based on harmonic bandwidth expansion |
DE19730130C2 (en) | 1997-07-14 | 2002-02-28 | Fraunhofer Ges Forschung | Method for coding an audio signal |
US6341164B1 (en) * | 1998-07-22 | 2002-01-22 | Entrust Technologies Limited | Method and apparatus for correcting improper encryption and/or for reducing memory storage |
SE9903553D0 (en) * | 1999-01-27 | 1999-10-01 | Lars Liljeryd | Enhancing conceptual performance of SBR and related coding methods by adaptive noise addition (ANA) and noise substitution limiting (NSL) |
SE0001926D0 (en) | 2000-05-23 | 2000-05-23 | Lars Liljeryd | Improved spectral translation / folding in the subband domain |
SE0004187D0 (en) | 2000-11-15 | 2000-11-15 | Coding Technologies Sweden Ab | Enhancing the performance of coding systems that use high frequency reconstruction methods |
CA2327041A1 (en) * | 2000-11-22 | 2002-05-22 | Voiceage Corporation | A method for indexing pulse positions and signs in algebraic codebooks for efficient coding of wideband signals |
EP1241663A1 (en) * | 2001-03-13 | 2002-09-18 | Koninklijke KPN N.V. | Method and device for determining the quality of speech signal |
US10113858B2 (en) | 2015-08-19 | 2018-10-30 | Medlumics S.L. | Distributed delay-line for low-coherence interferometry |
US9996281B2 (en) | 2016-03-04 | 2018-06-12 | Western Digital Technologies, Inc. | Temperature variation compensation |
-
2003
- 2003-05-08 US US10/434,449 patent/US7318035B2/en active Active
-
2004
- 2004-04-08 TW TW093109731A patent/TWI324762B/en not_active IP Right Cessation
- 2004-04-30 PL PL04750889T patent/PL1620845T3/en unknown
- 2004-04-30 EP EP12002662.0A patent/EP2535895B1/en not_active Expired - Lifetime
- 2004-04-30 EP EP22160456.4A patent/EP4057282B1/en not_active Expired - Lifetime
- 2004-04-30 ES ES16169329T patent/ES2832606T3/en not_active Expired - Lifetime
- 2004-04-30 CN CNB200480011250XA patent/CN100394476C/en not_active Expired - Lifetime
- 2004-04-30 HU HUE12002662A patent/HUE045759T2/en unknown
- 2004-04-30 CA CA2521601A patent/CA2521601C/en not_active Expired - Lifetime
- 2004-04-30 AU AU2004239655A patent/AU2004239655B2/en not_active Expired
- 2004-04-30 KR KR1020057020644A patent/KR101085477B1/en active IP Right Grant
- 2004-04-30 EP EP04750889.0A patent/EP1620845B1/en not_active Expired - Lifetime
- 2004-04-30 PT PT120026620T patent/PT2535895T/en unknown
- 2004-04-30 EP EP20187378.3A patent/EP3757994B1/en not_active Expired - Lifetime
- 2004-04-30 DK DK04750889.0T patent/DK1620845T3/en active
- 2004-04-30 BR BRPI0410130-8A patent/BRPI0410130B1/en active IP Right Grant
- 2004-04-30 JP JP2006532502A patent/JP4782685B2/en not_active Expired - Lifetime
- 2004-04-30 SI SI200432478T patent/SI2535895T1/en unknown
- 2004-04-30 MX MXPA05011979A patent/MXPA05011979A/en active IP Right Grant
- 2004-04-30 WO PCT/US2004/013217 patent/WO2004102532A1/en active Application Filing
- 2004-04-30 EP EP16169329.6A patent/EP3093844B1/en not_active Expired - Lifetime
- 2004-04-30 ES ES04750889.0T patent/ES2664397T3/en not_active Expired - Lifetime
- 2004-05-07 MY MYPI20041701A patent/MY138877A/en unknown
-
2005
- 2005-10-06 IL IL171287A patent/IL171287A/en active IP Right Grant
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI480856B (en) * | 2011-02-14 | 2015-04-11 | Fraunhofer Ges Forschung | Noise generation technology in audio codec |
US9047859B2 (en) | 2011-02-14 | 2015-06-02 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for encoding and decoding an audio signal using an aligned look-ahead portion |
US9384739B2 (en) | 2011-02-14 | 2016-07-05 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for error concealment in low-delay unified speech and audio coding |
US9536530B2 (en) | 2011-02-14 | 2017-01-03 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Information signal representation using lapped transform |
US9583110B2 (en) | 2011-02-14 | 2017-02-28 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for processing a decoded audio signal in a spectral domain |
US9595263B2 (en) | 2011-02-14 | 2017-03-14 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Encoding and decoding of pulse positions of tracks of an audio signal |
US9620129B2 (en) | 2011-02-14 | 2017-04-11 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for coding a portion of an audio signal using a transient detection and a quality result |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI324762B (en) | Improved audio coding systems and methods using spectral component coupling and spectral component regeneration | |
KR102219752B1 (en) | Apparatus and method for estimating time difference between channels | |
US20200234721A1 (en) | Parametric joint-coding of audio sources | |
TWI307248B (en) | Apparatus and method for generating multi-channel synthesizer control signal and apparatus and method for multi-channel synthesizing | |
RU2551797C2 (en) | Method and device for encoding and decoding object-oriented audio signals | |
US9305558B2 (en) | Multi-channel audio encoding/decoding with parametric compression/decompression and weight factors | |
EP2904609B1 (en) | Encoder, decoder and methods for backward compatible multi-resolution spatial-audio-object-coding | |
JPWO2006003891A1 (en) | Speech signal decoding apparatus and speech signal encoding apparatus | |
RU2455708C2 (en) | Methods and devices for coding and decoding object-oriented audio signals | |
KR100745688B1 (en) | Apparatus for encoding and decoding multichannel audio signal and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |