[go: up one dir, main page]

TWI261124B - Liquid crystal display and wide viewing angle crossed polarizer - Google Patents

Liquid crystal display and wide viewing angle crossed polarizer Download PDF

Info

Publication number
TWI261124B
TWI261124B TW94105208A TW94105208A TWI261124B TW I261124 B TWI261124 B TW I261124B TW 94105208 A TW94105208 A TW 94105208A TW 94105208 A TW94105208 A TW 94105208A TW I261124 B TWI261124 B TW I261124B
Authority
TW
Taiwan
Prior art keywords
film
liquid crystal
uniaxial
polarizing film
hyperbolic
Prior art date
Application number
TW94105208A
Other languages
Chinese (zh)
Other versions
TW200630651A (en
Inventor
Xin-Yu Zhu
Shin-Tson Wu
Original Assignee
Tpo Displays Corp
Univ Central Florida
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tpo Displays Corp, Univ Central Florida filed Critical Tpo Displays Corp
Priority to TW94105208A priority Critical patent/TWI261124B/en
Application granted granted Critical
Publication of TW200630651A publication Critical patent/TW200630651A/en
Publication of TWI261124B publication Critical patent/TWI261124B/en

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

A wide viewing angle liquid crystal display with multi-film compensation. A positive birefringence uniaxial film and a negative birefringence uniaxial film are provided to compensate the dark state light leakage of the liquid crystal display, in which the liquid crystal molecules are homogeneous aligned at inactive state and driven by substantially lateral electric field. After compensation, the light leakage at dark state is dramatically decreased and contrast ratio greatly enhanced.

Description

1261124 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種具多重膜補償(irmlti-film c〇mpensati〇n) 之廣視角液晶顯示器,特別是有關於-種具廣視角的液晶顯示器,藉由提 供-正性雙折解軸膜及—貞性雙折射單健麵,以改善暗態時㈣光 現象。 【先前技術】 ^晶顯示器(LCD)已廣泛地使用於資訊顯示領域。由於液晶材料本身的 光學異向性(anis〇tropy),於不同方向觀看時,造成入射光看到不_有效雙 曲折(birefringence)。因此,傳統的液晶顯示器的視角並不如自發光顯示器, 例如陰極射線管(CRT)、有機電激發光顯示器(〇LED)及電_示器(pDp)的 11^: 1 n , ^ t ^(lateral electric field) 驅動液晶分子類型的顯示器已被提出,例如橫向電場驅動(in_plane switchingIPS)型及邊緣電i琢驅動衡ngegel(Jswitcj1ing_Fps)型。上述二者類 型之液晶顯示器驗晶層,於電壓關⑽略。_態時,皆均質地配向於 玻璃基板或瓣基板之間。上職板的表面塗㈣氧化銦錫(ιτ〇)層,其上 再佈以聚亞醯胺(polyixnide)配向膜。聚亞醯胺膜的表面經過反平行 (anti-parallel)方向研磨以形成均質的配向。顯示器面板夾置於兩交錯偏光膜 之間,且液晶分子的平行或垂直於其鄰近的偏光賴穿透軸。在電壓 開(voltage-on)的狀怨下’液晶分子由梳形電極所產生的電場驅動而扭轉於 平行基板辭面巾。因此從顯示H面板的另—方向觀之,人射光經歷幾近 相同之雙曲折以及由此可獲得一相對廣視角且對稱之影像。 然而,當自離軸(off-axis)的斜方向觀之,兩正交的交錯偏光膜(㈣㈣ polarizer)便不再彼此垂直,尤其是自交錯之偏光膜的二等分刺▲㈣方向 觀之。第1A及1B圖顯示上、下交錯偏光膜的吸收轴1〇、2〇自正向(如第 0773-A30506TWF(5.0) 5 1261124 一 1A圖)或自二等分線傾斜極角(polar angle)0方向(如第1B圖)觀看的示意 圖。如第1B圖所示,此兩交錯偏光膜間所形成的角度為2tan-i(c〇sQ),端賴 所觀看之極角Θ而定。顯然地,隨著觀看之極角θ增加,兩交錯偏光膜之間 的角度會更偏離90。。因而,導致隨著極角θ增加,漏光亦隨之增加。例如, 第2圖中所顯示典型的兩交錯偏光膜的視角圖。由45。、135。、225。及315。 等方位角(azimuthal angle)觀看,當極角Θ增加至70◦時,漏光即變得明顯(漏 光比值從0.0001增加為0·015)。對傳統橫向電場驅動(IPS)型液晶顯示器而 言’廣視角即顯示於第3A至3C圖中。在電壓關的狀態下,由45。、135。、 φ 225°及315。等方位角觀看,對比1〇 ·· 1的輪廓線被限定於70。之極角Θ。 為了解決交錯偏光膜的漫光問題,習知技藝已提出數種補償方式。例 如’於 SID 98 Digest,ρρ·315-318 “Optimum Film Compensation Modes for TNand VALCDs”中Chen等人提出藉由一正性雙曲折〇補償膜(ηχ=%<ηζ, ^ Ζ•軸係沿膜的厚度方向)加上一正性雙曲折Α-補償膜(nx>ny=nz)。於Jpn. j.1261124 IX. Description of the Invention: [Technical Field] The present invention relates to a wide viewing angle liquid crystal display with multiple film compensation (irmlti-film c〇mpensati〇n), in particular, a liquid crystal having a wide viewing angle The display improves the light phenomenon in the dark state by providing a positive-positive bi-folding of the axial membrane and a bismuth birefringence single-facet. [Prior Art] ^ Crystal display (LCD) has been widely used in the field of information display. Due to the optical anisotropy of the liquid crystal material itself, when viewed in different directions, the incident light is seen to have no effective birefringence. Therefore, the viewing angle of a conventional liquid crystal display is not as good as that of a self-illuminating display, such as a cathode ray tube (CRT), an organic electroluminescent display (〇LED), and an electro-indicator (pDp) 11^: 1 n , ^ t ^( Lateral electric field) A display that drives a liquid crystal molecule type has been proposed, such as an in-plane switching IPS type and an edge-type ngegel (Jswitcj1ing_Fps) type. The above two types of liquid crystal display crystal layers are slightly off at voltage off (10). In the _ state, it is uniformly aligned between the glass substrate or the valve substrate. The surface of the upper board is coated with a layer of (IV) indium tin oxide (ITO), which is then coated with a polyixnide alignment film. The surface of the polyimide membrane is ground in an anti-parallel direction to form a homogeneous alignment. The display panel is sandwiched between two staggered polarizing films, and the liquid crystal molecules are parallel or perpendicular to their adjacent polarized light transmission axis. In the case of voltage-on, liquid crystal molecules are driven by the electric field generated by the comb-shaped electrode to be twisted to the parallel substrate. Therefore, from the other direction of the display H panel, the human light experiences almost the same double zigzag and thus obtains a relatively wide viewing angle and symmetrical image. However, when viewed from the oblique direction of the off-axis, the two orthogonal staggered polarizing films ((4) and (4) polarizers) are no longer perpendicular to each other, especially the bisector of the self-interlacing polarizing film. It. Figures 1A and 1B show the absorption axes of the upper and lower staggered polarizing films 1 〇, 2 〇 from the forward direction (as in the 0773-A30506TWF (5.0) 5 1261124 - 1A map) or from the bisector oblique polar angle (polar angle) ) A schematic view of the 0 direction (as in Figure 1B). As shown in Fig. 1B, the angle formed between the two staggered polarizing films is 2 tan-i (c 〇 s Q) depending on the polar angle viewed. Obviously, as the polar angle θ of viewing increases, the angle between the two staggered polarizing films deviates more than 90. . As a result, as the polar angle θ increases, the light leakage also increases. For example, a perspective view of a typical two staggered polarizing film shown in FIG. By 45. , 135. 225. And 315. When the azimuthal angle is observed, when the polar angle Θ is increased to 70 ,, the light leakage becomes apparent (the light leakage ratio increases from 0.0001 to 0·015). For a conventional lateral electric field driven (IPS) type liquid crystal display, a wide viewing angle is shown in Figs. 3A to 3C. In the state of voltage off, by 45. , 135. , φ 225° and 315. For the azimuth viewing, the contour of the contrast 1 〇 ··1 is limited to 70. The polar corner is Θ. In order to solve the problem of diffused light of the interlaced polarizing film, several compensation methods have been proposed in the prior art. For example, in SID 98 Digest, ρρ·315-318 “Optimum Film Compensation Modes for TNand VALCDs”, Chen et al. proposed a positive hyperbolic 〇 compensation film (ηχ=%<ηζ, ^ Ζ•axis along the axis A thickness of the film is added to the positive hyperbolic Α-compensation film (nx > ny = nz). At Jpn. j.

Appl. Phys. Part 1? V〇L 37, pp.4822-4828(1998) 'Optimum Film Compensation Modes of Viewing Angle of Contrast in In-Plane-Switching-Mode Liquid Crystal Display”中Saitoh等人使用單一雙軸膜(nx>ny>nz)以補償交錯偏光膜 _ 的漏光。以及於 IDW,〇1,ρρ·485-488(2001) “A Wide Viewing Angle Polarizer and a Quarter-Wave Plate with a Wide Wavelength Range for Extremely High Quality LCDs”中Ishmabe等人使用兩雙軸膜以補償於長波長範圍的漏光。 然而,C-補償膜及雙軸補償膜的成本通常遠高於A_補償膜的成本。此外, 結合C-補償膜及A-補償膜或雙軸膜通常無法達到對稱的視角。 有鑑於此,本發明利用彭卡瑞(P〇incar0)球極化狀態(sphere state)表不法兰析交錯偏光膜的漏光問題。基於分析的結果,本發明提出補 彳貞液晶頒示态具有液晶層於電壓關(v〇ltage_〇f〇狀態時均質地配向,且於電 壓開(voltage-on)狀悲時由横向電場驅動,例如橫向電場驅動(Ips)型及邊緣 電場驅動(FFS)型液晶顯示器。 6 0773-A30506TWF(5.0) 1261124 【發明内容】 ^鑑於此’树明的目的在於提供—具有廣視角之液晶顯示器,適用 於大螢幕尺寸的咼解析電視(HDTV)或監視器。 /發明之另-目的在於提供—補償方法崎低交錯偏細的漏光及因 此得到具廣視角的偏光膜。 2達成上述目的,本發明提供—種液晶顯示器,包括—第—基板,具 有-弟-配偷。-第二基板,具有—第二配向膜。一液晶層,夾置於第 φ -基板與第二基板之間。—第—偏光膜,層疊於第—基板的相,於液晶 層之反側。-第二偏光膜,層疊於第二基板的外側,於液晶層之反側,以 及-正性雙曲料軸離補膜,ηχ>%=ηζ)及—貞性雙崎單補Α_補償 膜,Wnz)設置於第二基板與第二偏光膜之間或第一基板與第一偏光膜之 •間。其中,當無外加電壓時,液晶層實質上均質地配向於第一基板與第二 、土板之間《及其巾’液aB層貫質上由梳型電極或交指狀電極所產生之橫 向電場所驅動。 ~ 為達成上述目的,本發明提供一種廣視角的交錯偏光膜,包括一第一 偏細、-第二偏光膜,錢—正性雙續單軸膜(A_補償膜,nx>ny=^及 攀-負性雙曲折單轴膜(A_補償膜,ηχ<%=ηζ)設置於第一偏光膜與第二偏光膜 之間。 以下配合圖式以及較佳實施例,以更詳細地說明本發明。 【實施方式】 自法線方向觀看時,正交性的交錯偏光膜能產生極佳的暗態。因而許 多液晶顯示器面板使用交錯偏光膜以產生良好的暗態。傳統用於液晶顯示 為偏光膜的製作方式係以抽拉高分子膜,例如摻雜蛾或有機染料之聚乙烯 醇(PVA)。偏光膜的光學性質相當於一單軸吸收膜,其吸收軸平形於偏光膜 0773-A30506TWF(5.0) 7 1261124 的光軸(optical axis)。自法線方向觀看正交性的交錯偏光膜,彼此的吸收軸 相互垂直·下偏光膜的吸收軸P〇L(A)垂餘上偏光朗吸收軸ana(a),如 第4A圖所示。於彭卡瑞(p〇mcar0)球極化狀態表示法,下偏光膜的穿透轴 P〇L(T)與上偏光膜的吸收軸ana(a)完全重疊,如第4B圖所示。因此,無 漏光發生且可獲致良好的暗態。然而,自離轴的斜方向觀之,兩正交性的 父錯偏光膜便不再彼此垂直,尤其是自交錯偏光膜的二等分線方向觀之。 第5A圖顯示自二等分線傾斜方向觀看交錯偏光膜的示意圖。於穸卡瑞 ㈣福蝴中,可清楚地看到下偏光膜的穿透軸p〇L(T)與上偏光膜的吸收 軸ANA(A)彼此偏離,如帛5B圖所示。因此,導致如第2圖所示交錯偏 膜的漏光。 對於液晶顯示器,具有液晶層於電麈關狀態時均質地配向,且於電壓 開狀態時由橫向電場驅動,例如橫向電場酬IPS)型及邊緣電場驅動㈣) 型液晶顯示器’暗態之漏光主要軸於交錯偏光膜的漏光。因此,解決交 錯偏光膜的漏光的問題即可大幅地增加橫向電場驅動(Ips)型及邊緣電場驅 動(FFS)型液晶顯示器的視角。第6A _示自傾斜角觀看由一正性a铺 膜與-負性A-補償膜所構成的交錯偏光膜。正性A_補償臈係單轴雙曲折= 其光軸平行於該膜表面且雙曲折㈣或的 ne-nx、ny或ηζ ’ η〇=%、&或ηχ) ’而負性A_補償膜係單轴雙曲折膜直光轴 情槐絲面且雙曲折如⑽。♦以下針對補償膜的原料細敛述。請 麥閱弟6B ® ’當入射光通過下偏光膜時,其轉換成線性偏光且座落於點 ^〇L(T)。在通過正性八_補償膜後,其極化狀態將順時針方向轉至b點。接 著在過負)4 A-谢貝膜後,其極化狀態將順時針方向轉至a職(a)點。 因此,人射光會完全地被上偏光朗魏而無漏光發生 Γ由向嫩看結果不變,正性Α·補償膜與負性A-補償膜的I轴應3 、下偏光艇或上偏光膜的吸收軸。第7 _示由正性&補償麟負性A 補償膜所構成較錯偏光膜的觀看視賴。相較於無補償的結果,如第2 〇773-A30506TWF(5.0) 8 1261124 圖所示,最大的漏光降低30倍。根據本發明另一實施方式,正性A-補償膜 與負性A-補償膜的位置可互換。其示佈置示意圖及彭卡瑞(p〇incar0)球極化 狀態表示法如第8A及8B圖所示,以及補償的結果如第9圖所示。 將上述補償原理擴展至液晶顯示器,具有初始地均質配向的液晶層, 液晶層的配向、補償膜及偏光膜的位向均應適當地設定。更重要的是,補 償膜的相延遲(phaseretardation)需使其最佳化。電腦模擬所需的參數表列於 表1。 表1 模擬參數 數值 ne 1.5621(λ=550ηιη) n〇 1.4771(λ=550ηιη) 14.7 εν 4.4 _Κη __ 9.2x1 〇·12Ν κ22 6.1χ10"12Ν 14.6χ10'12Ν 液晶盒間隙 4·0μπι 預傾角 Γ 實施例一 第10圖顯示具多重膜補償之橫向電場驅動(IPS)型液晶顯示器1〇〇a的 結構不意圖。對於邊緣電場驅動(FFS)型液晶顯示器亦可同樣地適用。一第 一基板122,例如玻璃或塑膠基板,具有第一配向膜(研磨角度〇。”做為顯 不斋之下基板122。一第二基板124,具有一第二配向膜(研磨角度〇。),做 為顯示器之上基板。一液晶層125,夹置於第一基板122與第二基板124之 間。第-基板122、液晶層125及第二基板124構成一液晶盒12〇。一第一 偏光膜110 (穿透軸角度90。),層疊於第一基板122的外側,於液晶層125 0773-A30506TWF(5.0) 9 1261124 之反側一第二偏光膜15〇(穿透轴角度〇。),層疊於第二基板124的外側, 於液晶層125之反側。以及-正性雙曲折單轴A_補償膜13G (光轴角度如。) 及-負性雙曲折單軸A-補償膜140 (光軸角度〇。)設置於第二基板124盘第 =偏光膜15〇之間。正性雙曲折單軸A.補償膜13〇設置於第二基板124盘 第二偏光膜150之間以及負性雙曲折單轴A_補償膜14〇設置於正性雙曲折 單軸A_補健13G與第二偏光膜15Q之間。#無外 上均質地配向於第-基板122與第二基板124之間以及液晶層實質 型電極或交指狀電極所產生之橫向電場所驅動。 根據本發明之較佳實财式,第—偏光膜⑽的穿透減第二偏光膜 150的穿透軸之間的角度大於85。且小於%。俩者為大於撕且小於奶。 弟-偏光膜U0的穿透軸與液晶層的配向之間的角度大於%。且小於%。, 較佳者為大於88。且小於92。。正性雙曲折單軸A爾膜 介於W/k〇.25,較祕^ 遲犯圍 具中λ為入射光的波長, d為該膜的膜厚,◦為該膜的雙曲折。 負性雙曲折單軸A_補償膜14〇的光軸與該膜的平面平行,以及負性雙 曲折單軸^補償膜的光軸與第二偏光膜的穿透轴之間的角度大於。且二 於於f。且小於+2。。貞刚折單軸朗她遲範圍介於 一 ·’較佳者為— 〇·14,其中λ為入射光的波 長’ Cl為忒膜的膜厚,。為該膜的雙曲折。 橫向電場驅動_型液晶顯示器隐的補償原理如第n圖所示。各 =光通過下偏光断,其轉換成雜偏光^由於液晶層的配向係沿下: 先^吸收㈣向,因此上述線性偏光在通過液晶層後並不會改變其極化 狀態’b’本實施例可應用純粹交錯之偏光膜的法則,在順利通過正性 A-補償膜及負性A4|償膜後,其極化狀態將順時針方向轉至崩雄)點, 域2。心A-12C _示具正性A_補伽及纽a销膜之橫向電場驅 0773-A30506TWF(5.0) 10 1261124 動(IPS)型液晶顯示器的模擬結果。在±8〇。的視角錐中,對比率可達大於 表2 膜的形式 膜厚(μιη) 膜的雙曲^ Δη=ηε-η, 正性A-補償膜 59.0 0.0015 負性A-補償膜 59.5 -0.0015 膜的相延遲dAn 88.5 • 實施例二 實施例二主要係根據實施例一的設計而設置,不同處在於第二實施例 之液晶顯不器獅’其正性A_補償膜13〇 (光軸角度〇。)及負性A_補償膜 140(光軸角度90。)的位置互換。其結構示意圖如第13圖所示,並且其補償 -原理如第14圖中彭卡瑞_臟0)球所示。最佳化之正性A_補償膜及負性 —A-補伽參數表列於表3。帛队況圖顯示具正性A_補償膜及負性A_ 補償膜之橫向電場驅動(IPS)型液晶顯示器的模擬縣。在调。得視角錐 中’對比率可達大於200 : 1。 表 3 膜的形式 膜厚(μιη) 膜的雙曲折 膜的相延遲dAn Δη=ινη0 償膜 56.5 0.0015 84.8 補償膜 6L5 -0.0015 -92.3 補償膜亦可設置於下基板與下偏光膜之間。第16圖顯示本實施例橫向 包场驅動(IPS)型液晶顯示器100c的結構示意圖。第一偏光膜110(穿透軸角 度〇。)’層疊於第一基板122的外側,於液晶層125之反側。第二偏光膜150 〇773-A3〇5〇6TWF(5.〇) n 1261124 ‘(穿透軸角度9〇。),層疊於第二基板m的外側,於液晶層125之反侧一 正性雙曲折單軸A-補償膜130 (光軸角度〇。)及一負性雙曲折單軸補償膜 光轴角度90。)設置於第-基板m與第一偏光膜11〇之間。正性雙曲 折單軸A-樹員膜130设置於第一基板122與第一偏光膜11〇之間以及負性 雙曲折單軸A-補償膜140設置於正性雙曲折單軸補償膜13〇與第一基板 ⑵士之間。補償膜可設置於下基板與下偏細之間_由為,#光通過補償 膜% ’其轉換成線性偏光,沿著上偏細的吸錄Ί液晶層並未改變 其極化狀恶,於電壓關狀恶之漏光就可避免。其補償的原理如第Η圖中彭 •卡瑞(P〇mCar6)球所示。最佳化之正性A·補償膜及 A删賞膜參數表列= 表4。第18A-18C圖顯示具正性A·補償膜及負性^補償膜之橫肖電場驅動 (=)型液晶顯示器的模擬結果。於本實施例中,對比率稍小於實施例一與 貝她例一。然而,在土8〇。得視角錐中,對比率仍可達大於: 1。Appl. Phys. Part 1? V〇L 37, pp.4822-4828 (1998) 'Optimum Film Compensation Modes of Viewing Angle of Contrast in In-Plane-Switching-Mode Liquid Crystal Display', Saitoh et al. use a single pair The axial film (nx > ny > nz) compensates for the light leakage of the staggered polarizing film _. and IDW, 〇 1, ρρ·485-488 (2001) "A Wide Viewing Angle Polarizer and a Quarter-Wave Plate with a Wide Wavelength Range For Extremely High Quality LCDs" Ishmabe et al. use two biaxial films to compensate for light leakage over long wavelengths. However, the cost of C-compensation films and biaxial compensation films is usually much higher than the cost of A_compensation films. In combination with the C-compensation film and the A-compensation film or the biaxial film, the symmetrical viewing angle is usually not achieved. In view of this, the present invention utilizes the P〇incar0 ball state to represent the interlaced polarization. The problem of light leakage of the film. Based on the result of the analysis, the present invention proposes that the liquid crystal encapsulation state has a liquid crystal layer which is homogeneously aligned in the voltage state (v〇ltage_〇f〇 state, and is voltage-on). Sorrow is driven by a transverse electric field, such as Electric field driven (Ips) type and fringe electric field driven (FFS) type liquid crystal display. 6 0773-A30506TWF(5.0) 1261124 [Inventive content] ^ In view of the purpose of this 'Ying Ming' is to provide a liquid crystal display with a wide viewing angle, suitable for Large screen size 咼 analytic television (HDTV) or monitor. / Another object of the invention is to provide a compensation method for low-interlaced light leakage and thus a polarizing film having a wide viewing angle. 2 To achieve the above object, the present invention provides a liquid crystal display comprising: a first substrate, having a smear--a second substrate having a second alignment film, a liquid crystal layer sandwiched between the φ-substrate and the second substrate. a polarizing film laminated on the first substrate to the opposite side of the liquid crystal layer. The second polarizing film is laminated on the outer side of the second substrate, on the opposite side of the liquid crystal layer, and the - positive hyperbolic axis is offset. a film, ηχ>%=ηζ) and a bismuth double-sandwich Α compensation film, Wnz) are disposed between the second substrate and the second polarizing film or between the first substrate and the first polarizing film. When there is no applied voltage, the liquid crystal layer is substantially homogeneously matched Between the first substrate and the second earth plate "and towels' aB layer was consistent quality of the generated electric field transverse to the driving comb-shaped electrodes, or interdigitated electrode. In order to achieve the above object, the present invention provides a wide viewing angle staggered polarizing film comprising a first partial, second polarizing film, a money-positive double continuous uniaxial film (A_compensation film, nx> ny=^ And a climbing-negative hyperbolic uniaxial film (A_compensation film, ηχ<%=ηζ) is disposed between the first polarizing film and the second polarizing film. Hereinafter, in conjunction with the drawings and the preferred embodiment, in more detail The present invention will be described. [Embodiment] When viewed from the normal direction, the orthogonal staggered polarizing film can produce an excellent dark state. Therefore, many liquid crystal display panels use a staggered polarizing film to produce a good dark state. The method of forming the polarizing film is to draw a polymer film, such as polyvinyl alcohol (PVA) doped with moth or organic dye. The optical property of the polarizing film is equivalent to a uniaxial absorption film, and the absorption axis is flat on the polarizing film. 0773-A30506TWF(5.0) 7 1261124 The optical axis. The crossed polarized film is observed from the normal direction, and the absorption axes of each other are perpendicular to each other. The absorption axis P〇L(A) of the lower polarizing film is left behind. The upper polarizing absorption axis ana(a) is as shown in Fig. 4A. Yu Peng瑞 (p〇mcar0) spherical polarization state representation, the transmission axis P〇L(T) of the lower polarizing film completely overlaps with the absorption axis ana(a) of the upper polarizing film, as shown in Fig. 4B. Light leakage occurs and a good dark state can be obtained. However, from the oblique direction of the off-axis, the two orthogonal father-off polarizing films are no longer perpendicular to each other, especially the bisector of the self-staggered polarizing film. Figure 5A shows a schematic view of the staggered polarizing film viewed from the oblique direction of the bisector. In the 穸卡瑞(四)福蝶, the transmission axis p〇L(T) and the upper polarizing film of the lower polarizing film can be clearly seen. The absorption axes ANA(A) are deviated from each other as shown in FIG. 5B. Therefore, the light leakage of the interleaved film is caused as shown in FIG. 2. For the liquid crystal display, the liquid crystal layer is uniformly aligned in the electric-off state, and When the voltage is on, the horizontal electric field is driven, for example, the transverse electric field IPS) and the fringe electric field (4)). The liquid crystal display 'light leakage is mainly caused by the light leakage of the staggered polarizing film. Therefore, solving the problem of light leakage of the crossed polarizing film can greatly increase the viewing angle of the lateral electric field driving (Ips) type and the edge electric field driving (FFS) type liquid crystal display. The 6A_ shows a staggered polarizing film composed of a positive a-film and a negative-A-compensation film from the oblique angle. Positive A_compensated 臈 uniaxial double meander = its optical axis is parallel to the surface of the film and has a hyperbolic (four) or ne-nx, ny or ηζ 'η〇=%, & or ηχ) ' and negative A_ The compensation film is a uniaxial double-curved film straight optical axis and has a double twist (10). ♦ The following is a detailed description of the raw materials for the compensation film. Please read the 6B ® ’ when the incident light passes through the lower polarizing film, it is converted into linear polarized light and is located at the point ^〇L(T). After passing the positive eight-compensation film, its polarization state will turn clockwise to point b. Then, after the negative 4A-Shebe film, its polarization state will be clockwise to point a (a). Therefore, the human light will be completely polarized by the upper polarized light without leakage. The result will be unchanged from the tenderness. The positive Α·compensation film and the negative A-compensation film should be 3, the lower polarized boat or the upper polarized light. The absorption axis of the membrane. The seventh _ shows the viewing parallax of the wrong polarizing film formed by the positive & compensation negative nucleus A compensation film. Compared to the uncompensated result, as shown in Fig. 2 773-A30506TWF(5.0) 8 1261124, the maximum light leakage is reduced by 30 times. According to another embodiment of the present invention, the positions of the positive A-compensation film and the negative A-compensation film are interchangeable. The schematic diagram of the arrangement and the p极化incar0 ball polarization state representation are shown in Figures 8A and 8B, and the compensation results are shown in Figure 9. The above compensation principle is extended to a liquid crystal display, and has a liquid crystal layer which is initially homogeneously aligned, and the alignment of the liquid crystal layer, the compensation film, and the orientation of the polarizing film should be appropriately set. More importantly, the phaseretardation of the compensation film needs to be optimized. The parameter tables required for computer simulation are listed in Table 1. Table 1 Simulation parameter value ne 1.5621(λ=550ηιη) n〇1.4771(λ=550ηιη) 14.7 εν 4.4 _Κη__ 9.2x1 〇·12Ν κ22 6.1χ10"12Ν 14.6χ10'12Ν Cell gap 44·0μπι Pretilt angle 实施 Example A tenth diagram shows the structure of the transverse electric field drive (IPS) type liquid crystal display 1a having multiple film compensation. The same applies to a fringe field driven (FFS) type liquid crystal display. A first substrate 122, such as a glass or plastic substrate, has a first alignment film (grinding angle 〇.) as a substrate 122. A second substrate 124 has a second alignment film (grinding angle 〇). As a substrate above the display, a liquid crystal layer 125 is interposed between the first substrate 122 and the second substrate 124. The first substrate 122, the liquid crystal layer 125 and the second substrate 124 constitute a liquid crystal cell 12A. The first polarizing film 110 (penetrating axis angle 90.) is laminated on the outer side of the first substrate 122, and on the opposite side of the liquid crystal layer 125 0773-A30506TWF(5.0) 9 1261124, a second polarizing film 15〇 (penetrating axis angle) 〇.), laminated on the outer side of the second substrate 124 on the opposite side of the liquid crystal layer 125. And - positive hyperbolic uniaxial A_compensation film 13G (optical axis angle such as .) and - negative hyperbolic uniaxial A a compensation film 140 (optical axis angle 〇.) is disposed between the second substrate 124 and the polarizing film 15 。. The positive double zigzag uniaxial A. the compensation film 13 〇 is disposed on the second substrate 124 and the second polarizing film Between 150 and negative hyperbolic uniaxial A_compensation film 14〇 is set on positive double zigzag single axis A_complement 13G and second polarizing film 1 Between 5Q. No externally homogeneously oriented between the first substrate 122 and the second substrate 124 and the lateral electric field generated by the liquid crystal layer substantially electrode or the interdigitated electrode. The angle between the penetration of the first polarizing film (10) and the transmission axis of the second polarizing film 150 is greater than 85. and less than %. The two are larger than the tear and smaller than the milk. The transmission axis of the polarizing film U0 is The angle between the alignment of the liquid crystal layer is greater than % and less than %., preferably greater than 88. and less than 92. The positive hyperbolic uniaxial A-axis is between W/k 〇.25, which is more late. In the enclosure, λ is the wavelength of the incident light, d is the film thickness of the film, and ◦ is the hyperbolic fold of the film. The optical axis of the negative hyperbolic uniaxial A_compensation film 14〇 is parallel to the plane of the film, and The angle between the optical axis of the negative hyperbolic uniaxial compensation film and the transmission axis of the second polarizing film is greater than that of the second polarizing film and is less than or equal to f. and less than +2. A preferred one is - 〇 · 14, where λ is the wavelength of the incident light 'Cl is the film thickness of the ruthenium film, which is the double meander of the film. The hidden compensation principle of the _ type liquid crystal display is shown in the figure n. Each light is broken by the lower polarized light, which is converted into a hetero-polarized light ^ because the alignment of the liquid crystal layer is along the lower side: first, the absorption (four) direction, so the above linear polarized light passes The liquid crystal layer does not change its polarization state after the 'b'. This embodiment can apply the law of purely interlaced polarizing film. After passing through the positive A-compensation film and the negative A4| film, the polarization state will be Turn clockwise to the point of collapse, domain 2. Heart A-12C _ shows positive A_ supplemental gamma and neoa pin film transverse electric field drive 0773-A30506TWF (5.0) 10 1261124 moving (IPS) type liquid crystal display Simulation results. At ±8〇. In the viewing cone, the contrast ratio can be greater than the film thickness of the film of Table 2 (μιη). The hyperbolicity of the film is Δη=ηε-η, positive A-compensation film 59.0 0.0015 negative A-compensation film 59.5 -0.0015 Phase Delay dAn 88.5 • Embodiment 2 The second embodiment is mainly provided according to the design of the first embodiment, except that the liquid crystal display lion of the second embodiment has a positive A_compensation film 13〇 (optical axis angle 〇 The position of the negative A_compensation film 140 (optical axis angle 90.) is interchanged. The schematic diagram of the structure is shown in Fig. 13, and its compensation-principle is shown as a Ponkaray_dirt 0 ball in Fig. 14. The optimized positive A_compensation film and the negative-A-complement gamma parameter table are listed in Table 3. The 帛 team diagram shows a simulated county of a lateral electric field drive (IPS) type liquid crystal display with a positive A_compensation film and a negative A_ compensation film. In tune. In the viewing cone, the contrast ratio can be greater than 200: 1. Table 3 Form of the film Thickness (μιη) The twist of the film The phase delay of the film dAn Δη=ινη0 The film 56.5 0.0015 84.8 Compensation film 6L5 -0.0015 -92.3 The compensation film can also be placed between the lower substrate and the lower polarizing film. Fig. 16 is a view showing the structure of the lateral packet field drive (IPS) type liquid crystal display 100c of this embodiment. The first polarizing film 110 (transmission axis angle 〇.) is laminated on the outer side of the first substrate 122 on the opposite side of the liquid crystal layer 125. The second polarizing film 150 〇 773-A3 〇 5 〇 6TWF (5. 〇) n 1261124 ′ (penetrating axis angle 9 〇.), laminated on the outer side of the second substrate m, on the opposite side of the liquid crystal layer 125, a positive double The meandering single-axis A-compensation film 130 (optical axis angle 〇.) and a negative hyperbolic uniaxial compensation film optical axis angle 90. ) is disposed between the first substrate m and the first polarizing film 11A. The positive hyperbolic uniaxial A-tree member film 130 is disposed between the first substrate 122 and the first polarizing film 11A and the negative hyperbolic uniaxial A-compensation film 140 is disposed on the positive hyperbolic uniaxial compensation film 13 Between the 〇 and the first substrate (2). The compensation film can be disposed between the lower substrate and the lower partial layer _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Light leakage can be avoided when the voltage is off. The principle of compensation is shown in the P〇mCar6 ball in the figure. Optimized positive A·compensation film and A cut-off film parameter list = Table 4. Fig. 18A-18C shows the simulation results of a transverse-axis electric field-driven (=) type liquid crystal display having a positive A·compensation film and a negative compensation film. In the present embodiment, the contrast ratio is slightly smaller than that of the first embodiment. However, in the soil 8 〇. In the viewing cone, the contrast ratio can still be greater than: 1.

膜厚(μιη) 正性Α-補償膜 膜的雙曲折 △n=ne-n0 膜的相延遲dAnFilm thickness (μιη) Positive Α-compensation film Double twist of film △n=ne-n0 Phase retardation of film dAn

貫施例四 、實施例四主要雜據實關三的設計而設置,不同處在料四實施例 之液晶顯示器_,其正性A_補償膜13G (光轴角度如。)及負性補償膜 140 (光軸角度〇。)的位置互換。其結構示意圖如第19圖所示,並甫j ,中彭卡瑞(ρ·罐所示。最佳化之正性續膜及‘ 、、=腰茶數表列於表5。第21A_21C圖顯示具正性Α_補償膜及負性Α_ 補償膜之辦電場轉㈣迦晶赫_丽賴赌果,在 的視角錐中,對比率仍可達大於1〇〇 ·· j。 0773-A30506TWF(5.0) 12 1261124 表 膜的形式 膜厚(μπι) 正性Α-補償膜 負性A-補償膜 56.0 63.0 膜的雙曲折 膜的相延遲dAn -Δη^νηο 0.0015 84.0 -0.0015 --—----- -94.5 將本發明的特徵結果與習知技術比較,結果敘述如下。第22圖顯示習 知技術之具正性C-補償膜260及負性a,償膜23〇 (光軸角度〇。)補償之橫 籲向迅场驅動(IPS)型液晶顯不器200的結構示意圖。第-偏光膜21〇(穿透軸 角度90。),層疊於第一基板222的外側,於液晶層级之反侧。第二偏光 膜250 (牙透轴角度〇 ),層疊於第二基板224的外側,於液晶層您之反侧。 -負性雙曲折單軸A.補償膜23〇 (光軸歧〇。)及一正性〇補償膜26〇設置 •於第一基板222與第一偏光膜210之間。第20圖顯示其補償原理以彭卡瑞 _ (Pomcar0)球表示。冑佳化之正性A_補伽及正性⑽償膜參數表列於 表6。其暗態視角圖、明態穿透視角圖以及對比視角圖分別顯示於第 24A-24C圖巾。於第24A ®巾,最大的漏光大抵為33%高於本發明如第l2A 圖所示。再次比較第24A圖與第i2A圖,本發明對應於對比率大於2〇〇 ·· i 的視角,較習知技術的視角大了 10。。更重要的是,負性A_補償膜的成本 退低於C-補償膜的成本。本發明提供低成本且性能較佳的補伽能使橫向 電場驅動(IPS)型及邊緣電場驅動(FFS)型液晶顯示器的視角變寬。 表 6 膜的形式 膜厚(μηι) ρ膜的雙曲折 膜的相延遲dAn - ..Δη=ηε-ηπ 正性A-補償膜 87.0 0.0015 130.5 Γ正性C-補償膜"ί 56.5 --—--- 0.0015 84.8 ----—---- 〇773-A30506TWF(5.0) 13 1261124 [本案特徵及效果] 本么明之特徵與效果係利用多重膜補償方法降低交錯之偏光膜 得職視角的偏細。藉由提供低成本且性紐佳的補償膜,使 /、D电场驅動(IPS)型及邊緣電場驅動(FFS)型液晶顯示器的視角變寬。 雖然本發明已以較佳實施例減如上,然其並M赌定杯明 何熟習此項技藝者,在不脫離本發明之精神和範_,t可作更動與潤御, 因此本發明之保護範圍當視後附之巾請專纖圍所界定者為準。 【圖式簡單說明】 第1A-1B圖分別顯示交錯之偏光膜自法線方向及自二等分線傾斜極 Θ方向觀看的示意圖; 第2圖顯示典型的兩交錯之偏光膜的視角圖,其中 0·0001,0·0005,···,0·015代表暗態時的漏光比值; 第从-3C圖分別顯示習知電場驅動㈣型液晶顯示器的暗態漏光比 值、明悲壳度比值以及亮度對比與視角關係圖; 第4Α圖顯不本發明自法線方向觀看正交性的交錯偏光膜,彼此的吸收 軸相互垂直; 第4Β圖顯示彭卡瑞(Poinc㈣球極化狀態表示法,下偏光膜的穿透轴 POL(T)與上偏光膜的吸收軸anA(A)完全重疊; 第5A圖顯不本發明自二等分線傾斜方向觀看正交性地交錯偏光膜; 第5B圖顯示彭卡瑞(Poincar0)球極化狀態表示法,下偏光膜的穿透轴與 上偏光膜的吸收軸彼此偏離; /' 第6A圖顯示本發明自傾斜角觀看由正性A_補償膜與負性A_補償膜所 構成的交錯偏光膜; 第6B圖顯示彭卡瑞(Ρ〇—)球極化狀態表示法,入射光會完全地被上 偏光膜所吸收而無漏光發生; 〇773-A30506TWF(5.0) 14 1261124 . 第7圖顯示由正性A-補償膜與負性A-補償膜所構成的交錯偏光膜之觀 看視角圖,其中0·0001,0·0002,···代表漏光比值; 第8Α圖顯示本發明另一實施例自傾斜角觀看由正性補償膜與負性 Α-補犒膜所構成的交錯偏光膜,其中正性補償膜與負性Α_補償膜位置互 換; 、、 第8Β圖顯示本發明另一實施例之彭卡瑞(p〇incar0)球極化狀態表示 法,其中正性A-補償膜與負性A-補償膜位置互換; 第9圖顯示本發明另一實施例由正性A-補償膜與負性A_補償膜所構成 • 的交錯偏光膜之觀看視角圖,其中0·0001,0·0002,···代表漏光比值,其正性 Α-補償膜與負性Α-補償膜位置互換; 第10圖顯示根據本發明第一實施例具多重膜補償之橫向電場驅動(IPS) 型液晶顯示器的結構示意圖; • 第11圖顯示根據本發明第一實施例具多重膜補償之橫向電場驅動(IPS) . 型液晶顯示器之彭卡瑞(P〇incar0)球極化狀態表示法; 第12A-12C圖顯示根據本發明第一實施例具多重膜補償之橫向電場驅 動(IPS)型液晶顯示器的暗態漏光比值、明態亮度比值以及亮度對比與視角 關係圖; ® 第13圖顯示根據本發明第二實施例具多重膜補償之橫向電場驅動(ips) 型液晶顯示器的結構示意圖; 第14圖顯示根據本發明第二實施例具多重膜補償之橫向電場·驅動(jpg) 型液晶顯示器之彭卡瑞(P〇incar6)球極化狀態表示法; 第15A-15C圖顯示根據本發明第二實施例具多重膜補償之橫向電場驅 動(IPS)型液晶顯示器的暗態漏光比值、明態亮度比值以及亮度對比與視角 關係圖; 第16圖顯示根據本發明第三實施例具多重膜補償之橫向電場驅動(ips) 型液晶顯示器的結構示意圖; 0773-A30506TWF(5.0) 15 1261124 % 。 第17圖顯示根據本發明第三實施例具多重膜補償之橫向電場驅動(IPS) 型液晶顯示器之彭卡瑞(P〇incar0)球極化狀態表示法; 第18A-18C圖顯示根據本發明第三實施例具多重膜補償之橫向電場驅 動(IPS)型液晶顯示器的暗態漏光比值、明態亮度比值以及亮度對比與視角 關係圖; ~ 第19圖顯示根據本發明第四實施例具多重膜補償之橫向電場驅動(正幻 型液晶顯示器的結構示意圖; 第20圖顯不根據本發明第四實施例具多重膜補償之橫向電場驅動(正s) 型液日日綠不為之%卡瑞(P〇incar0)球極化狀態表示法; 第21A-21C圖顯示根據本發明第四實施例具多重膜補償之橫向電場驅 動(IPS)型液晶顯示器的暗態漏光比值、明態亮度比值以及亮度對比與視角 關係圖; ’ 帛22圖顯不習知具正性C_補償膜及負性A-補償膜補償之橫向電場驅 _ 動(IPS)型液晶顯示器的結構示意圖; 第23醜不習知具正性〇補償膜及負性A-補償膜補償之橫向電場驅 動(IPS)型液晶顯示器之彭卡瑞(poincar0)球極化狀態表示法;以及 帛24A_24C圖顯示習知具正性C_補償膜及負性A-補償膜補償之橫向電 場驅動(IPS)型液晶顯示器的暗態漏光比值、明態亮度比值以及亮度對比與 視角關係圖。 【主要元件符號說明】 10、10’、20〜偏光膜的穿透轴; 100a、100b、100c、100d、200〜液晶顯示器; 110、210〜第一偏光膜; 120、220〜液晶盒; 122、222〜第一基板; 0773-A30506TWF(5.0) 16 1261124 124、 224〜第二基板; 125、 225〜液晶層; 130〜正性雙曲折單轴A-補償膜; 140、230〜負性雙曲折單軸A-補償膜; 260〜正性C-補償膜; 150、250〜第二偏光膜。According to the fourth embodiment, the fourth embodiment is mainly designed according to the design of the real three, and the liquid crystal display _ is different in the fourth embodiment, and its positive A_compensation film 13G (optical axis angle such as .) and negative compensation The positions of the film 140 (optical axis angle 〇.) are interchanged. The structure is shown in Fig. 19, and 甫j, middle Peng Cary (p. cans. Optimized positive continuous film and ',, = waist tea number table are listed in Table 5. 21A_21C Show positive Α _ compensation film and negative Α _ compensation film of the electric field turn (four) Jia Jinghe _ Li Lai gambling fruit, in the viewing cone, the contrast ratio can still be greater than 1 〇〇 · · j. 0773-A30506TWF (5.0) 12 1261124 Form film thickness (μπι) Positive Α-compensation film Negative A-compensation film 56.0 63.0 Membrane delay of the hyperbolic film of the film dAn -Δη^νηο 0.0015 84.0 -0.0015 ----- --- -94.5 Comparing the characteristic results of the present invention with the prior art, the results are as follows. Figure 22 shows a positive C-compensation film 260 and a negative a of the prior art, and the film is 23 〇 (optical axis angle) 〇)) A schematic diagram of the compensation of the transverse-direction drive (IPS) type liquid crystal display device 200. The first-polarized film 21 (transparent axis angle 90) is laminated on the outer side of the first substrate 222, in the liquid crystal The opposite side of the layer. The second polarizing film 250 (the axis of the tooth axis 〇) is laminated on the outer side of the second substrate 224 on the opposite side of the liquid crystal layer. - Negative double zigzag single axis A. The compensation film 23 〇 (optical axis 〇 〇 ) ) 及 及 及 及 及 及 及 • • • 于 于 于 于 于 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 ( ( ( ( ( ( ( The ball indicates that the positive A_ complement and positive (10) compensation film parameters of Table 6 are listed in Table 6. The dark state view, the clear view and the contrast view are shown in Figure 24A-24C. Figure. In the 24A® towel, the maximum light leakage is about 33% higher than the present invention as shown in Figure 12A. Comparing Figure 24A with Figure i2A again, the present invention corresponds to a contrast ratio greater than 2〇〇·· i The viewing angle is larger than the conventional technology. 10. More importantly, the cost of the negative A_compensation film is lower than the cost of the C-compensation film. The present invention provides a low cost and better performance of the complementary energy. The viewing angle of the transverse electric field drive (IPS) type and the fringe electric field drive (FFS) type liquid crystal display is widened. Table 6 Film thickness of the film (μηι) Phase delay of the hyperbolic film of the p film dAn - .. Δη = η ε - Ηπ positive A-compensation film 87.0 0.0015 130.5 Γ positive C-compensation film " ί 56.5 ------ 0.0015 84.8 --------- 〇773-A30506TWF (5 .0) 13 1261124 [Characteristics and Effects of the Case] The characteristics and effects of the present invention are the use of multiple film compensation methods to reduce the margin of the work angle of the interlaced polarizing film. By providing a low cost and good compensation film, The viewing angle of the D electric field drive (IPS) type and the edge electric field drive (FFS) type liquid crystal display is widened. Although the present invention has been reduced to the above by the preferred embodiment, it is intended that the skilled person will be able to make a change and aggression without departing from the spirit and scope of the present invention, and thus the protection of the present invention. The scope shall be subject to the definition of the attached towel. [Simple description of the drawings] Figure 1A-1B shows a schematic view of the interlaced polarizing film from the normal direction and the oblique direction of the bisector, and Figure 2 shows the perspective view of a typical two interlaced polarizing film. Among them, 0·0001, 0·0005,···, 0·015 represents the light leakage ratio in the dark state; the third to 3C shows the dark light leakage ratio and the ratio of the brightness to the shell of the conventional electric field driven (four) liquid crystal display. And the brightness contrast and the angle of view relationship; the fourth figure shows that the cross-sectional polarizing film of the orthogonality is viewed from the normal direction, and the absorption axes of each other are perpendicular to each other; the fourth figure shows the Poinc (four) ball polarization state representation. The transmission axis POL(T) of the lower polarizing film completely overlaps with the absorption axis anA(A) of the upper polarizing film; FIG. 5A shows the orthogonally staggered polarizing film viewed from the oblique direction of the bisector of the present invention; 5B shows the Poincar0 ball polarization state representation, the transmission axis of the lower polarizing film and the absorption axis of the upper polarizing film are deviated from each other; /' Fig. 6A shows that the self-tilt angle of the present invention is viewed by positive A_ a staggered polarizing film composed of a compensation film and a negative A_compensation film; Figure 6B shows the Pokhara (Ρ〇-) ball polarization state representation, the incident light will be completely absorbed by the upper polarizing film without leakage; 〇773-A30506TWF(5.0) 14 1261124 . Figure 7 shows by A viewing angle view of a staggered polarizing film composed of a positive A-compensation film and a negative A-compensation film, wherein 0·0001, 0·0002,··· represents a light leakage ratio; and FIG. 8 shows another embodiment of the present invention. The staggered polarizing film composed of the positive compensation film and the negative Α-fill film is viewed from the tilt angle, wherein the positive compensation film and the negative Α_compensation film are interchanged; and the eighth figure shows another embodiment of the present invention. Example of a p-incar0 ball polarization state representation in which a positive A-compensation film is interchanged with a negative A-compensation film position; Figure 9 shows another embodiment of the invention by positive A-compensation A viewing angle view of a staggered polarizing film composed of a film and a negative A_compensation film, wherein 0·0001, 0·0002,··· represents a light leakage ratio, and a positive Α-compensation film and a negative Α-compensation film Position interchange; FIG. 10 shows a transverse electric field driven (IPS) type liquid with multiple film compensation according to the first embodiment of the present invention Schematic diagram of the structure of the display; • Figure 11 shows the P极化incar0 ball polarization state representation of the transverse electric field drive (IPS) with multiple film compensation according to the first embodiment of the present invention; -12C is a diagram showing a dark light leakage ratio, a bright luminance ratio, and a brightness contrast and viewing angle relationship of a transverse electric field driven (IPS) type liquid crystal display with multiple film compensation according to a first embodiment of the present invention; 2 is a schematic structural view of a transverse electric field driven (ips) type liquid crystal display having multiple film compensation; FIG. 14 is a view showing a lateral electric field driving (jpg) type liquid crystal display with multiple film compensation according to a second embodiment of the present invention; P〇incar6 ball polarization state representation; 15A-15C shows dark state light leakage ratio and brightness state of a transverse electric field driven (IPS) type liquid crystal display with multiple film compensation according to a second embodiment of the present invention Brightness ratio and brightness contrast and viewing angle relationship diagram; Fig. 16 is a view showing the structure of a transverse electric field driving (ips) type liquid crystal display with multiple film compensation according to a third embodiment of the present invention Intent; 0773-A30506TWF(5.0) 15 1261124 %. Figure 17 is a diagram showing a P极化incar0 spherical polarization state representation of a transverse electric field driven (IPS) type liquid crystal display with multiple film compensation according to a third embodiment of the present invention; and Figs. 18A-18C are diagrams according to the present invention. A third embodiment of a transverse electric field driven (IPS) type liquid crystal display with multiple film compensation, a dark state light leakage ratio, a bright state luminance ratio, and a brightness contrast and viewing angle relationship; ~ FIG. 19 shows a multiple according to a fourth embodiment of the present invention. Transverse electric field drive of film compensation (schematic diagram of a structure of a sinusoidal liquid crystal display; Fig. 20 shows a lateral electric field drive (positive s) type liquid with a multi-film compensation according to the fourth embodiment of the present invention 〇 (P〇incar0) spherical polarization state representation; 21A-21C diagram shows dark state light leakage ratio and bright state luminance ratio of a transverse electric field driven (IPS) type liquid crystal display with multiple film compensation according to a fourth embodiment of the present invention And the brightness contrast and viewing angle relationship diagram; ' 帛 22 picture shows the structure of the transverse electric field drive _ (IPS) type liquid crystal display with positive C_ compensation film and negative A-compensation film compensation; Not learning Poincar0 spherical polarization state representation of a transverse electric field driven (IPS) type liquid crystal display with positive 〇 compensation film and negative A-compensation film compensation; and 帛24A_24C picture shows conventional positive C_ Compensation mode and negative A-compensation film compensated transverse electric field drive (IPS) type liquid crystal display dark state light leakage ratio, bright state brightness ratio and brightness contrast and viewing angle relationship diagram. [Main component symbol description] 10, 10', 20 ~ penetrating axis of polarizing film; 100a, 100b, 100c, 100d, 200~ liquid crystal display; 110, 210~ first polarizing film; 120, 220~ liquid crystal cell; 122, 222~ first substrate; 0773-A30506TWF (5.0 16 1261124 124, 224~ second substrate; 125, 225~ liquid crystal layer; 130~ positive double zigzag single axis A-compensation film; 140, 230~ negative hyperbolic uniaxial A-compensation film; 260~ positive C-compensation film; 150, 250~ second polarizing film.

17 0773-A30506TWF(5.0)17 0773-A30506TWF (5.0)

Claims (1)

1261124 十、申請專利範圍: 1·一種液晶顯示器,包括: 一第一基板,具有一第一配向膜; 一第二基板,具有一第二配向膜; 一液晶層,夾置於該第一基板與該第二基板之間; 一第一偏光膜,層疊於該第一基板的外側,於該液晶層之反侧; 弟一偏光膜’層豐於該弟二基板的外側,於該液晶層之反侧;以及 一正性雙曲折單軸膜及一負性雙曲折單轴膜設置於該第二基板與該第 • 二偏光膜之間或該第一基板與該第一偏光膜之間; 其中’該液晶層貫質上由梳型電極或交指狀電極所產生之橫向電場所 驅動。 2·如申請專利範圍第1項所述之液晶顯示器,其中該正性雙曲折單軸膜 - 設置於該第二基板與該第二偏光膜之間以及該負性雙曲折單軸膜設置於該 正性雙曲折單軸膜與該第二偏光膜之間。 3·如申請專利範圍第1項所述之液晶顯示器,其中該負性雙曲折單軸膜 設置於該第二基板與該第二偏光膜之間以及該正性雙曲折單軸膜設置於該 負性雙曲折單轴膜與該第二偏光膜之間。 _ 4·如申請專利範圍第1項所述之液晶顯示器,其中該負性雙曲折單軸膜 設置於該第一基板與該第一偏光膜之間以及該正性雙曲折單軸膜設置於該 負性雙曲折單軸膜與該第一偏光膜之間。 5·如申請專利範圍第1項所述之液晶顯示器,其中該正性雙曲折單軸膜 設置於該第一基板與該第一偏光膜之間以及該負性雙曲折單軸膜設置於該 正性雙曲折單軸膜與該第一偏光膜之間。 6.如申請專利範圍第1項所述之液晶顯示器,其中該第一偏光膜的穿透 軸與該弟二偏光腰的穿透軸之間的角度大於85。且小於95。。 7·如申請專利範圍第1項所述之液晶顯示器,其中該第一偏光膜的穿透 0773-A30506TWF(5.0) 18 1261124 軸與5玄第二偏光膜的穿透轴之間的角度大於88。且小於92。。 軸專糊第1項所述之液晶顯示器,其中該第—偏光膜的穿透 袖/、該液θθ層的配向之間的角度大於85。且小於95。。 ^如申請專利範圍第1項所述之液晶顯示器,其中該第_偏光膜的_秀 軸與該液晶層的配向之間的角度大於88。且小於92。。 、牙t 1〇·如申請專利範圍第1項所述之液晶顯示g',其巾該正性雙曲折單轴 膜的光軸與該膜的平面平行,以及該正性雙曲折單軸膜的光轴=該第:偏 光膜的穿透轴之間的角度大於85◦且小於95。。 + 11·如申請專利範圍第1項所述之液晶顯示器,其中該正性雙曲折單軸 膜喊轴與該膜的平面平行,以及該正性雙曲折單軸膜的雜=該第:偏 光膜的穿透軸之間的角度大於88。且小於92。。 12·如申請專利範圍第丨項所述之液晶顯示器,其中該正性雙曲折單轴 膜的相延遲範圍介於0.1滿/⑽25,其中λ為入射光的波長,d為該膜的 膜厚,Δη=ινη0為該膜的雙曲折。 Χ、 13·如申請專利細第丨項所述之液晶顯示器,其中該正性雙曲折單轴 膜的相延遲範圍介於αΜί/Αηΐ9,其中λ為入射光的波長,d為該膜的 膜厚,Δη=ινη。為該膜的雙曲折。 + Η·如中轉利範圍第丨項所述之液晶顯示器,其中該負性雙曲折單轴 膜的光軸與該膜的平面平行,以及該負性雙曲折單軸膜的光軸與該第二偏 光膜的穿透軸之間的角度大於_5。且小於+5。。 15·如申4補細第丨項所述之液晶顯示器,其巾該貞性雙曲折單轴 膜的光軸龍膜的平©平行,錢該貞性雙曲折單_的光軸與該第二偏 光膜的穿透軸之間的角度大於_2。且小於+2。。 16·如申請專利範圍第丨項所述之液晶顯示器,其中該負性雙曲折單軸 膜的相延遲範圍介於一0.1,其中λ為入射光的波長,d為該膜 的膜厚,An=ne-n。為該膜的雙曲折。 °773-A30506TWP(5.0) 19 1261124 . 17.如中請專利範圍第1項所述之液晶顯示n,其巾該負性雙曲折單轴 膜的相延遲範圍介於0.M,其中λ為入射光的波長,d為該膜 的膜厚,An=ne-n。為該膜的雙曲折。 、 18·—種具廣視角的交錯偏光膜,包括: 一第一偏光膜; 一第二偏光膜;以及 一正性雙曲折單軸膜及一負性雙曲折單軸膜設置於該第一偏光膜與該 弟二偏光膜之間。 • 19.如申請專利範圍第18項所述之具廣視角的交錯偏光膜,其中該正性 雙曲折單軸膜設置於該第一偏光膜與該第二偏光膜之間以及該負性雙曲折 單軸膜設置於該正性雙曲折單軸膜與該第二偏光膜之間。i 2〇·,申請專利範圍第18項所述之具廣視角的交錯偏光膜,其中該正性 •雙曲折單軸膜設置於__偏細與該第二偏光膜之間以及該負性雙曲折 •單軸膜設置於紅性雙績單_與該第—偏光膜之間。 21·如申請專利範圍第18項所述之具廣視角的交錯偏光膜,其中該第一 偏光膜的吸收軸與該第二偏光膜的吸收轴之間的角度大於%。且小於%。。 22·如巾料纖圍第18顧叙具麻肖的交錯偏細,其中該第一 偏光膜的吸收軸與該第二偏光膜的吸收軸之間的角度大於%。且小於吧。 23·如申請專鄕圍第18項所述之具廣視角的交錯偏光膜,其中該正性 雙曲料軸膜的絲與該膜的平面平行,以及該正性雙崎科膜的光軸 與該第二偏光膜的穿透轴之間的角度大於85。且小於95。。 4·如申σ月專利|巳圍第18項所述之具廣視角的交錯偏光膜,其中該正性 雙曲料_的光_該_平面平行,以及駐性雙鱗單軸膜的光軸 與該弟二偏光膜的穿透軸之間的角度大於88。且小於92。。 25·如申請專纖圍㈣顧叙具廣汹的交錯偏祕,其中該正性 雙曲折早軸膜的相延遲範圍介於仏偏㈣Μ,其中入為入射光的波長, 0773-A30506TWF(5.0) 20 1261124 d為该膜的膜厚’ Δη^η。為該朗雙曲折。 26. 如申晴專利範圍第18項所述之具廣視角的交錯偏光膜,其中該正性 雙曲折單軸膜的相延遲範圍介於αΜ遍灿9,其中λ為入射光的波 長’ d為$膜的膜厚,Δη==ινη。為該膜的雙曲折。 27. ,申μ專她圍第18項所述之具廣視肖的交錯偏光膜,其中該負性 雙曲折單㈣的光軸與該朗平面平行,以及該貞性雙曲折單軸膜的光轴 與該第二偏光膜的穿透軸之間的角度大於。且小於巧。。 28如申睛專纖圍第18項所述之具廣視肖的交錯偏光膜 ,其中該負性 雙曲折單贿的光倾顧的平面平行,収該貞性雙麟單軸膜的光轴 與該第二偏光膜的穿透軸之間的角度大於_2。且小於+2。。 29.如申專利縫第18項職之具廣視肖的交錯偏細,其中該負性 雙曲折單軸膜的相延遲範圍介於_〇25⑽/h_Gl,其中λ為入射光的波 長,d為該膜的膜厚,Δη=ινη。為該膜的雙曲折。 30·如申請專利範圍第ls項所述之具廣視角的交錯偏光膜,其中該負性 雙曲折單軸膜的相延遲範圍介於—αΐ9^必〇丨4,其中λ為入射光的波 長’ d為該膜的膜厚,△ntne—n。為該膜的雙曲折。 0773-A30506TWF(5.0) 211261124 X. Patent application scope: 1. A liquid crystal display comprising: a first substrate having a first alignment film; a second substrate having a second alignment film; and a liquid crystal layer interposed on the first substrate Between the second substrate; a first polarizing film laminated on the outer side of the first substrate on the opposite side of the liquid crystal layer; and a polarizing film layer on the outer side of the second substrate, in the liquid crystal layer a positive double zigzag uniaxial film and a negative hyperbolic uniaxial film are disposed between the second substrate and the second polarizing film or between the first substrate and the first polarizing film; The liquid crystal layer is driven by a lateral electric field generated by a comb electrode or an interdigitated electrode. 2. The liquid crystal display according to claim 1, wherein the positive hyperbolic uniaxial film is disposed between the second substrate and the second polarizing film, and the negative hyperbolic uniaxial film is disposed on The positive hyperbolic uniaxial film is interposed between the second polarizing film. 3. The liquid crystal display according to claim 1, wherein the negative hyperbolic uniaxial film is disposed between the second substrate and the second polarizing film, and the positive hyperbolic uniaxial film is disposed on the liquid crystal display. Between the negative hyperbolic uniaxial film and the second polarizing film. The liquid crystal display of claim 1, wherein the negative hyperbolic uniaxial film is disposed between the first substrate and the first polarizing film, and the positive hyperbolic uniaxial film is disposed on The negative hyperbolic uniaxial film is interposed between the first polarizing film. 5. The liquid crystal display according to claim 1, wherein the positive hyperbolic uniaxial film is disposed between the first substrate and the first polarizing film, and the negative hyperbolic uniaxial film is disposed on the liquid crystal display. A positive hyperbolic uniaxial film is interposed between the first polarizing film. 6. The liquid crystal display of claim 1, wherein an angle between a transmission axis of the first polarizing film and a transmission axis of the second polarizing waist is greater than 85. And less than 95. . 7. The liquid crystal display according to claim 1, wherein the first polarizing film penetrates the 0773-A30506TWF(5.0) 18 1261124 axis and the angle between the penetrating axes of the 5th second polarizing film is greater than 88. . And less than 92. . The liquid crystal display according to Item 1, wherein the angle between the penetrating sleeve of the first polarizing film and the alignment of the liquid θθ layer is greater than 85. And less than 95. . The liquid crystal display according to claim 1, wherein an angle between a _-axis of the _-------- And less than 92. . The liquid crystal display g' according to claim 1, wherein the optical axis of the positive hyperbolic uniaxial film is parallel to the plane of the film, and the positive hyperbolic uniaxial film The optical axis = the first: the angle between the transmission axes of the polarizing film is greater than 85 ◦ and less than 95. . The liquid crystal display of claim 1, wherein the positive hyperbolic uniaxial film axis is parallel to the plane of the film, and the positive hyperbolic uniaxial film is mismatched: the first: polarized light The angle between the axes of penetration of the membrane is greater than 88. And less than 92. . 12. The liquid crystal display according to claim 2, wherein the positive double zigzag uniaxial film has a phase retardation range of 0.1 full/(10) 25, wherein λ is the wavelength of the incident light, and d is the film thickness of the film. , Δη = ινη0 is the hyperbolic fold of the film. The liquid crystal display of claim 3, wherein the positive double-folded uniaxial film has a phase retardation range of αΜί/Αηΐ9, wherein λ is the wavelength of the incident light, and d is the film of the film Thick, Δη = ινη. It is a double meander of the film. The liquid crystal display according to the above item, wherein the optical axis of the negative hyperbolic uniaxial film is parallel to the plane of the film, and the optical axis of the negative hyperbolic uniaxial film The angle between the transmission axes of the second polarizing film is greater than _5. And less than +5. . 15. The liquid crystal display according to the fourth item of the claim 4, wherein the optical axis of the uniaxial film of the uniaxial film is parallel, and the optical axis of the 双 双 双 _ 与The angle between the transmission axes of the two polarizing films is greater than _2. And less than +2. . The liquid crystal display of claim 5, wherein the negative hyperbolic uniaxial film has a phase retardation range of 0.1, wherein λ is the wavelength of the incident light, and d is the film thickness of the film, An =ne-n. It is a double meander of the film. °773-A30506TWP(5.0) 19 1261124. 17. The liquid crystal display n according to claim 1, wherein the negative double-folded uniaxial film has a phase retardation range of 0.M, wherein λ is The wavelength of the incident light, d is the film thickness of the film, An = ne-n. It is a double meander of the film. 18·- a staggered polarizing film having a wide viewing angle, comprising: a first polarizing film; a second polarizing film; and a positive hyperbolic uniaxial film and a negative hyperbolic uniaxial film are disposed on the first The polarizing film is interposed between the polarizing film and the second polarizing film. 19. The staggered polarizing film having a wide viewing angle according to claim 18, wherein the positive hyperbolic uniaxial film is disposed between the first polarizing film and the second polarizing film and the negative double A meandering uniaxial film is disposed between the positive hyperbolic uniaxial film and the second polarizing film. i 2〇·, the interlaced polarizing film having a wide viewing angle as described in claim 18, wherein the positive/double zigzag uniaxial film is disposed between the __fine and the second polarizing film and the negative Double zigzag • Uniaxial film is placed between the red double transcript _ and the first polarizing film. A staggered polarizing film having a wide viewing angle as described in claim 18, wherein an angle between an absorption axis of the first polarizing film and an absorption axis of the second polarizing film is greater than %. And less than %. . 22. The cross-section of the lining of the towel material is the same as the angle between the absorption axis of the first polarizing film and the absorption axis of the second polarizing film. And less than it. 23. If applying for a staggered polarizing film having a wide viewing angle as described in Item 18, wherein the filament of the positive hyperbolic film is parallel to the plane of the film, and the optical axis of the positive double-sac film An angle between the axis of penetration of the second polarizing film is greater than 85. And less than 95. . 4. A staggered polarizing film having a wide viewing angle as described in claim 18, wherein the positive hyperbolic material _ the light_the _ plane parallel, and the light of the resident double-scale uniaxial film The angle between the axis and the transmission axis of the second polarizing film is greater than 88. And less than 92. . 25·If applying for special fiber circumference (4) Gu Xu has a wide range of interlaced secrets, the phase delay of the positive double-folded early axis film is between 仏 (4) Μ, where the input is the wavelength of the incident light, 0773-A30506TWF (5.0 20 1261124 d is the film thickness 'Δη^η of the film. For this lang double twist. 26. A staggered polarizing film having a wide viewing angle as described in claim 18 of the Shenqing patent scope, wherein the positive double-folded uniaxial film has a phase retardation range of αΜ通灿9, where λ is the wavelength of the incident light 'd The film thickness of the film is Δη==ινη. It is a double meander of the film. 27. The invention relates to a staggered polarizing film of the wide viewing mode described in Item 18, wherein the optical axis of the negative hyperbolic zigzag (four) is parallel to the horizontal plane, and the elastic double-folded uniaxial film The angle between the optical axis and the transmission axis of the second polarizing film is greater than. And less than clever. . 28, for example, the staggered polarizing film of Guangshixiao, as described in Item 18 of Shenshen Special Fibers, in which the plane of the negative double-bending single bribe is parallel, and the optical axis of the unilateral uniaxial film is closed. The angle between the axis of penetration of the second polarizing film is greater than _2. And less than +2. . 29. For example, in the 18th application of the patent patent, the cross-range of the wide-angled uniaxial film is _〇25(10)/h_Gl, where λ is the wavelength of the incident light, d The film thickness of the film is Δη = ινη. It is a double meander of the film. 30. The interlaced polarizing film having a wide viewing angle as described in claim ls, wherein the negative hyperbolic uniaxial film has a phase retardation range of -αΐ9^4, wherein λ is the wavelength of the incident light 'd is the film thickness of the film, Δntne-n. It is a double meander of the film. 0773-A30506TWF(5.0) 21
TW94105208A 2005-02-22 2005-02-22 Liquid crystal display and wide viewing angle crossed polarizer TWI261124B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94105208A TWI261124B (en) 2005-02-22 2005-02-22 Liquid crystal display and wide viewing angle crossed polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94105208A TWI261124B (en) 2005-02-22 2005-02-22 Liquid crystal display and wide viewing angle crossed polarizer

Publications (2)

Publication Number Publication Date
TW200630651A TW200630651A (en) 2006-09-01
TWI261124B true TWI261124B (en) 2006-09-01

Family

ID=37876095

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94105208A TWI261124B (en) 2005-02-22 2005-02-22 Liquid crystal display and wide viewing angle crossed polarizer

Country Status (1)

Country Link
TW (1) TWI261124B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI606286B (en) 2016-05-24 2017-11-21 揚昇照明股份有限公司 Composite film and display device
TWM537663U (en) 2016-10-25 2017-03-01 揚昇照明股份有限公司 Viewing angle control device and viewing angle controllable display apparatus
TWI605287B (en) 2016-12-29 2017-11-11 揚昇照明股份有限公司 Display Device
CN108345139B (en) 2017-01-25 2022-04-22 中强光电股份有限公司 Viewing angle switchable display device
CN109143622A (en) * 2017-06-15 2019-01-04 扬升照明股份有限公司 Polarizing type visual angle control element, polarizing type visual angle control display module and polarizing type visual angle control light source module

Also Published As

Publication number Publication date
TW200630651A (en) 2006-09-01

Similar Documents

Publication Publication Date Title
WO2018221413A1 (en) Display device
TWI352858B (en) Liquid crystal display device
TWI421576B (en) Liquid crystal display device with switchable viewing angle
TWI678574B (en) Liquid crystal panel and liquid crystal display device
WO2014034481A1 (en) Liquid crystal display device
US7639328B2 (en) Viewing angle controllable liquid crystal display device
JP2010244081A (en) Liquid crystal display device
US20130258255A1 (en) In-plane switching liquid crystal display device
JPH04338923A (en) liquid crystal display device
JP6887525B2 (en) Display device
TWI292068B (en) Liquid crystal display device
JP5066543B2 (en) Liquid crystal display
TWI261124B (en) Liquid crystal display and wide viewing angle crossed polarizer
KR20150137367A (en) Multi Domain Vertical Alignment Liquid Crystal Display with High Transmittance and Wide Viewing Angle
TW201007270A (en) Vertically aligned liquid crystal display device
TW200413800A (en) Multi-domain vertical alignment LCD using circular polarized light
CN100454102C (en) Liquid crystal display and crossed polarizing film with wide viewing angle
TWI284768B (en) Transflective liquid crystal display device
TWI281567B (en) Liquid crystal display device
JP7145958B2 (en) liquid crystal display
TW200528895A (en) Liquid crystal display device
KR20050000958A (en) In Plane Switching mode Liquid Crystal Display Device
JP2007256989A (en) Liquid crystal display device
JP2008065158A (en) Liquid crystal display device
JP2014215322A (en) Liquid crystal display device