1300312 九、發明說明: 【發明所屬之技術領域】 本發明係有關無線通訊之系統、裝置及方法。更具體 而言,本發明係有關可讓使用者設備能夠轉換其服務細胞 之蜂巢式無線通訊系統技術。 【先前技術】 茲將下列敘述中所使用之縮寫定義如下: DCH 專屬通道 DPDCH 專屬實體資料通道 DPCCH 專屬實體控制通道 EDCH 增強式上行鏈路專屬通道 E-DPDCH 增強式專屬實體資料通道 E-RNTI 增強式無線電網路臨時識別碼 HARQ 混合式自動重複要求 HSUPA 高速上行鏈路封包存取 IE 資訊元件 MAC-e 增強式媒體存取控制 Node B 例如,基地台等之網路節點 RNC 無線電網路控制器 RNTI 無線電網路臨時識別碼 RRC 無線電資源控制 SG 服務許可 UE 例如,行動終端機等之使用者設備 此處所關注者係為於例如附件之文件A所提及之用以 1300312 封包資料運輸之上行鏈路DCH(EDCH),文件A之名稱為第 6發行版本之3GPPTS 25.309,第三代合作伙伴計畫;類集 線電存取網路之技術說明書;增強式上行鏈路FDD ;整體 性說明書;階段2(第6發行版本)。 於HSUPA中,現今欲達到增強之做法係藉由分配一些 封包排程器之功能至Node Bs以提供較快速之叢發排程, 因此可由RNC之第3層(L3,網路層)提供非即時之運輸。 φ 驅動此做法之原理為,藉配合較快速之連結,才有可能使 上行鏈路之功率資源得以更有效率地分享於封包資料使用 者之間。舉例而言,當使用者完成封包發送時,可立即使 預定之資源讓另一個使用者所使用。此技術係希圖避免例 如當高資料速率分配給正在執行叢發之高資料速率應用程 式等之雜訊峰之變化性產生。 於目前架構中,封包排程器係位於RNC。由於,至少 一部份之頻寬限制為RNC與UE間之RRC傳訊介面使用, 導致封包排程器之功能被限制為配合即時之運輸。因此, _為適應變化性之故,封包排程器必須謹慎的配置上行鏈路 功率以考慮到由下一個排程期間之非現用使用者所產生之 影響。然而,此解決方案用於高資料速率分配及長時間釋 放定時器值時則被認為非常無效率。 使用EDCH時,大部分封包排程器之功能則轉移至 Node B,亦即,會有Node B排程器負責處理上行鏈路資源 之配置及包括控制UE之SG。1300312 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a system, apparatus and method for wireless communication. More specifically, the present invention relates to cellular wireless communication system technology that enables user equipment to convert its serving cells. [Prior Art] The abbreviations used in the following statements are defined as follows: DCH-specific channel DPDCH-specific entity data channel DPCCH-specific entity control channel EDCH Enhanced uplink-specific channel E-DPDCH Enhanced proprietary entity data channel E-RNTI enhancement Radio network temporary identification code HARQ hybrid automatic repeat request HSUPA high speed uplink packet access IE information element MAC-e enhanced media access control Node B For example, base station and other network node RNC radio network controller RNTI radio network temporary identification code RRC radio resource control SG service permission UE, for example, the user equipment of the mobile terminal, etc., is concerned with the uplink of the 1300312 packet data transportation mentioned in, for example, the attached file A. Road DCH (EDCH), file A is the 6th release version of 3GPPTS 25.309, third generation partner program; technical specification for class-collected line access network; enhanced uplink FDD; overall specification; 2 (6th release version). In HSUPA, today's enhancements are made by assigning some packet scheduler functions to Node Bs to provide faster burst scheduling, so it can be provided by Layer 3 (L3, Network Layer) of the RNC. Instant transportation. The principle of φ driving this approach is that with faster links, it is possible to make the uplink power resources more efficiently shared among the packet data users. For example, when the user completes the packet transmission, the predetermined resource can be immediately used by another user. This technique is intended to avoid variability in the distribution of noise peaks, such as when high data rates are allocated to high data rate applications that are performing bursts. In the current architecture, the packet scheduler is located at the RNC. Since at least a portion of the bandwidth is limited to the RRC communication interface between the RNC and the UE, the function of the packet scheduler is limited to match the immediate transportation. Therefore, to accommodate variability, the packet scheduler must carefully configure the uplink power to account for the impact of inactive users during the next scheduled period. However, this solution is considered to be very inefficient when used for high data rate allocation and long release timer values. When using EDCH, most of the packet scheduler functions are transferred to Node B, that is, there is a Node B scheduler responsible for handling the configuration of the uplink resources and including the SG controlling the UE.
每次當UE進入一個新細胞時,該UE接收源自RNC 1300312 且透過RRC傳訊之SG,或者源自服務中之Node B且透過 第2層(L2,資料連結層)傳訊之SG(絕對許可通道)。 然而,當UE從一個細胞移動至另一個細胞時,卻沒有 方法用以保持SG。因此使得服務之連續性變得困難而且 HSUPA之功能被限制為以保證之位元傳輸速率有效率地支 援服務。 此外,RNC可從所接收到之資料存取所預定之許可 _ 值,而且當細胞轉換時,RNC可將該預定之許可值包含於 RRC傳訊中。然而,由於SG係根據E-DPDCH到DPCCH 之最大功率比而被授與,故UE可被允許將其使用作為預定 資料,就RNC而言,此估計值係不明確且可能常有大的錯 誤。換言之,RNC係困難去估計被服務細胞所使用之SG 值,因此,於細胞轉換時RNC亦係困難去保持正確之SG 值。 【發明内容】 依本發明之示範實施例,係為一種方法,該方法包括 φ 儲存第一服務許可(SG)值以作為在第一服務細胞中使用、進 入第二服務細胞、接收源自更高一層之資訊元件、假如資 訊元件並未包含第二SG值時保持第一 SG值及假如資訊元 件包含第二SG值時將第一 SG值變更為第二SG值。 依本發明之另一示範實施例,係為一種行動終端機, 該行動終端機包括當行動終端機位於第一服務細胞中時用 以儲存第一服務許可(SG)值之記憶體、當進入第二服務細胞 時用以接收源自更高一層之資訊元件之裝置、用以測定是 1300312 否資訊元件包含第二SG值之裝置、假如資訊元件並未包含 第二SG值時用以保持第一 SG值之裝置、及假如資訊元件 包含第二SG值時用以將第一 SG值變更為第二SG值之裝 置。 · 依本發明之另一示範實施例,係為一種機器可讀之指 令程式,該程式係具體地收錄於資訊方面之媒體並且係可 由數位資料處理器所執行,用以針對於建立服務許可(SG) 執行動作,其中該動作包括儲存第一服務許可(SG)值以作為 在第一服務細胞中使用、當進入第二服務細胞時接收源自 更高一層之資訊元件、測定是否資訊元件包含第二SG值、 假如資訊元件並未包含第二SG值時保持第一 SG值及假如 資訊元件包含第二SG值時將第一 SG值變更為第’二SG值。 【實施方式】 茲參照附圖,詳細說明本發明之實施例。 依本發明之示範實施例,至少一部份係有關提供例如 於附件之文件Α所提及之用以封包資料運輸之上行鏈路 DCH(EDCH)之增強,文件A之名稱為第6發行版本之3GPP TS 25.309,第三代合作伙伴計晝;類集線電存取網路之技 術說明書;增強式上行鏈路FDD;整體性說明書;階段2(第 6發行版本),其亦為本說明書之一部分。 茲參照圖1之簡易區塊示意圖,係說明適合使用於本 發明之示範實施例之各種不同電子設備。圖1之無線網路1 包括UE 10、Node B(基地台)12、RNC 14。UE 10包括資料 處理器(DP) 10A、用以儲存程式(PROG) 10C之記憶體(MEM) 1300312 10B及用以與Node B 12進行雙向無線通訊之合適射頻(RF) 收發器10D〇Node B 12亦包括DP 12A、用以儲存PROG 12C 之MEM 12B及合適之RF收發器12D«Node B 12係經由資 料路徑13與RNC 14連接,而RNC 14亦包括DP 14A及用 以儲存 PROG 14C 之 MEM 14B。上述之 PROGs 10C、12C 及14C係被認定為包含程式指令,因此當其被組合之DP所 執行時,使得電子裝置能夠依本發明之示範實施例而運 作,而其細節將詳述如下。如圖1顯示,Uu介面係為UTRAN 與UE間之介面,而Iu係為RNC或BSC(基地台控制器)與 3G(第3代行動通訊技術)核心網路(CN)之互連點。 一般而言,依本發明各種不同實施例之UE 10可包括 例如蜂巢式行動電話、具有無線通訊功能之個人數位助理 (PDAs)、具有無線通訊功能之可攜式電腦、影像拍攝裝置(例 如,具有無線通訊功能之數位相機)、具有無線通訊功能之 遊戲裝置、具有無線通訊功能之音樂儲存與播放裝置、可 無線存取與瀏覽網際網路之網際網路裝置及具有上述功能 之混合組合之可攜式裝置或終端機。 為履行本發明之實施例,乃係可藉UE 10之DP 10A與 其他DPs、或藉硬體、或藉硬體與軟體之組合,而執行電腦 軟體。 MEMs 10B、12B及14B之類型可為適合於區域技術環 境之任何類型並且可被使用於任何適合之資料儲存技術, 諸如半導體基礎之記憶體裝置、磁性記憶體裝置與系統、 光學記憶體裝置與系統、固定式記憶體及抽取式記憶體之 9 1300312 類等。DPs 10A、12A及14A之類型可為適合於區域技術環 境之任何類型,並且可包括例如一個或多個一般用途之電 腦、特殊用途之電腦、微處理器、數位信號處理器(DSPs) 及根據多核心處理器架構之處理器之類等。 ~ 接下來將詳述本發明之示範實施例中有關當UE經歷 細胞轉換時如何測定UE之SG值。依本發明之實施例,當 從事於RRC傳訊時,在E-DPDCH中服務許可(SG)資訊元 件(IE)則變成為選擇項目,並且當SG IE未呈現時,UE 10 • 則保持SG使其相同於細胞轉換前所使用之SG。依本發明 之另一實施例,當排程E-DCH細胞資訊時,SG亦將變成 為選擇項目。 圖2之圖示說明,係源自3GPP TS 25.331之第10.3.6.99 節(如附件之文件B並且其亦為本說明書之一部分)之 E-DPDCH資訊及本發明所最關注之服務許可資訊元件(如 圖2B所示)。依本發明之示範實施例,該IE係變成為選擇 項目並且被標示為“Need”屬性之OP (代表“選擇項目”)。當 UE 10經歷EDCH服務細胞轉換時,其更高一層則與UE 10 鲁溝通以組構具有SG值之MAC-e於新細胞中使用,並且指 示UE 10是否應該使用其次要E-RNI1監視絕對許可訊息。 更具體言之,當進入新細胞時,其更高一層指示UE應該監 視主要E_RNT1或次要E-RN1TI。此處所謂之“更高一層”係 指與UE溝通之實體,例如包括Node B及RNC之類等。 茲參照圖3之流程圖,係圖示說明本發明示範實施例Each time the UE enters a new cell, the UE receives the SG originating from the RNC 1300312 and transmitting through the RRC, or the SG originating from the Node B in the service and communicating through the Layer 2 (L2, data link layer) (absolute permission aisle). However, when the UE moves from one cell to another, there is no way to maintain the SG. As a result, the continuity of the service becomes difficult and the functionality of HSUPA is limited to efficiently support the service at a guaranteed bit rate. In addition, the RNC may access the predetermined license_value from the received data, and when the cell transitions, the RNC may include the predetermined grant value in the RRC communication. However, since the SG system is granted according to the maximum power ratio of the E-DPDCH to the DPCCH, the UE can be allowed to use it as a predetermined data, and in the case of the RNC, this estimate is ambiguous and may often have a large error. . In other words, the RNC is difficult to estimate the SG value used by the serving cells, so RNC is also difficult to maintain the correct SG value at the time of cell switching. SUMMARY OF THE INVENTION According to an exemplary embodiment of the present invention, a method includes φ storing a first service grant (SG) value for use in a first serving cell, entering a second serving cell, receiving a source derived from The information element of the higher layer, if the information element does not include the second SG value, maintains the first SG value and changes the first SG value to the second SG value if the information element includes the second SG value. According to another exemplary embodiment of the present invention, a mobile terminal includes a memory for storing a first service grant (SG) value when the mobile terminal is located in the first serving cell, when entering The second serving cell is configured to receive a device derived from a higher layer of information elements, to determine whether the 1300312 information component includes a second SG value, and to maintain the first information element if the information element does not include the second SG value A device for SG value, and means for changing the first SG value to the second SG value if the information element includes the second SG value. According to another exemplary embodiment of the present invention, a machine-readable instruction program is specifically included in the information medium and is executable by a digital data processor for establishing a service license ( SG) performing an action, wherein the action comprises storing a first service grant (SG) value for use in the first serving cell, receiving an information element derived from a higher layer when entering the second serving cell, determining whether the information element comprises The second SG value is changed to the first SG value if the information element does not include the second SG value and the first SG value is maintained and the information element includes the second SG value. [Embodiment] An embodiment of the present invention will be described in detail with reference to the accompanying drawings. In accordance with an exemplary embodiment of the present invention, at least a portion is related to providing an enhancement to the uplink DCH (EDCH) for packet data transportation as mentioned in the attached document, file A being the sixth release version. 3GPP TS 25.309, 3rd Generation Partner Program; Technical Specification for Class-of-Line Access Network; Enhanced Uplink FDD; Holistic Specification; Phase 2 (Sixth Release), which is also the specification portion. Referring now to the simplified block diagram of Figure 1, various electronic devices suitable for use in the exemplary embodiments of the present invention are illustrated. The wireless network 1 of FIG. 1 includes a UE 10, a Node B (base station) 12, and an RNC 14. The UE 10 includes a data processor (DP) 10A, a memory (MEM) 1300312 10B for storing a program (PROG) 10C, and a suitable radio frequency (RF) transceiver 10D 〇 Node B for two-way wireless communication with the Node B 12 12 also includes a DP 12A, a MEM 12B for storing the PROG 12C, and a suitable RF transceiver 12D «Node B 12 connected to the RNC 14 via a data path 13, and the RNC 14 also includes a DP 14A and a MEM for storing the PROG 14C. 14B. The above-described PROGs 10C, 12C and 14C are considered to contain program instructions, so that when executed by the combined DP, the electronic device can be operated in accordance with an exemplary embodiment of the present invention, and the details thereof will be described in detail below. As shown in Figure 1, the Uu interface is the interface between UTRAN and UE, and Iu is the interconnection point between RNC or BSC (base station controller) and 3G (3rd generation mobile communication technology) core network (CN). In general, UEs 10 in accordance with various embodiments of the present invention may include, for example, cellular mobile telephones, personal digital assistants (PDAs) with wireless communication capabilities, portable computers with wireless communication capabilities, and image capture devices (eg, Digital camera with wireless communication function, game device with wireless communication function, music storage and playback device with wireless communication function, internet device with wireless access and browsing internet, and a combination of the above functions Portable device or terminal. To implement the embodiments of the present invention, the computer software can be executed by the DP 10A of the UE 10 and other DPs, or by hardware, or by a combination of hardware and software. The types of MEMs 10B, 12B, and 14B can be of any type suitable for regional technical environments and can be used in any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and System, fixed memory and removable memory 9 1300312 class. The types of DPs 10A, 12A, and 14A may be any type suitable for a regional technical environment, and may include, for example, one or more general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs), and Processors such as multi-core processor architectures, etc. ~ Next, how to determine the SG value of the UE when the UE undergoes cell transition will be detailed in an exemplary embodiment of the present invention. According to an embodiment of the present invention, when engaged in RRC communication, a Service Grant (SG) Information Element (IE) becomes a selection item in the E-DPDCH, and when the SG IE is not presented, the UE 10 • keeps the SG It is the same as the SG used before cell transformation. According to another embodiment of the invention, the SG will also become a selection item when scheduling E-DCH cell information. Figure 2 is an illustration of the E-DPDCH information from Section 10.3.6.99 of 3GPP TS 25.331 (as document B of the Annex and which is also part of this specification) and the service license information element of the most interest of the present invention. (As shown in Figure 2B). In accordance with an exemplary embodiment of the present invention, the IE becomes an OP that is selected as a selection item and is labeled "Need" attribute (representing "selection item"). When UE 10 undergoes EDCH service cell transition, its higher layer communicates with UE 10 to construct a MAC-e with SG value for use in new cells, and indicates whether UE 10 should use its secondary E-RNI1 to monitor absolute License message. More specifically, when entering a new cell, its higher layer indicates that the UE should monitor the primary E_RNT1 or the secondary E-RN1TI. The term "higher layer" as used herein refers to an entity that communicates with the UE, such as Node B and RNC. Referring to the flowchart of FIG. 3, an exemplary embodiment of the present invention is illustrated.
之操作方法。當細胞轉換時,UE 10啟動所有必須之HARQ 10 1300312 私序(步驟A)aUE 10繼續對於接收源自更高一層之傳訊是 否包含IE服務許可做出測定(步驟b)。該更高一層之傳訊 之類型包括例如RRc傳訊及經由L2資料連結層執行之傳 況之類等。假如更高一層之傳訊包含ιέ服務許可,ue 10 接文所指不之SG值並且帶著該指示之SG值進入新細胞(步 驟 C)具體 σ 之,UE 10 之 Serving—Grant 及 Primary一Grant一 Available狀態變數係設定為由更高一層所提供之數值。 # 然而’假如更高一層之傳訊並未包含IE服務許可 時’則不變更現行SG並且UE帶著與使用於舊細胞之SG 相同之SG進入新細胞(步驟d)。具體言之,UE 10繼續使 用先前儲存於 Serving—Grant 及 Primary—Grant一Available 狀 態變數之數值而運作。 不管是在那個實例(步驟C或步驟D),UE 10繼續將 Stored_Secondary_Grant 狀態變數初始化為 “Zero_Grant”。 如附件之文件C中所定義,當在最初之存取時,假如 並未呈現服務許可IE則SG可使用例如Minimiim_Grant或 春 Zero_Grant等之預設值。 文件C之名稱為3GPP TS 25.309,第三代合作伙伴計 晝;類集線電存取網路之技術說明書;媒體存取控制(MAC) 協定說明書(第6發行版本),其亦為本說明書之一部分。 另外,由於RRC控制最初之存取,因此其可隨時包含 例如相等於Minimum一Grant或Zero—Grant等之數值,以作 為服務許可IE。 依本發明之示範實施例,UE 10可於相同之Node B内 11 1300312 轉換細胞。於此範例,舊服務細胞與新服務細胞皆有於内 部分享資料之能力。此外,舊服務細胞與新服務細胞皆能 夠交換相關SG之資訊,該資訊係關於UE 10從一個、f田胞轉 換至另一個細胞時並不需要從事於變更UE 1〇之現行SG 值。 根據上述說明,本發明之實施範例係提供方法、裝置 及電腦產品,當細胞轉換時用以測定是否指定服務許可給 • UE、及UE是否使用該指定服務許可值、及當進入新細胞 時是否不使用現行SG值。 一般而言,可履行本發明之各種不同實施例於硬體或 特殊用途之電路、軟體、邏輯或其任何組合。辱例而言, 本發明之某些特點可被實施於硬體,而其他特點可被實施 於由例如控制器、微處理器或其他電腦裝置之類等所執行 之勃體或軟體。而本發明各種不同之特點可藉例如區塊示 意圖、流程圖、或其他圖示陳述之類等而詳細說明,而且 這些所詳細說明之裝置、系統、技術、或方法可被實施於 *例如硬體、軟體、韌體、特殊用途之電路或邏輯、一般用 途之硬體或控制器或其他電腦裝置、或其某些任何組合之 類等。 、σ 本發明之實施例可實踐於各種不同例如積體電路模組 等之組件。該積體電路之設計係大部分藉高自 庠' 之。可利用複雜及功能強大之軟體工具將邏輯層級之設^ 轉換為半導體電路之設計以備於半導體基體上蝕刻及塑 造。 12 1300312 由例如 Synopsys Inc·,of Mountain View,California 及 Cadence Design,San Jose,California 提供之程式係使用 已建立之合適規則設計及預儲設計模組之程式庫,其可於 半導體晶片上自動路由導體並找出組件。一旦完成半導體 電路之設計,依標準電子袼式(例如,Opus、GDSII之類等) 之設計結果可被傳輸至半導體製造廠或“fab”製造。 本發明已依圖示及實例說明於上,但是在不背離本發 • 明之精神及申請專利範圍界定之範圍内仍可作諸多變更及 修飾。 此外,本發明各種不同實施例之某些特點可不須與其 他特點一起使用即可取得優勢。就前述說明而論,其應該 僅為本發明示範實施例之原理與技術之說明,而本發明並 未侷限於這些示範實施例。 【圖式簡單說明】 圖1為適合使用於本發明之示範實施例之各種不同電 • 子設備之簡易區塊示意圖; 共同被稱為圖2之圖2A〜2B,為圖示說明源自3GPPTS 25.331 之第 1〇·3·6·99 節之 E-DPDCH 資訊;及 圖3為說明依本發明之示範實施例之在細胞轉換時UE 運作之邏輯流程示意圖。 【主要元件符號說明】 10 使用者設備 10Α、12Α、14Α 資料處理器 13 1300312 IOB、 12B、14B 記憶體 IOC、 12C、14C 程式 IOD、 12D、14D 射頻收發器 12 網路節點 13 資料路徑 14 無線電網路控制器 14The method of operation. When the cell is switched, the UE 10 initiates all necessary HARQ 10 1300312 private sequences (step A) aUE 10 continues to make a determination as to whether the transmission originating from the higher layer includes the IE service grant (step b). The type of the higher layer communication includes, for example, RRc communication and transmission performed via the L2 data link layer. If the higher layer of the message contains the ιέ service license, the SG value indicated by the ue 10 message and enter the new cell with the SG value of the indication (step C), σ, UE 10's Serving-Grant and Primary-Grant An Available state variable is set to the value provided by the higher layer. # However, if the higher layer of the message does not contain the IE service license, then the current SG is not changed and the UE enters the new cell with the same SG as the SG used for the old cell (step d). Specifically, UE 10 continues to operate using values previously stored in the Serving-Grant and Primary-Grant-Available state variables. Regardless of the instance (step C or step D), the UE 10 continues to initialize the Stored_Secondary_Grant state variable to "Zero_Grant". As defined in the attached document C, the SG may use a preset value such as Minimiim_Grant or Spring Zero_Grant if the service permission IE is not present at the time of initial access. The name of the document C is 3GPP TS 25.309, the third generation partner program; the technical specification of the class line access network; the media access control (MAC) agreement specification (the sixth release), which is also the specification portion. In addition, since the RRC controls the initial access, it can include, for example, a value equivalent to Minimum-Grant or Zero-Grant, etc., as a Service License IE. In accordance with an exemplary embodiment of the present invention, UE 10 may convert cells within the same Node B 11 1300312. In this example, both the old service cell and the new service cell have the ability to share information internally. In addition, both the old serving cell and the new serving cell are able to exchange information about the SG, which does not need to be engaged in changing the current SG value of the UE 1 when the UE 10 switches from one cell to another cell. In accordance with the above description, an embodiment of the present invention provides a method, apparatus, and computer product for determining whether a service license is specified to a UE when a cell is switched, and whether the UE uses the specified service license value, and when entering a new cell. Do not use the current SG value. In general, the various embodiments of the invention can be implemented in a hardware or special purpose circuit, software, logic or any combination thereof. In the awkward, certain features of the invention may be implemented in hardware, while other features may be implemented in a body or software implemented by, for example, a controller, microprocessor or other computer device. The various features of the invention may be described in detail, for example, by block diagrams, flow diagrams, or other illustrative representations and the like, and the devices, systems, techniques, or methods described in detail can be Body, software, firmware, special purpose circuits or logic, general purpose hardware or controllers or other computer devices, or any combination thereof, and the like. , σ Embodiments of the present invention can be practiced in various components such as integrated circuit modules. The design of the integrated circuit is largely self-contained. Complex and powerful software tools can be used to convert logic levels into semiconductor circuits designed for etching and molding on semiconductor substrates. 12 1300312 Programs provided by, for example, Synopsys Inc., of Mountain View, California and Cadence Design, San Jose, California, use a well-established library of suitable rule design and pre-storage design modules that can be automatically routed on a semiconductor wafer. Conduct the conductor and find the component. Once the design of the semiconductor circuit is completed, the design results in accordance with standard electronic sputum (eg, Opus, GDSII, etc.) can be transmitted to a semiconductor fabrication facility or "fab" manufacturing. The present invention has been described with reference to the drawings and examples, and many variations and modifications may be made without departing from the spirit and scope of the invention. Moreover, some of the features of various embodiments of the present invention may be advantageous without the use of other features. In view of the foregoing description, it should be understood that the invention is not limited to the exemplary embodiments. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified block diagram of various electrical devices suitable for use in an exemplary embodiment of the present invention; collectively referred to as FIGS. 2A-2B of FIG. 2, for illustration from 3GPP TS The E-DPDCH information of Section 1 , Section 3, Section 6.331 of Figure 331; and Figure 3 is a logic flow diagram illustrating the operation of the UE during cell switching in accordance with an exemplary embodiment of the present invention. [Main component symbol description] 10 User equipment 10Α, 12Α, 14Α Data processor 13 1300312 IOB, 12B, 14B Memory IOC, 12C, 14C Program IOD, 12D, 14D RF transceiver 12 Network node 13 Data path 14 Radio Network controller 14