[go: up one dir, main page]

TWI296458B - - Google Patents

Download PDF

Info

Publication number
TWI296458B
TWI296458B TW94120174A TW94120174A TWI296458B TW I296458 B TWI296458 B TW I296458B TW 94120174 A TW94120174 A TW 94120174A TW 94120174 A TW94120174 A TW 94120174A TW I296458 B TWI296458 B TW I296458B
Authority
TW
Taiwan
Prior art keywords
charging
current
value
charging current
phase
Prior art date
Application number
TW94120174A
Other languages
Chinese (zh)
Other versions
TW200701590A (en
Inventor
Hardei Wan
Original Assignee
E Ten Information Sys Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ten Information Sys Co Ltd filed Critical E Ten Information Sys Co Ltd
Priority to TW094120174A priority Critical patent/TW200701590A/en
Publication of TW200701590A publication Critical patent/TW200701590A/en
Application granted granted Critical
Publication of TWI296458B publication Critical patent/TWI296458B/zh

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

1296458 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種充電器,尤指一種脈波式充電之充 電器及其充電方法。 【先前技術】1296458 IX. Description of the Invention: [Technical Field] The present invention relates to a charger, and more particularly to a pulse wave charging charger and a charging method thereof. [Prior Art]

10 15 20 圖1顯示傳統充電器之充電過程示意圖,其係顯示充電 過程之電壓曲線丨丨與電流曲線12。一般來說,在充電過程 中主要分兩個階段:定電流階段(Constant Current,CC ) 舁疋电壓階段(Constant Voltage,CV )。 為了能達成快速充電,目前的充電器在一開始對電池 進行充電時,係在極短暫的時間内便將充電電流拉升到大 =流,繼而進行定電流充電。如圖丨所示,一開始便使用大 Y來進行充電。然而基於電池本身的特性,在剛開始充 ^ 所此充電的容量比較小,若一開始便採用大電流充 電,,則有可能會使得電池内的化學反應材料受損,而產生 :、、循曩甚至會產生爆炸。是故,目前時常耳聞電池在進 行充電時發生爆炸。 此外,目前有些公司的充電器在一開始進行充電時, 會先進行一預先充電階段(Pre_charge)。充電器於此階段 係會判斷—參考電流(Iref)的大小,若參考電流大於一預 設電流=(例如:^A),則緩慢上升充電電流而不會馬 進入定電流充電階段。然而,有一些情況會使得充電器 發生誤判,例如:電池之金屬接片生鏽,或者電池與充; 5 1296458 器接觸不良,這些情形將造成充電器所_之參考電流转 小因接片生鏽或接觸不良使得内阻變大)。因此,參二 電流有可能因上述情形而小於預設電流值,使得充電二立 即跳到定電流充電階段。是&10 15 20 Figure 1 shows a schematic diagram of the charging process of a conventional charger showing the voltage curve 电流 and current curve 12 of the charging process. Generally speaking, there are two main stages in the charging process: Constant Current (CC) and Constant Voltage (CV). In order to achieve fast charging, the current charger, when charging the battery at the beginning, pulls the charging current to a large current in a very short period of time, followed by constant current charging. As shown in Figure ,, the large Y is used for charging at the beginning. However, based on the characteristics of the battery itself, the capacity for charging at the beginning of charging is relatively small. If a large current is charged at the beginning, the chemical reaction material in the battery may be damaged, resulting in: You can even explode. Therefore, it is often heard that the battery explodes while charging. In addition, some companies' chargers currently perform a pre-charge phase (Pre_charge) at the beginning of charging. At this stage, the charger will judge the size of the reference current (Iref). If the reference current is greater than a preset current = (for example, ^A), the charging current will rise slowly without entering the constant current charging phase. However, there are some cases that may cause the charger to be misjudged, for example, the metal tab of the battery is rusted, or the battery and the charger; 5 1296458 device is in poor contact, these conditions will cause the reference current of the charger to be small due to the chip Rust or poor contact makes the internal resistance larger). Therefore, the reference current may be less than the preset current value due to the above situation, so that the charging diode immediately jumps to the constant current charging phase. Yes &

At ^丄 疋故坆—類的充電器仍然有可 缺成電池之壽命變短或發生爆炸。在此值得注意的,目 前此類充電器在誤判後,便逕行進入定電流充電階段,而 不會再返回預先充電階段,所以會對電池造成傷害。 【發明内容】 1〇 纟發明之目的係在提供—種充電器及其充電方法,俾 能不破壞電池使用壽命且達成快速充電。 △本發明之目的係在提供一種充電器及其充電方法,俾 能避免電池於充電時發生爆炸。 依據本發明之一特色,係提供一種充電器之充電方 15 $,以對一電池進行充電,該充電方法包括下述步驟:放 、电步驟、充電步驟以及修正步驟,其中於放電步驟中,係 _對電池進行脈波式放電;於充電步驟中,係以充電電流對 電池開始充電,其中充電電流為一脈波電流,且該充電電 流隨時間增長而變大;以及於修正步驟中,於充電步驟期 20間,依據預設之時間間隔值去取樣目前的充電電流值,並 且比對目丽的充電電流值與目前所在充電階段之預設充電 電流進階值,若目前充電電流值大於預設充電電流進階 • 值,則跳至一預設之充電階段進行充電;反之,則在目前 所在充電階段繼續充電。 6 1296458At ^丄 疋 坆 坆 坆 坆 类 类 类 类 类 类 类 类 类 类 类 充电器 充电器 充电器 充电器 充电器 充电器 充电器 充电器It is worth noting here that such a charger will enter the constant current charging phase after the misjudgment, and will not return to the pre-charging phase, thus causing damage to the battery. SUMMARY OF THE INVENTION The purpose of the invention is to provide a charger and a charging method thereof, which can not deteriorate the battery life and achieve rapid charging. The object of the present invention is to provide a charger and a charging method thereof, which can prevent the battery from exploding during charging. According to a feature of the present invention, a charging side 15 $ of a charger is provided for charging a battery, the charging method comprising the steps of: discharging, discharging, charging, and correcting steps, wherein in the discharging step, System_pulse discharge of the battery; in the charging step, charging the battery starts with a charging current, wherein the charging current is a pulse current, and the charging current becomes larger as time increases; and in the correcting step, During the charging step period 20, the current charging current value is sampled according to the preset time interval value, and the charging current value is compared with the preset charging current advanced value of the current charging phase, if the current charging current value is present. If it is greater than the preset charging current advanced value, it will jump to a preset charging phase for charging; otherwise, it will continue charging during the current charging phase. 6 1296458

10 15 /據本I月之另-特色,係提供_種充電器,用以對 一電池進行充電,該充電器包括:充電模組、放電模組、 脈波控制模組、記憶模組、比較模組及主要控制模組。其 中’脈波控制模組分別與充電模組及放電模組電性連接; 記憶模組分別與充電模組及比較模組電性連接,且儲存有 複數個充電階段所預設之充流初始值與進階值、複數 個充電電流㈣值、—取#之時間間隔值;比較模組係與 該記憶模組電性連接;以及主要控制模組分別與電源輸入 杈組、充電模組、放電模組、比較模組、記憶模組及脈波 控制模組電性連接。此外,主要控制模組對電池充電前係 控制脈波控制模組與放電模組,以對f池進行脈波式放 電,繼而主要控制模組控制記憶模組輸出其中一充電電流 控制值至充電模組,並控制脈波控制模組與充電模組,依 據充電電流控制值的增加而持續增加其充電電流對電池進 行充電,直至完成充電為止;且於充電期間,主要控制模 組會依據預設之時間間隔值去取樣目前的充電電流值,並 傳送給比較模組,比較模組會比對目前的充電電流值與目 則所在充電階段之預設充電電流進階值,若目前充電電流 值大於該預設充電電流進階值,則跳至預設之克電階段進 行充電,反之’則在目前所在充電階段繼續充電。 20 【實施方式】 本毛明在對電池充電前’係先進行脈波式放電至一預 設值’繼而開始對電池進行脈波式充電,於充電期間,充 7 1296458 電器會不斷地判斷充電電流是否異常,若充電電流過大, 則跳至相對應充電階段繼續進行充電,亦即在某些情況 下,充電電流可能被調整成最小充電電流,在另一些情況 下,充電電流可能被調整成比較小的充電電流,俾能在不 * 5破壞電池使用壽命情況下,達成快速充電之功效。 • 圖2顯示本發明充電器較佳實施例之功能方塊示意 圖。充電器2係包括電源輸入處理模組21、比較模組22、記 憶模組23、脈波控制模組24、充電模組25、放電模組26以 ® 及主要控制模組27,用以對電池28進行充電,其中記憶模 10 組23儲存有複數充電電流控制值、放電階段之預設值、複 數充電階段所預设之充電電流之初始值與進階值、充電電 • 流上限值及一取樣之時間間隔值。於本實施例中,電池28 可為錄氫電池、鋰離子電池、鎳鉻電池、鋰聚合物電池或 其他等效之充電電池。 15 上述電源輸入處理模組21之輸入端為交流(AC )電 源’以將所輸入之較高的交流電壓(例如:1 i 〇 V或220 v ) _ 轉換成較低的直流電壓,繼而將其所轉換之較低的直流電 壓提供給充電模組25。上述之比較模組22於充電時,係用 來比較目前的充電電流值與記憶模組23内儲存的各充電階 20 段之預設充電電流進階值、充電電流上限值之間是否異 常,以產生一比較結果,俾供主要控制模組27能依據該比 - 較結果來控制A憶模組23 ’以提供相對應之充電電流控制 ^ 值給充電模組25,俾能調整充電電流。 8 1296458 圖3顯示本發明充電器2較佳實施例之記憶模組23的示 意圖,於本實施例中,記憶模組23中的一部份空間儲存有 複數筆充電電流控制值,例如:於位址00000000儲存有充 電電流控制值00000001 ;於位址00001000儲存有充電電流 5 控制值00000010 ;以及於位址00002000儲存有充電電流控 制值00000011。上述之該等充電電流控制值係能控制充電 模組25之充電電流的大小。於本實施例中,記憶模組23為 唯讀記憶體(ROM)。在其他實施例中,記憶模組23可為 Ϊ 非揮發性記憶體(Non-Volatile Memory )、隨機存取記憶 10 體(RAM)、快閃記憶體(Flash)等儲存記憶體或其他適 當型式儲存媒體。 圖4顯示本發明充電器2較佳實施例之充電模組25的部 份内部電路示意圖,其係顯示複數個提供充電電流單元401, 402, 403, 404, 405, 406, 407, 408,每一個提供充電電流單 15 元401-408内有一電阻,且該等電阻值係不同,使得每一提 供充電電流單元401-408能提供不同的充電電流,例如:提 | 供充電電流早元4 01提供1C的充電電流’在此所謂之1C充電 電流係指被充電電池之額定電流,例如:手機之電池的電 流為7 0 0 m A ’則提供充電電流早元4 01提供之1C充電電流即 20 為700mA。相類似的,提供充電電流單元403提供0.5C的充 電電流,即350mA ;提供充電電流單元406提供0.1C的充電 - 電流,即70mA。 而上述提供充電電流單元401,402, 403, 404, 405, 406, 407,408會依據記憶模組23所提供之充電電流控制值來對 9 1296458 10 15 20 首先’將電池28置人充電座(圖未示)後,係開始對電池 28進行脈波式放電至一預設值(步驟S5〇5),其中该放带 階段之預設值係儲存於記憶模組23内。由於習知的充電器 在充電前不會對電池放電,因此在充電時將不夠紮實电2 故在使用時有可能會造成電量突然劇減,例如··手機顯= 之電池的電量有可能突然由三格變成一格。 μ 雖然,目前有些充電器配置有放電按鈕,但是其係在 放電按鈕按壓後對電池28連續性放電,事實上在放開放電 按鈕後,電池之殘餘電量仍未被確實的被完全放電。因此, ^實施例透過脈波式放電來確實放電至一預設值。在一些 實施例中,為了避免電池完全無法使用,所以預設值可能 為在另一些實施例中,由於充電器可能設置有其他 =棱裳置,因此預設值可能為〇v。當然,本發明可實施於 各種充電電池種類之充電器,因此對於不同種類之充電 W 5 ’充電器所放電之預設值亦不相同。 ♦ 匕外’脈波式放電係指複數個離散放電電流形成一放 甩週期’例如有三個依序的放電週期,第一放電週期包括 Γ (idll, idl2, idl3, idl4) dU Idl2>Idl3>Idl4;第二放電週期包括有四個離散的放電電 流… d21, Id22, Id23, Id24 則 Idll>Idl2>Id21 ’ 且 d22 Id23>Id24 ,弟二放電週期包括有四個離散的放電電 流(T- _ d31, Id32? Id33, Id3410 15 / According to the other features of this month, a charger is provided for charging a battery. The charger includes: a charging module, a discharge module, a pulse wave control module, a memory module, Comparison module and main control module. The pulse wave control module is electrically connected to the charging module and the discharging module respectively; the memory module is electrically connected to the charging module and the comparison module respectively, and the initial charging current preset in the plurality of charging phases is stored. The value and the advanced value, the plurality of charging currents (four) values, and the time interval value of the taking #; the comparison module is electrically connected to the memory module; and the main control module is respectively connected with the power input port group, the charging module, The discharge module, the comparison module, the memory module and the pulse wave control module are electrically connected. In addition, the main control module controls the pulse wave control module and the discharge module before charging the battery to perform pulse wave discharge on the f pool, and then the main control module controls the memory module to output one of the charging current control values to the charging. The module controls the pulse wave control module and the charging module, and continuously increases the charging current according to the increase of the charging current control value to charge the battery until the charging is completed; and during the charging, the main control module is based on the pre-charge Set the time interval value to sample the current charging current value and transmit it to the comparison module. The comparison module compares the current charging current value with the preset charging current advanced value of the charging phase, if the current charging current If the value is greater than the preset charging current advanced value, it will jump to the preset ketone phase for charging, otherwise, it will continue charging during the current charging phase. 20 [Embodiment] Before the battery is charged, the hair is first pulse-discharged to a preset value, and then the battery is pulse-charged. During the charging, the charger will continuously judge the charging. Whether the current is abnormal. If the charging current is too large, jump to the corresponding charging phase to continue charging, that is, in some cases, the charging current may be adjusted to the minimum charging current. In other cases, the charging current may be adjusted to Compared with the small charging current, it can achieve the effect of fast charging without destroying the battery life. • Figure 2 shows a functional block diagram of a preferred embodiment of the charger of the present invention. The charger 2 includes a power input processing module 21, a comparison module 22, a memory module 23, a pulse wave control module 24, a charging module 25, a discharge module 26, and a main control module 27 for The battery 28 is charged, wherein the memory module 10 group 23 stores a plurality of charging current control values, a preset value of the discharging phase, an initial value and an advanced value of the charging current preset in the plurality of charging phases, and a charging current/flow upper limit value. And the time interval value of a sample. In this embodiment, the battery 28 can be a hydrogen recording battery, a lithium ion battery, a nickel chrome battery, a lithium polymer battery, or other equivalent rechargeable battery. 15 The input end of the power input processing module 21 is an alternating current (AC) power source' to convert the input higher AC voltage (for example: 1 i 〇V or 220 v ) _ into a lower DC voltage, and then The lower DC voltage that it converts is supplied to the charging module 25. The comparison module 22 is used to compare whether the current charging current value and the preset charging current advanced value and the charging current upper limit value of each charging stage 20 stored in the memory module 23 are abnormal. In order to generate a comparison result, the main control module 27 can control the A memory module 23' according to the ratio-comparison result to provide a corresponding charging current control value to the charging module 25, and can adjust the charging current. . 8 1296458 FIG. 3 is a schematic diagram showing a memory module 23 of a preferred embodiment of the charger 2 of the present invention. In this embodiment, a portion of the memory module 23 stores a plurality of charging current control values, for example: The address 00000000 stores the charging current control value 00000001; the address current 00001000 stores the charging current 5 control value 00000010; and the address 00002000 stores the charging current control value 00000011. The above charging current control values can control the magnitude of the charging current of the charging module 25. In this embodiment, the memory module 23 is a read only memory (ROM). In other embodiments, the memory module 23 can be a non-volatile memory (Non-Volatile Memory), a random access memory (RAM), a flash memory (Flash), or other storage memory or other suitable type. Storage media. 4 is a partial internal circuit diagram of a charging module 25 of the preferred embodiment of the charger 2 of the present invention, which shows a plurality of charging current units 401, 402, 403, 404, 405, 406, 407, 408, each One provides a charging current for a single 15 yuan 401-408 with a resistor, and the resistance values are different, so that each of the provided charging current units 401-408 can provide different charging current, for example: to provide a charging current early 4 01 Providing a charging current of 1C. The so-called 1C charging current refers to the rated current of the battery being charged. For example, the current of the battery of the mobile phone is 700 m A ', and the charging current is provided by the 1C charging current provided by the charging current. 20 is 700mA. Similarly, the charging current unit 403 is provided to provide a charging current of 0.5 C, i.e., 350 mA; and the charging current unit 406 is provided to provide a charging-current of 0.1 C, i.e., 70 mA. The above-mentioned charging current units 401, 402, 403, 404, 405, 406, 407, 408 will be based on the charging current control value provided by the memory module 23 to 9 1296458 10 15 20 firstly 'put the battery 28 into the charging stand (not shown), the battery 28 is pulse-discharged to a predetermined value (step S5〇5), wherein the preset value of the tape release phase is stored in the memory module 23. Since the conventional charger does not discharge the battery before charging, it will not be solid enough when charging. Therefore, it may cause a sudden drop in power when used. For example, the battery power of the mobile phone may suddenly From three squares to one. μ Although some chargers are currently equipped with a discharge button, they are continuously discharged to the battery 28 after the discharge button is pressed. In fact, after the open button is released, the residual power of the battery is not completely discharged. Therefore, the embodiment is actually discharged to a predetermined value by pulse discharge. In some embodiments, to prevent the battery from being completely unusable, the preset value may be that in other embodiments, the preset value may be 〇v since the charger may be provided with other edges. Of course, the present invention can be implemented in various types of rechargeable battery chargers, and thus the preset values for discharging different types of charging W 5 'chargers are also different. ♦ 匕 ' 'pulse discharge refers to a plurality of discrete discharge currents forming a discharge period', for example, there are three sequential discharge cycles, the first discharge cycle includes Γ (idll, idl2, idl3, idl4) dU Idl2>Idl3>Idl4; the second discharge period includes four discrete discharge currents... d21, Id22, Id23, Id24, then Idll>Idl2>Id21' and d22 Id23>Id24, and the second discharge period includes four discrete discharge currents (T- _ d31, Id32? Id33, Id34

Id3l>Id32>Id33>Id34 則 Idll>Id21>Id31 ,且 11 1296458 接下來,請繼續參照圖5,充電器2之充電模組25係以 从小脈波電流開始對電池28進行充電(步驟S5 10)。有關 其洋細說明,敬請一併參照圖6、圖7、圖8及圖9,其中圖6 顯示充電時之電壓曲線示意圖,圖7顯示充電時之脈波電流 .5 不意圖’圖8顯示充電時之第一部份脈波電流示意圖,圖9 • 顯示充電時之第二部份脈波電流示意圖。 再配合圖2及圖4所示,假設上述之電池28被脈波式放 _ 電到2.5 V ’則此時主要控制模組27控制比較模組22、記憶 拉組23、脈波控制模組24及充電模組25來對電池28進行充 10 電。 在一開始時’主要控制模組27控制記憶模組23由位址 00000000開始輸出其充電電流控制值〇〇⑽⑻至充電模組 25 ’使得充電模組25之提供充電電流單元4〇8提供〇〇1(:的 充電電流。接著,主要控制模組27透過一計數器之累加(圖 15未示)或者隨時間增長而控制記憶模組23依序輸出遞增位 址中的充包琶流控制值,俾供增幅充電電流。 • 此外,在充電期間,及比對本發明之充電器2依設定之 時間間隔值去取樣一目前的充電電流即時值,並透過比較 杈組22來比對充電電流即時值與目前所在充電階段之預設 20充電電流進階值,以騎充電過程是否異常,俾能適時地 對充電電流進行修正(步驟S515)。若經由比較模組22之 -比較結果得知充電異常,則返回預設充電階段進行充電(步 -驟%2〇)。有關其說明,敬請參照圖ό與圖7。 12 1296458 於圖6、圖7中,電池28之充電處理主要分為兩個充電 過程6a,6b,其中於充電過程6a中更包括上升電流充電階 段41,42, 43, 44,於充電過程6b中更包括定電流充電階段 45 °下表顯示各個充電階段41〜45與充電電流控制值及充 電階段所預設之充電電流初始值及進階值之對應:Id3l>Id32>Id33>Id34 then Idll>Id21>Id31, and 11 1296458 Next, referring to FIG. 5, the charging module 25 of the charger 2 charges the battery 28 from the small pulse current (step S5 10). ). For details of the details, please refer to Figure 6, Figure 7, Figure 8, and Figure 9, wherein Figure 6 shows the voltage curve during charging, and Figure 7 shows the pulse current during charging. 5 Not intended. A schematic diagram showing the first part of the pulse current during charging, Figure 9 • shows the second part of the pulse current during charging. Referring to FIG. 2 and FIG. 4, it is assumed that the battery 28 is pulsed and discharged to 2.5 V'. At this time, the main control module 27 controls the comparison module 22, the memory pull group 23, and the pulse wave control module. 24 and the charging module 25 to charge the battery 28 to 10. In the beginning, the main control module 27 controls the memory module 23 to output its charging current control value 〇〇(10)(8) from the address 00000000 to the charging module 25' so that the charging current unit 4〇8 of the charging module 25 is provided.充电1 (: charging current. Then, the main control module 27 accumulates through a counter (not shown in FIG. 15) or controls the memory module 23 to sequentially output the charging turbulence control value in the incremental address. In addition, during charging, and compared to the charger 2 of the present invention, a current charging current instantaneous value is sampled according to the set time interval value, and the charging current is compared by comparing the group 22 The value is compared with the preset 20 charging current advanced value currently in the charging phase, so that the charging process is abnormal, and the charging current can be corrected in time (step S515). If the comparison module 22 compares the result, the charging is known. If abnormal, return to the preset charging phase for charging (step - step %2〇). For the description, please refer to Figure ό and Figure 7. 12 1296458 In Figure 6, Figure 7, the charging station of battery 28 It is mainly divided into two charging processes 6a, 6b, wherein in the charging process 6a, the rising current charging phase 41, 42, 43, 44 is further included, and the charging process 6b further includes a constant current charging phase. 45 ° The following table shows the various charging phases. 41~45 corresponds to the charging current control value and the initial and advanced values of the charging current preset in the charging phase:

充電階段 充電階段4 1 充電階段42 充電階段43 充電階段44 充電階段45 充電電流 控制值 〇〇〇〇〇〇〇〇〜 00100000 00100001〜 01000000 01000001 〜 10000000 10000001〜 11111111 11111111 充電電流 初始值至 進階值之 區間 〇C< = I< = 〇.5C 0.51C< = I< = 0.75C 〇.76C<=I<= 1C 1.01C<=I<3. 01C 3.01C = I 於充電階段41中,記憶模組23所提供之充電電流控制 值在00000000〜00100000之間,且充電電流〗的初始值(=〇c) 10至進階值(=〇.5C)之區間在〇C〜〇.5C之間,由於本實施之充電 階段41為第一個充電階段,因此主要控制模組27控制記憶 φ 模組23由位址00000000從頭開始輸出充電電流控制值,且 不斷地增加其充電電流;再經由比較模組22比較目前的充 電電流值及该充電階段41預設的充電電流進階值之後,若 15充電電流小於或等於進階值〇.5C ,則在此一階段繼續進行 充電處理。若充電電流增加至大於〇5c且小於或等於〇.75 - c時,則跳至下一個充電階段42。 於充電階段42中,若目前充電電流小於或等於進階值 0.75C,則繼續進行充電處理。若充電電流大於G75C且小 20於1C,則跳至下一個充電階段43。此外,若充電電流突然 13 1296458 間不穩定而輸出的電流小於此充電階段42的預設之充電電 流初始值及進階值的區間(0.51C〜0 75c)時,主要控制模組 27會控制充電模組25跳至對應的充電階段41,並控制記憶 模組23由位址〇〇〇〇〇〇〇從頭開始輸出充電電流控制值,使得 -5充電電流由〇C (充電階段41之預設的起始充電電流)開始 • 以遞增充電電流(<=〇.5C)的方式進行充電。相類似的,於充 電期間中,該比較模組會依據一預設之時間間隔進行比較 目前的充電電流值與充電電流上限值,因此,若充電電流 _ 不穩定而輸出的電流大於此一充電電流上限值(例如:4C) 10 時’則主要控制模組27會控制記憶模組23從此一充電階段 42的預設起始充電電流控制值〇〇1〇〇〇〇1開始輸出,使得充 電電流回到0.5 1C (充電階段42之預設的充電電流初始值) 開始以遞増充電電流(<=0.75C)的方式進行充電。 由上述說明可知,在不同的充電階段4丨,42, 43, 44, 45 15 分別相對應不同的充電電流區間,若充電電流因不穩定而 過小或過大時,則依據所預設之充電電流區間來跳至相對 參 應的充電階段,以進行充電處理,例如:以較大的充電電 流或由較小的充電電來進行充電。 當然,若經由比較模組22之比較結果在正常之充電電 20 流區間内,則繼續進行充電,且透過比較模組22來比較電 池28之充電電壓是否將近等於充飽之額定電壓(例如: • 4.2V)(步驟S525 )。若電池28之充電電壓沒有等於充飽 • 之額定電壓,則繼續進行充電(步驟S530 )。反之,若電 1296458 池28之充電電壓幾乎等於充飽之額定電壓,則此時進入定 電流充電階段45。 由於電池28本身之特性,在充電電壓充到額定電壓 (4.2V)後,經過一段時間,充電電壓會稍微降低一點點 5 (例如·降到4·12V),所以通常會繼續充電一段時間。目 珂的做法係採用額定電壓(4·2ν)繼續對電池28充電,由 ;[差(4.2V 4.12V=〇.〇8V )小,故此時電池μ之電壓很 難充得上去。因此,本發明於充電階段45經過一預設時間 (例如· 3为知.)後,係會採用稍微高一點的電壓對電池28 1〇充電(步驟S535 )。例如:採用5V之電壓,使得壓差夠大, 而能將電池28之電壓充上去。 > 。另外,由圖7、圖8及圖9之充電電流示意圖可得知,充 電電流係為脈波式充電電流,其中圖8顯示充電過程6a之脈 波式充電電流不意圖,其係顯示隨著充電時間的增加,充 15电包*由整體趨勢觀之,亦隨之增加,例如:充電電流84 大於充電電流83,充電電流83大於充電電流82,充電電流 .82大於充電電流81。此外,於圖”之充電電流係呈脈波 j,$即複數個離散的充電電流83, 831,832, 833, 834形成 ^电週’月所以於充電過程6a包括有複數充電週期,其 20巾母個充電週期所包括之充電電流的個數係可固定,亦可 動態的變動,例如:目前的充電週期所包括之充電電流個 •數為6個’下個充電週期所包括之充電電流個數為&個。 • 一圖9顯示充電過程6b之脈波式充電電流示意圖,其 不Ik著充電日卞間的增加,最大的充電電流係相等。例如、: 15 1296458 充電電流91等於充電電流92,充電電流%等於充電電流 93。且,於圖9中之充電電流亦呈脈波式。相類似的, 過程6b亦包括有複數個充電週期,且每一充電週期包括= 複數充電電流。 由以上之說明可知,本發明係在充電前,先透過脈波 式放電’以將電池的殘餘電量盡量清除,繼而透過小的脈 波式充電電流進行充電。並在充電期Fb1,判斷充電電流是 否過大’若過大,則返回預設之充電階段,以提供較= 之充電電流,避免傷害電池,以延長電池之使用壽命,: 至能避免因充電電流過大而導致電池發生爆炸。 上述實施例僅係為了方便說明而舉例而已,本發明所 主張之權利範圍自應以中請專利範圍所述為準,而㈣限 於上述實施例。 ^ 15 20 【圖式簡單說明】 圖1係傳統充電器之充電過程示意圖。 圖2係本發明充電器一較佳實施例之功能方塊示意圖。 圖3係本發明充電器一較佳實施例之記憶模組的示意圖。 圖4係本發明充電器-較佳實施例之充電模組的部份内部 電路示意圖。 圖5係本發明充電方法—較佳實施例之動作流程圖。 圖6係本發明充電方法一較佳實施例之充電時的電壓曲線 示意圖。 16 1296458 圖7係本發明充電方法一較佳實施例 示意圖。 了的脈波電流 圖8係本發明充電方法—較佳實施例之充 脈波電流示意圖。 了的弟—部份 施例之充電時的第二部份 圖9係本發明充電方法一較佳實 脈波電流示意圖。 【主要元件符號說明】 11 電流曲線 12 2 21 比較模組 22 23 脈波控制模組 24 25 放電模組 26 27 電池 28Charging phase Charging phase 4 1 Charging phase 42 Charging phase 43 Charging phase 44 Charging phase 45 Charging current control value 〇〇〇〇〇〇〇〇~ 00100000 00100001~ 01000000 01000001 ~ 10000000 10000001~ 11111111 11111111 Charging current initial value to advanced value The interval 〇C< = I< = 〇.5C 0.51C< = I< = 0.75C 〇.76C<=I<= 1C 1.01C<=I<3. 01C 3.01C = I in the charging phase 41, memory The charging current control value provided by the module 23 is between 00000000 and 00100000, and the initial value of the charging current (= 〇c) 10 to the advanced value (= 〇.5C) is in the range of 〇C~〇.5C. Since the charging phase 41 of the present embodiment is the first charging phase, the main control module 27 controls the memory φ module 23 to output the charging current control value from the beginning of the address 00000000, and continuously increases its charging current; After the comparison module 22 compares the current charging current value with the preset charging current advanced value of the charging phase 41, if the charging current is less than or equal to the advanced value 〇.5C, the charging process is continued at this stage. If the charging current increases to greater than 〇5c and less than or equal to 〇.75 - c, then jump to the next charging phase 42. In the charging phase 42, if the current charging current is less than or equal to the advanced value of 0.75C, the charging process is continued. If the charging current is greater than G75C and is less than 20C, skip to the next charging phase 43. In addition, if the charging current is unstable between 13 1296458 and the output current is less than the preset charging current initial value and the advanced value interval (0.51C~0 75c) of the charging phase 42, the main control module 27 controls. The charging module 25 jumps to the corresponding charging phase 41, and controls the memory module 23 to output the charging current control value from the address 〇〇〇〇〇〇〇 from the beginning, so that the charging current is -5 (the charging phase 41 is pre-charged) Start charging current set) • Charge with increasing charging current (<=〇.5C). Similarly, during the charging period, the comparison module compares the current charging current value and the charging current upper limit value according to a preset time interval. Therefore, if the charging current _ is unstable, the output current is greater than this one. When the charging current upper limit value (for example, 4C) is 10 o', the main control module 27 controls the memory module 23 to output from the preset initial charging current control value 〇〇1〇〇〇〇1 of the charging phase 42. The charging current is returned to 0.5 1 C (the initial charging current initial value of the charging phase 42) to start charging with the charging current (<=0.75 C). It can be seen from the above description that in different charging phases, 4丨, 42, 43, 44, 45 15 respectively correspond to different charging current intervals, and if the charging current is too small or too large due to instability, the charging current is determined according to the preset charging current. The interval jumps to a relative charging phase for charging processing, for example, charging with a larger charging current or by a smaller charging power. Of course, if the comparison result of the comparison module 22 is within the normal charging power 20 flow interval, the charging is continued, and the comparison module 22 compares whether the charging voltage of the battery 28 is nearly equal to the full rated voltage (for example: • 4.2V) (step S525). If the charging voltage of the battery 28 is not equal to the rated voltage of the full charge, charging is continued (step S530). Conversely, if the charging voltage of the battery 1296458 is almost equal to the rated voltage of the full charge, then the constant current charging phase 45 is entered. Due to the characteristics of the battery 28 itself, after the charging voltage is charged to the rated voltage (4.2V), the charging voltage is slightly lowered by a little bit 5 (e.g., down to 4.12V) over a period of time, so charging is usually continued for a while. The trick is to continue charging the battery 28 with the rated voltage (4·2ν), which is small [4.2V 4.12V=〇.〇8V), so the voltage of the battery μ is difficult to charge. Therefore, the present invention charges the battery 28 1〇 with a slightly higher voltage after a predetermined period of time (e.g., 3 is known) in the charging phase 45 (step S535). For example, using a voltage of 5V makes the voltage difference large enough to charge the voltage of the battery 28. > . In addition, from the charging current diagrams of FIG. 7, FIG. 8 and FIG. 9, the charging current is a pulse wave charging current, wherein FIG. 8 shows the pulse wave charging current of the charging process 6a, which is displayed along with As the charging time increases, the charge of the charging pack is increased by the overall trend. For example, the charging current 84 is greater than the charging current 83, the charging current 83 is greater than the charging current 82, and the charging current is greater than the charging current 81. In addition, the charging current in the figure is pulse wave j, that is, a plurality of discrete charging currents 83, 831, 832, 833, 834 form a power cycle 'month, so the charging process 6a includes a plurality of charging cycles, 20 of which The number of charging currents included in the charging cycle of the device can be fixed or dynamically changed. For example, the charging current included in the current charging cycle is 6 'charge current included in the next charging cycle. The number is & • Figure 9 shows the schematic diagram of the pulse-wave charging current of the charging process 6b, which does not increase the charging day, and the maximum charging current is equal. For example: 15 1296458 Charging current 91 is equal to The charging current 92, the charging current % is equal to the charging current 93. Moreover, the charging current in Fig. 9 is also pulse wave type. Similarly, the process 6b also includes a plurality of charging cycles, and each charging cycle includes = multiple charging It can be seen from the above description that the present invention transmits the residual power of the battery as much as possible by charging the pulse wave before charging, and then charges it through a small pulse-type charging current. Charging period Fb1, judging whether the charging current is too large 'If it is too large, it will return to the preset charging phase to provide charging current of =, avoiding damage to the battery to prolong the service life of the battery: to avoid excessive charging current The battery has exploded. The above embodiments are merely examples for convenience of explanation, and the scope of the claims is based on the scope of the patent application, and (4) is limited to the above embodiments. ^ 15 20 Figure 1 is a schematic diagram of a charging process of a conventional charger. Figure 2 is a functional block diagram of a preferred embodiment of the charger of the present invention. Figure 3 is a schematic diagram of a memory module of a preferred embodiment of the charger of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 5 is a flow chart showing the operation of the charging module of the present invention. FIG. 6 is a flow chart of the charging method of the present invention. FIG. 6 is a preferred embodiment of the charging method of the present invention. Schematic diagram of the voltage curve during charging. 16 1296458 FIG. 7 is a schematic diagram of a preferred embodiment of the charging method of the present invention. The pulse current of FIG. 8 is a charging method of the present invention. Method - a schematic diagram of the pulsed current of the preferred embodiment. The second part of the charging of the embodiment is shown in Fig. 9 which is a schematic diagram of a preferred real pulse current of the charging method of the present invention. 】 11 current curve 12 2 21 comparison module 22 23 pulse wave control module 24 25 discharge module 26 27 battery 28

電壓曲線 充電器 電源輪入處理模組 記憶模組 充電模組 主要控制模組 提供充電電流單元 充電階段 充電過程 充電電流 401,402,403,404,405,406,407,408 41,42,43,44,45 6a,6b 81,82,83,83 1,832,833,834,83 5,84,91,92, 93 S505,S510,S515,S520,S525,S53 0,S53 5 17 10Voltage curve charger power supply wheel processing module memory module charging module main control module provides charging current unit charging phase charging process charging current 401, 402, 403, 404, 405, 406, 407, 408 41, 42, 43, 44, 45 6a, 6b 81, 82, 83 ,83 1,832,833,834,83 5,84,91,92, 93 S505,S510,S515,S520,S525,S53 0,S53 5 17 10

Claims (1)

1296458 鵠 十、申請專利範圍: 1. 一種充電益之充電方法,以對一電池進行充電,該 充電方法包括下述步驟: 一放電步驟,係對該電池進行脈波式放電; .5 一充電步驟,包含複數個上升電流充電階段、一定電 .流充電階段、及該上升電流充電階段所預設之充電電流初 始值及進階值,以及複數個預設之充電電流控制值,其中 籲該充電電流控制值並作為充電電流輸出大小的控制訊號; 於該放電步驟後,係以一預設之起始充電電流對該電池開 10 始充私,且隨该充電電流控制值的增加而持續增加其充電 電流值,以完成每一個上升電流充電階段,之後再以該最 後之上升電流充電階段的充電電流進階值作為定電流充電 階段的充電電流值,持續對該電池充電’直至完成充電為 止;以及 15 一修正步驟,包含一預設之時間間隔值,於充電步驟 鲁期間,依設定之時間間隔值去取樣及比對一即時的充電電 流值與目前所在充電階段之預設充電電流進階值,若該即 時充電電流值大於該預設充電電流進階值,則跳至下一相 對應之充電階段,以進行充電處理,反之,在該目前所在 20 充電階段繼續該充電步驟。 2·如申請專利範圍第1項所述之充電方法,其中該充電 電流為一脈波電流。 . 3·如申請專利範圍第1項所述之充電方法,其十該預設 之起始充電電流為一微小之充電電流。 18 1296458 其中该主要控制模组對該電池充電前係控制該脈波控 制模組與該放電模組,以對該電池進行脈波式放電,繼而 該主要控制模組控制該記憶模組輸出其中一充電電流控制 值至该充電椒組’並控制該脈波控制模組與該充電模組, 5依據该充電電流控制值的增加而持續增加其充電電流對該 電池進行充電,直至完成充電為止;於充電期間,該主要 f制模組會依據預設之時間間隔值去取樣該目前的充電電 飢值’並傳送給該比較模組,該比較模組會比對該目前的 _充電電流值與目前所在充電階段之預設充電電流進階值, 10右忒目础充電電流值大於該預設充電電流進階值,則跳至 下一充電階段進行充電;反之,則在該目前所在充電階段 繼續充電。 9·如申請專利範圍第8項所述之充電器,其中該充電電 流為一脈波電流。 15 1〇·如申請專利範圍第8項所述之充電器,其中該充電 包流之初始時為一微小之充電電流。 • 11 ·如申請專利範圍第8項所述之充電器,其中該充電 迅流控制值為一呈遞增變化的計數值。 12·如申請專利範圍第8或11項所述之充電器,其中該 20 充電電流控制值為二進制。 13·如申睛專利範圍第8項所述之充電器,其中該記憶 ‘ 权組更儲存有一預設之充電電流上限值。 • 14.如申請專利範圍第13項所述之充電器,其中於充電 期間,该比較模組會進一步比對該目前之充電電流值及該 20 1296458 預設之充電電流上限值,倘若該目前之充電電流值大於該 充電電流上限值時,即使該目前的充電電流值降至所在充 電階段之充電電流初始值,再繼續完成該階段之充電。1296458 鹄10, the scope of application for patents: 1. A charging method for charging, to charge a battery, the charging method comprises the following steps: a discharging step, performing a pulse wave discharge on the battery; .5 a charging The step includes a plurality of rising current charging phases, a certain electric current charging phase, and an initial value and an advanced value of the charging current preset in the rising current charging phase, and a plurality of preset charging current control values, wherein The charging current control value is used as a control signal for the charging current output level; after the discharging step, the battery is initially charged with a preset initial charging current, and continues with the increase of the charging current control value. The charging current value is increased to complete each rising current charging phase, and then the charging current advanced value of the last rising current charging phase is used as the charging current value of the constant current charging phase, and the battery is continuously charged until the charging is completed. Up to; and a correction step comprising a preset time interval value during the charging step And sampling according to the set time interval value and comparing the instantaneous charging current value with the preset charging current advanced value of the current charging phase, and if the instantaneous charging current value is greater than the preset charging current advanced value, jumping Up to the next corresponding charging phase for charging processing, and conversely, continuing the charging step during the current 20 charging phase. 2. The charging method according to claim 1, wherein the charging current is a pulse current. 3. The charging method according to claim 1, wherein the preset initial charging current is a minute charging current. 18 1296458 wherein the main control module controls the pulse wave control module and the discharge module before charging the battery to perform pulse wave discharge on the battery, and then the main control module controls the memory module to output a charging current control value to the charging pepper set 'and controlling the pulse wave control module and the charging module, 5 continuously increasing the charging current according to the increase of the charging current control value to charge the battery until the charging is completed During the charging, the main f-module will sample the current charging hunger value according to the preset time interval value and transmit it to the comparison module, and the comparison module compares the current _ charging current The value is the preset charging current advanced value of the current charging phase, and the 10th charging current value is greater than the preset charging current advanced value, then jumping to the next charging phase for charging; otherwise, at the current location The charging phase continues to charge. 9. The charger of claim 8, wherein the charging current is a pulse current. 15 1〇 The charger of claim 8 wherein the charging packet is initially charged with a small charging current. • 11) The charger of claim 8 wherein the charge current control value is an incremented count value. 12. The charger of claim 8 or 11, wherein the 20 charge current control value is binary. 13. The charger of claim 8, wherein the memory ‘right group further stores a preset charging current upper limit value. 14. The charger of claim 13, wherein during the charging, the comparison module further compares the current charging current value with the preset charging current upper limit of 20 1296458, if When the current charging current value is greater than the charging current upper limit value, even if the current charging current value falls to the initial value of the charging current in the charging phase, the charging of the phase is continued. 21twenty one
TW094120174A 2005-06-17 2005-06-17 Charger and method used thereby TW200701590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW094120174A TW200701590A (en) 2005-06-17 2005-06-17 Charger and method used thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094120174A TW200701590A (en) 2005-06-17 2005-06-17 Charger and method used thereby

Publications (2)

Publication Number Publication Date
TW200701590A TW200701590A (en) 2007-01-01
TWI296458B true TWI296458B (en) 2008-05-01

Family

ID=45068772

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094120174A TW200701590A (en) 2005-06-17 2005-06-17 Charger and method used thereby

Country Status (1)

Country Link
TW (1) TW200701590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300159B2 (en) 2012-12-13 2016-03-29 Industrial Technology Research Institute Charging method for a rechargeable battery and charging architecture therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300159B2 (en) 2012-12-13 2016-03-29 Industrial Technology Research Institute Charging method for a rechargeable battery and charging architecture therewith

Also Published As

Publication number Publication date
TW200701590A (en) 2007-01-01

Similar Documents

Publication Publication Date Title
TW488123B (en) Battery charger for lithium based batteries
CN101960690B (en) Recharging device and recharging method
US8816648B2 (en) Modulated, temperature-based multi-CC-CV charging technique for Li-ion/Li-polymer batteries
TWI374596B (en) Battery charger and charging method
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
CN101960689B (en) Recharging device and recharging method
JP5839210B2 (en) Battery charging apparatus and method
US20180358661A1 (en) Lithium-ion battery cut-off voltage adjustment
CN108777331B (en) Charging control method and device for lithium ion battery in electronic equipment
JP2005530468A (en) Charger for storage battery
JP2003299258A (en) Method and apparatus for charging battery
JP2005530469A (en) Charger for storage battery
JP2001186683A (en) Method of quickly charging battery
TWI511405B (en) Method for charging a power device of a portable device using a current-adaptive process and power device thereof
JP5636535B2 (en) Charging / discharging device and method for regenerating lead-acid battery using the charging / discharging device
EP1338074B1 (en) Temperature limitation in li battery charging
TW201015814A (en) Charging system for rechargeable lithium battery
CN109309397B (en) Mobile power supply
TWI672844B (en) The method and device for charging alluminum battery
TWI296458B (en)
US20160308376A1 (en) Energy storage system
JP2006166641A (en) Charger
EP2852021B1 (en) Charging circuit and control method therefor
JP2004282929A (en) Charging method and charging device for battery
JP2010088220A (en) Circuit and method for discharging secondary battery, and information processor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees