[go: up one dir, main page]

TWI258042B - Fluorescent lamp and manufacturing method thereof - Google Patents

Fluorescent lamp and manufacturing method thereof Download PDF

Info

Publication number
TWI258042B
TWI258042B TW94117127A TW94117127A TWI258042B TW I258042 B TWI258042 B TW I258042B TW 94117127 A TW94117127 A TW 94117127A TW 94117127 A TW94117127 A TW 94117127A TW I258042 B TWI258042 B TW I258042B
Authority
TW
Taiwan
Prior art keywords
electrode layer
fluorescent lamp
glass tube
manufacturing
layer
Prior art date
Application number
TW94117127A
Other languages
Chinese (zh)
Other versions
TW200641473A (en
Inventor
Feng-Li Lin
Original Assignee
Gigno Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigno Technology Co Ltd filed Critical Gigno Technology Co Ltd
Priority to TW94117127A priority Critical patent/TWI258042B/en
Application granted granted Critical
Publication of TWI258042B publication Critical patent/TWI258042B/en
Publication of TW200641473A publication Critical patent/TW200641473A/en

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

A fluorescent lamp includes a glass tube, an inner electrode layer, and an external electrode layer. In this case, the glass tube is filled with discharge medium. The inner electrode layer is disposed on the inner wall around one end of the glass tube. The external electrode layer is disposed on the outer surface around the end of the glass tube. The invention also discloses a manufacturing method for a fluorescent lamp.

Description

1258042 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種光源及其製造方法,特別是關於一 種螢光燈及其製造方法。 【先前技術】 隨著電子科技的進步,尤其在日常生活中隨身電子產 _品的盛订’對於輕薄短小、耗電量低的顯示器之需求係日 皿 A 加其中’液晶顯示器(Liquid crystal Display, LCD ) 以其耗電量低、發熱量少、重量輕、以及非輻射性等等優 點’早已被使用於各式各樣的電子產品中,並且已逐漸地 取代傳統的陰極射線管顯示器(c〇ld Cath〇de Tube Display, CRT Display) 〇 一般而έ ’液晶顯示器係主要包含一液晶面板、以及 一背光模組。其中,液晶面板係具有兩基板、以及一夾設 φ於兩基板間的液晶層;而背光模組係可將來自一光源的光 線均勻地分佈在液晶面板之表面。 傳統上主要係以螢光燈(Fluorescent Lamp)作背光模 組中之光源。其中,螢光燈又可分為冷陰極螢光燈(C〇id ’ Cathode Fluorescent LamP,CCFL )、以及熱陰極螢光燈(Hot Cathode Fluorescent Lamp )。冷陰極螢光燈係以冷陰極電 極來代替會發熱之熱陰極電極(例如:鎢絲),由於冷陰 極螢光燈可低溫啟動’再加上高效和長壽之特點,故使得 冷陰極螢光燈成為液晶面板主要之背光源。 1258042 請參照圖1及圖2,習知技術之冷陰極螢光燈ι〇係包 含一玻璃管11,玻璃管11内之二端各設有一内電極12、 玻璃言11之内壁則均勻塗佈著螢光層(Phosphor Layer ) 13 °玻璃管11内係充填有水銀蒸氣及混合鈍氣(例如: 氣氬之此合氣體),作為放電介質(Discharge Medium )。 操作時’内電極12經由導線121連接電源而釋出電子, 電子經電場加速碰撞玻璃管内部之放電介質,使得放電介 質處於激態,然後釋出紫外光以回到基態。其中,放電介 質所釋放之紫外光則會被玻璃管内部之螢光層13吸收, 而發出可見光。 由於内電極12常會被激發之放電介質離子轟擊或吸 附而使内電極12磨耗受損、放電特性下降。再者,因為 玻璃管11二端區域具有内電極12被轟擊而放出的不純 物,因此發光亮度較玻璃管11中央區域低,故易造成燈 管亮度之不均勻。 為了解決前述的問題,習知技術係提出具有外電極之 冷陰極榮光管(External Electrode Cold Cathode Lamp, EEFL)。如圖3及圖4所示,具有外電極之冷陰極螢光燈 20係具有一玻璃管21、一對外電極22、以及設置於玻璃 管21内壁之一螢光層23。其中,玻璃管21内部係充填有 放電介質;外電極22係分別包覆於玻璃管21之兩端外 壁,例如使用一彈性杯狀金屬導體,套設於玻璃管21之 兩端部外緣,以作為外電極22。由於外電極22係設置於 玻璃管21之外侧,如此一來,即可避免被玻璃管21内部 1258042 之氣體離子轟擊,因此電極壽命可得以延長。 除此之外,若將具有外電極之冷陰極螢光燈20視為 一電容器,則其電容值可以下列公式來表示·· Ο ε S/d 其中,ε為玻璃管21之介電常數、S為外電極22之 有效面積、d為玻璃管21之厚度。因此,當電流流經具有 ^ 外電極之冷陰極螢光燈20時,等於流經串連二個電容的 ^ 燈管,故可節省穩流器電容(Ballast Capacitor)之使用, ® 而且只要利用一個大型的轉換器(Transformer )即可同時 控制多根並聯的燈管,故能降低成本。 然而,具有外電極之冷陰極螢光燈20仍有不少缺點: (1) 驅動電壓高:除了需要激發放電介質之電壓外, 還要再加上二個外電極電容之驅動電壓,故使得 燈管之驅動電壓相當高。 (2) 易造成玻璃穿孔(pinhole):在高電壓驅動下, φ 電子係直接衝撞玻璃以激發放電介質,而易造成 玻璃穿孔。 (3) 塑膠基材易腐蝕:由於習知技術的杯狀外電極22 與玻璃管21之間無法緊密連結而具有間隙,造 ’ 成間隙中之氧氣易被激發產生臭氧,進而腐蝕背 光模組中的塑膠基材。 (4) 有效發光面積大幅減少:通常外電極22之材質 係為不透光金屬,故會遮住光線,使得燈管之有 效發光面積大幅減少。 7 1258042 有鑑於上述課題,本案發明人亟思一種可以解決内電 極之螢光燈易磨耗、外電極之螢光燈驅動電壓高、易造成 玻璃穿孔、塑膠基材易腐蝕以及有效發光面積減少等問題 之「螢光燈」。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種同時具有 内電極層及外電極層之螢光燈及其製造方法。 * 緣是,為達上述目的,依本發明之螢光燈,包含一玻 璃管、一内電極層、以及一外電極層。其中,玻璃管係充 填有放電介質;内電極層係環設於玻璃管之一端部之内 壁;外電極層係環設於玻璃管之端部之外表面。 為達上述目的,依本發明之螢光燈之製造方法,其係 包含一内電極層及外電極層形成程序;一營光層形成程 序;以及一充填放電介質程序。 承上所述,因依本發明之螢光燈及其製造方法,係於 玻璃管上同時具有内電極層與外電極層。與習知技術相 , 比,本發明之螢光燈之内電極層及外電極係為層狀結構。 當增加内電極層之設置面積,則可使通過内電極層之電流 密度變小,以減少内電極層之磨耗可延長產品之壽命。另 外,由内電極層、外電極層及玻璃管所構成之電容值大 小,則可取決於内電極層與外電極層相對設置的面積。增 加二者相對設置之面積可提高電容值,不但能使螢光燈之 驅動電壓下降,進而避免玻璃穿孔的現象發生,更可因不 8 1258042 需外加穩流器電容’而直接利用一個大型轉換器以同時控 制多根旅聯的螢光燈,進而降低背光模組之生產成本。再 者,由於外電極層與玻璃管之間並沒有間隙,因此不會生 成臭氧’可避免背光模組中的塑膠基材被腐蝕。 【實施方式】 以下將參照相關圖式’說明依本發明之榮光燈及其黎】 造方法之較佳實施例。其中,本發明之螢光燈係以冷陰極 螢光燈(Cold Cathode Fluorescent Lamp,CCFL)來作為本 發明之較佳實施例,但是本發明之螢光燈不限制用於冷险 極螢光燈。 首先,請先參照圖5及圖6 ’以說明本發明較佳實施 例之螢光燈。 如圖5所示,螢光燈30係包含一玻璃管31、_内電 極層32、以及一外電極層33。本實施例中,螢光燈係 φ 可作為液晶顯示器中背光模組之光源。 玻璃管31係充填有放電介質,其中,放電介質係γ • 為惰性氣體(例如··氬、氖)、或汞(Hg)或其混合氣體。 另外,玻璃管31之内壁可具有一螢光層311,用以吸收紫 外光並放出可見光。其中,螢光層311可與内電極層32 有部份疊合。 内電極層32可以環設於玻璃管31之一端部312之内 壁,而另一端部使用習知的内電極或外電極。當然,内電 極層32也可以同時設置於玻璃管31之二端部312,313之 9 1258042 内壁。本實施例中,係以二端部312, 313之内壁均具有内 電極層32為例,其中,内電極層32係為一透光導電層, 其材質可為金屬,例如是氧化銦錫(Indium Tin Oxide, ΙΊΌ)〇另外,内電極層32形成之面積,可依實際產品需 求而定,於此不加以設限。 外電極層33可以只設置於玻璃管31 —端部312之外 、 表面。當然,外電極層33也可以同時設置於玻璃管31之 二端部312, 313之外表面。本實施例中,係以二端部312, ® 313之外表面均具有外電極層3 3為例,且外電極層3 3之 至少一部份係與内電極層32相對而設。外電極層33係為 一透光導電層,材質可與内電極層32相同,例如是氧化 銦錫。另外,外電極層33形成之面積,可依實際產品需 求而定,於此不加以設限。 請參照圖6,内電極層32與外電極層33也可以是設 置於玻璃管31之二端部之部份區段,例如是玻璃管31二 • 尖端的部份可以不設置内電極層32與外電極層33。 本實施例中,外加電流經由外電極層33通過玻璃管 壁而使内電極層32釋出電子,電子經電場加速碰撞玻璃 管31内部之放電介質,而放電介質經電子碰撞後處於激 " 態,再釋放紫外光回到基態。所釋放之紫外光則會激發設 置於玻璃管31内部之螢光層313,而發出可見光,以作為 背光模組之光源。 另外,由於玻璃管31内壁之内電極層32之面積可依 實際需求而設計,當加大玻璃管31内壁之内電極層32之 1258042 面積,則可使得通過内電極層32之電流密度會變小,故 能減少内電極層32之磨耗。如此一來,即可提昇内電極 層32之壽命。再者,由於玻璃管31之内壁具有内電極層 32,依尖端放電的原理,電子應該比從玻璃還易被激發出 來,故有助於降低驅動電壓(Vkidc Qff)。本實施例中,驅 動電壓為1850V。 > 另外,内電極層32及外電極層33係設於玻璃管31 之端部312, 313,並且至少有一部份相對而設,故係形成 ® 了 一電容。而電容值之大小,係取決於内電極層32及外 電極層33相對設置之面積,故可依實際需求來設計電容 之大小。若將内電極層32與外電極層33之相對面積增 加,則可提高電容值,不但能使螢光燈30之驅動電壓下 降,進而避免玻璃穿孔的現象發生,更可因不需外加穩流 器電容’而直接利用一個大型轉換器(Transformer )同時 控制多根並聯的螢光燈30,故能降低背光模組之生產成 φ 本。 雖然增加了内電極層32及外電極層33之設置面積, , 但由於本實施例中内電極層32及外電極層33之材質係為 透光導電層,故不會將光線完全遮住,其輝度仍可達到 20000cd/cm2,故不會減少有效發光面積。另外,外電極層 33與玻璃管31之間並沒有間隙,因此不會生成臭氧,可 避免背光模組中的塑膠基材被腐餘。 請參考圖7,本實施例中,螢光燈3〇更可包含一導體 34及一導線35,導體34係包覆於外電極層33,可保護外 11 1258042 ,極層33 $被到傷,並可與外界取得連接。外加之電流, ^可由導線35經過導體34後而流至外電極層33。其中, ‘體34與外電極層33之組裝密合度可以不用像習知技術 那麼高,因此可降低生產成本。 接著,請參照圖8至圖10以說明本發明較佳實施例 之螢光燈之製造方法。1258042 IX. Description of the Invention: [Technical Field] The present invention relates to a light source and a method of manufacturing the same, and more particularly to a fluorescent lamp and a method of manufacturing the same. [Prior Art] With the advancement of electronic technology, especially in the daily life of electronic products, the demand for the light, short, low-power display is the Japanese A plus the liquid crystal display (Liquid Crystal Display) , LCD ) has been used in a wide variety of electronic products because of its low power consumption, low heat generation, light weight, and non-radiation. It has gradually replaced the traditional cathode ray tube display ( C〇ld Cath〇de Tube Display, CRT Display) 〇General έ 'The LCD display system mainly includes a liquid crystal panel and a backlight module. The liquid crystal panel has two substrates and a liquid crystal layer interposed between the two substrates. The backlight module can evenly distribute the light from a light source on the surface of the liquid crystal panel. Traditionally, a fluorescent lamp has been used as a light source in a backlight module. Among them, the fluorescent lamp can be further divided into a cold cathode fluorescent lamp (C〇id ’ Cathode Fluorescent LamP, CCFL) and a hot cathode fluorescent lamp (Hot Cathode Fluorescent Lamp). Cold cathode fluorescent lamps use a cold cathode electrode instead of a hot cathode electrode (for example, tungsten wire), which can be cooled at low temperatures due to the low temperature start-up of the cold cathode fluorescent lamp. The lamp becomes the main backlight for the LCD panel. 1258042 Referring to FIG. 1 and FIG. 2, the cold cathode fluorescent lamp ι〇 of the prior art comprises a glass tube 11, and the inner end of each of the glass tubes 11 is provided with an inner electrode 12, and the inner wall of the glass 11 is evenly coated. The Phosphor Layer 13 ° glass tube 11 is filled with mercury vapor and mixed inert gas (for example, this gas of air argon) as a discharge medium (Discharge Medium). During operation, the internal electrode 12 is connected to the power source via the wire 121 to release electrons, and the electrons accelerate the battery to collide with the discharge medium inside the glass tube, so that the discharge medium is in an excited state, and then the ultraviolet light is released to return to the ground state. Among them, the ultraviolet light released by the discharge medium is absorbed by the fluorescent layer 13 inside the glass tube to emit visible light. Since the internal electrode 12 is often bombarded or adsorbed by the excited discharge medium ions, the internal electrode 12 is worn and the discharge characteristics are degraded. Furthermore, since the two end regions of the glass tube 11 have impurities which are emitted by the bombardment of the inner electrode 12, the luminance of the light is lower than that of the central portion of the glass tube 11, so that the brightness of the tube is uneven. In order to solve the aforementioned problems, the prior art proposes an External Electrode Cold Cathode Lamp (EEFL) having an external electrode. As shown in Figs. 3 and 4, the cold cathode fluorescent lamp 20 having an outer electrode has a glass tube 21, a pair of outer electrodes 22, and a phosphor layer 23 provided on one inner wall of the glass tube 21. The inside of the glass tube 21 is filled with a discharge medium; the outer electrode 22 is respectively wrapped on the outer walls of the two ends of the glass tube 21, for example, an elastic cup-shaped metal conductor is used, and the outer edges of the two ends of the glass tube 21 are sleeved. As the outer electrode 22. Since the outer electrode 22 is disposed on the outer side of the glass tube 21, gas ion bombardment by the inner portion 1258042 of the glass tube 21 can be avoided, so that the electrode life can be prolonged. In addition, if the cold cathode fluorescent lamp 20 having the outer electrode is regarded as a capacitor, the capacitance value thereof can be expressed by the following formula: Ο ε S / d where ε is the dielectric constant of the glass tube 21 , S is the effective area of the outer electrode 22, and d is the thickness of the glass tube 21. Therefore, when the current flows through the cold cathode fluorescent lamp 20 having the outer electrode, it is equal to the tube that flows through the two capacitors in series, so that the use of the ballast capacitor (Ballast Capacitor) can be saved, and only by utilizing A large converter (Transformer) can control multiple parallel lamps at the same time, thus reducing costs. However, the cold cathode fluorescent lamp 20 having the external electrode still has many disadvantages: (1) The driving voltage is high: in addition to the voltage required to excite the discharge medium, the driving voltage of the two external electrode capacitors is added, so that The driving voltage of the lamp is quite high. (2) It is easy to cause glass hole (pinhole): Under high voltage driving, φ electrons directly collide with glass to excite the discharge medium, which is easy to cause glass perforation. (3) The plastic substrate is easily corroded: because the gap between the cup-shaped outer electrode 22 and the glass tube 21 of the prior art has a gap, the oxygen in the gap is easily excited to generate ozone, thereby corroding the backlight module. The plastic substrate in the middle. (4) The effective light-emitting area is greatly reduced: usually the material of the outer electrode 22 is opaque metal, so that the light is blocked, so that the effective light-emitting area of the lamp is greatly reduced. 7 1258042 In view of the above problems, the inventor of the present invention can solve the problem that the fluorescent lamp of the inner electrode can be easily worn, the driving voltage of the fluorescent lamp of the outer electrode is high, the glass perforation is easy, the plastic substrate is corroded, and the effective light-emitting area is reduced. The "Fluorescent Light" of the problem. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a fluorescent lamp having an internal electrode layer and an external electrode layer, and a method of manufacturing the same. * The edge is that, for the above purpose, the fluorescent lamp according to the present invention comprises a glass tube, an inner electrode layer, and an outer electrode layer. Wherein, the glass tube is filled with a discharge medium; the inner electrode layer is disposed on the inner wall of one end of the glass tube; and the outer electrode layer is disposed on the outer surface of the end of the glass tube. To achieve the above object, a method of manufacturing a fluorescent lamp according to the present invention comprises an internal electrode layer and an external electrode layer forming process; a camping layer forming process; and a filling discharge medium program. As described above, the fluorescent lamp and the method of manufacturing the same according to the present invention have both an inner electrode layer and an outer electrode layer on a glass tube. In contrast to the prior art, the inner electrode layer and the outer electrode of the fluorescent lamp of the present invention have a layered structure. When the area of the inner electrode layer is increased, the current density through the inner electrode layer can be made small, and the wear of the inner electrode layer can be reduced to extend the life of the product. Further, the capacitance value of the inner electrode layer, the outer electrode layer, and the glass tube may be small depending on the area of the inner electrode layer and the outer electrode layer. Increasing the relative setting area of the two increases the capacitance value, which not only reduces the driving voltage of the fluorescent lamp, but also avoids the phenomenon of glass perforation, and can directly utilize a large conversion because of the need to add a current stabilizer capacitor. The utility model simultaneously controls the fluorescent lamps of a plurality of brigade links, thereby reducing the production cost of the backlight module. Furthermore, since there is no gap between the outer electrode layer and the glass tube, ozone is not generated, and the plastic substrate in the backlight module is prevented from being corroded. [Embodiment] Hereinafter, preferred embodiments of the glare lamp and the method thereof according to the present invention will be described with reference to the related drawings. The fluorescent lamp of the present invention uses a Cold Cathode Fluorescent Lamp (CCFL) as a preferred embodiment of the present invention, but the fluorescent lamp of the present invention is not limited to use in a cold fluorescent lamp. . First, please refer to Figs. 5 and 6' to illustrate a fluorescent lamp according to a preferred embodiment of the present invention. As shown in Fig. 5, the fluorescent lamp 30 includes a glass tube 31, an inner electrode layer 32, and an outer electrode layer 33. In this embodiment, the fluorescent lamp system φ can be used as a light source of the backlight module in the liquid crystal display. The glass tube 31 is filled with a discharge medium in which the discharge medium γ is an inert gas (for example, argon, helium) or mercury (Hg) or a mixed gas thereof. Further, the inner wall of the glass tube 31 may have a phosphor layer 311 for absorbing ultraviolet light and emitting visible light. The phosphor layer 311 may partially overlap the inner electrode layer 32. The inner electrode layer 32 may be annularly provided on the inner wall of one end portion 312 of the glass tube 31, and the other end portion may be a conventional inner electrode or outer electrode. Of course, the inner electrode layer 32 can also be disposed on the inner wall of the 9 1258042 of the two end portions 312, 313 of the glass tube 31 at the same time. In this embodiment, the inner electrode layer 32 is a transparent conductive layer, and the inner electrode layer 32 is made of a metal such as indium tin oxide. Indium Tin Oxide, ΙΊΌ) 〇 In addition, the area formed by the internal electrode layer 32 can be determined according to actual product requirements, and is not limited herein. The outer electrode layer 33 may be provided only on the surface of the glass tube 31 other than the end portion 312. Of course, the outer electrode layer 33 may be simultaneously disposed on the outer surfaces of the two end portions 312, 313 of the glass tube 31. In this embodiment, the outer surface of the two end portions 312, 313 has an outer electrode layer 3 3 as an example, and at least a portion of the outer electrode layer 3 3 is opposite to the inner electrode layer 32. The outer electrode layer 33 is a light-transmitting conductive layer which may be made of the same material as the inner electrode layer 32, such as indium tin oxide. In addition, the area formed by the outer electrode layer 33 can be determined according to the actual product requirements, and is not limited herein. Referring to FIG. 6 , the inner electrode layer 32 and the outer electrode layer 33 may also be a partial section disposed at two ends of the glass tube 31 , for example, a glass tube 31 • a tip portion may not be provided with the inner electrode layer 32 . And the outer electrode layer 33. In this embodiment, the applied current causes the internal electrode layer 32 to release electrons through the outer wall layer 33 through the glass tube wall, and the electrons accelerate the collision with the discharge medium inside the glass tube 31 via the electric field, and the discharge medium is excited after the electron collision. State, then release ultraviolet light back to the ground state. The released ultraviolet light excites the phosphor layer 313 disposed inside the glass tube 31 to emit visible light as a light source for the backlight module. In addition, since the area of the inner electrode layer 32 of the inner wall of the glass tube 31 can be designed according to actual needs, when the area of the inner electrode layer 32 of the inner wall 32 of the glass tube 31 is increased, the current density through the inner electrode layer 32 can be changed. Small, it can reduce the wear of the inner electrode layer 32. In this way, the life of the inner electrode layer 32 can be improved. Further, since the inner wall of the glass tube 31 has the inner electrode layer 32, electrons should be easily excited from the glass according to the principle of tip discharge, thereby contributing to lowering the driving voltage (Vkidc Qff). In this embodiment, the driving voltage is 1850V. > Further, the inner electrode layer 32 and the outer electrode layer 33 are provided at the end portions 312, 313 of the glass tube 31, and at least one portion is opposed to each other, so that a capacitor is formed. The magnitude of the capacitance depends on the relative arrangement of the inner electrode layer 32 and the outer electrode layer 33, so the size of the capacitor can be designed according to actual needs. If the relative area of the inner electrode layer 32 and the outer electrode layer 33 is increased, the capacitance value can be increased, and the driving voltage of the fluorescent lamp 30 can be lowered, thereby avoiding the phenomenon of glass perforation, and the need for external flow can be eliminated. The capacitor is used to directly control a plurality of parallel fluorescent lamps 30 by using a large converter (Transformer), so that the production of the backlight module can be reduced. Although the arrangement areas of the inner electrode layer 32 and the outer electrode layer 33 are increased, since the inner electrode layer 32 and the outer electrode layer 33 are made of a light-transmitting conductive layer in this embodiment, the light is not completely blocked. The luminance can still reach 20,000 cd/cm2, so the effective light-emitting area is not reduced. Further, there is no gap between the outer electrode layer 33 and the glass tube 31, so that ozone is not generated, and the plastic substrate in the backlight module can be prevented from being rotted. Please refer to FIG. 7. In this embodiment, the fluorescent lamp 3 can further include a conductor 34 and a wire 35. The conductor 34 is covered on the outer electrode layer 33 to protect the outer 11 1258042, and the pole layer 33 is injured. And can get connected with the outside world. The applied current, ^ can flow through the conductor 34 through the wire 35 to the outer electrode layer 33. Here, the assembly adhesion degree of the body 34 and the outer electrode layer 33 can be eliminated as high as in the prior art, so that the production cost can be reduced. Next, a method of manufacturing a fluorescent lamp according to a preferred embodiment of the present invention will be described with reference to Figs.

如圖8所示,螢光燈之製造方法係包含一内電極層及 外電極層形成程序(Ρ10)、-螢光層形成程序(Ρ20)、以 及—充填放電介質程序(P3G)。其中,螢光燈之製造方法 係於一玻璃官進行。須注意者,本發明並不限定上述三個 程序之順序,也就是說,也可以是先進行程序ρ2〇再進行 程序Ρ10,以製造螢光燈管。本實施例中,係以先進行程 序Ρ10再進行程序Ρ20為例。 請同時參照圖9及圖10,本實施例中,内電極層及外 電極層形成程序(Ρ10)係包含下列步驟··將玻璃管之一 端沾浸或蒸鍍於一導電材料(S11)、以及烘烤導電材料, 以幵^成一内電極層及一外電極層(S12)。於步驟sil中, 係將玻璃管31之一端沾浸或蒸鍍一導電材料中。其中, 導電材料可為一透光導電材料,例如是氧化銦錫。接著, 於步驟S12中,係烘烤沾附於玻璃管31之導電材料,以 於玻璃管31之内壁及外壁上分別形成内電極層32及外電 極層33。 本實施例中,螢光層形成程序(Ρ2〇)係包含下列步 驟:將一螢光層塗佈於玻璃管之内壁(S21);以及烘烤玻 12 1258042 璃管(S22)。於步驟S21中,係於玻璃管31之内壁,形 成一螢光層311,用以吸收紫外光而放出可見光。由於玻 璃官31之二端部312, 313已形成有透光之内電極層32及 外電極層33,因此,螢光層311會與内電極層32疊合, 而形成於玻璃管31之端部312, 313内壁。如此一來,螢 光層311之塗佈面積幾乎是整個玻璃管31之内壁,因此, 增加了燈管之有效發光面積。As shown in Fig. 8, the method of manufacturing a fluorescent lamp includes an internal electrode layer and an external electrode layer forming program (Ρ10), a phosphor layer forming program (Ρ20), and a filling discharge medium program (P3G). Among them, the manufacturing method of the fluorescent lamp is carried out by a glass official. It should be noted that the present invention does not limit the order of the above three programs, that is, it is also possible to perform the program ρ2 before performing the program Ρ10 to manufacture a fluorescent tube. In the present embodiment, the program Ρ20 is further performed by taking the advanced stroke sequence Ρ10 as an example. Referring to FIG. 9 and FIG. 10 simultaneously, in the present embodiment, the internal electrode layer and the outer electrode layer forming process (Ρ10) includes the following steps: dipping or vapor-depositing one end of the glass tube to a conductive material (S11), And baking the conductive material to form an inner electrode layer and an outer electrode layer (S12). In the step sil, one end of the glass tube 31 is dipped or vapor-deposited into a conductive material. The conductive material may be a light-transmitting conductive material such as indium tin oxide. Next, in step S12, the conductive material adhered to the glass tube 31 is baked to form the inner electrode layer 32 and the outer electrode layer 33 on the inner and outer walls of the glass tube 31, respectively. In the present embodiment, the phosphor layer forming process (Ρ2〇) comprises the steps of: applying a phosphor layer to the inner wall of the glass tube (S21); and baking the glass 12 1258042 glass tube (S22). In step S21, a fluorescent layer 311 is formed on the inner wall of the glass tube 31 for absorbing ultraviolet light to emit visible light. Since the two end portions 312, 313 of the glass member 31 have been formed with the inner electrode layer 32 and the outer electrode layer 33, the phosphor layer 311 is overlapped with the inner electrode layer 32 and formed at the end of the glass tube 31. The inner walls of the portions 312, 313. As a result, the coating area of the phosphor layer 311 is almost the entire inner wall of the glass tube 31, thereby increasing the effective light-emitting area of the tube.

於充填放電介質程序(P30),係將放電介質充填入玻 j管31中。充填放電介質程序(p3〇)可包含··燒結玻璃 b之其中一端(S31);填充至少一放電介質於玻璃管 (S33);以及燒結玻璃管之另一端(幻4)。 於步驟S31中,係利用高溫燒結玻璃管31之其中一 端’以將玻璃管31之一端封閉。 本實施例中,充填放電介質程序(P3〇)更可包含: 降,玻璃管内之壓力步驟(S32)。於步驟S32中,係將玻 璃g 31内之氣體排出,以降低管内壓力。其中,排氣前, 可先將玻璃管31打凹,使管徑變小,以利控制。 於步驟S33巾,係將至少一放電介質填充於玻璃管 31 °其放電介質可為惰性氣體、或汞或其混合氣體。 另外,汞蒸氣之形成方式,係可於玻璃管Η内置入一汞 ^待玻璃管31之另-端也燒結後,利用高周波激發广 使水蒸氣散佈於玻璃管31中。 於步驟S34中,係將玻璃管31 而將放電介質密封於玻璃管31中。 之另一端也燒結, 進 13 1258042 請參照圖9及圖10,本實施例中,螢光燈之製造方法 更可包含:一導體設置程序(P40)。於程序P40中,係將 一導體34於設置外電極層33上,以保護外電極層33不 被刮傷,而外加電流可由導體34流至外電極層33。 由於形成内電極層32與外電極層33時,只需將欲形 成電極之端部,沾浸於導電材料中,製程相當簡便,故可 ’ 降低螢光燈之製造成本。另外,導體34與外電極層33之 • 組裝密合度可以不用像習知技術那麼高,因此也可降低生 產成本。 綜上所述,本發明之螢光燈及其製造方法,係於玻璃 管上同時具有内電極層與外電極層。與習知技術相比,本 發明之螢光燈之内電極層及外電極係為層狀結構。當增加 内電極層之設置面積,則可使通過内電極層之電流密度變 小,以減少内電極層之磨耗可延長產品之壽命。另外,由 内電極層、外電極層及玻璃管所構成之電容值大小,則可 _ 取決於内電極層與外電極層相對設置的面積。增加二者相 對設置之面積可提高電容值,不但能使螢光燈之驅動電壓 . 下降,進而避免玻璃穿孔的現象發生,更可因不需外加穩 流器電容,而直接利用一個大型轉換器以同時控制多根並 聯的螢光燈,進而降低背光模組之生產成本。再者,由於 外電極層與玻璃管之間並沒有間隙,因此不會生成臭氧, 可避免背光模組中的塑膠基材被腐蝕。 以上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範疇,而對其進行之等效修改或變更,均 14 1258042 應包含於後附之申請專利範圍中。 【圖式簡單說明】 圖1係為習知螢光燈之一示意圖; 圖2係為圖1沿A-A’直線之一剖視圖; 圖3係為習知螢光燈之另一示意圖; 圖4係為圖3沿B-B’直線之一剖視圖; 、 圖5係為本發明之螢光燈之一示意圖; * 圖6係為本發明之螢光燈之另一示意圖; 圖7係為本發明之螢光燈之又一示意圖; 圖8係為本發明之螢光燈之製造方法之一流程圖; 圖9係為本發明之螢光燈之製造方法之另一流程圖; 以及 圖10係為本發明之螢光燈之製造方法之一流程示意 圖。 元件符號說明: 10 冷陰極螢光燈 11 玻璃管 12 内電極 121 導線 13 螢光層 20 螢光燈 21 玻璃管 15 1258042 22 外電極 23 螢光層 30 螢光燈 31 玻璃管 311螢光層 312端部 313端部 32 内電極層 33 外電極層 34 導體 3 5 導線 P10内電極層及外電極層形成程序 P20螢光層形成程序 P30充填放電介質程序 P40 —導體設置程序 S11將一玻璃管之至少一端沾浸或蒸鍍一導電材料 S12烘烤導電材料,以形成一内電極層及一外電極層 S21將一螢光層塗佈於玻璃管之内壁 S22烘烤玻璃管 S31燒結玻璃管之其中一端 S32降低玻璃管内之壓力 S33填充至少一放電介質於玻璃管 S34燒結玻璃管之另一端 16In the filling discharge medium program (P30), the discharge medium is filled into the glass tube 31. The filling discharge medium program (p3〇) may include one end of the sintered glass b (S31); filling at least one discharge medium in the glass tube (S33); and sintering the other end of the glass tube (Magic 4). In step S31, one end of the glass tube 31 is sintered at a high temperature to close one end of the glass tube 31. In this embodiment, the filling discharge medium program (P3〇) may further include: a step of lowering the pressure in the glass tube (S32). In step S32, the gas in the glass g 31 is discharged to reduce the pressure inside the tube. Among them, before the exhaust, the glass tube 31 can be recessed first, so that the diameter of the tube is reduced to facilitate control. In step S33, at least one discharge medium is filled in the glass tube 31 °, and the discharge medium may be an inert gas, or mercury or a mixed gas thereof. Further, the mercury vapor is formed by embedding a mercury in the glass tube. After the other end of the glass tube 31 is sintered, high-frequency excitation is used to spread the water vapor in the glass tube 31. In step S34, the glass tube 31 is used to seal the discharge medium in the glass tube 31. The other end is also sintered, and 13 1258042. Referring to FIG. 9 and FIG. 10, in the embodiment, the method for manufacturing the fluorescent lamp may further include: a conductor setting program (P40). In the program P40, a conductor 34 is disposed on the outer electrode layer 33 to protect the outer electrode layer 33 from being scratched, and an applied current may flow from the conductor 34 to the outer electrode layer 33. Since the inner electrode layer 32 and the outer electrode layer 33 are formed, it is only necessary to form the end portion of the electrode to be immersed in the conductive material, and the process is relatively simple, so that the manufacturing cost of the fluorescent lamp can be reduced. Further, the assembly tightness of the conductor 34 and the outer electrode layer 33 can be made lower than that of the conventional technique, so that the production cost can also be reduced. As described above, the fluorescent lamp of the present invention and the method of manufacturing the same are provided on the glass tube with both the inner electrode layer and the outer electrode layer. The inner electrode layer and the outer electrode of the fluorescent lamp of the present invention have a layered structure as compared with the prior art. When the area of the inner electrode layer is increased, the current density through the inner electrode layer can be made small, and the wear of the inner electrode layer can be reduced to extend the life of the product. Further, the capacitance value composed of the inner electrode layer, the outer electrode layer, and the glass tube may depend on the area of the inner electrode layer and the outer electrode layer. Increasing the relative setting area of the two increases the capacitance value, which not only reduces the driving voltage of the fluorescent lamp, but also avoids the phenomenon of glass perforation, and directly utilizes a large converter without external stabilizer capacitance. In order to simultaneously control a plurality of parallel fluorescent lamps, the production cost of the backlight module is reduced. Moreover, since there is no gap between the outer electrode layer and the glass tube, ozone is not generated, and the plastic substrate in the backlight module can be prevented from being corroded. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the present invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a conventional fluorescent lamp; FIG. 2 is a cross-sectional view taken along line A-A' of FIG. 1; FIG. 3 is another schematic view of a conventional fluorescent lamp; 4 is a cross-sectional view taken along line B-B' of FIG. 3; FIG. 5 is a schematic view of a fluorescent lamp of the present invention; * FIG. 6 is another schematic view of the fluorescent lamp of the present invention; FIG. 8 is a flow chart of a method for manufacturing a fluorescent lamp of the present invention; FIG. 9 is another flow chart of a method for manufacturing a fluorescent lamp of the present invention; 10 is a schematic flow chart of one of the manufacturing methods of the fluorescent lamp of the present invention. Symbol description: 10 Cold cathode fluorescent lamp 11 Glass tube 12 Inner electrode 121 Wire 13 Fluorescent layer 20 Fluorescent lamp 21 Glass tube 15 1258042 22 External electrode 23 Fluorescent layer 30 Fluorescent lamp 31 Glass tube 311 Fluorescent layer 312 End portion 313 end portion 32 Internal electrode layer 33 External electrode layer 34 Conductor 3 5 Conductor layer P10 Internal electrode layer and external electrode layer forming program P20 Fluorescent layer forming program P30 Filling discharge medium program P40 - Conductor setting program S11 will be a glass tube At least one end is immersed or vapor-deposited with a conductive material S12 to bake the conductive material to form an inner electrode layer and an outer electrode layer S21. A fluorescent layer is applied to the inner wall of the glass tube S22, the glass tube S31 is sintered, and the glass tube is sintered. One end S32 lowers the pressure S33 in the glass tube and fills at least one discharge medium at the other end of the glass tube S34 sintered glass tube 16

Claims (1)

l258〇42 十、申請專利範圍: 1、一種螢光燈,其係包含: 一玻璃管,其係充填有放電介質; 一内電極層,其係環設於該玻璃管之一蠕部之内壁; 以及 • 一外電極層,其係環設於該玻璃管之該端部之外表 面。 2如申請專利範圍第1項所述之螢光燈,其中該玻璃管 内之該放電介質係為惰性氣體、或汞”戈其混合氣體&。 3、 如申請專利範圍第i項所述之螢光燈,其中該玻璃管 之内壁係具有一螢光層。 4、 如申請專利範圍第1項所述之螢光燈,其中該内電極 • 層係為一透光導電層。 .5、如申請專利範圍第4項所述之螢光燈,其中該透光導 電層之材質為氧化銦錫。 6、 如申請專利範圍第所述之螢光燈,其中該外電極 層係為一透光導電層。 7、 如申請專利範圍第6項所述之螢光燈’其中該透光導 17 Ϊ258042 電層之材質為氧化銦錫。 8、 如申請專利範圍第丨項所述之螢光燈,其中該外電極 層之至少一部份係與該内電極層相對而設。 9、 如申請專利範圍第1項所述之螢光燈,更包含: 一導體’其係包覆該外電極層。 種螢光燈之製造方法,係於一玻璃管進行,該製 造方法係包含: 一内電極層及外電極層形成程序; 一螢光層形成程序;以及 一充填放電介質程序。 11、如申請專利範圍第10項所述之螢光燈之製造方法, 其中該内電極層及外電極層形成程序係包含下列步 驟: 將该玻璃管之一端沾浸或蒸鑛一導電材料;以及 棋烤该導電材料,以形成一内電極層及一外電極層。 12 、如申請專利範圍第11項所述之螢光燈之製造方法, 其中该導電材料係為一透光導電材料。 13 、如申請專利範圍第12項所述之螢光燈之製造方法, 18 1258042 其中該透光導電材料係為氧化銦錫。 14、 專利範圍第10項所述之螢光燈之製造方法,其中該 螢光層形成程序係包含: 將一螢光層塗佈於該玻璃管之内壁;以及 烘烤該玻璃管。 15、 如申請專利範圍第10項所述之螢光燈之製造方法, 其中該充填放電介質程序係包含下列步驟: 燒結該玻璃管之其中一端; 填充至少一放電介質於該玻璃管;以及 燒結該玻璃管之另一端。 16、 如申請專利範圍第15項所述之螢光燈之製造方法, 其中該充填放電介質程序更包含下列步驟: 降低該玻璃管内之壓力。 17、 如申請專利範圍第10項所述之螢光燈之製造方法, 更包含: 一導體設置程序。 19L258〇42 X. Patent application scope: 1. A fluorescent lamp comprising: a glass tube filled with a discharge medium; an inner electrode layer, the inner ring of which is disposed on the inner wall of a creeping portion of the glass tube And an external electrode layer having a loop formed on the outer surface of the end of the glass tube. 2. The fluorescent lamp of claim 1, wherein the discharge medium in the glass tube is an inert gas or a mixture of mercury and a mixture thereof. 3. As described in claim i. A fluorescent lamp, wherein the inner wall of the glass tube has a fluorescent layer. 4. The fluorescent lamp according to claim 1, wherein the inner electrode layer is a light-transmitting conductive layer. The fluorescent lamp of claim 4, wherein the material of the light-transmitting conductive layer is indium tin oxide. 6. The fluorescent lamp of claim 1, wherein the outer electrode layer is transparent. 7. A fluorescent lamp as described in claim 6 wherein the material of the light-transmissive conductive layer 17 Ϊ 258042 is made of indium tin oxide. 8. Fluorescence according to the scope of the patent application. The lamp, wherein at least a portion of the outer electrode layer is disposed opposite to the inner electrode layer. 9. The fluorescent lamp of claim 1, further comprising: a conductor Electrode layer. A method for manufacturing a fluorescent lamp, which is attached to a glass tube. The manufacturing method includes: an internal electrode layer and an outer electrode layer forming program; a phosphor layer forming program; and a filling discharge medium program. 11. The method of manufacturing a fluorescent lamp according to claim 10 The inner electrode layer and the outer electrode layer forming program comprise the steps of: dipping or distilling one end of the glass tube with a conductive material; and bake the conductive material to form an inner electrode layer and an outer electrode layer The method of manufacturing a fluorescent lamp according to claim 11, wherein the conductive material is a light-transmitting conductive material. 13. The method for manufacturing a fluorescent lamp according to claim 12 The method of manufacturing a fluorescent lamp according to the item 10, wherein the fluorescent layer forming process comprises: applying a fluorescent layer to the phosphorescent lamp. The method of manufacturing a fluorescent lamp according to claim 10, wherein the filling and discharging medium program comprises the following The method of manufacturing a fluorescent lamp according to claim 15, wherein the method of manufacturing a fluorescent lamp according to claim 15 is: The filling of the discharge medium program further comprises the steps of: reducing the pressure in the glass tube. 17. The method for manufacturing a fluorescent lamp according to claim 10, further comprising: a conductor setting procedure.
TW94117127A 2005-05-25 2005-05-25 Fluorescent lamp and manufacturing method thereof TWI258042B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94117127A TWI258042B (en) 2005-05-25 2005-05-25 Fluorescent lamp and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94117127A TWI258042B (en) 2005-05-25 2005-05-25 Fluorescent lamp and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI258042B true TWI258042B (en) 2006-07-11
TW200641473A TW200641473A (en) 2006-12-01

Family

ID=37765148

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94117127A TWI258042B (en) 2005-05-25 2005-05-25 Fluorescent lamp and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI258042B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407481B (en) * 2009-01-29 2013-09-01 Ushio Electric Inc Fluorescent lamp and the manufacturing method of the fluorescent lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407481B (en) * 2009-01-29 2013-09-01 Ushio Electric Inc Fluorescent lamp and the manufacturing method of the fluorescent lamp

Also Published As

Publication number Publication date
TW200641473A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
CN1089541C (en) Low-voltage mercury vapour discharge lamp, illuminating apparatus and display device
CN1378233A (en) Cold cathode discharge lamp
JP2002289138A (en) Cold cathode fluorescent lamp
CN100446172C (en) Flat-type external electrode fluorescent lamp and manufacturing method thereof
TWI258042B (en) Fluorescent lamp and manufacturing method thereof
CN100361270C (en) External electrode fluorescent tube and its manufacturing process
CN100461332C (en) High-efficiency external electrode porcelain tube cathode fluorescent lamp and manufacturing method thereof
TWI304597B (en) External electrode fluorescent lamp
CN100446170C (en) Cathode of a ceramic cold cathode fluorescent lamp
JPH11354078A (en) Discharge lamp
JP3664396B2 (en) Light bulb type fluorescent lamp
CN100442431C (en) Ceramic Assisted Cathode Hot Cathode Fluorescent Lamps
CN2879420Y (en) High optical efficiency low working voltage outer electrode fluorescent lamp
TWI310577B (en) Fluorescent lamp
KR101319300B1 (en) Cold Cathod Flourescent Lamp and Fabricating Method thereof
JP2002164022A (en) Light emitting device and back light for plane display
CN201054344Y (en) Reflective cold cathode lamp tube
KR100795517B1 (en) Internal Electrode Fluorescent Lamp
JP2006286447A (en) External electrode type fluorescent lamp and backlight unit
TWI345666B (en) Flat gas discharge lamp
JP2002190276A (en) Flat fluorescent lamp with flat electrode and method of manufacturing the same
CN100447930C (en) Production of cathode of cold cathode fluorescent tube
JP2009176546A (en) Noble gas fluorescent lamp
JPH0473854A (en) Small-sized fluorescent lamp
JPH04282529A (en) Fluorescent lamp

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees