130泌w明說明: 【發明所屬之技術領域】 吿本發明是關於一種結合渦流感測器的微型磁阻馬達及 其製造方法,尤指-種利用厚膜光阻微影技術、半導體加 工製程與微電鑄技術、犧牲層技術,製作馬達定子、轉子、 軸承並將渦流感測器與微型磁阻馬達結合於同—製程,可 達到低成本、小型化與高精度功效。 【先前技術】The invention relates to a miniature reluctance motor combined with a vortex flu detector and a manufacturing method thereof, in particular to a thick film photoresist lithography technique and a semiconductor processing process. With micro electroforming technology and sacrificial layer technology, the motor stator, rotor and bearing are fabricated, and the vortex flu detector and the micro reluctance motor are combined in the same process, which can achieve low cost, miniaturization and high precision. [Prior Art]
知,已知的微型馬達技術,係如公告編號第390064 戒微型磁浮馬達」,其技術内容主要是採用單極性電磁 :驅動,其中利用安置於軸向之差動式渦流位置感測器, 夏測轉子徑向位移,另可藉由迴授控制電路,使定子與轉 子維持固定氣隙不發生接觸,並且利用馬達轉子與定子極 數不同,而另藉由馬達驅動電路使轉子產生旋轉。此外, U型磁浮馬達是可採用半導體匹配製程方式製作而成,如 光钱刻及電鑄技術製作等等,並可與電子電路結合一體, 以達到高精度、無磨耗、長壽命及低成本之目的。 另一已知的微型馬達技術内容,係如美國專利第 I “Micr⑽echanical stepper M〇t〇r、'、银案 7 1 999年由0hnstein等人提出微機械式步進馬達專利, 是採用三相激磁設計,每極1〇齒,齒寬3〇叩,齒距π帅, 線圈繞阻多達1 000租,每組約可提供〇2mH至“Η,最高 響應頻率為150kHz。當驅動電流為lmA時,可 的位移,大約消耗20〇nW,主要用於驅動紅外線濾光器。 係如美國專利第 又 已知的微型馬達技術内容 4 1303121 644, 177 號"Micromechanical Magnetically ActuatedIt is known that the known micro-motor technology is, for example, Bulletin No. 390064 or Micro Maglev Motor. Its technical content is mainly unipolar electromagnetic: driving, in which a differential eddy current position sensor placed in the axial direction is used. The radial displacement of the rotor is measured, and the stator and the rotor are maintained in a fixed air gap without contact by the feedback control circuit, and the number of poles of the rotor and the stator is different, and the rotor is rotated by the motor drive circuit. In addition, the U-shaped maglev motor can be fabricated by semiconductor matching process, such as optical engraving and electroforming technology, and can be integrated with electronic circuits to achieve high precision, no wear, long life and low cost. The purpose. Another known micro-motor technology content, such as the US patent I "Micr (10) mechanical stepper M〇t〇r, ', silver case in 1997, by 0hnstein et al. proposed micro-mechanical stepper motor patent, is the use of three-phase Excitation design, 1 tooth per pole, 3 齿 tooth width, π handsome pitch, coil winding up to 1 000 rent, each group can provide 〇2mH to “Η, the highest response frequency is 150kHz. When the drive current is lmA, the displacement is approximately 20 〇 nW, which is mainly used to drive the infrared filter. Micro-motor technology content as known in the U.S. Patent No. 4 1303121 644, 177 "Micromechanical Magnetically Actuated
Devices ’該案於1997年由Guckei等人提出電磁式微機 械式致動器專利,其包括利用微細加工技術製作,大小約 為1 -2mm ’成形於基板上之流體控制微機械結構;具有氣 隙之電磁鐵心固定於基板上;固定於彈簧結構之活塞裝置 可平行基板移動距離約3 5〇 μιη,依照磁通提供鐵心之固定 ' 氣隙;線圈繞組纏繞於鐵心軸上500匝,當外加電流時可 • 產生感應磁場,使活塞裝置產生抵抗彈簧力之斥力;其微 機械流體控制裝置包括利用電鑄成形之金屬結構與封閉腔 • 體之上蓋,致動器高度約2mni。 在微機電系統發展過程中,因靜電式微致動器製程延 續半導體製程發展,而在微機電發展初期具有舉足輕重的 地位,靜電式微致動器的原理是利用電性絕緣的定子和轉 子間的電位差產生吸力,使轉子移動,於i 988年加州大 學柏克萊分校Fan博士等人利用半導體製程技術,首先製 造出世界上最小的馬達,其轉子與定子皆為凸極結構,轉 子經過極化且當定子被施加高電壓時,凸極邊緣會感應電 ® 荷’當感應電荷與激磁的定子間便會有一力量產生,之後, 許多不同形式的靜電式微型馬達陸續開發研究,如 Harmonic式及Wobble式靜電馬達,其優點為定子與轉子 製作與半導體製程相匹配,馬達尺寸縮小容易,缺點為輸 出力矩不足,且驅動方式為高電壓,在某些場合可能無法 使用,會有電壓崩潰的問題,且其輸出力矩過小,一b般應 用中,很難符合所需。 ’ 又,一般致動器領域中 電磁力是最被廣泛運用於驅 動方式之一,其優點包括出力大、 可大間距的作用及較不 5 1303121 父環境衫響,其主要是控制電流方向產生不同的磁場,而 能利用磁場的相吸或相斥產生移動,於丨991年,在Devices' case was patented by Guckei et al. in 1997 for electromagnetic micromechanical actuators, which consist of a microfluidic structure that is fabricated using microfabrication techniques and is approximately 1-2 mm in size. The electromagnet core is fixed on the substrate; the piston device fixed to the spring structure can move parallel to the substrate by about 35 〇μιη, and the fixed "air gap" of the iron core is provided according to the magnetic flux; the coil winding is wound on the iron core shaft 500 匝 when the current is applied • The induction magnetic field is generated to cause the piston device to resist the repulsive force of the spring force; the micro-mechanical fluid control device includes a metal structure formed by electroforming and a closed cavity cover, and the actuator height is about 2 mni. In the development of MEMS, the electrostatic micro-actuator process continues the development of semiconductor process, and plays an important role in the initial development of MEMS. The principle of electrostatic micro-actuator is to use the potential difference between the stator and rotor of electrical insulation. Producing suction and moving the rotor, Dr. Fan, Ph.D., of the University of California, Berkeley, used the semiconductor process technology to create the world's smallest motor. Both the rotor and the stator are salient and the rotor is polarized. When the stator is applied with a high voltage, the salient pole edge senses the electric charge. When there is a force between the induced charge and the excited stator, many different forms of electrostatic micromotors are developed, such as Harmonic and Wobble. The utility model has the advantages that the stator and the rotor are matched with the semiconductor process, the size of the motor is reduced easily, the shortcoming is that the output torque is insufficient, and the driving mode is high voltage, and in some occasions, the voltage may be collapsed. And its output torque is too small, in a b-like application, it is difficult to meet the needs. 'In addition, in the field of general actuators, electromagnetic force is one of the most widely used driving methods. Its advantages include large output, large spacing and less than the 5 1303121 parent environment, which mainly controls the current direction. Different magnetic fields, which can be moved by the attraction or repulsive of the magnetic field, in 丨 991, in
Wisconsin大學Guckel教授等人,首先利用x — ray微影及 電鑄製程製作出馬達定子與轉子厚度皆為1〇〇 # m且深寬 比為20之鎳結構平面磁阻馬達,其中,馬達轉子與定子 分別在不同製程中製作,再將轉子組裝於定子軸承上,因 -X — ray微影技術可製作出高深寬比及次微米的氣隙與軸承 • 間隙,減少漏磁現象的產生,增加馬達的效率,其繞組採 用線徑約30/ζπι銅線,搭配顯微鏡手工纏繞方式加以製成, • 並於1 993年再次提出由平面激磁線圈架構所組成之三相 可變磁阻馬達,並且利用光二極體做為馬達位置與速度的 回授控制。 1 993卑,Wagner等人利用厚膜光阻微影技術與微電 鑄技術,在矽晶片上製作平面激磁線圈,使用永久磁鐵當 作馬達轉子,當平面線圈通過電流激磁後所產生的磁場與 夂久兹鐵相互作用,使得永久磁鐵受力而產生轉動或移 動並且使用隹爾感測器量測可動子位移與運動情況,該 鼸旋轉馬達的轉子為直徑lmm、高度Q75mm圓柱型永久磁鐵, 當激磁電流為0.5A時,計算所得產生的扭力& 116nNm, 且轉速可達200〇rpm。 ☆於目前小型攜帶式或精密儀器所用的馬達都為永磁式 直流馬達’其最小直徑大約5_,且微小化又面臨到永久 磁鐵加工、繞組及外加感測器如(霍爾感測器)等元件製作 與組裝上的困難,增加馬達製作困難與增加馬達成本。 又目如已知的磁阻馬達之體積大,線圈纏繞於定子 結構上複雜難以微小化,並且,需額外加裝編碼器,而會 6 1303121 增加體積與價格,以及其轉子與定子採用衝壓矽鋼片堆疊 而成,精度誤差大,而難以達到小型化、微型化目的。 【發明内容】 本發明目的在於,提供一種「結合渦流感測器的微型 磁阻馬達」,其利用厚膜光阻微影製程技術、微電禱技術 與犧牲層技術,製作馬達定子與轉子,並將渦流感測器和 軸承與微型磁阻馬達結合於同—製程,可達到低成本、小 型化與高精度目的。 為達成上述目的之結構特徵及技術内容,本發明「結 合渦流感測器的微型磁阻馬達」,其包括· 一導磁基座; 其具有數根導磁柱,環繞的排列固設在導磁基座上, 於各導磁柱軸向繞設線圈; -定子,其具有一盤體並結合一軸承,於盤體周緣設 置數個齒極’於盤體各齒極間設置—職感測器; 、—轉子,其周緣設置數個齒極,於轉子中設置一穿孔 以便與軸承結合。 又’本發明「結合渦流感測器的微型磁阻馬達的製造 採-、π以厚膜光阻u衫製程、微電鑄技術與犧牲層技 κ丁’氣造馬達定子及韓子纟士嫿, 承 、、、口 亚且結合渦流感測器與軸 承於微型磁阻馬達的定子上。 【實施方式】 其係本發明第一種實 配合參看第一圖至第五圖所示, 施例結構,包括: 7 1303121 導磁基座(l o); 數根導磁柱(1 1 ),環繞的排列固設在導磁基座(工 0)上,於各導磁柱(1 1 )軸向繞設線圈(1 2 ) · 一定子(20),其具有一盤體(21),於盤體(2 1 )周緣設置數個齒極(2 2 ),於盤體(2 1 )各齒極 (2 2 )間設置一渦流感測器(2 3 ); 一軸承(3 0 ),定位設置在盤體(2 1 )中; 一轉子(40),其周緣設置數個齒極(々I),於 轉子(4 0 )中設置一穿孔(4 2 )以便與輛承(3 〇 ) 結合。 上述導磁基座(1 〇 )可為方形或圓孤形盤體。 上述渦流感測器(2 3 )是利用通有交流電的線圈在 導體内部產生渦流及感應磁場,藉由電壓變化來檢測轉子 (4 0 )旋轉訊號。 配合參看第六圖至第九圖所示,其係本發明第二種實 施例結構,包括·· 、 一導磁基座(1 〇 ); 數根導磁柱(1 1 ),環繞的排列固設在導磁基座(丄 〇 )上’於各導磁柱(1 1 )軸向繞設線圈(1 2 ) · 一定子(24),其具有一盤itr? ^於盤體(2 5 )周緣設置數個齒極(2 6 ),於盤體(9 r^ η / 仏座2 5 )各齒極 (2 6 )間設置一渦流感測器(2 9 ); 一軸承(2 8 ),定位設置在盤體(2 5 )中; 一轉子(4 0 ),其周緣設置數個齒極(4 1 ),於 轉子(4 0 )中設置-穿孔(4 2 )以便與轴承(2 8 ) 結合。 8 1303121 盤體(2 5 ), ’軸承(2 8 ) 於盤體 即設置 上述定子(24),其具有— (2 5 )頂端設置一凹槽(2 7 ) 在該凹槽(2 7 )中。 所述之满流感測器(2 9 )可成型於定子 盤體(2 5 )底部。 本發明設計及製造一渦流感測器(2 3 ) (2 、 平面線圈來配合微型磁阻馬達,由 )的 、、 由於锨型馬達尺寸小,渦 流感測器(2 3 )( 2 9 )必須微小化,才能量測轉子(* 〇 )的旋轉訊號’因此’必須與微型馬達整合於同— 以下為本發明之馬達轉子和定子製程步驟: 衣王 馬達轉子微加工製程,是利用厚膜光阻及微電鑄製程 並配合犧牲層移除技術,與基材分離得到轉子元件,包括: 設置犧牲層並以鍍膜技術設置電鑄時之種子層、進行i別1 厚膜光阻微影製程,製作微結構模板、利用AZp462〇光阻 定義電鑄區域、電鑄導磁材料、移除犧牲層及電鑄種子層, 將結構釋放’製程流程圖如第十三圖所示,其製程說:如 下: ⑴矽曰曰片(6 〇 )清洗後塗佈聚亞醯胺,厚度約巧叩,作 為犧牲層(61)。 (2) 濺鍍銅(6 2 ),作為電鑄時之種子層,厚度為1〇〇〇 A。 (3) SU-8結構(6 3 )微影製程,厚度2〇〇_。 ⑷利用AZ P4620光阻(6 4 )定義電鑄區域。 (5)電鑄導磁結構(6 5 )。 ⑹移除犧牲層(6 1 )、種子層(6 2 )與AZ p獅光阻(6 4 ),將 結構釋放。 9 1303121 本發明之馬達定子結構製作方法與轉子類似,但渴流 感測為線圈被肷入S U - 8結構中。本發明設計的平面線圈, 可為單層式或雙層式平面線圈,且線寬13/zm,線距, 為補償正型厚膜光阻所造成之尺寸誤差,所設計的平面線 圈光罩線寬10/zm、線距15/zm、線圈共7圈,若為雙層則 有14圈,線圈面積約為500μιηχ500μιη。 • 製作疋子結構方法是先進行渦流感測器平面線圈ΑΖ -Ρ4620光阻製程,感測器線圈完成後再進行SU-8整合軸 承製程及導磁材料電鑄製程,最後將定子結構釋放。而涡 _ 流感測器可寫單層或雙層設計,底下分別是單層和雙層線 圈的定子製程。 單層線圈疋子製程流程圖如第十四圖所示。其製程說 明如下: (1 )夕日日片(7 0 )清洗後塗佈ρ〇 1 y i i de做為犧牲層(7 l)〇 (2)錢錢Tl,作為電鑄時之種子層(7 2 ),厚度為looo人。 ♦ (3)進订AZ P4620光阻(7 3 )微影製程作為感測器線圈 光阻電鑄模板。 (4) 線圈鋼 f 7 /1、+ ^, ^广4)電鑄製作,並去除az P4620光阻(7 3)。 (5) 進仃第一層SU—8結構(7 5 )微影製程,製作出導磁 材料_光阻模板及定子結構。 (6) 進仃第一層su〜8結構(7 6 )微影製程,製作出導磁 材料電鑄光阻模板、軸承及定子結構。 ⑺導磁材料鎳鐵(7 7 )電鑄。 1303121 (8)移除犧牲層 結構。 (了 1)及電鑄種子層(72),釋放定子 顯影 ^ (5)之第—層su—8只是有進行曝光,並沒有 疋田第一層SU-8曝光後,再一起顯影。 雙層線圈定子ώ χ Α ^ ^ 卞版轾机私圖,可配合夢看第十五圖及第 、圖所示。纟製程說明如下: (1) 石夕晶片 fQn、 _* )^洗後塗佈Polyimide做為犧牲層(8 1 ) 〇 (2) 歲鍵丁丨’作為電鑄時 ^ Γ〇Λ^ y 丁徑卞膺〈y 2 ),厚度為1 000a〇 U)進行 AZ P4620 # 1¾ r 〇 〇、 先阻(8 3 )微影製程作為第一層渦流 感測器線圈光阻電鑄模板。 (4) 第一層渴流線圈鋼(8 4 )雷鏟 、, 4 ~ I作,亚去除AZ P4620 光阻(8 3 ) 〇 (5) 塗佈絕緣層PI 7320光阻(《 g、二 尤阻(8 5 ),並進行微影製程作 -又《線圈連接插塞光阻電鑄模板。 (6) 進行雙層線圈連接插塞鋼電鑄製作 (7) 進行絕緣層Ρί 7230光阻「β c、心 ,,..r ( 8 5 )诞影製程,作為導磁 材料光阻電鑄模板。 $ (8 )賤錢τ i,作為第二層绩團 層線圈電鑄時之種子層(8 厚度為1 000A。 ; ⑼進行W0光阻(δ7)微影製程作為第二岸^ 感測器線圈銅(8 8)光阻電鑄模板。 … (10) 第二層渦流線圈銅電鑄掣 7) 。 作,亚去除ΑΖΡ4620光阻(8 (11) 蝕刻第二層電鑄種子層丫 層(8 6 ) Tl ’避免第二層渦流 1303121 線圈短路。 (12) 進行第一層s"結構(8 9 )微影製程,製作出導 磁材料電鑄光阻模板及定子結構。 (13) 進行第二層su,8結構(9 〇 )微影製程,製作出導 磁材料電鑄光阻模板、軸承及定子結構。 (14) 導磁材料鎳鐵(9 1 )電鑄。 • (15)移除犧牲層及電鑄種子層,釋放定子結構。 • 製矛(12)之第一層su—8只是有進行曝光,並沒有顯 〜,而疋當第二層su〜8曝光後,再一起顯影。 _ 其中: 犧牲層(Sacrificial LayerO : 本發明定子(2 〇 ) ( 2 4 )與轉子(4 〇 )是利用 厚膜光阻及微電鑄製程製作而成,因馬達定子(2 〇 ) ( 2 4 )人轉子(4 〇 )需為可自由移動之微結構,因此,必 須搭配犧牲層技術或以钱刻之方式將結構釋放,而在微機 電製程中,製作懸浮可動的微結構,可配合參看第十圖所 示,其係利用元件結構層(5 2 )與犧牲層(5工)材料 籲之間的4擇性钱刻(Selective Etching),將犧牲層(5 j )去除而留下結構層(5 2 ),此過程稱為結構釋放, k擇f生蝕刻方式必須為等向性蝕刻(叩丨。, 如此才可在結構層(5 2 )處造成底切(Undercut)或側 蝕(Underetching)現象,順利地使結構層(5 2 )與基 底(5 0 ) ( Wafer)分離。 電鑄種子層(Seed Layer): 鈦疋理想電鑄種子層及犧牲層材料,因鈦對於 Polyinude基材、SU — 8光阻及鎳結構具有良好附著性及導 12 Ι303]21 琶性’且其餘刻液不會損傷光阻及鎳鐵結構,因此,本發 明製程設計,先進行渦流感測器製程,渦流感測器完成後 再進行SU-8模具製作及電鑄導磁材料製程。製作電鑄種 子層的方法為鍍膜技術,鍍膜技術可為濺鍍、蒸鍍、薄膜 沉積或其它可達此目的之方法。 厚膜光阻SU-8及ΑΖ Ρ4620微影製程: 標準UV微影製程搭配厚膜光阻技術,即可實現以低 成本之LIGA_like製程,製造出高深寬比之微結構,且與 1C製程相容的特性,使其在微機電、微電子及封裝等領域 備受重視,一般常用的厚膜光阻有su_8、、 JSR430N、JSR611P 及 p〇iyimide 等種類,其中 u 光 阻有兩個重要特性,使其適合用於厚膜製程技術,首先, 別-8之分子鏈長度較短,容易被溶劑渗人並^加強分解, =SU-8高分子可以均勾分佈在光阻溶液中,並形成高濃 度的混合物,單層塗佈可達5叫m,其次,S"光阻且 有極佳的光穿透性,可讓弁阻美忠士 梁光阻曝先日”整個厚度都可得到 -句的曝光劑4 ’有助於獲得極佳的垂直側壁結構, 準確的控制結構之橫向幾何尺寸。 配合參看第十一圖所示’本發明利用s" 的製程主要包括: 、光阻 晶圓前處理、光阻塗佈與靜置、軟烤、曝光 烘烤、顯影、清洗及旋乾等步驟。 *後 晶圓的清洗是為了提高製程的可#度 置是將SU-8在晶圓上旋開至所需的厚度,軟烤靜 光阻由液態轉為固態並增加附著性1光是利用^光= 13 1303121 SU-8產生鍵結構,曝德姥I表 彳、便烤疋為了加強鏈結構,而顯影是為 了將未曝光之光阻經由中和反库 洗並旋乾。 矛反應去除’取後便可將晶圓清 配合參看第十二圖所示’本發明利用az p462〇厚膜 光阻的製程主要包括·· 、 晶圓前處理、光阻塗佈、歛 旋乾等步驟。 軟烤、曝光、顯影、清洗及 晶圓的清洗是為了提高製程的可靠度,光阻塗佈是將 由二:在晶圓上旋開至所需的厚度,軟烤是為了讓光阻 由液悲轉為固態並增加附著性,曝光是利用肝光讓 AZP侧結構解離,而顯影是為了料光之光阻 中和反應去除,最後便可將晶圓清洗並旋乾。—— 微結構電鑄技術: 2電鑄原理是電㈣理的延伸,是以在導電種子層上 利用微影技術製作出的SU-8央幻p从·Λ & & π Μ 8先刻杈作為陰極,將欲鍍全 =作:陽極,並浸於含欲鑛金屬離子的電鑛液甲,便可: 光刻模中沈積出欲鑄的金屬开彡 ^ 屯狀’當電解液受外在電麼作 铲:’ 3液中的金屬陽離子向陰極移動’還原後鍍於被 ㈣極的㈣金屬則溶解於電解Μ,保持 中金屬離子的濃度。 明,上述結構特徵、技術内容及製程之詳細說 月,可〉月楚看出本發明設計特點在於: 長供-種「結合渦流感測器的微型磁阻馬達及”迕 方法」’利用厚膜光阻微影製程、微電鑄技術舆犧牲層技 1303121 作為馬達定子及轉子結構,達到體積小、才冓造簡單、 微小的步級量優點,並且結合渦流感 t間早 ^ , 軸承於微型磁 p馬達疋子上,此渦流感測器可量測轉子位 -u ^ ^ 馬違的轉 速及轉向,利用此一製程整合技術所製造的馬達,亦可以 整合驅動電路及閉迴路控制於同一晶片, j %炅廣泛的應 用於光電產品、醫療器材、微型幫浦、精密機械等領域。 , 【圖式簡單說明】 第一圖:本發明第一種實施例結掮;立體分解圖。 • 第二圖··本發明在定子的盤體周緣設置數個齒極,以 及在盤體各齒極間設置渦流感測器的局部放 大示意圖。 第二圖:本發明第一種實施例結構的立體外觀圖。 第四圖:本發明第一種實施例結構的上視圖。 第五圖:第四圖的5 一 5剖視圖。 第六圖··本發明第二種實施例結構立體分解圖。 第七圖:本發明第二種實施例結構的立體外觀圖。 _ 第八圖··本發明第二種實施例結構的上視圖。 第九圖·第八圖的9 - 9剖視圖。 第十圖:本發明製造定子與轉子的微結構釋放示意 圖。 第十一圖:本發明利用厚膜光阻SU-8製程步驟示意 圖。 第十一圖·本發明利用厚膜光阻AZ P4620製程步驟 示意圖。 第十三圖··本發明轉子製程流程圖。 15 1303121 十 四 圖 :本發明單層線圈之定子製程流程圖 第十五圖 :本發明雙層線圈之定子製程流程圖 第十六圖 :本發明雙層線圈之定子製程流程圖 【主要元件符號說明】 ( 1 0 ) 導磁基座 ( 1 1 ) 導磁柱 ( 1 2 ) 線圈 ( 2 0 ) 定子 ( 2 1 ) 盤體 ( 2 2 ) 齒極· ( 2 3 ) 滿流感測器 ( 2 4 ) 定子 ( 2 5 ) 盤體 ( 2 6 ) 齒極 ( 2 7 ) 凹槽 ( 2 8 ) 軸承 ( 2 9 ) 渦流感測器 ( 3 0 ) 軸承 ( 4 〇 ) 轉子 ( 4 1 ) 齒極 ( 4 2 ) 穿孔 ( 5 0 ) 基底 ( 5 1 ) 犧牲層 ( 5 2 ) 結構層 ( 6 0 ) 碎晶片 ( 6 1 ) 犧牲層 ( 6 2 ) 銅 ( 6 3 ) SU-8結構 ( 6 4 ) AZ P4620 光阻 ( 6 5 ) 電缚導磁結構 ( 7 0 ) 碎晶片 ( 7 1 ) 犧牲層 ( 7 2 ) 種子層 ( 7 3 ) AZ P4620 光阻 ( 7 4 ) 線圈銅 ( 7 5 ) SU-8結構 ( 7 6 ) SU-8結構 ( 7 7 ) 鎳鐵 ( 8 0 ) 矽晶片 ( 8 1 ) 犧牲層 ( 8 2 ) 種子層 ( 8 3 ) AZ P4620 光阻 ( 8 4 ) 第一層渦流線圈銅 ( 8 5 ) PI 7320光阻 ( 8 6 ) 種子層 (8 7 ) AZ P4620 光阻 16 1303121 (8 8 )第二層渦流感測器線圈銅 (8 9 ) SU-8 結構 (9 0 ) SU-8 結構 (9 1 )鎳鐵Professor Guckel of Wisconsin University and others first used the x-ray lithography and electroforming process to fabricate a nickel-structured planar reluctance motor with a motor stator and rotor thickness of 1〇〇# m and an aspect ratio of 20, of which the motor rotor The stator is fabricated in different processes, and the rotor is assembled on the stator bearing. The -X-ray lithography technology can produce high aspect ratio and sub-micron air gaps and bearing clearances to reduce leakage. Increasing the efficiency of the motor, the windings are made of a wire diameter of about 30/ζπι copper wire, and are manually wound with a microscope. • In 1993, a three-phase variable reluctance motor composed of a planar excitation coil structure was again proposed. And the light diode is used as the feedback control of the motor position and speed. 1 993, Wagner et al. use thick film photoresist lithography and micro-electroforming technology to make a planar excitation coil on a germanium wafer, using a permanent magnet as the motor rotor, and the magnetic field generated by the planar coil after being excited by current. The 夂久兹铁 interaction causes the permanent magnet to be forced to rotate or move and measure the displacement and movement of the movable body using a Muir sensor, which is a cylindrical permanent magnet with a diameter of 1 mm and a height of Q75 mm. When the excitation current is 0.5A, the resulting torque & 116nNm is calculated and the rotational speed can reach 200 rpm. ☆At present, the motors used in small portable or precision instruments are permanent magnet DC motors whose minimum diameter is about 5 mm, and the miniaturization is faced with permanent magnet processing, windings and external sensors such as (Hall sensors). Difficulties in component fabrication and assembly increase motor manufacturing difficulties and increase motor costs. As is known, the reluctance motor is bulky, the coil is wound on the stator structure, and it is difficult to miniaturize it, and an additional encoder is required, which increases the volume and price of the 6 1303121, and the stamping of the rotor and the stator. The sheets are stacked, and the precision error is large, and it is difficult to achieve miniaturization and miniaturization. SUMMARY OF THE INVENTION It is an object of the present invention to provide a "microreluctance motor incorporating a vortex ray detector" which utilizes a thick film photoresist lithography process, a micro-electricity technique and a sacrificial layer technique to fabricate a motor stator and rotor. The vortex flu detector and the bearing and the micro reluctance motor are combined in the same process to achieve low cost, miniaturization and high precision. In order to achieve the structural features and technical contents of the above object, the present invention "a miniature reluctance motor incorporating a vortex ray detector" includes a magnetically permeable base; the magnetic susceptor has a plurality of magnetically permeable columns, and the surrounding arrangement is fixed to the guide On the magnetic base, a coil is arranged in the axial direction of each of the magnetic columns; a stator having a disk body and combining a bearing, and a plurality of tooth tips are disposed on the periphery of the disk body to be disposed between the teeth of the disk body The rotor is provided with a plurality of tooth tips at its circumference, and a through hole is provided in the rotor for coupling with the bearing. In addition, the present invention relates to the manufacture of a miniature reluctance motor incorporating a vortex ray detector, a π thick film photoresist u-shirt process, a micro-electro-casting technique, and a sacrificial layer technology κ 丁 'gas-making motor stator and Hanzi 纟士婳, The ventilator and the bearing are mounted on the stator of the micro-reluctance motor. [Embodiment] The first practical cooperation of the present invention is shown in the first to fifth figures, and the structure of the embodiment , including: 7 1303121 magnetic base (lo); several magnetic columns (1 1 ), the surrounding arrangement is fixed on the magnetic base (work 0), in the axial direction of each magnetic column (1 1) Winding coil (1 2 ) · a stator (20) having a disk body (21), a plurality of tooth tips (2 2 ) disposed on the periphery of the disk body (2 1 ), and teeth on the disk body (2 1 ) A vortex finder (2 3 ) is disposed between the poles (2 2 ); a bearing (30) is positioned in the disk body (2 1 ); a rotor (40) is provided with a plurality of tooth tips on the periphery thereof (々) I), a perforation (4 2 ) is arranged in the rotor (40) to be combined with the bearing (3 〇). The above-mentioned magnetic base (1 〇) can be a square or circular orphaned disk. Device (2 3) is to use the coil with alternating current to generate eddy current and induced magnetic field inside the conductor, and detect the rotor (40) rotation signal by voltage change. Referring to the sixth to ninth diagrams, it is the second invention of the present invention. The structure of the embodiment comprises: a magnetic conductive base (1 〇); a plurality of magnetic conductive columns (1 1 ), and the surrounding arrangement is fixed on the magnetic conductive base (丄〇) on each magnetic conductive column (1 1 ) axial winding (1 2 ) · stator (24), which has a disk of itr? ^ several teeth (2 6 ) are placed on the periphery of the disk body (2 5 ), in the disk body (9 r^ η / 仏 2 2) A vortex flu detector (2 9 ) is arranged between each tooth pole (2 6 ); a bearing (28) is positioned in the disk body (25); a rotor (4) 0), a plurality of tooth tips (4 1 ) are arranged around the circumference, and a perforation (4 2 ) is provided in the rotor (40) to be combined with the bearing (28). 8 1303121 Disk body (2 5 ), 'bearing ( 2 8) The stator (24) is disposed on the disk body, and has a (2 5 ) top end provided with a groove (27) in the groove (27). The full influenza detector (2 9 ) can be molded on the bottom of the stator disc (2 5 ) The invention designs and manufactures a vortex flu detector (2 3 ) (2, a planar coil to cooperate with a miniature reluctance motor, and has a small size, a vortex flu detector (2 3 ) ( 2 9 ) It must be miniaturized to measure the rotor (* 〇) rotation signal 'so 'must be integrated with the micro motor - the following is the motor rotor and stator process steps of the invention: The clothing king rotor rotor micromachining process is to use thick film The photoresist and micro-electro-casting process are combined with the sacrificial layer removal technology to separate the rotor component from the substrate, including: providing a sacrificial layer and setting the seed layer during electroforming by coating technology, and performing a thick film photoresist lithography Process, fabricating microstructured templates, defining electroforming regions, electroforming magnetically permeable materials, removing sacrificial layers, and electroforming seed layers using AZp462 〇 photoresist, releasing the structure' process flow chart as shown in Figure 13, the process Said: The following: (1) 矽曰曰 ( (6 〇) after washing, coated with polyamido, the thickness is about 叩, as a sacrificial layer (61). (2) Sputtered copper (6 2 ), as a seed layer during electroforming, with a thickness of 1 〇〇〇 A. (3) SU-8 structure (6 3 ) lithography process, thickness 2 〇〇 _. (4) Define the electroformed area using AZ P4620 photoresist (6 4 ). (5) Electroformed magnetic conductive structure (6 5 ). (6) The sacrificial layer (6 1 ), the seed layer (6 2 ) and the AZ p lion photoresist (6 4 ) are removed to release the structure. 9 1303121 The motor stator structure of the present invention is fabricated in a similar manner to the rotor, but the thirst flow senses that the coil is broken into the S U-8 structure. The planar coil designed by the invention can be a single-layer or double-layer planar coil with a line width of 13/zm and a line spacing. To compensate for the dimensional error caused by the positive thick film photoresist, the planar coil mask is designed. The line width is 10/zm, the line spacing is 15/zm, the coil is 7 turns, and if it is double layer, there are 14 turns, and the coil area is about 500μηηχ500μιη. • The method of making the tweezers is to first perform the vortex ray detector planar coil ΑΖ-Ρ 4620 photoresist process. After the sensor coil is completed, the SU-8 integrated bearing process and the magnetic material electroforming process are finally completed, and finally the stator structure is released. The Vortex _ Influenza detector can be written in single or double layer design, and the bottom is a single layer and double layer coil stator process. The single-layer coil tweezing process flow chart is shown in Figure 14. The process description is as follows: (1) The evening sun film (70) is coated with ρ〇1 yii de as a sacrificial layer (7 l) 〇 (2) money Tl, as a seed layer during electroforming (7 2 ), the thickness is looo people. ♦ (3) Order AZ P4620 photoresist (7 3 ) lithography process as a sensor coil photoresist electroforming template. (4) Coil steel f 7 /1, + ^, ^ wide 4) electroformed and removed az P4620 photoresist (7 3). (5) Advancing the first layer of SU-8 structure (7 5 ) lithography process to produce magnetically conductive material _ photoresist template and stator structure. (6) Into the first layer of su~8 structure (7 6) lithography process, to produce a magnetically conductive material electroformed photoresist template, bearing and stator structure. (7) Magnetically conductive material nickel-iron (7 7 ) electroforming. 1303121 (8) Remove the sacrificial layer structure. (1) and electroforming seed layer (72), releasing the stator development ^ (5) The first layer su-8 is only exposed, and is not exposed to the first layer SU-8 of Putian. Double-layer coil stator ώ Α ^ ^ ^ 卞 version of the machine private map, can be matched with the dream of the fifteenth figure and the first, figure. The process description is as follows: (1) Shi Xi wafer fQn, _* ) ^ After washing, apply Polyimide as a sacrificial layer (8 1 ) 〇 (2) The old key 丨 丨 ' as electroforming ^ Γ〇Λ ^ y The diameter 卞膺 < y 2 ), the thickness is 1 000 a 〇 U) AZ P4620 # 13⁄4 r 〇〇, first resistance (8 3 ) lithography process as the first layer of vortex detector coil resistive electroforming template. (4) The first layer of thirsty coil steel (8 4 ) thunder shovel, 4 ~ I, sub-removal AZ P4620 photoresist (8 3 ) 〇 (5) coated insulation PI 7320 photoresist (" g, two Especially resistant (8 5 ), and lithography process - and "coil connected plug photoresist electroforming template. (6) Double-layer coil connection plug steel electroforming (7) for insulation layer Ρ 7230 photoresist "β c, heart,, ..r ( 8 5 ) birth process, as a magnetically permeable material resistive electroforming template. $ (8 ) 贱 money τ i, as the seed of the second layer of the layer coil electroforming Layer (8 thickness is 1 000A. ; (9) Perform W0 photoresist (δ7) lithography process as the second shore ^ sensor coil copper (8 8) photoresist electroforming template. (10) Second layer eddy current coil copper Electroforming 掣7)., Sub-removal ΑΖΡ 4620 photoresist (8 (11) Etching the second layer of electroforming seed layer 丫 layer (8 6 ) Tl 'avoid the second layer eddy current 1303121 coil short circuit. (12) Conduct the first layer s"Structure (8 9) lithography process, making electroformed photoresist template and stator structure of magnetic conductive material. (13) Performing a second layer of su, 8 structure (9 〇) lithography process to produce magnetic conductive materials Cast photoresist (14) Electromagnetic material ferronickel (9 1 ) electroformed. • (15) Remove the sacrificial layer and electroformed seed layer to release the stator structure. • The first layer of spear (12) su - 8 is only exposed, and there is no display ~, and when the second layer su ~ 8 exposure, and then developed together. _ where: Sacrificial Layer O: the stator (2 〇) (2 4 ) and the rotor of the present invention (4 〇) is made by thick film photoresist and micro-electro-casting process, because the motor stator (2 〇) ( 2 4 ) human rotor (4 〇) needs to be a freely movable microstructure, so it must be sacrificed The layer technology releases the structure in a money-like manner, and in the microelectromechanical process, a suspended movable microstructure is fabricated, which can be used in conjunction with the reference to the tenth figure, which utilizes the element structure layer (52) and the sacrificial layer (5). Selective Etching, which removes the sacrificial layer (5 j ) leaving the structural layer (5 2 ). This process is called structural release, and the k-etching method must be Isotropic etching (叩丨., so that undercuts can be caused at the structural layer (5 2 ) or The underetching phenomenon smoothly separates the structural layer (52) from the substrate (50F). Electrode seed layer: Titanium-bismuth ideal electroforming seed layer and sacrificial layer material, due to titanium For Polyinude substrate, SU-8 photoresist and nickel structure have good adhesion and conductivity, and the remaining engraving will not damage the photoresist and nickel-iron structure. Therefore, the process design of the present invention first vortex Influenza tester process, after the completion of the vortex flu tester, SU-8 mold making and electroforming magnetic conductive material process. The method of making the electroformed seed layer is a coating technique which can be sputtering, evaporation, film deposition or other methods for this purpose. Thick Film Resistors SU-8 and Ρ Ρ 4620 Photolithography Process: Standard UV lithography process with thick film photoresist technology enables low-cost LIGA_like process to produce high aspect ratio microstructures and 1C process The characteristics of the capacitor have attracted much attention in the fields of MEMS, microelectronics and packaging. The commonly used thick film photoresists are su_8, JSR430N, JSR611P and p〇iyimide. Among them, u photoresist has two important characteristics. It is suitable for thick film process technology. Firstly, the molecular chain length of the other -8 is short, and it is easy to be infiltrated by the solvent and strengthen the decomposition. The =SU-8 polymer can be uniformly distributed in the photoresist solution, and Forming a high concentration of the mixture, the single layer coating can reach 5 m, and secondly, S" photoresist and excellent light penetrability, which can make the whole thickness of the film can be obtained. The exposure agent 4' helps to obtain an excellent vertical sidewall structure and accurately control the lateral geometry of the structure. Referring to the eleventh figure, the process of the present invention utilizing s" mainly includes: , photoresist coating and standing Soft baking, exposure baking, development, cleaning and spin drying. * Post-wafer cleaning is to improve the process. The SU-8 is unscrewed on the wafer to the required thickness, soft baked. The static light resistance changes from liquid to solid and increases the adhesion. 1 Light is generated by ^ light = 13 1303121 SU-8. The structure is exposed, and the surface is baked. In order to strengthen the chain structure, the development is for unexposed. The photo-resistance is neutralized and neutralized by neutralization. The spear reaction is removed and the wafer can be cleaned. See the twelfth figure. The process of using the az p462 thick film photoresist of the present invention mainly includes... , wafer pre-treatment, photoresist coating, shrink-drying, etc. Soft baking, exposure, development, cleaning and wafer cleaning are to improve the reliability of the process, the photoresist coating will be two: on the wafer Unscrewed to the desired thickness, soft baking is to make the photoresist from liquid to solid and increase adhesion. Exposure is to use the liver light to dissociate the AZP side structure, and the development is to remove the photo-resistance neutralization reaction. Finally, the wafer can be cleaned and spin dried. - Microstructure electroforming technology: 2 electricity The casting principle is an extension of the electric (four) principle. It is made by using the lithography technique on the conductive seed layer to make the SU-8 phantom p from the Λ amp && π Μ 8 first as the cathode. : The anode, and immersed in the electro-mineral liquid containing the metal ions of the ore, can: deposit the metal to be cast in the photolithography mold, 屯 ' 'When the electrolyte is externally used as a shovel: ' 3 liquid The metal cation in the movement moves to the cathode. After reduction, the (four) metal plated on the (four) pole is dissolved in the electrolytic ruthenium to maintain the concentration of the medium metal ion. Ming, the above structural features, technical contents and process details can be said. It can be seen that the design features of the present invention are as follows: long supply-type "microreluctance motor combined with vortex flu detector and "迕 method"" using thick film photoresist lithography process, micro electroforming technology 舆 sacrificial layer technology 1303121 as motor stator And the rotor structure, to achieve the advantages of small size, simple construction, small step size, and combined with the vortex flu early, bearing on the micro-magnetic p motor raft, this vortex Detector can measure the rotor position - u ^ ^ Horse violation speed and steering, using this process The motors manufactured by the integrated technology can also be integrated with the drive circuit and closed loop control on the same wafer. j % is widely used in optoelectronic products, medical equipment, micro pumps, precision machinery and other fields. [Simplified description of the drawings] The first figure: the first embodiment of the present invention; the exploded view. • Fig. 2 is a partial enlarged view showing the arrangement of a plurality of tooth tips on the periphery of the disk body of the stator and a vortex ray detector between the teeth of the disk body. Second Figure: A perspective view of the structure of a first embodiment of the present invention. Fourth Figure: A top view of the structure of the first embodiment of the present invention. Figure 5: Section 5-5 of the fourth figure. Fig. 6 is an exploded perspective view showing the structure of a second embodiment of the present invention. Figure 7 is a perspective view showing the structure of a second embodiment of the present invention. _ Fig. 8 is a top view of the structure of the second embodiment of the present invention. Figure 9 - 9 of the eighth figure. Fig. 10 is a schematic view showing the microstructure release of the stator and the rotor of the present invention. Figure 11: Schematic diagram of the process steps of the thick film photoresist SU-8 of the present invention. Fig. 11 is a schematic view showing the process steps of the thick film photoresist AZ P4620 of the present invention. Thirteenth Diagram · Flow chart of the rotor process of the present invention. 15 1303121 Figure 14: Flow chart of the stator process of the single-layer coil of the present invention. Figure 15: Flow chart of the stator process of the double-layer coil of the present invention. Figure 16: Flow chart of the stator process of the double-layer coil of the present invention [main component symbol Description] ( 1 0 ) Magnetic base ( 1 1 ) Magnetic column ( 1 2 ) Coil ( 2 0 ) Stator ( 2 1 ) Disk body ( 2 2 ) Tooth pole · ( 2 3 ) Full influenza detector ( 2 4) Stator (2 5) Disk body ( 2 6 ) Tooth pole ( 2 7 ) Groove ( 2 8 ) Bearing ( 2 9 ) Vortex flu detector ( 30 ) Bearing ( 4 〇) Rotor ( 4 1 ) Tooth pole ( 4 2 ) Perforation ( 5 0 ) Substrate ( 5 1 ) Sacrificial layer ( 5 2 ) Structure layer ( 60 ) Chip ( 6 1 ) Sacrificial layer ( 6 2 ) Copper ( 6 3 ) SU-8 structure ( 6 4 AZ P4620 photoresist ( 6 5 ) electrically bound magnetic structure ( 7 0 ) broken wafer ( 7 1 ) sacrificial layer ( 7 2 ) seed layer ( 7 3 ) AZ P4620 photoresist ( 7 4 ) coil copper ( 7 5 ) SU-8 structure (7 6 ) SU-8 structure ( 7 7 ) ferronickel ( 8 0 ) 矽 wafer ( 8 1 ) sacrificial layer ( 8 2 ) seed layer ( 8 3 ) AZ P4620 photoresist ( 8 4 ) first Layer eddy current coil copper ( 8 5 ) PI 7320 photoresist ( 8 6 ) Sub-layer (8 7) AZ P4620 photoresist 161303121 (88) a second layer of copper eddy current sensor coil (8 9) SU-8 structure (9 0) SU-8 structure (91) ferronickel
1717